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In this paper, we show that the implication fragment of Classical Propositional Logic is finitary for unification with parameters.

Introduction

Based on a definitionally complete set of connectives, Classical Propositional Logic (denoted CPL) seems to have all good properties a propositional logic can possess. For instance, its satisfiable formulas constitutes an NP-complete set of formulas [START_REF] Papadimitriou | Computational Complexity[END_REF]Chapter 9] and its admissible rules are all derivable [9, Chapter 1]. These properties, however, are lost when the syntax is enriched as, for example, in modal logic: the satisfiable formulas defined by S4 constitute a PSPACE-complete set of formulas [START_REF] Blackburn | Modal Logic[END_REF]Chapter 6] whereas there exists S4admissible rules that are not derivable [START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF]Chapter 3]. Hence, it is natural to ask what happens to the good properties of CPL when its syntax is impoverished to a definitionally incomplete set of connectives.

According to Dunn and Hardegree [START_REF] Dunn | Algebraic Methods in Philosophical Logic[END_REF]Chapter 9], the interesting fragments of CPL are the implication fragment and the positive fragment. In this paper, we only consider the implication fragment. It is algebraically characterizable in terms of semi-Boolean algebras [START_REF] Abbott | Implicational algebras[END_REF], i.e. algebraic structures of the form (A, ) where (a b) a = a, a (b c) = b (a c) and (a b) b = (b a) a. Its tautologies are axiomatizable by adding to the rule of modus ponens the axioms (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)), ϕ → (ψ → ϕ) and ((ϕ → ψ) → ϕ) → ϕ, the Pierce formula. Moreover, in it, the Deduction Theorem -if ψ is derivable from ϕ and a set Γ of formulas then ϕ → ψ is derivable 1 from Γ -still holds. But what can we say about its satisfiable formulas and its admissible rules?

Concerning the satisfiable formulas, they constitute a trivial set: as the reader can prove by induction on the implicative formula ϕ, ϕ is satisfiable1 . Concerning the admissible rules, some of them are not derivable as soon as the language contains propositional parameters, i.e. atomic formulas that cannot be replaced by formulas when one applies substitutions. In order to understand why, consider the rule x→p p→x where x is a variable and p is a parameter. As the reader can prove by induction on the implicative formula ϕ, if ϕ → p is valid then p → ϕ is valid. Hence, the considered rule is admissible. Nevertheless, it is not derivable. Indeed, suppose the considered rule is derivable. Thus, by using the Deduction Theorem, the formula (x → p) → (p → x) is valid: a contradiction.

In a propositional logic L, the admissibility problem is related to the unifiability problem [START_REF] Ghilardi | Unification in intuitionistic logic[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF]: given a formula ϕ, determine whether it has an L-unifier, i.e. a substitution σ such that σ(ϕ) is in L. A unifiable formula is finitary if it has a finite complete set of unifiers and unitary if this set is a singleton. It is well-known that, based on a definitionally complete set of connectives, CPL is unitary [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Martin | Boolean unification -the story so far[END_REF]. We usually distinguish between elementary unificationwhen all atomic formulas are considered as variables -and unification with parameters -when some atomic formulas are considered as parameters.

It may happen that in a propositional logic, every parameter-free unifiable formula is unitary whereas some unifiable formulas with parameters are finitary. For instance, in [START_REF] Ghilardi | Unification through projectivity[END_REF], Ghilardi has shown that the implication-conjunction fragment of Intuitionistic Propositional Logic is unitary for elementary unification and finitary for unification with parameters. From [START_REF] Cintula | Admissible rules in the implicationnegation fragment of intuitionistic logic[END_REF][START_REF] Prucnal | On the structural completeness of some pure implicational propositional calculi[END_REF], we know that the implication fragment of every intermediate logic is unitary for elementary unification. In this paper, we show that the implication fragment of Classical Propositional Logic is finitary for unification with parameters.

Classical Propositional Logic and its implication fragment

Atoms and models Let VAR be a countable set of variables (with typical members denoted x, y, etc) and PAR be a countable set of parameters (with typical members denoted p, q, etc). Atoms (denoted α, β, etc) are variables or parameters. Let ATO be the set of all atoms. A model is a function of the form

• V : ATO -→ {0, 1}.
Formulas Formulas (denoted ϕ, ψ, etc) are inductively defined as follows:

• ϕ, ψ ::= α | (ϕ → ψ).

Let FOR be the set of all formulas. We adopt the standard rules for omission of the parentheses. The Boolean connective of disjunction is defined, at the level of formulas, as follows:

• (ϕ ∨ ψ) ::= ((ϕ → ψ) → ψ).
For all formulas ϕ, let var(ϕ) be the set of all variables occurring in ϕ and par(ϕ) be the set of all parameters occurring in ϕ. We shall say that a formula ϕ is variable-free if var(ϕ) = ∅ and parameter-free if par(ϕ) = ∅. For all finite S ⊆ FOR, let var(S) be {var(ϕ) : ϕ ∈ S} and par(S) be {par(ϕ) : ϕ ∈ S}. Given a model V : ATO -→ {0, 1}, the function V : FOR -→ {0, 1} is inductively defined as follows:

• V (α) = V (α), • V (ϕ → ψ) = max{1 -V (ϕ), V (ψ)}.
As a result,

• V (ϕ ∨ ψ) = max{ V (ϕ), V (ψ)}.
A formula ϕ is valid (in symbols |= ϕ) if for all models V , V (ϕ) = 1. A finite set S of formulas is valid (in symbols |= S) if for all ϕ ∈ S, |= ϕ.

Proposition 1 For all formulas ϕ, there exists an atom α such that |= α → ϕ.

Proof: By induction on ϕ.

Proposition 2 Let α be an atom and ϕ be a formula. For all n ≥ 1 and for all atoms β 1 , . . . , β n ,

1. if |= α → β 1 ∨ . . . ∨ β n then there exists i ∈ {1, . . . , n} such that α = β i , 2. if |= ϕ → β 1 ∨ . . . ∨ β n then there exists i ∈ {1, . . . , n} such that |= β i → ϕ.
Proof: Let n ≥ 1 and β 1 , . . . , β n be atoms.

(1). Left to the reader.

(

). Suppose |= ϕ → β 1 ∨ . . . ∨ β n . By Proposition 1, let α be an atom such that |= α → ϕ. Since |= ϕ → β 1 ∨ . . . ∨ β n , |= α → β 1 ∨ . . . ∨ β n . Hence, by Item (1), let i ∈ {1, . . . , n} be such that α = β i . Since |= α → ϕ, |= β i → ϕ. 2 
Extended formulas Extended formulas (denoted F , G, etc) are inductively defined as follows:

• F, G ::= α | (F → G) | ¬F .
Let EXT be the set of all extended formulas. We adopt the standard rules for omission of the parentheses. The Boolean connectives of disjunction, conjunction and equivalence are defined, at the level of extended formulas, as usual. For all extended formulas F , let var(F ) be the set of all variables occurring in F and par(F ) be the set of all parameters occurring in F . We shall say that an extended formula

F is variable-free if var(F ) = ∅ and parameter- free if par(F ) = ∅. Given a model V : ATO -→ {0, 1}, the function V : EXT -→ {0, 1} is inductively defined as usual. An extended formula F is valid (in symbols |= F ) if for all models V , V (F ) = 1. We shall say that the extended formula F is logically equivalent to the extended formula G if |= F ↔ G.
A useful result Obviously, every formula is an extended formula. We shall say that an extended formula is implicative if it is logically equivalent to a formula. For all atoms α, when we write α 0 and α 1 , we respectively mean ¬α and α.

Proposition 3 Let α be an atom. For all k ∈ N, for all atoms β 1 , . . . , β k and for all a 1 , . . . , a k ∈ {0, 1}, {β

aj j : 1 ≤ j ≤ k} ∨ α is implicative.
Proof: Let k ∈ N, β 1 , . . . , β k be atoms and a 1 , . . . , a k ∈ {0, 1}. Obviously, |= ( {β

aj j : 1 ≤ j ≤ k} ∨ α) ↔ ( {β 1-aj j : 1 ≤ j ≤ k} → α). Hence, |= ( {β aj j : 1 ≤ j ≤ k}∨α) ↔ ( {β j : 1 ≤ j ≤ k and a j = 0}∨ {¬β j : 1 ≤ j ≤ k and a j = 1} → α). Thus, |= ( {β aj j : 1 ≤ j ≤ k} ∨ α) ↔ ( {β j : 1 ≤ j ≤ k and a j = 0} ∨ {β j → α : 1 ≤ j ≤ k and a j = 1} → α). Consequently, {β aj j : 1 ≤ j ≤ k} ∨ α is implicative 2 .
Proposition 4 For all extended formulas F , the following conditions are equivalent:

1. F is implicative, 2. there exists an atom α such that |= α → F , 3. there exists an extended formula G and there exists an atom α such that

|= F ↔ (G ∨ α),
4. there exists an extended formula G and there exists an atom α such that |= F ↔ (G → α).

2 In this argument, we assume k ≥ 1. The truth is that if k = 0 then {β

a j j : 1 ≤ j ≤ k}∨α is implicative, seeing that |= ( {β a j j : 1 ≤ j ≤ k} ∨ α) ↔ (α → α).
Proof: Let F be an extended formula.

(1 ⇒ 2). Suppose F is implicative. Let ϕ be a formula such that |= F ↔ ϕ. By Proposition 1, let α be an atom such that |= α → ϕ. Since |= F ↔ ϕ, |= α → F .

(2 ⇒ 3). Suppose there exists an atom α such that |= α → F . Hence, |= F ↔ (F ∨ α).

(3 ⇒ 4). Suppose there exists an extended formula G and there exists an atom α such that |= F ↔ (G ∨ α). Hence, |= F ↔ (¬G → α).

(4 ⇒ 1). Suppose there exists an extended formula G and there exists an atom α such that |= F ↔ (G → α). Let H be a conjunctive normal form of G, i.e. let n ∈ N, k 1 , . . . , k n ∈ N, β 1,1 , . . . , β 1,k1 , . . . , β n,1 , . . . , β n,kn ∈ ATO and a 1,1 , . . . , a 1,k1 , . . . , a n,1 , . . . , a n,kn ∈ {0, 1} be such that

H = { {β ai,j i,j : 1 ≤ j ≤ k i } : 1 ≤ i ≤ n} and |= G ↔ H. Since |= F ↔ (G → α), |= F ↔ ( { {β ai,j i,j : 1 ≤ j ≤ k i } : 1 ≤ i ≤ n} → α). Hence, |= F ↔ ( { {β 1-ai,j i,j : 1 ≤ j ≤ k i } : 1 ≤ i ≤ n} ∨ α). Thus, |= F ↔ { {β 1-ai,j i,j : 1 ≤ j ≤ k i } ∨ α : 1 ≤ i ≤ n}. Consequently, by Proposition 3, F is implicative 3 .

Unification with parameters

Substitutions A substitution is a function of the form

• σ : VAR -→ FOR.
We shall say that a substitution σ moves a variable x if σ(x) = x. Following the standard assumption considered in the literature about unification [START_REF] Anantharaman | Unification modulo ACUI plus distributivity axioms[END_REF][START_REF] Baader | Unification theory[END_REF], we will always assume that substitutions move at most finitely many variables. Let SUB be the set of all substitutions. For all finite X ⊆ VAR, an Xsubstitution is a substitution that does not move the variables in VAR \ X. For all formulas ϕ(x 1 , . . . , x n ) and for all substitutions σ, let σ(ϕ(x 1 , . . . , x n )) be ϕ(σ(x 1 ), . . . , σ(x n )). For all finite S ⊆ FOR and for all substitutions σ, let σ(S) be {σ(ϕ) : ϕ ∈ S}. For all extended formulas F (x 1 , . . . , x n ) and for all substitutions σ, let σ(F (x 1 , . . . , x n )) be F (σ(x 1 ), . . . , σ(x n )). The composition σ • τ of the substitutions σ and τ is the substitution associating to each variable x the formula τ (σ(x)). The identity substitution (denoted id) is the substitution associating to each variable x the formula x. For all n ∈ N and for all substitutions σ, the substitution σ n is inductively defined as follows:

• σ 0 = id, • σ n+1 = σ n • σ.
Proposition 5 For all n ∈ N and for all substitutions σ, σ • σ n = σ n • σ.

Proof: By induction on n.

For all finite X ⊆ VAR, the equivalence relation X on SUB is defined by

• σ X τ if and only if for all x ∈ X, |= σ(x) ↔ τ (x).
For all finite X ⊆ VAR, the quasi-order X on SUB is defined by • σ X τ if and only if there exists υ ∈ SUB such that for all x ∈ X, |= υ(σ(x)) ↔ τ (x).

Useful results Let k ∈ N. Let S = {0, 1} k (with typical members denoted (a 1 , . . . , a k ), (b 1 , . . . , b k ), etc) and be the binary relation on S defined as follows:

• (a 1 , . . . , a k ) (b 1 , . . . , b k ) iff for all i ∈ {1, . . . , k}, a i ≤ b i .
Obviously, (S, ) is a finite lattice in which the length of an arbitrary chain is at most equal to k.

Proposition 6 Let {y 1 , . . . , y k } be a finite set of variables and σ be a substitution such that for all i ∈ {1, . . . , k}, var(σ(y i )) ⊆ {y 1 , . . . , y k }. Let ϕ be a variable-free formula such that for all i ∈ {1, . . . , k}, |= ϕ → (y i → σ(y i )). For all n ∈ N and for all j ∈ {1, . . . , k}, if n ≥ k then |= ϕ → (σ(σ n (y j )) ↔ σ n (y j )).

Proof: Let n ∈ N and j ∈ {1, . . . , k} be such that n ≥ k. For the sake of the contradiction, suppose |= ϕ → (σ(σ n (y j )) ↔ σ n (y j )). Let V be a model such that V (ϕ) = 1 and V (σ(σ n (y j ))) and V (σ n (y j )) are not equal. Since for all i ∈ {1, . . . , k}, var(σ(y i )) ⊆ {y 1 , . . . , y k }, for all models V , V , if V |PAR = V |PAR and for all i ∈ {1, . . . , k}, V (y i ) = V (y i ) then for all i ∈ {1, . . . , k}, V (σ(y i )) = V (σ(y i )). For all (a 1 , . . . , a k ) ∈ S, let f ((a 1 , . . . , a k )) be the unique (b 1 , . . . , b k ) ∈ S such that for all models V , if V |PAR = V |PAR and for all i ∈ {1, . . . , k}, V (y i ) = a i then for all i ∈ {1, . . . , k}, V (σ(y i )) = b i . Since ϕ is variable-free, for all i ∈ {1, . . . , k}, |= ϕ → (y i → σ(y i )) and V (ϕ) = 1, for all (a 1 , . . . , a k ) ∈ S, (a 1 , . . . , a k ) f ((a 1 , . . . , a k )). Since the length of an arbitrary chain in (S, ) is at most equal to k and

n ≥ k, f (f n ((V (y 1 ), . . . , V (y k )))) = f n ((V (y 1 ), . . . , V (y k ))).
Hence, ( V (σ(σ n (y 1 ))), . . . , V (σ(σ n (y k )))) = ( V (σ n (y 1 )), . . . , V (σ n (y k ))). Thus, V (σ(σ n (y j ))) and V (σ n (y j )) are equal: a contradiction.

Proposition 7 Let {y 1 , . . . , y k } be a finite set of variables and σ be a substitution such that for all i ∈ {1, . . . , k}, var(σ(y i )) ⊆ {y 1 , . . . , y k }. Let ϕ be a variable-free formula such that for all i ∈ {1, . . . , k}, |= ϕ ∨ (σ(y i ) → y i ). For all n ∈ N and for all j ∈ {1, . . . , k}, if n ≥ k then |= ϕ ∨ (σ(σ n (y j )) ↔ σ n (y j )).

Proof: Let n ∈ N and j ∈ {1, . . . , k} be such that n ≥ k. For the sake of the contradiction, suppose |= ϕ ∨ (σ(σ n (y j )) ↔ σ n (y j )). Let V be a model such that V (ϕ) = 0 and V (σ(σ n (y j ))) and V (σ n (y j )) are not equal. Since for all i ∈ {1, . . . , k}, var(σ(y i )) ⊆ {y 1 , . . . , y k }, for all models V , V , if V |PAR = V |PAR and for all i ∈ {1, . . . , k}, V (y i ) = V (y i ) then for all i ∈ {1, . . . , k}, V (σ(y i )) = V (σ(y i )). For all (a 1 , . . . , a k ) ∈ S, let f ((a 1 , . . . , a k )) be the unique (b 1 , . . . , b k ) ∈ S such that for all models V , if V |PAR = V |PAR and for all i ∈ {1, . . . , k}, V (y i ) = a i then for all i ∈ {1, . . . , k}, V (σ(y i )) = b i . Since ϕ is variable-free, for all i ∈ {1, . . . , k}, |= ϕ ∨ (σ(y i ) → y i ) and V (ϕ) = 0, for all (a 1 , . . . , a k ) ∈ S, f ((a 1 , . . . , a k )) (a 1 , . . . , a k ). Since the length of an arbitrary chain in (S, ) is at most equal to k and

n ≥ k, f (f n ((V (y 1 ), . . . , V (y k )))) = f n ((V (y 1 ), . . . , V (y k ))).
Hence, ( V (σ(σ n (y 1 ))), . . . , V (σ(σ n (y k )))) = ( V (σ n (y 1 )), . . . , V (σ n (y k ))). Thus, V (σ(σ n (y j ))) and V (σ n (y j )) are equal: a contradiction.

Unifiers Let S ⊆ FOR be finite. A unifier of S is a var(S)-substitution σ such that |= σ(S). S is unifiable if there exists a unifier of S.

Proposition 8 For all unifiers σ of S, there exists a unifier τ of S such that τ var(S) σ and par(τ (S)) ⊆ par(S).

Proof: Let σ be a unifier of S. Hence, |= σ(S). Let q 1 , . . . , q l be the list of the parameters q such that q ∈ par(σ(S)) \ par(S). Let z 1 , . . . , z l be new variables. Let τ be the substitution obtained from σ by respectively replacing in σ(x) each occurrence of q 1 , . . . , q l by z 1 , . . . , z l for each variable x in S. Obviously, τ var(S) σ. Moreover, since |= σ(S), |= τ (S). Thus, τ is a unifier of S. In other respect, obviously, par(τ (S)) ⊆ par(S).

Unification types Let S ⊆ FOR be finite. If S is unifiable then a set Σ of unifiers of S is complete if for all unifiers σ of S, there exists τ ∈ Σ such that τ var(S) σ. As is well-known, if S is unifiable then for all minimal complete sets Σ, ∆ of unifiers of S, Card(Σ) = Card(∆) 4 . As a result, if S is unifiable then

• S is unitary if there exists a minimal complete set of unifiers of S with cardinality 1,

• S is finitary if there exists a minimal complete set of unifiers of S with finite cardinality ≥ 2,

• S is infinitary if there exists a minimal complete set of unifiers of S with infinite cardinality,

• S is nullary if there exists no minimal complete set of unifiers of S.

4 About the type of the implication fragment

Let S ⊆ FOR be finite. Assume par(S) = ∅ and S is unifiable. Let σ be a unifier of S. By Proposition 8, let τ be a unifier of S such that τ var(S) σ and par(τ (S)) ⊆ par(S). Since par(S) = ∅, let p 0 be a parameter in S. Let µ be the substitution defined as follows:

• for all variables x, if there exists y ∈ var(S) such that x ∈ var(τ (y)) then µ(x) = p 0 → p 0 ,

• for all variables x, if for all y ∈ var(S), x ∈ var(τ (y)) then µ(x) = x.

Note that var(µ(τ (S))) = ∅. For all x ∈ var(S), by Proposition 4, there exists an atom α x in τ (x) such that |= α x → τ (x). For all x ∈ var(S), let F x be the extended formula defined as follows:

• if α x is a variable then let F x = ¬(p 0 → p 0 ), • if α x is a parameter then let F x = α x .
Note that for all x ∈ var(S), F x is variable-free.

Lemma 1 For all x ∈ var(S),

1. |= F x → τ (x), 2. |= F x → µ(τ (x)).
Proof: Let x ∈ var(S).

(1). Case α x is a variable: Hence, F x = ¬(p 0 → p 0 ). Thus, |= F x → τ (x).

Case α x is a parameter: Hence,

F x = α x . Since |= α x → τ (x), |= F x → τ (x).
(

). By item 1, |= F x → τ (x). Hence, |= F x → µ(τ (x)). For all x ∈ var(S), let G x = ( S ∧ x) ∨ (¬ S ∧ µ(τ (x))) ∨ F x 5 . 2 
Lemma 2 For all x ∈ var(S), G x is implicative.

Proof: Let x ∈ var(S).

Case α x is a variable: Hence,

F x = ¬(p 0 → p 0 ). Thus, |= G x ↔ ( S ∧ x) ∨ (¬ S ∧ µ(τ (x))). Since α x is an atom in τ (x), µ(α x ) = p 0 → p 0 . Since |= α x → τ (x), |= µ(α x ) → µ(τ (x)). Since µ(α x ) = p 0 → p 0 , |= µ(τ (x)). Since |= G x ↔ ( S ∧ x) ∨ (¬ S ∧ µ(τ (x))), |= G x ↔ ( S → x). Consequently, by 5 

Conclusion

In this paper, we have seen that, in contrast to the full language of CPL which is unitary both for elementary unification and for unification with parameters [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Martin | Boolean unification -the story so far[END_REF], the implication fragment of CPL is unitary for elementary unification and finitary for unification with parameters. Below, we propose numerous conjectures and varied problems, with the hope of setting goals for future research in unification theory.

It is known that when CPL is based on a definitionally complete set of connectives, elementary unification is NP-complete and unification with parameters is Π P 2 -complete [START_REF] Baader | On the complexity of Boolean unification[END_REF]. From Section 4, it follows that elementary unification in the implication fragment of CPL is trivial and unification with parameters in the implication fragment of CPL is decidable. But what is the complexity of unification with parameters in the implication fragment of CPL?

As noted in the introduction, the rule x→p p→x is admissible in the implication fragment of CPL. Nevertheless, it is not derivable. Hence, the question arises: for the implication fragment of CPL, does the set of all admissible rules admit a finite basis, i.e. a finite set of rules that added to the axiomatization of the implication fragment of CPL mentioned in the introduction exactly produces the set of all admissible rules6 ? For a modal language based on the connectives →, ¬ and 2, it is known, for example, that S5 is unitary [START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF], S4 is finitary [START_REF] Ghilardi | Best solving modal equations[END_REF][START_REF] Iemhoff | A syntactic approach to unification in transitive reflexive modal logics[END_REF] and K is nullary [START_REF] Jeȓábek | Blending margins: the modal logic K has nullary unification type[END_REF]. This immediately leads us to ask what is the unification type of S5, S4 and K when → and 2 are the sole connectives? This question is of course related to the question of the unification type of some of the modal algebras discussed by Celani and Montangie [START_REF] Celani | Hilbert algebras with a necessity modal operator[END_REF][START_REF] Celani | Hilbert algebras with a modal operator 3[END_REF]. It is not a trivial question. For instance, the formula x → 2x used by Jeȓábek [START_REF] Jeȓábek | Blending margins: the modal logic K has nullary unification type[END_REF] to show that K is nullary becomes unitary when → and 2 are the sole connectives 7 .

Remind that in a modal language based on the connectives →, ¬ and 2, the connective of strict implication is defined as follows: (ϕ ⇒ ψ) ::= 2(ϕ → ψ) [START_REF] Hughes | An Introduction to Modal Logic[END_REF]Chapter 2]. Hence, there is also the question of the unification type of the frag-

• the substitution σ defined as follows:

σ(x) = x → x, for all variables y, if x = y then σ(y) = y, is a K-unifier of x → 2x,

• for all modal formulas ϕ with → and 2 as its sole connectives, if ϕ → 2ϕ is in K then ϕ is in K.

ments of the above-mentioned modal logics when ⇒ is the sole connective. For those who interest in such fragments which have been extensively studied over the years, we recommend the reading of [START_REF] Ernst | Shortest axiomatizations of implicational S4 and S5[END_REF].
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Concerning the valid formulas, they constitute a coNP-hard set. Why? Simply because for all formulas F in the definitionally complete set {¬, →} of connectives and for all atomic formulas α not occurring in F , F is valid if and only if the implicative formula (ϕ → α) → α is valid, ϕ being the implicative formula obtained from F after having inductively replaced each subformula of the form ¬H by H → α.

In this argument, we assume n ≥ 1. The truth is that if n = 0 then F is implicative, seeing that |= F ↔ α.

This is a standard result, although we have not been able to find a reference proving it. Suppose S is unifiable. Let Σ, ∆ be minimal complete sets of unifiers of S. By the completeness of Σ and ∆, one can readily define functions f : Σ -→ ∆ and g : ∆ -→ Σ such that f (σ) var(S) σ for each σ ∈ Σ and g(δ) var(S) δ for each δ ∈ ∆. By the minimality of Σ and ∆, it easily follows that f and g are injective. Thus, Σ and ∆ have the same cardinality.

Notice that for all x ∈ var(S), if αx is a variable then Gx is logically equivalent to the variant ( S ∧ x) ∨ (¬ S ∧ µ(τ (x))) of the so-called Löwenheim formula[START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Martin | Boolean unification -the story so far[END_REF].

See[START_REF] Iemhoff | On the admissible rules of intuitionistic propositional logic[END_REF] for a definition of what a basis of admissible rules is within the context of Intuitionistic Propositional Logic.

[START_REF] Celani | Hilbert algebras with a necessity modal operator[END_REF] In order to understand why, it suffices to notice that
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Proposition 4, G x is implicative.

Case α x is a parameter: Hence, F x = α x . Thus, by Proposition 4, G x is implicative.

Let be the substitution defined as follows:

• for all variables x, if x ∈ var(S) then (x) = G x ,

• for all variables x, if x ∈ var(S) then (x) = x.

Note that for all variables x, if x ∈ var(S) then var( (x)) ⊆ var(S) and par( (x)) ⊆ par(S) else (x) = x.

Lemma 3 For all variables x, |= τ ( (x)) ↔ τ (x).

Proof: Let x be a variable.

Case x ∈ var(S): Hence, (x) = x. Thus, |= τ ( (x)) ↔ τ (x).

Lemma 4 For all n ∈ N and for all variables x, |= τ ( n (x)) ↔ τ (x).

Proof: By induction on n.

Lemma 5 For all n ∈ N, n var(S) σ.

Proof: Let n ∈ N. By Lemma 4, n var(S) τ . Since τ var(S) σ, n var(S) σ.

Proof: Let x be a variable such that x ∈ var(S). Hence, (x

Lemma 7 For all formulas ϕ, if var(ϕ) ⊆ var(S) then |= ¬ S → ( (ϕ) ↔ µ(τ (ϕ))).

Proof: By induction on ϕ.

Let Σ be the set of unifiers of S obtained from Σ by keeping only one representative of each equivalence class modulo var(S) . Since Σ is complete, Σ is complete. Moreover, Σ is finite. Thus, either S is unitary, or S is finitary.

1. S is unifiable, 2. if for all i, j ∈ {1, . . . , n}, p i = p j then S is unitary, 3. if there exists i, j ∈ {1, . . . , n} such that p i = p j then S is finitary.

Proof:

(1). For all i ∈ {1, . . . , n}, let σ i be the substitution defined as follows:

• for all variables y, if y = x then σ i (y) = y.

Obviously, for all i ∈ {1, . . . , n}, σ i is a unifier of S. Hence, S is unifiable.

(2). Suppose for all i, j ∈ {1, . . . , n}, p i = p j . Let p be the parameter such that for all i ∈ {1, . . . , n}, p = p i and σ be the substitution defined as follows:

• for all variables y, if y = x then σ(y) = y.

Obviously, σ is a unifier of S. Moreover, for all unifiers υ of S, |= υ(x) → p and by Proposition 2, |= p → υ(x). Thus, for all unifiers υ of S, |= υ(x) ↔ σ(x).

Consequently, for all unifiers υ of S, υ var(S) σ. Hence, S is unitary.

(3). Suppose there exists i, j ∈ {1, . . . , n} such that p i = p j . For the sake of the contradiction, suppose S is not finitary. Thus, by Proposition 9, S is unitary. Let υ be a unifier of S such that for all k ∈ {1, . . . , n}, υ var(S) σ k . Thus, |= υ(x) → p 1 ∨ . . . ∨ p n and for all k ∈ {1, . . . , n}, there exists a substitution θ k such that |= θ k (υ(x)) ↔ p k . Consequently, by Proposition 2, let l ∈ {1, . . . , n} be such that |= p l → υ(x). Hence, |= p l → θ i (υ(x)) and |= p l → θ j (υ(x)). Since for all k ∈ {1, . . . , n}, |= θ k (υ(x)) ↔ p k , |= p l → p i and |= p l → p j . Thus, p l = p i and p l = p j . Consequently, p i = p j : a contradiction. Hence, S is finitary.

From Propositions 9 and 10, it follows that Theorem 1 The implication fragment of Classical Propositional Logic is finitary for unification with parameters, i.e.

• for all finite S ⊆ FOR, if S is unifiable then either S is unitary, or S is finitary,

• there exists a finite S ⊆ FOR such that S is unifiable and S is finitary,