
HAL Id: hal-03247781
https://hal.science/hal-03247781

Preprint submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interferometric Graph Transform for Community
Labeling

Nathan Grinsztajn, Louis Leconte, Philippe Preux, Edouard Oyallon

To cite this version:
Nathan Grinsztajn, Louis Leconte, Philippe Preux, Edouard Oyallon. Interferometric Graph Trans-
form for Community Labeling. 2021. �hal-03247781�

https://hal.science/hal-03247781
https://hal.archives-ouvertes.fr


Interferometric Graph Transform for Community
Labeling

Nathan Grinsztajn∗
Inria, Univ. Lille, CNRS

Lille, France
nathan.grinsztajn@inria.fr

Louis Leconte∗
LIP6, Sorbonne University

CMAP, Ecole Polytechnique, France
louis.leconte@ens-paris-saclay.fr

Philippe Preux
Inria, Univ. Lille, CNRS

Lille, France

Edouard Oyallon
CNRS, LIP6, Sorbonne University

Paris, France

Abstract

We present a new approach for learning unsupervised node representations in
community graphs. We significantly extend the Interferometric Graph Transform
(IGT) to community labeling: this non-linear operator iteratively extracts features
that take advantage of the graph topology through demodulation operations. An
unsupervised feature extraction step cascades modulus non-linearity with linear
operators that aim at building relevant invariants for community labeling. Via a
simplified model, we show that the IGT concentrates around the E-IGT: those
two representations are related through some ergodicity properties. Experiments
on community labeling tasks show that this unsupervised representation achieves
performances at the level of the state of the art on the standard and challenging
datasets Cora, Citeseer, Pubmed and WikiCS.

1 Introduction

Graph Convolutional Networks (GCNs) [25] are now the state of the art for solving many supervised
(using labeled nodes) and semi-supervised (using unlabeled nodes during training) graph tasks, such
as nodes or community labeling. They consist in a cascade of layers that progressively average node
representations, while maintaining discriminative properties through supervision. In this work, we are
mainly interested in the principles that allow such models to outperform other baselines: we propose
a specific class of GCNs, which is unsupervised, interpretable, with several theoretical guarantees
while obtaining good accuracies on standard datasets.

One of the reasons why GCNs lack interpretability is because no training objective is assigned to a
specific layer except the final one: end-to-end training makes their analysis difficult [34]. They also
tend to oversmooth graph representations [47], because applying successively an averaging operator
leads to smoother representations. Also, the reason of their success is in general unclear [27]. In
this work, we propose to introduce a novel architecture which, by design, will address those issues.
Our model can be interpreted through the lens of Stochastic Block Models (SBMs) [19] which are
standard, yet are not originally designed to analyze graph attributes through representation learning.

For example, several works [23, 1] prove that a Laplacian matrix concentrates around a low-rank
expected Laplacian matrix, via simplified models like a SBM [10]. In the context of community
detection, it is natural to assume that the intra-class, inter-class connectivity and feature distributions
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of a random graph are ruled by an SBM. To our knowledge, this work is the first to make a clear
connection with those unsupervised models and the self-supervised deep GCNs which solve datasets
like Cora, Citeseer, Pubmed, or WikiCS.

Our model is driven by ideas from the Graph Signal Processing [18] community and based on the
Interferometric Graph Transform [35], a class of models mainly inspired by the (Euclidean) Scattering
Transform [30]. The IGT aims at learning unsupervised (not using node labels at the representation
learning stage), self-supervised representations that correspond to a cascade of isometric layer and
modulus non-linearity, whose goal is to obtain a form of demodulation [36] that will lead to smoother
but discriminative representation, in the particular case of community labeling. Smooth means
here, by analogy with Signal Processing [29], that the signal is in the low-frequency domain, which
corresponds to a quite lower dimensional space if the spectral decay is fast enough: this is for instance
the case with a standard Laplacian [16] or a low-rank SBM adjacency matrix [28]. Here, the degree
of invariance of a given representation is thus characterized by the smoothness of the signal.

Our main contribution is to introduce a simplified framework that allows to analyze node labeling tasks
based on a non-linear model, via concentration bounds and which is numerically validated. Our other
contributions are as follows. First, we introduce a novel graph representation for community labeling,
which doesn’t involve community labels. It consists in a cascade of linear isometry, band-pass
filtering, pointwise absolute value non-linearity. We refer to it as an Interferometric Graph Transform
(IGT) (for community labeling), and we show that under standard assumptions on the graph of our
interest, a single realization of our representation concentrates around the Expected Interferometric
Graph Transform (E-IGT), which can be defined at the node level without incorporating any graph
knowledge. We also introduce a novel notion of localized low-pass filter, whose invariance can be
adjusted to a specific task. Second, we study the behavior of this representation under an SBM model:
with our model and thanks to the structure of the IGT, we are able to demonstrate theoretically that
IGT features accumulate around the corresponding E-IGT. We further show that the architecture
design of IGTs allows to outperform GCNs in a synthetic setting, which is consistent with our
theoretical findings. Finally, we show that this semi-supervised and unsupervised representation is
numerically competitive with supervised representations on standard community labeling datasets
like Cora, Citeseer, Pubmed and WikiCS.

Our paper is organized as follows. First, we define the IGT in Sec. 3.1 and study its basic properties.
Sec. 3.2 defines the E-IGT and bounds its distance from the IGT. Then, we discuss our model in the
context of a SBM in Sec. 3.3 and we explain our optimization procedure in Sec. 3.4. Finally, Sec. 4 cor-
responds to our numerical results. Our source can be found at https://github.com/nathangrinsztajn/igt-
community-detection and all proofs of our results can be found in the Appendix.

2 Related Work
We now discuss a very related line of work, namely the IGT [35], which takes source in several
conceptual ideas from the Scattering Transform [30]. Both consist in a cascade of unitary transform,
absolute value non-linearity and linear averaging, except that the Euclidean structure is neatly
exploited via Wavelets Transforms for complex classification tasks in the case of the standard
Scattering Transform [5, 37, 2, 36], whereas this structure is implicitly used in the case of IGT. In
particular, similarly to a Scattering Transform, an IGT aims at projecting the feature representation in
a lower dimensional space (low-frequency space) while being discriminative: the main principle is
to employ linear operators, which combined with a modulus non-linearity, leads to a demodulation
effect. In our case however, this linear operator is learned. The IGT for community labeling is rather
different from standard IGT: first, [35] is not amenable to node labeling because it doesn’t preserve
node localization, contrary to ours. Second, we do not rely on the Laplacian spectrum explicitely
contrary to [12, 35]. Third, the community experiments of [12, 35] are rather the classification
of a diffusion process than a node labeling task. This is also similar to the Expected Scattering
Transform [31], yet it is applied in a rather different context for reducing data variance, in order
to shed lights on standard Deep Neural Networks. Our E-IGT and the Expected-Scattering have a
very close architecture, however the linear operators are obtained with rather different criteria (e.g.,
ours are obtained from a concave procedure rather than convex) and goals (e.g., preserving energy,
whereas we try to reduce it). Note however there is no equivalent of the E-IGT for other context that
community detection or labeling, which is another major difference with [35]. In addition, our Prop.
3 is new compared to similar results of [31]. Thus while having similar architectures, those works
have quite different outcomes and objectives.
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Another line of works corresponds to the Graph Scattering Transform [12, 13, 21], which proposes to
employ a cascade of Wavelet Transforms that respects the graph structure [18]. Yet, the principles that
allow good generalization of those representations are unclear and they have only been tested until
now on small datasets. Furthermore, this paper extends all those works by proposing an architecture
and theoretical principles which are specific to the task of community labeling. A last related line
of work corresponds to the hybrid Scattering-GCNs [33], which combines a GCN with the inner
representation of a Scattering Transform on Graphs, yet they employ massive supervision to refine
the weights of their architecture, which we do not do.

The architecture of an IGT model for community labeling takes also inspiration from Graph Convolu-
tional Networks (GCNs) [25, 4]. They are a cascade of linear operators and ReLU non-linearities
whose each layer is locally averaged along local nodes. Due to this averaging, GCNs exhibit two
undesirable properties: first, the oversmoothing phenomenon [27], which makes learning of high-
frequencies features difficult; second, the training of deeper GCNs is harder [20] because much
information has been discarded by those averaging steps. Other types of Graph Neural Networks
succeeded in approximating message-passing methods [9], or have worked on the spatial domain
such as Spectral GCNs [6], and Chebynet [11]. In our work, we solely use a well chosen averaging
for separating high-frequencies and low-frequencies without using any other extra-structure, which
makes our method more generic than those approaches, without using supervision at all.

We further note that theoretical works often address the problem of estimating the expected Laplacian
under SBM assumptions [23, 1, 26]. However up to our knowledge, none of those works is applied in a
semi-supervised context and they aim at discovering communities rather than estimating communities
from a small subset of labels. Moreover, the model remains mostly linear (e.g. based on the
spectrum of the adjacency matrix). Here, our representation is non-linear and amenable for learning
with a supervised classifier. We also note that several theoretical results have allowed to obtain
approximation or stability guarantees for GCNs [41, 5, 22]: our work follows those lines and analyzes
a specific type of GCN through the lens of Graph Signal Processing theory [18].

3 Framework
Notations. For a matrix X , we write ‖X‖2 = Tr(XTX) =

∑
i,j X

2
i,j its Frobenius-norm and for

an operator L (acting on X), we might consider the related operator norm ‖L‖ , sup‖X‖≤1 ‖LX‖.
The norm of the concatenation {B,C} of two operators B,C is ‖{B,C}‖2 = ‖B‖2 + ‖C‖2 and
this definition can be extended naturally to more than two operators. Note also that we use a different
calligraphy between quantities related to the graph (e.g., adjacency matrix A) and operators (e.g.,
averaging matrix A). We write A 4 B if B − A is a symmetric positive matrix. Here, an ∼ bn
means that ∃α > 0, β > 0 : α|an| ≤ |bn| ≤ β|bn| and an = O(bn) means ∃α > 0 : |an| ≤ α|bn|.

3.1 Definition of IGT

Our initial graph data are node features X ∈ Rn×P obtained from a graph with n nodes and
unormalized adjacency matrix A. We then write Anorm the normalized adjacency matrix with self-
connexion, as introduced by [25]. We note that Anorm satisfies 0 4 Anorm 4 I and has positive entries.
In Graph Signal Processing [18], those properties allow to interpret Anorm as an averaging operator.
It means that applying Anorm to X leads to a linear representation AnormX which is smoother than
X because Anorm projects the data in a subspace ruled by the topology (or connectivity) of a given
community [12]. The degree of smoothness can be adjusted to a given task simply by considering:

AJ , AJ
norm . (1)

This step is analogeous to the rescaling of a low-pass filter in Signal Processing [29], and AJ satisfies:
Lemma 1. If 0 4 Anorm 4 I and Anorm has positive entries, then for any J ∈ N, AJ has positive
entry and satisfies also 0 4 AJ 4 I .

Applying solely AJ leads to a loss of information that we propose to recover via I −AJ . This allows
to separate low and high-frequencies of the graph in two channels, as expressed by the next lemma:
Lemma 2. If 0 4 A 4 I , then ‖AX‖2 + ‖(I −A)X‖2 ≤ ‖X‖2 with equality iff A2 = A.

Yet, contrary to AJX , (I − AJ)X is not smooth and thus, it might not be amenable for learning
because community structures might not be preserved. Furthermore, a linear classifier will not be
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sensitive to the linear representation {AJX, (I − AJ)X}. Similarly to [35], we propose to apply
an absolute value |.| point-wise non-linearity to our representations. Section 3.4 will explain how
to estimate isometries {Wn}, which combined with a modulus, will smooth the signal envelope
while preserving signal energy. We now formally describe our architecture and we consider {Wn} a
collection of isometries, that we progressively apply to an input signal representation U0 , X via:

Un+1 , |(I −AJ)UnWn| , (2)

and we introduce the IGT representation of order N ∈ N with averaging scale J ∈ N defined by:

SNJ X , {AJU0, ..., AJUN} . (3)

Fig. 1 depicts our architecture. The following explains that SNJ is non-expansive, thus stable to noise:

Proposition 1. For N ∈ N, SNJ X is 1-Lipschitz leading to:

‖SNJ X − SNJ Y ‖ ≤ ‖X − Y ‖ and, ‖SNJ X‖ ≤ ‖X‖ . (4)
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Figure 1: We illustrate our model
for N = 2. Low and high fre-
quencies are separated (blue) and
then the high frequencies are de-
modulated (red) via an isometry
and a non-linear point wise abso-
lute value, and then propagated to
the next layer.

The next section will describe the E-IGT, which was introduced
as the Expected Scattering [31], but in a rather different context:
we will show under simplifying assumptions that an IGT for
community labeling concentrates around the E-IGT.

3.2 Definition of the Expected-IGT (E-IGT)

Similarly to the previous section, for an input signal Ū0 , X ,
we consider the following recursion, introduced in [31]:

Ūn+1 , |(Ūn − EŪn)Wn| , (5)

which leads to the E-IGT 2 of order N defined by:

S̄N , {EŪ0, ...,EŪN} . (6)

Similarly to Prop. 7, we prove the following stability result:
Proposition 2. For N ∈ N, S̄NX is 1-Lipschitz, meaning that:

‖S̄NX − S̄NY ‖2 ≤ E[‖X − Y ‖2] , (7)

and furthermore:

‖S̄NX‖2 ≤ E[‖X‖2] . (8)

Proof. Indeed, [31] have proven this for the columns ofX .

Note that this represention is also more amenable to standard supervised classifiers such as SVMs
because no operation mixing nodes is involved. Prop. 2 highlights the fact that the E-IGT is non-
expansive, and [46] shows that this allows to discriminate the attributes of the distribution of X .
However, it is difficult in general to estimate the E-IGT because one does not know the distribution
of a given node and it is difficult to estimate it from a single realization as there is a clear curse
of dimensionality. However, we will show that SNJ will be very similar to S̄N under standard
assumptions on communities. We now state the following proposition, which allows to quantify the
distance between an IGT and its E-IGT:
Proposition 3. For any X,N, J , we get:

‖SNJ X − S̄NX‖ ≤
√

2

N∑
m=0

‖(AJ − E)Ūm‖ . (9)

The proof of this proposition can be found in the Appendix: it fully uses the tree structure of Fig. 1,
in order to obtain tighter bounds than [31], as it allows N to be of arbitrary size without diverging.
We now bound the distance between the IGT and the E-IGT:

2We rename it here because we use rather different principles to obtain the {W0...,WN−1} compared to the
original Scattering.
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Corollary 1. For N ∈ N, we have:

sup
E‖X‖≤1

E[‖SNJ X − S̄NX‖] ≤ 2N+2 sup
E‖X‖≤1

E[‖AJX − EX‖] . (10)

Proof. The next Lemma combined with the norm homogeneity allows to conclude with Prop. 3.

Lemma 3. If ‖X‖ ≤ 1, then ‖Ūn‖ ≤ 2n, with Ū0 = X . Also, if E[‖X‖] ≤ 1, then E[‖Ūn‖] ≤ 2n

Proof. This is true for n = 0, and then by induction, since isometry preserves the `2-norm: ‖Ūn+1‖ ≤
‖Ūn‖+ ‖EŪn‖ ≤ ‖Ūn‖+ E‖Ūn‖ ≤ 2n+1. The proof is similar for the second part.

The right term of Eq. 10 measures the ergodicity properties of a given AJ . For instance, in the
case of images, a stationary assumption on X implies that AJf(X) ≈ Ef(X) for all measurable f ,
which is the case for instance for textures [29]. The following proposition shows that in case of exact
ergodicity, the two representations have bounded moments of order 2:

Proposition 4. If E[AJX] = EX , and if X has variance σ2 = E‖X‖2 − ‖EX‖2, then:

E[‖SNJ X − S̄NX‖2] ≤ 2σ2 . (11)

3.3 Graph model and concentration bounds

In this subsection, we propose to demonstrate novel bounds which improve the upper bound obtained
at Prop. 1 by introducing a Stochastic Block Model [19]. We will show that the IGT features of a
given community concentrates around the E-IGT feature of this community: IGT features are thus
more amenable to be linearly separable. Recall from Sec. 3.1 that A1 = Anorm, thus we note that for
some m > 0, via the triangular inequality we get:

‖A1Ūm −EŪm‖ = ‖AnormŪm −EŪm‖ ≤ ‖(Anorm −E[A]norm)Ūm‖+ ‖E[A]normŪm −E[Ūm]‖ .
Now, the left term can be upper bounded as:

‖(Anorm − E[Anorm])Ūm‖ ≤ ‖Anorm − E[Anorm]‖‖Ūm‖ . (12)

For the sake of simplicity, we will consider a model with two communities, yet the extension to more
communities is straightforward and would simply involve a linear term in the number of communities.
We now describe our model. Once the n nodes have been split in two groups of size n ∼ n1, n ∼ n2,
we assume that each edge between two different nodes is sampled independently with probability pn
(or simply p if not ambiguous) if they belong to the same community and q otherwise. We assume
that q = τp for some constant τ ∼ 1√

n
� 1 and the features belonging to the same community

are i.i.d. and σ-sub-Gaussian, and ‖X‖ ≤ 1. Those assumptions are not restrictive as they hold in
many practical applications (and the second, always holds up to a constant). For a given community
i ∈ {1, 2}, we write (µim)m≤N its E-IGT. We impose that pn ∼ log(n)

n in this particular Bernoulli
model. Sparse random graphs do not generally concentrate. Yet, according to [23], in the relatively
sparse case where pn ∼ logn

n , we get the following spectral concentration bound of the normalized
adjacency matrix:

Lemma 4. Let A be a symmetric matrix with independent entries Aij obtained as above. If
n1 ∼ n, n2 ∼ n, and p is relatively sparse as above, then for all ν > 0, there is a constant Cν such
that, with high probability ≥ 1− n−ν:

‖Anorm − E[A]norm‖ ≤
Cν√
log n

. (13)

Proof. Can be found in [23].

Note that in general, E[A]norm 6= E[Anorm] and here, because of our model:

E[A]norm =

[ p
n1p+n2q

1n1×n1

q
n1p+n2q

1n1×n2
q

n1q+n2p
1n2×n1

p
n1q+n2p

1n2×n2

]
, (14)
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where 1m×n is a matrix of ones of size m× n. Now, note also that:

E[Ūm] = [µ1
m1Tn1

, µ2
m1Tn2

] , (15)

Now, we prove that the IGT will concentrate around the E-IGT, under a Stochastic Block Model
and sub-Gaussianity assumptions. We note that a bias term of the order of

√
nτ is present, which

is consistent with our model assumptions. Note it is also possible to leverage the boundedness
assumption yet it will lead to an additional constant term.

Proposition 5. Under the assumptions above, there exists C > 1 s.t. for all N > 0, δ > 0, we have
with high probability, larger than 1−O(Nδ + n−ν):

‖SN1 X − S̄NX‖ = O(σ
1 + CN

1− C (

√
ln

1

δ
+

1√
log n

)) +O(τ
√
n
∑
m≤N

‖µ2
m − µ1

m‖) . (16)

The following proposition allows to estimate the concentration of each IGT order:

Proposition 6. Assume that each line of X ∈ Rn×P is σ-sub-Gaussian. There exists C > 1,K >
0, C ′ > 1 such that ∀m, δ > 0 with probability 1− 8Pδ, we have:

‖E[A]normŪm − E[Ūm]‖ ≤ KσCm
√

ln
1

δ
+ C ′

√
nτ‖µ2

m − µ1
m‖ . (17)

This Lemma shows that a cascade of IGT linear isometries preserves sub-Gaussianity:

Lemma 5. If each line of X is σ-sub-Gaussian, then each (independent) line of Ūm is Cmσ-sub-
Gaussian for some universal constant C.

In order to show the previous Lemma, we need to demonstrate that the modulus of a sub-Gaussian
variable is itself sub-Gaussian, which is shown below:

Lemma 6. There isC > 0, s.t. X ∈ RP is σ-sub-Gaussian, then |(X−EX)W | isCσ-sub-Gaussian.

3.4 Optimization procedure

We now describe the optimization procedure of each of our operators {Wn}, that consists in a greedy
layer-wise procedure [3]. Our goal is to specify |Wn| such that it leads to a demodulation effect, as
well as to have a fast energy decay. Demodulation means that the envelope of a signal should be
smoother, whereas fast decay will allow the use of shallower networks. In practice, it means that at
depth n, the energy along the direction of averaging should be maximized, which leads to consider:

max
WTW=I

‖AJ |(I −AJ)UnW |‖ . (18)

As observed in [35], because the extremal points of the `2 ball are the norm preserving matrix, this
optimization problem is equivalent to:

max
‖W‖2≤1

‖AJ |(I −AJ)UnW |‖ . (19)

Note that this can be approximatively solved via a projected gradient procedure which projects the
operator W on the unit ball for the `2-norm at each iteration. Furthermore, contrary to [35], we might
constrain W to have a rank lower than the ambient space, that we denote by k: increasing k as well
as the order N allows to potentially increase the capacity of our model, yet we as discussed in the
next section, this wasn’t necessary to obtain accuracies at the level of the state of the art.

4 Numerical Experiments

We test our unsupervised IGT features on a synthetic example, and on challenging semi-supervised
tasks, in various settings that appeared in the graph community labeling litterature: the full [40],
predefined [25] and random splits [25] of Cora, Citeseer, Pubmed, as well as the WikiCS dataset.
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4.1 Synthetic example

As GCNs progressivly apply a smoothing operator on subsequent layers, deeper features are less
sensitive to intra-community variability. This progressive projection can have a big impact on
datasets where discriminative features are close in average, yet have very different distributions over
several communities. In order to underline this phenomenon, we propose to study the following
synthetic example: following the model and notations of Sec. 3.3, we consider two communi-
ties, with an equal number of samples in each and we assume that P = 1, J = 1, p = 0.001
and q = 0 and n = 10000. Here, we assume the features are centered Gaussians with variance
σ1 = 1 for the first community and σ2 = σ1 + ∆σ for the second. In other words, ∆σ con-
trols the relative spread of the community features. Our goal is to show numerically that an IGT
representation is, by construction, more amenable to distinguish the two communities than a GCN.
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Figure 2: Accuracies of GCN against our method
on a synthetic example, for several values of ∆σ.

As a training set, we randomly sample 20 nodes
and use the remaining ones as a validation and
test set. For IGT parameters, we pick J = 2,
k = 1 and N ∈ {0, 1, 2}. On top of our
standardized IGT features, our classification
layer consists in a 1-hidden layer MLP of width
128. We train the IGT operators for 50 epochs.
We compare our representation with a standard
GCN [25] that has two hidden layers and a hid-
den dimension of 128 for the sake of comparison.
Both supervised architectures are trained during
200 epochs using Adam [24] with a learning rate
of 0.01 (ε = 10−8, β1 = 0.9, β2 = 0.999). We
discuss next the accuracies averaged over 5 dif-
ferent seeds on Fig. 2 for various representations
and values of ∆σ.

We observe that an order 0 IGT performs poorly
for any values of ∆σ, which is consistent because the linear smoothing will dilute important informa-
tions for node classification. However, non-linear model like IGT (of order larger than 0) or GCN
outperforms this linear representation. The IGT outperforms the GCN for all values of ∆σ because
as Sec. 3.1 shows, by construction, this representation extracts explicitly the high frequency of the
graph, whereas a GCN can only smooth its features and thus will tend to lose in discriminability
despite supervision. We note that orders 1 and 2 perform similarly, which is not surprising given the
simplistic assumption of this model: all the informative variability is contained in the order 1 IGT
and the order 2 is likely to only bring noisy features in this specific case.

4.2 Supervised community detection

First, we describe our experimental protocol on the datasets Cora, CiteSeer and PubMed. Each dataset
consists in a set of bag-of-words vectors with citation links between documents. They are made of
respectively 5.4k, 4.7k, 44k and 216k edges with features of size respectively 1.4k, 3.7k, 0.5k and
0.3k. For the three first datasets, we test our method in three semi-supervised settings, which consist
in three different approaches to split the dataset into train, validation and test sets: at this stage, we
would like to highlight we are one of the few methods to try its architecture on those three splits
(which we discuss for clarity), which allows to estimate the robustness to various sample complexity.
Each accuracy is averaged over 5 runs and we report the standard-deviation in the Appendix. The
most standard split is the predefined split setting: each training set is provided by [25] and consist in
20 training nodes per class, which represent a fraction 0.052, 0.036, and 0.003 of the data for Cora,
CiteSeer and PubMed respectively. 500 and 1000 nodes are respectively used as a validation and
test set. Then, we consider the random split setting introduced in [25], which is exactly as above
except that we randomly extract 5 splits of the data, and we average the accuracies among those splits.
Finally, we consider the full split setting which was used in [40] and employs 5 random splits of a
larger training set: a fraction 0.45, 0.54 and 0.92 of the whole labeled datasets respectively. Note
that each of those tasks is transductive yet our method would require minimal adaptation to fit an
inductive pipeline. For WikiCS, we followed the only guideline of [32].

7



Our architectures are designed as follow: an IGT representation only requires 4 hyper-parameters: an
adjacency matrix A, an output-size k for each linear isometry, a smoothness parameter J and an IGT
order N . Given that the graphs are undirected, A satisfies the assumption described in Sec. 3.1, yet
it would be possible to symmetrize the adjacency matrix of a directed graph. This corresponds to
our unsupervised graph representation that will be then fed to a supervised classifier. Sec. 3.3 shows
that our IGT representation should concentrate around the E-IGT of their respective community,
which means that they should be well separated by a Linear classifier. However, there might be
more intra-class variability than the one studied from the lens of our model, thus we decided to use
potentially deeper models, e.g., Multi Layer Perceptrons (MLPs) as well as Linear classifiers. We
use the same fixed MLP architecture for every dataset: a single hidden layer with 128 features. Our
linear model is simply a fully connected layer, and each model is fed to a cross-entropy loss. We
note that our MLP is shallow, with few units, and does not involve the graph structure by contrast to
semi-supervised GCNs: we thus refer to the combination of IGT and a MLP or a Linear layer as an
unsupervised graph representation for node labeling. Note also that a MLP is a scalable classifier in
the context of graphs: once the IGT representation is estimated, one can learn the weight of the MLP
by splitting the training set in batches, contrary to standard GCNs.

We now describe our training procedure as well as the regularizaton that we incorporated: it was
identical for any splits of the data. We optimized our pipeline on Cora and applied it on Citeseer,
Pubmed and WikiCS, unless otherwise stated. Each parameter was cross-validated on a validation
set, and we report the test accuracy on a test set that was not used until the end. First, we learn
each {Wm}m≤N via Adam for 50 epochs and a learning rate of 0.01. Once computed, the IGT
features are normalized and are fed to our supervised classifier, that we train again using Adam and a
learning rate of 0.01 for at most 200 epochs, with a early stopping procedure and a patience of 30. A
dropout ratio which belongs to {0, 0.2, 0.4, 0.5, 0.6, 0.8} is potentially incorporated to the one hidden
layer of the MLP. On CiteSeer and PubMed, our procedure selected 0.2, on WikiCS 0.8, whereas
no-dropout was added on Cora. Furthermore, we incorporated an `2-regularization with our linear
layer which we tried amongst {0, 0.001, 0.005, 0.01}: we picked 0.005 via cross-validation. We
discuss here WikiCS: by cross-validation, we used J = 1, N = 1, k = 150 for the linear experiment
and J = 2, N = 1, k = 35 for the MLP experiment. For the other datasets and every splits, we
used N = 2 and k = 10: we note that less capacity is needed compared to WikiCS, because those
datasets are simpler. For the three other datasets, for both the predefined and random splits, we fix
J = 4. For the full split, we used J = 1 for each dataset: we noticed that increasing J degrades the
performance, likely because less invariance is required and can be learned from the data, because
more samples are available. This makes sense, as the amount of smoothing depends on the variability
exhibited by the data. Thanks to the amount of available data, the supervised classifier can estimate
the degree of invariance needed for the classification task, which was not possible if using only 20
samples per community.

Tab. 4 reports the semi-supervised accuracy for each dataset, in various settings, and compares
standard supervised [14, 25, 40, 8, 7, 42] and unsupervised [38, 43, 15, 39, 17] architectures. Note
that each supervised model is trained in an end-to-end manner. The unsupervised models are built
differently and we discuss them now briefly: for instance, EP [15], uses a node embedding with
a rather different architecture from GCNs. Also, DeepWalk [38] is analogous to a random walk,
GraphSage [17] learns an embedding with a local criterion, DGI [43] relies on a mutual information
criterion and finally [39] relies on a random field model. Note that each of those models are
significantly different from ours and they do not have the same theoretical foundations and properties
as ours. As expected, accuracy in the full setting is higher than the others. We observe that in general,
supervised models outperforms unsupervised models by a large margin except on WikiCS and
Citeseer for the random and predefined splits, for which an IGT obtains better accuracy: it indicates
that it has a better inductive bias for this dataset. Note that an IGT obtains competitive accuracies
amongst unsupervised representations and this is consistent with the fact that those datasets, discussed
above, are likely to satisfy the hypothesis described in Sec. 3.3. In general, a MLP outperforms a
linear layer (because it has better approximation properties), except on Citeseer for which the accuracy
is similar, which seems to validate that the data of Citeseer follow the model that we introduced in
3.3 on Citeseer, that leads to linear separability.

4.3 Ablation experiments
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Table 1: Classification accuracies (in %) for each splits of Cora, Citeseer, Pubmed as well as WikiCS.

Method/Dataset Cora Citeseer Pubmed WikiCS
Full Rand Pred Full Rand Pred Full Rand Pred

Supervised

GAT [42] 83.0 72.5 79.0 77.2
GCN [25] 80.1 81.5 67.9 70.3 78.9 79.0 77.7
Graph U-Net [14] 84.4 73.2 79.6
DropEdge [40] 88.2 80.5 91.7
FastGCN [8] 85.0 77.6 88.0
OS [7] 82.3 69.7 77.4

Unsupervised

Raw [43, 32] 47.9 49.3 69.1 72.0
DeepWalk [38] 67.2 43.2 65.3 74.4
IGT + MLP (ours) 87.7 78.3 80.3 78.4 67.6 73.1 88.2 76.2 76.4 77.2
IGT + Lin. (ours) 83.3 77.6 77.4 78.4 73.0 73.1 88.1 74.5 73.9 76.7
EP [15] 78.1 71.0 79.6
GraphSage [17] 82.2 71.4 87.1
DGI [43] 82.3 71.8 76.8 75.4
GMNN [39] 82.8 71.5 81.6

Table 2: Linear classification accuracies (in %) for
the predefined split on Cora’s validation set, for
various values of N, J .

J
N 0 1 2 3

1 62.4 60.8 62.8 61.4
2 68.6 70.6 72.2 68.6
3 71.4 72.2 74.6 72.6
4 72.4 73.2 74.6 73.0

In order to understand better the IGT represen-
tation, we propose to study the accuracy of an
IGT representation on Cora’s validation set, as
a function of the scale J and the IGT order N .
For the sake of simplicity, we consider a linear
classifier. Each linear operator is learned with
40 epochs. We picked k = 10 and train our
basic model for 200 epochs with SGD, the val-
idation accuracies are reported in Tab. 2. As
N, J increase, we feed the features to a linear
classifier: in general, for 0 ≤ N ≤ 2, as N grows the accuracy improves. However, the order 3
IGT decreases the accuracy: this is consistent because it conveys a noise which is amplified by the
standardization. As J increases, we smooth our IGT features on more neighbor nodes, which results
in better performances for a fixed order N , and is also consistent with the finding of Sec. 3.1.

We performed a second ablation experiment in order to test the inductive bias of our architecture: we
considered random {Wn} at evaluation time and we obtained respectively on the full split of Cora,
Citeseer and Pubmed some accuracy drops of respectively 6.3%, 5.2% and 5.6%. This is relatively
smaller drops than DGI [43] which reports for instance some drops of about 10%: our architecture is
likely to have a better inductive bias for this task.

5 Conclusion

In this work, we introduced the IGT which is an unsupervised and semi-supervised representation for
community labeling. It consists in a cascade of linear isometries and point-wise absolute values. This
representation is similar to a semi-supervised GCN, yet it is trained layer-wise, without using labels,
and has strong theoretical fundations. Indeed, under a SBM assumption and a large graph hypothesis,
we show that an IGT representation can discriminate communities of a graph from a single realization
of this graph. It is numerically supported by a synthetic example based on Gaussian features, which
shows that an IGT can estimate the community of a given node better than a GCN because it tends to
alleviate the over-smoothing phenomenon. This is further supported by our numerical experiments
on the standard, challenging datasets Cora, CiteSeer, PubMed and WikiCS: with shallow supervised
classifiers, we obtain numerical accuracy which is competitive with semi-supervised approaches.

Future directions could be to either refine our theoretical analysis by weakening our assumptions,
or to test our method on inductive tasks. Furthermore, following [35], one can also wonder if this
type of approach could be extended to more complex data, in order to obtain stronger theoretical
guarantees (e.g., manifold). Finally, future works could also be dedicated to scale our algorithms to
very large graphs: this is a challenging task both in terms of memory and computations.
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Broader impact. Graph Neural Networks can be used in many domains, like protein prediction, or
network analysis to cite only a few, and could become even more prevalent tomorrow. Our work is
thus included in a large literature whose societal impact and ethical considerations are to become
more and more important. We provide here a new model aiming at learning unsupervised node
representation in community graphs graphs. While its most natural application lies in community
detection in social science, we hope that the provided theoretical guarantees could be used in the
future to provide safer and more readable models toward more various directions.
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[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[43] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR (Poster), 2019.

[44] Roman Vershynin. Concentration of Sums of Independent Random Variables, page 11–37.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2018.

[45] Martin J. Wainwright. Basic tail and concentration bounds, page 21–57. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

[46] Irène Waldspurger. Wavelet transform modulus: phase retrieval and scattering. Journées
équations aux dérivées partielles, pages 1–10, 2017.

[47] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016.

12



6 Appendix

6.1 Proofs

Lemma 2. If 0 4 A 4 I , then ‖AX‖2 + ‖(I −A)X‖2 ≤ ‖X‖2 with equality iff A2 = A.

Proof. We note that for any x, we get:
‖Ax‖2 + ‖(I −A)x‖2 = ‖Ax‖2 + ‖x‖2 + ‖Ax‖2 − 2〈x,Ax〉 (20)

Yet, ‖Ax‖2 = 〈x,ATAx〉 ≤ 〈x,Ax〉 because Sp(A) ⊂ [0, 1]. Thus,
2(‖Ax‖2 − 〈x,Ax〉) + ‖x‖2 ≤ ‖x‖2 , (21)

with equality ∀x iff A = A2. It is now enough to observe that {A, I − A} inherits from those
properties.

The following proposition explains that our representation is non-expansive, and thus stable to noise:
Proposition 7. For N ∈ N, SNJ X is 1-Lipschitz leading to:

‖SNJ X − SNJ Y ‖ ≤ ‖X − Y ‖ . (22)
and furthermore:

‖SNJ X‖ ≤ ‖X‖ . (23)

Proof. For two feature matrices X,Y , let us consider Ui and Ũi defined from Equation (2), with
U0 = X and Ũ0 = Y . Because |Wi| is a contractive and from Lemma 2,

‖Ui+1 − Ũi+1‖2 ≤ ‖Ui − Ũi −AJ(Ui − Ũi)‖2 (24)

≤ ‖Ui − Ũi‖2 − ‖AJ(Ui − Ũi)‖2 (25)
Hence,

N∑
i

‖AJ(Ui − Ũi)‖2 ≤ ‖X − Y ‖2 − ‖Un − Ũn‖2 (26)

≤ ‖X − Y ‖2 (27)
Taking X = 0 leads to the second part as then SX = 0.

This Lemma shows that a cascade of IGT linear isometries preserve sub-Gaussianity:
Lemma 5. If each line of X is σ-sub-Gaussian, then each (independent) line of Ūm is Cmσ-sub-
Gaussian for some universal constant C.

Proof. Apply the Lemma 6 with W = Wn for n ≤ m leads to the result.

In order to show the previous Lemma, we need to demonstrate that the modulus of a sub-Gaussian
variable is itself sub-Gaussian, which is shown below:
Lemma 6. IfX ∈ RP is σ-sub-Gaussian, then |(X−EX)W | isCσ-sub-Gaussian for some absolute
value C.

Proof. If X is σ-sub-Gaussian, then X − EX is C ′σ-subGaussian by recentering [44]. We note that
as W is unitary, thus (X − EX)W is also C ′σ-subgaussian. Then, let u ∈ Rp an unit vector. We
note that:

P(

p∑
i=1

ui|Xi| ≥ t) (28)

≤
∑

εi∈{−1,1}

P({εiXi ≥ 0} ∩ {
∑
i

ui|Xi| ≥ t}) (29)

=
∑

εi∈{−1,1}

P({εiXi ≥ 0} ∩ {
∑
i

εiuiXi ≥ t}) (30)

≤ 2pe−
t2

2C′2σ2 = ep ln 2− t2

2C′2σ2 . (31)
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This leads to the conclusion by sub-Gaussian characterization.

Proposition 3. For any X,N, J , we get:

‖SNJ X − S̄NX‖ ≤
√

2

N∑
m=0

‖(AJ − E)Ūm‖ . (32)

Proof. Here, write V mJ = |(X −AJX)Wm|, V 0
JX = X , and define:

Y n,mJ X ={AJV nJ ...V n−m+1
J X,AJV

n−1
J ...V n−m+1

J X (33)

, ..., AJV
n−m+1
J X,AJX}, (34)

Lemma. If AJ is a unitary projector and each Wi is unitary, then Y mJ X is 1-Lipschitz w.r.t. X .

Proof. We can apply the proposition 2 with the operators {Wn−m+1, ...,Wn}, as this can be inter-
prated as an IGT with different unitary operators.

Here the idea is to take advantage of the tree structure of the IGT features. Thus when Y n,mJ is
computing SnJ to orders limited in [n, n −m + 1], we chain the features with the order n −m to
recover Y n,m−1J . To do so, we introduce for m ≥ 1 :

∆n,m
J X = {Y mJ V n−mJ X − Y mJ V̄ n−mX,AJX − EX} (35)

= {−Y mJ V̄ n−mX,−EX}+ Y m−1J X , (36)

where V̄ nX = |(X − EX)Wn|, V̄ 0X = X and {x, y} stands for a concatenation. This implies that
∆n,m
J X is a (m+ 1)-uplet (and the symbol + in (36) is thus a couple addition and the convention is

that left corresponds to highest order of the couple), and ∆0,0
J X = AJX − EX = −EX + S0

JX .
The sum over m-uplet with different size is done such that the left elements are summed first. We
then notice that:

N∑
m=0

∆N,m
J V̄ N−m−1...V̄1X = SNJ X − S̄NX (37)

because each term of the couple is a telescopic sum (again here, we chain the features with orders in
[n−m− 1, 1] to obtain the telescopy).
As Y n,mJ is 1-Lipschitz w.r.t. X and since a modulus is non expansive, ‖|(X −AJX)Wn| − |(X −
EX)Wn|‖ ≤ ‖EX −AJX‖, combining those ingredients we get:

‖∆n,m
J X‖2 =‖AJX − EX‖2+ (38)

‖Y m−1J |(X −AJX)Wn| − Y m−1J |(X − EX)Wn‖2 (39)

≤ 2‖AJX − EX‖2 . (40)

Then, we further apply the triangular inequality to get the desired result.

The following proposition shows that in case of exact ergodicity, the IGT and Expected-IGT repre-
sentations have bounded moments of order 2:
Proposition 4. Assume that E[AJX] = EX , and that X has variance σ2 = E‖X‖2 − ‖EX‖2,
then:

E[‖SNJ X − S̄NX‖2] ≤ 2σ2 . (41)

Proof.

E[‖SNJ X − S̄NX‖2] = E[‖SNJ X‖2] + E[‖S̄NX‖2] (42)

− 2

N∑
m=0

E[Tr((AJUm)TE[Ūm])] (43)

≤ 2(E‖X‖2 −
N∑
m=0

E[Tr((AJUm)TE[Ūm])]) (44)
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The inequality follows from Prop. 2 and Prop. 7. Now, from Lemma 1, AJ , Um, Ūm have positive
coefficients, thus we get: 2

∑N
m=1 E[Tr((AJUm)TE[Ūm])] ≥ 0. The first term allows to conclude as

Ū0 = U0 = X .

Proposition 6. Assume that each line of X is σ-sub-Gaussian. There exists C > 1,K > 0, C ′ > 0
such that ∀m, δ > 0 with probability 1− 8Pδ, we have:

‖E[A]normŪm − E[Ūm]‖ (45)

≤ KσCm
√

ln
1

δ
+ τ
√
nC ′‖µ2

m − µ1
m‖ . (46)

Proof. Here, for the sake of simplicity, Xp corresponds to the p-th row of X . We write µjm the
expected-IGT of the node distribution of community j. Here, we have for t ≤ n1 (note that the right
does not depend on t):

[E[A]normŪm]t − E[Ūm]t (47)

=
1

n1p+ n2q

(
p

n1∑
i=1

(Ū im − µ1
m) + q

n1+n2∑
i=n1+1

(Ū im − µ2
m)
)

(48)

+
n2q

n1p+ n2q
(µ2
m − µ1

m) . (49)

Now, we note that from Lemma 5, {Ū im}i≤n is a family of σCm-sub-Gaussian independant r.v. From
Hoeffding lemma [45], we obtain that for any δ, we have with probability 1− 4Pδ:

‖
n1∑
i=1

(Ū im − µ1
m)‖ ≤ √n1

√
2σCm

√
ln

1

δ
and

‖
n1+n2∑
i=n1+1

(Ū im − µ2
m)‖ ≤ √n2

√
2σCm

√
ln

1

δ
.

As if n is large, by hypothesis (p
√
2n1+q

√
2n2

n1p+n2q
)
√
n = O(1). We perform the same for n1 < t ≤

n1 + n2 We then sum along n and use that n1

n2+τn1
+ n2

n1+τn2
= O(1) and

√
a+ b ≤ √a+

√
b.

6.2 Dataset statistics

Table 3: Dataset Statistics

Datasets Nodes Edges Classes Features full Train/Val/Test semi Train/Val/Test

Cora 2,708 5,429 7 1,433 1,208/500/1,000 140/500/1,000
Citeseer 3,327 4,732 6 3,703 1,812/500/1,000 120/500/1,000
Pubmed 19,717 44,338 3 500 18,217/500/1,000 60/500/1,000
WikiCS 11,701 216,123 10 300 20 canonical train/valid/test splits
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Table 4: Standard deviations of classification accuracies for each splits of Cora, Citeseer, Pubmed as
well as WikiCS.

Method/Dataset Cora Citeseer Pubmed WikiCS
Full Rand Pred Full Rand Pred Full Rand Pred

Unsupervised

IGT + MLP (ours) 0.5 0.8 0.9 0.4 0.8 0.7 0.6 0.5 0.3 0.5
IGT + Lin. (ours) 0.1 0.8 0.2 0.3 0.7 0.5 0.1 0.2 0.1 0.5

6.3 Code and Data availability

All the code is accessible in the folder given in the supplementary materials.

6.4 Training time

We informally noticed that the training of our isometry layers converges quickly. During the
supervised training, no multiplication with the adjacency matrix is involved, which can speed up the
training compared to GCNs. We further report wall-clock training time in seconds until convergence
for our method and for GCNs. For the latter, we used an implementation provided by the authors
and trained on the same hardware (with GPU) as our IGT model. For Cora, Citeseer and PubMed
respectively, the training time of our IGT layers was 0.45s, 0.57s and 4.88s, whereas the training time
of the classification head was 0.25s, 0.24s and 0.94s. By way of comparison, GCN training time was
0.86s, 1.82s, and 1.12s. We would like to highlight that our code works on limited resources and we
used a total of 10 GPU hours for developing and benchmarking this project.
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