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Abstract

A commonly cited inefficiency of neural network training using back-propagation is the
update locking problem: each layer must wait for the signal to propagate through the
full network before updating. Several alternatives that can alleviate this issue have been
proposed. In this context, we consider a simple alternative based on minimal feedback,
which we call Decoupled Greedy Learning (DGL). It is based on a classic greedy relaxation
of the joint training objective, recently shown to be effective in the context of Convolutional
Neural Networks (CNNs) on large-scale image classification. We consider an optimization
of this objective that permits us to decouple the layer training, allowing for layers or
modules in networks to be trained with a potentially linear parallelization. With the use of
a replay buffer we show that this approach can be extended to asynchronous settings, where
modules can operate and continue to update with possibly large communication delays.
To address bandwidth and memory issues we propose an approach based on online vector
quantization. This allows to drastically reduce the communication bandwidth between
modules and required memory for replay buffers. We show theoretically and empirically
that this approach converges and compare it to the sequential solvers. We demonstrate the
effectiveness of DGL against alternative approaches on the CIFAR-10 dataset and on the
large-scale ImageNet dataset.

1



Forward connection 
forward unlocked

Loss(ŷ,y)

DNI - Synthetic Gradient Synchronous - DGL Asynchronous - DGL

no feedback

Module 1

Module 2 Aux

y

Module 2

Module 1

y

Aux

Loss(ŷ,y)

no feedbackModule 2

Module 1

y

Aux

Buffer

Auxiliary gradient

 Error gradient

Forward connection 
update unlocked

Forward connection 
not update unlocked

 
feedback

Figure 1: Comparison of DNI, Synchronous and Asynchronous DGL. Note that in DGL
subsequent modules do not provide feedback to earlier modules, thus removing
dependencies of the auxiliary network on backpropagated gradient information.
Asynchronous DGL allows achieving forward unlocking (updates can be performed
without waiting for prior modules).

1. Introduction

Jointly training all layers using back-propagation and stochastic optimization is the standard
method for learning neural networks, including the computationally intensive Convolutional
Neural Networks (CNNs). Due to the sequential nature of gradient processing, standard
back-propagation has several well-known inefficiencies that prohibit parallelization of the
computations of the different constituent modules. Jaderberg et al. (2017) characterize these
inefficiencies in order of severity as the forward-, update-, and backward locking problems.
Backward unlocking of a module would permit updates of all modules once forward signals
have propagated to all subsequent modules, update unlocking would permit updates of a
module before a signal has reached all subsequent modules, and forward unlocking would
permit a module to operate asynchronously from its predecessor and dependent modules.

Methods addressing backward locking to a certain degree have been proposed in (Huo
et al., 2018b,a; Choromanska et al., 2018; Nø kland, 2016). However, update locking is
a far more severe inefficiency. Thus Jaderberg et al. (2017) and Czarnecki et al. (2017)
propose and analyze Decoupled Neural Interfaces (DNI), a method that uses an auxiliary
network to predict the gradient of the backward pass directly from the input. This method
unfortunately does not scale well computationally or in terms of accuracy, especially in
the case of CNNs (Huo et al., 2018a,b). Indeed, auxiliary networks must predict a weight
gradient, usually high-dimensional for larger models and input sizes.

A major obstacle to update unlocking is the heavy reliance on the upper modules for
feedback. Several works have recently revisited the classic (Ivakhnenko and Lapa, 1965;
Bengio et al., 2007) approach of supervised greedy layerwise training of neural networks
(Huang et al., 2018a; Marquez et al., 2018). In Belilovsky et al. (2019) it is shown that such
an approach, which relaxes the joint learning objective, and does not require global feedback,
can lead to high-performance deep CNNs on large-scale datasets. We will show that the
greedy sequential learning objective used in these papers can be efficiently solved with an
alternative parallel optimization algorithm, which permits decoupling the computations and
achieves update unlocking. This then opens the door to extend to a forward unlocked model,
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which is a challenge not effectively addressed by any of the prior work. In particular, we use
replay buffers (Lin, 1992) to achieve forward unlocking. This simple strategy can be shown
to be a superior baseline for parallelizing the training across modules of a neural network. A
training procedure that permits forward and update unlocked computation allows for model
components to communicate infrequently and be trained in low-bandwidth settings such as
across geographically distant nodes.

The present paper is an extended version of (Belilovsky et al., 2020) that expands the
asynchronous (forward unlocked) algorithm, addressing some of its key limitations. In
particular, a major issue of replay buffers used to store intermediate representations is
that they can grow large, requiring large amounts of on-node memory and more critically
increasing inter-node bandwidth. We introduce and evaluate a potential path for drastically
reducing the bandwidth constraints between nodes in the case of asynchronous DGL as
well as reducing the need for on-node memory. In order to address this issue, a natural
approach is compression. However, the replay buffers here store time-varying activations.
In this context and inspired by Caccia et al. (2020); Oord et al. (2017) we thus propose a
computationally efficient method for online learned compression using codebooks. Specifically,
we introduce in Sec. 2.4 and test in Sec. 4.4, the use of a quantization module that compresses
the intermediary features used between successive layers but is able to rapidly adapt to
distribution shifts. In complement to Belilovsky et al. (2020), this module can deal with
online distributions and regularly update a code-book that memorizes some attributes of the
current stream of data. It allows to both reduce significantly the local memory of a node as
well as the transmission between two subsequent machines, without significantly decreasing
the final accuracy of our models. We further show that for a fixed budget of memory, this
new method outperforms the algorithm introduced in Belilovsky et al. (2020).

The paper is structured as follows. In Sec. 2 we propose an optimization procedure for a
decoupled greedy learning objective that achieves update unlocking and then extend it to
an asynchronous setting (async-DGL) using a replay buffer, addressing forward unlocking.
Further, we introduce a new quantization module that reduces the memory use of our
method. In Sec. 3 we show that the proposed optimization procedure converges and
recovers standard rates of non-convex optimization, motivating empirical observations in the
subsequent experimental section. In Sec. 4 we show that DGL can outperform competing
methods in terms of scalability to larger and deeper models and stability to optimization
hyperparameters and overall parallelism, allowing it to be applied to large datasets such as
ImageNet. In Sec. 4.4, we test our new quantization module on CIFAR-10. We extensively
study async-DGL and find that it is robust to significant delays. In several experiments
we show that buffer quantization improves both performance and memory consumption.
We also empirically study the impact of parallelized training on convergence. Code for
experiments is included in the submission.

2. Parallel Decoupled Greedy Learning

In this section we formally define the greedy objective and parallel optimization which we
study in both the synchronous and asynchronous setting. We mainly consider the online
setting and assume a stream of samples or mini-batches denoted S , {(xt0, yt)}t≤T , run
during T iterations.
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2.1 Preliminaries

For comparison purposes, we briefly review the update unlocking approach from DNI
(Jaderberg et al., 2017). There, each network module has an associated auxiliary net which,
given the output activation of the module, predicts the gradient signal from subsequent
modules: the module can thus perform an update while modules above are still forward
processing. The DNI auxiliary model is trained by using true gradients provided by upper
modules when they become available, requiring activation caching. This also means that the
auxiliary module can become out of sync with the changing output activation distribution,
often requiring slow learning rates. Due to this and the high dimensionality of the predicted
gradient which scales with module size, this estimate is challenging. One may ask how well
a method that entirely avoids the use of feedback from upper modules would fare given
similarly-sized auxiliary networks. We will show that adapting the objective in (Belilovsky
et al., 2019; Bengio et al., 2007) can also allow for update unlock and a degree of forward
unlocking, with better properties.

Algorithm 1: Synchronous DGL

Input: Stream S , {(xt0, yt)}t≤T of samples or mini-batches.
1 Initialize Parameters {θj , γj}j≤J .
2 for (xt0, y

t) ∈ S do
3 for j ∈ 1, ..., J do
4 xtj ← fθj−1(xtj−1).

5 Compute ∇(γj ,θj)L̂(yt, xtj ; γj , θj).

6 (θj , γj)←Update parameters (θj , γj).

7 end

8 end

Algorithm 2: Asynchronous DGL with Replay

Input: Stream S , {(xt0, yt)}t≤T ; Distribution of the delay p = {p(j)}j ; Buffer size M .
1 Initialize: Buffers {Bj}j ; params {θj , γj}j .
2 while training do
3 Sample j in {1, ..., J} following p.
4 if j = 1 then
5 (x0, y)← S
6 else
7 (xj−1, y)← Bj−1.
8 end
9 xj ← fθj−1(xj−1).

10 Compute ∇(γj ,θj)L̂(y, xj ; γj , θj).

11 (θj , γj)← Update parameters (θj , γj).
12 if j < J then Bj ← (xj , y).

13 end
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Algorithm 3: Asynchronous DGL with Replay and Quantized modules

Input: Stream S , {(xt0, yt)}t≤T ; Distribution of the delay p = {p(j)}j ; Buffer size M .
Codebooks {Cj}j . Codebook update delay Tcode

1 Initialize: Buffers {Bj}j ; params {θj , γj}j ; codebooks {C|}j .
2 while training do
3 Sample j in {1, ..., J} following p.
4 if j = 1 then
5 (x0, y)← S
6 else
7 (x̃j−1, y)← Bj−1.
8 xj−1 = UnQuantize(x̃j−1, Cj)
9 end

10 xj ← fθj−1(xj−1).

11 Compute ∇(γj ,θj)L̂(y, xj ; γj , θj).

12 (θj , γj)← Update parameters (θj , γj).
13 If j%Tcode: ReceiveCodebooks {Cj}.
14 if j < J then Bj ← (Quantize[xj ], y).

15 end

2.2 Optimization for Greedy Objective

Let X0 and Y be the data and labels, Xj be the output representation for module j. We

will denote the per-module objective function L̂(Xj , Y ; θj , γj), where the parameters θj
correspond to the module parameter (i.e. Xj+1 = fθj (Xj)). Here γj represents parameters

of the auxiliary networks used to predict the final target and compute the local objective. L̂
in our case will be the empirical risk with a cross-entropy loss. The greedy training objective
is thus given recursively by defining Pj :

min
θj ,γj
L̂(Xj , Y ; θj , γj), (Pj)

where Xj = fθ∗j−1
(Xj−1) and θ∗j−1 is the minimizer of Problem (Pj−1). A natural way to

solve the optimization problem for J modules, (PJ), is thus by sequentially solving the
problems {Pj}j≤J starting with j = 1. This is the approach taken in e.g. Marquez et al.
(2018); Huang et al. (2018a); Bengio et al. (2007); Belilovsky et al. (2019). Here we consider
an alternative procedure for optimizing the same objective, which we refer to as Sync-DGL. It
is outlined in Alg 1. In Sync-DGL individual updates of each set of parameters are performed
in parallel across the different layers. Each layer processes a sample or mini-batch, then
passes it to the next layer, while simultaneously performing an update based on its own local
loss. Note that at line 5 the subsequent layer can already begin computing line 4. Therefore,
this algorithm achieves update unlocking. Once xtj has been computed, subsequent layers can
begin processing. Sync-DGL can also be seen as a generalization of the biologically plausible
learning method proposed in concurrent work (Nøkland and Eidnes, 2019). Appendix D
also gives an explicit version of an equivalent multi-worker pseudo-code. Fig. 1 illustrates
the decoupling compared to how samples are processed in the DNI algorithm.

In this work we solve the sub-problems Pj by backpropagation, but we note that any
iterative solver available for Pj will be applicable (e.g. Choromanska et al. (2018)). Finally
we emphasize that unlike the sequential solvers of (e.g. Bengio et al. (2007); Belilovsky et al.
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(2019)) the distribution of inputs to each sub-problem solver changes over time, resulting in
a learning dynamic whose properties have never been studied nor contrasted with sequential
solvers.

2.3 Asynchronous DGL with Replay

We can now extend this framework to address forward unlocking (Jaderberg et al., 2017).
DGL modules already do not depend on their successors for updates. We can further reduce
dependency on the previous modules such that they can operate asynchronously. This is
achieved via a replay buffer that is shared between adjacent modules, enabling them to
reuse older samples. Scenarios with communication delays or substantial variations in speed
between layers/modules benefit from this. We study one instance of such an algorithm that
uses a replay buffer of size M , shown in Alg. 2 and illustrated in Fig. 1.

Our minimal distributed setting is as follows. Each worker j has a buffer that it writes to
and that worker j + 1 can read from. The buffer uses a simple read/write protocol. A buffer
Bj lets layer j write new samples. When it reaches capacity it overwrites the oldest sample.
Layer j + 1 requests samples from the buffer Bj . They are selected by a last-in-first-out
(LIFO) rule, with precedence for the least reused samples. Alg. 2 simulates potential delays
in such a setup by the use of a probability mass function (pmf) p(j) over workers, analogous
to typical asynchronous settings such as (Leblond et al., 2017). At each iteration, a layer is
chosen at random according to p(j) to perform a computation. In our experiments we limit
ourselves to pmfs that are uniform over workers except for a single layer which is chosen
to be selected less frequently on average. Even in the case of a uniform pmf, asynchronous
behavior will naturally arise, requiring the reuse of samples. Alg. 2 permits a controlled
simulation of processing speed discrepancies and will be used over settings of p and M to
demonstrate that training and testing accuracy remain robust in practical regimes. Appendix
D also provides pseudo-code for implementation in a parallel environment.

Unlike common data-parallel asynchronous algorithms (Zhang et al., 2015), the asyn-
chronous DGL does not rely on a master node and requires only local communication similar
to recent decentralized schemes (Lian et al., 2017). Contrary to decentralized SGD, DGL
nodes only need to maintain and update the parameters of their local module, permitting
much larger modules. Combining asynchronous DGL with distributed synchronous SGD for
sub-problem optimization is a promising direction. For example it can alleviate a common
issue of the popular distributed synchronous SGD in deep CNNs, which is the often limiting
maximum batch size (Goyal et al., 2017).

2.4 Reducing the memory- and communication footprint of Asynchronous DGL

The typical objective of an optimization procedure distributed along H nodes is to linearly
reduce by O(H) the training time compared to using a single node. However, in practical
applications, the speed-up is in general sub-linear due to communication issues: bandwidth
restrictions (e.g., a bandwidth bottleneck or a significant lag between distant nodes) can
substantially increase the communication time. In a distributed use case Sync-DGL and
Async-DGL would be bottlenecked by communication bandwidth. As the model grows
larger, features must be sent across nodes. Similarly for Async DGL the local memory
footprint might also be an issue if each node is a device with limited available computational
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Figure 2: Schematic diagram that explains how the buffers and encoder/decoder quantization
modules are incorporated. (left) with quantization (right) without quantization.

resources. We propose a solution to this problem based on an online dictionary learning
algorithm, which is able to rapidly adapt a compression algorithm to the changing features
at each node, leading to a large reduction in communication bandwidth and memory. The
method is illustrated in Fig. 2 and the algorithm we used is given in Alg. 3.

As illustrated in the Figure 2 we propose to incorporate a quantization module that
relies on a codebook with C atoms. Following van den Oord et al. (2017), the quantization
step works as follows: each output feature is assigned to its closest atom in its local encoding
codebook and the decoding step consists simply in recovering the corresponding atom via its
local decoding codebook. The numbers of bits required to encode a single quantized vector
is thus dlog2(C)e bits.

During training, the distribution of features at each layer is changing, so the codebooks
must be updated online. We must also send the codes to the subsequent node to synchronize
the codebooks of two distant communicating modules, so that the following node can
decode. Notably the rate at which codebooks are synchronized need not be the same as
the rate at which features are sent. We write α ∈ [0, 1] the synchronization rate of the
codebooks: We only synchronize the codebook during a selected fraction α of the training
iterations. Empirically we will illustrate in the sequel that the codebooks can be synchronized
infrequently as compared to the rate a module sends out features. The codebook is updated
via an EM algorithm that is learning to minimize the reconstruction error of a given batch
of samples, as done in van den Oord et al. (2017); Caccia et al. (2020). In order to deal with
batches of data, the dictionary is updated with Exponential Moving Averages (EMA).

We will now discuss the bandwidth and memory savings of the quantization module by
deriving explicit equations. First, let us introduce the necessary notations. In the following,
at a given module indexed by j, we write B the batch size of a batch xj of features with
dimension Kj ×N2

j , where Nj corresponds to the spatial size of xj and Kj is the number of
channels. Assuming the variables are coded as 32-bit floating point numbers, this implies
that without quantization, a batch of features will require 32BN2

jKj bits. Similarly, the

buffer memory, which is required in this case, corresponds to 32MN2
jKj , where we always

have M > B in order to avoid sampling issues for sampling a new batch of data.
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Figure 3: Illustration of bandwidth and buffer memory Compression factors as given by
Eq. (3) and Eq. (4) for α = 1 at various depths for a specific CNN model (from
Sec. 4.4). On the left figure, we display the bandwidth compression factor as
a function of the number of codebook atoms. The right figure corresponds to
the buffer compression factor when the buffer size increases. We observe that
in all cases we have substantial reduction in bandwidth and memory. Note the
buffer size memory compression is variable due to the size of the codebook. For
simplicity, we employed the architecture of Sec. 4.3.

As in Caccia et al. (2020); van den Oord et al. (2017) we incorporate a spatial structure
to our encoding-decoding mechanism: our quantization algorithm will encode the feature
vector at each spatial location using the same encoding procedure, leading to a spatial array
of codebook indices. Furthermore, as done in Caccia et al. (2020), we assume that we use

k = 32 codebooks to encode respectively each fraction bKj

k c of the channel of a given batch.
This implies that the communication between two successive modules will require for a single
batch of size B:

BkN2
j dlog2(C)e+ α32(Kj +Kj−1)C bits. (1)

Obtained in a similar fashion, the memory footprint of the buffer will be reduced to:

MkN2
j dlog2(C)e+ 32KjC bits . (2)

As a consequence, we can define two different compression factors when implementing
the quantization inside the buffer. The bandwidth compression is defined as

Cb =
32BN2

jKj

BkN2
j log2(C) + α32(Kj +Kj−1)C

, (3)

and indicates an improvement when it is greater than 1. The buffer compression is defined
as

Cn =
32MN2

jKj

MkN2
j log2(C) + 32KjC

, (4)

and indicates an improvement if it is greater than 1.
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As an illustration in Fig. 3 displays the bandwidth reduction factor for a reference
network, similar to one to be studied in the sequel, as a function of codebook size C. Our
reference network has Nj ∈ [32, 16, 16, 8, 8], B = 128, Kj ∈ [128, 256, 256, 512, 512], and
α = 1, as well as the buffer memory reduction factor as a function of the buffer size M
at a constant codebook size of C = 256. Note that in both cases, the memory footprint
used by the codebook is small compared that of the quantized features. The compression
at the buffer level increases when the buffer does. It reaches a threshold defined by the
ratio of codebook encoding size and uncompressed channel sizes. However the Bandwidth
compression decreases, as increasing codebook size becomes more and more similar to
working in 32-bit precision.

2.5 Auxiliary and Primary Network Design

Like DNI our procedure relies on an auxiliary network to obtain update signal. Both methods
thus require auxiliary network design in addition to the main CNN architecture. Belilovsky
et al. (2019) have shown that spatial averaging operations can be used to construct a scalable
auxiliary network for the same objective as used in Sec 2.2. However, they did not directly
consider the parallel training use case, where additional care must be taken in the design:
The primary consideration is the relative speed of the auxiliary network with respect to its
associated main network module. We will use primarily FLOP count in our analysis and
aim to restrict our auxiliary networks to be 5% of the main network.

Although auxiliary network design might seem like an additional layer of complexity in
CNN design and may require invoking slightly different architecture principles, this is not
inherently prohibitive since architecture design is often related to training (e.g., the use of
residuals is originally motivated by optimization issues inherent to end-to-end backprop (He
et al., 2016)).

Finally, we note that although we focus on the distributed learning context, this algorithm
and associated theory for greedy objectives is generic and has other potential applications.
For example greedy objectives have recently been used in (Haarnoja et al., 2018; Huang
et al., 2018a) and even with a single worker DGL reduces memory.

3. Theoretical Analysis

We now study the convergence results of DGL. Since we do not rely on any approximated
gradients, we can derive stronger properties than DNI Czarnecki et al. (2017), such as a
rate of convergence in our non-convex setting. To do so, we analyze Alg. 1 when the update
steps are obtained from stochastic gradient methods. We show convergence guarantees
(Bottou et al., 2018) under reasonable assumptions. In standard stochastic optimization
schemes, the input distribution fed to a model is fixed (Bottou et al., 2018). In this work,
the input distribution to each module is time-varying and dependent on the convergence
state of the previous module. At time step t, for simplicity we will denote all parameters of a
module (including auxiliary) as Θt

j , (θtj , γ
t
j), and samples as Ztj , (Xt

j , Y
t), which follow the

density ptj(z). For each auxiliary problem, we aim to prove the strongest existing guarantees
(Bottou et al., 2018; Huo et al., 2018a) for the non-convex setting despite time-varying input
distributions from prior modules. Proofs are given in the Appendix.
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Let us fix a depth j, such that j > 1 and consider the converged density of the previous
layer, p∗j−1(z). We consider the total variation distance: ctj−1 ,

∫
|ptj−1(z) − p∗j−1(z)| dz.

Denoting ` the composition of the non-negative loss function and the network, we will
study the expected risk L(Θj) , Ep∗j−1

[`(Zj−1; Θj)]. We will now state several standard
assumptions we use.

Assumption 1 (L-smoothness) L is differentiable and its gradient is L-Lipschitz.

We consider the SGD scheme with learning rate {ηt}t:

Θt+1
j = Θt

j − ηt∇Θj`(Z
t
j−1; Θt

j), (5)

where Ztj−1 ∼ ptj−1.

Assumption 2 (Robbins-Monro conditions) The step sizes satisfy
∑

t ηt = ∞ yet∑
t η

2
t <∞.

Assumption 3 (Finite variance) There exists G > 0 such that ∀t,Θj ,Eptj−1

[
‖∇Θj`(Zj−1; Θj)‖2

]
≤

G.

The Assumptions 1, 2 and 3 are standard (Bottou et al., 2018; Huo et al., 2018a),
and we show in the following that our proof of convergence leads to similar rates, up to
a multiplicative constant. The following assumption is specific to our setting where we
consider a time-varying distribution:

Assumption 4 (Convergence of the previous layer) We assume that
∑

t c
t
j−1 <∞.

Lemma 1 Under Assumption 3 and 4, for all Θj , one has Ep∗j−1

[
‖∇Θj`(Zj−1; Θj)‖2

]
≤ G.

We are now ready to prove the core statement for the convergence results in this setting:

Lemma 2 Under Assumptions 1, 3 and 4, we have:

E[L(Θt+1
j )] ≤ E[L(Θt

j)] +
LG

2
η2
t

−ηt
(
E[‖∇L(Θt

j)‖2]−G
√

2ctj−1

)
.

The expectation is taken over each random variable. Also, note that without the temporal
dependency (i.e. ctj = 0), this becomes analogous to Lemma 4.4 in (Bottou et al., 2018).
Naturally it follows, that

Proposition 3 Under Assumptions 1, 2, 3 and 4, each term of the following equation
converges:

T∑
t=0

ηtE[‖∇L(Θt
j)‖2] ≤ E[L(Θ0

j )]

+G

T∑
t=0

ηt

(√
2ctj−1 +

Lηt
2

)
.
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Figure 4: Comparison of DNI, cDNI, and DGL in terms of training loss and test accuracy
for experiment from (Jaderberg et al., 2017). DGL converges better than cDNI
and DNI with the same auxiliary net. and generalizes better than backprop.

Thus the DGL scheme converges in the sense of (Bottou et al., 2018; Huo et al., 2018a). We
can also obtain the following rate:

Corollary 4 The sequence of expected gradient norm accumulates around 0 at the following
rate:

inf
t≤T

E[‖∇L(Θt
j)‖2] ≤ O

∑T
t=0

√
ctj−1ηt∑T

t=0 ηt

 . (6)

Thus compared to the sequential case, the parallel setting adds a delay that is controlled

by
√
ctj−1.

4. Experiments

We conduct experiments that empirically show that DGL optimizes the greedy objective
well, showing that it is favorable to recent state-of-the-art proposals for decoupling training
of deep network modules. We show that unlike previous decoupled proposals it can still
work on a large-scale dataset (ImageNet) and that it can, in some cases, generalize better
than standard back-propagation. We then extensively evaluate the asynchronous version of
DGL, simulating large delays. For all experiments we use architectures taken from prior
works and standard optimization settings.

4.1 Other Approaches and Auxiliary Network Designs

This section presents experiments evaluating DGL with the CIFAR-10 dataset (Krizhevsky,
2009) and standard data augmentation. We first use a setup that permits us to compare
against the DNI method and which also highlights the generality and scalability of DGL.
We then consider the design of a more efficient auxiliary network which will help to scale to
the ImageNet dataset. We will also show that DGL is effective at optimizing the greedy
objective compared to a naive sequential algorithm.

Comparison to DNI We reproduce the CIFAR-10 CNN experiment described in (Jader-
berg et al., 2017), Appendix C.1. This experiment utilizes a 3 layer network with auxiliary
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networks of 2 hidden CNN layers. We compare our reproduction to the DGL approach.
Instead of the final synthetic gradient prediction for the DGL we apply a final projection
to the target prediction space. Here, we follow the prescribed optimization procedure from
(Jaderberg et al., 2017), using Adam with a learning rate of 3× 10−5. We run training for
1500 epochs and compare standard backprop, DNI, context DNI (cDNI) (Jaderberg et al.,
2017) and DGL. Results are shown in Fig. 4. Details are included in the Appendix. The
DGL method outperforms DNI and the cDNI by a substantial amount both in test accuracy
and training loss. Also in this setting, DGL can generalize better than standard backprop
and obtains a close final training loss.

We also attempted DNI with the more commonly used optimization settings for CNNs
(SGD with momentum and step decay), but found that DNI would diverge when larger
learning rates were used, although DGL sub-problem optimization worked effectively with
common CNN optimization strategies. We also note that the prescribed experiment uses a
setting where the scalability of our method is not fully exploited. Each layer of the primary
network of (Jaderberg et al., 2017) has a pooling operation, which permits the auxiliary
network to be small for synthetic gradient prediction. This however severely restricts the
architecture choices in the primary network to using a pooling operation at each layer. In
DGL, we can apply the pooling operations in the auxiliary network, thus permitting the
auxiliary network to be negligible in cost even for layers without pooling (whereas synthetic
gradient predictions often have to be as costly as the base network). Overall, DGL is more
scalable, accurate and robust to changes in optimization hyper-parameters than DNI.

Auxiliary Network Design We consider different auxiliary networks for CNNs. As a
baseline we use convolutional auxiliary layers as in (Jaderberg et al., 2017) and (Belilovsky
et al., 2019). For distributed training application this approach is sub-optimal as the
auxiliary network can be substantial in size compared to the base network, leading to poorer
parallelization gains. We note however that even in those cases (that we don’t study here)
where the auxiliary network computation is potentially on the order of the primary network,
it can still give advantages for parallelization for very deep networks and many available
workers.

The primary network architecture we use for this study is a simple CNN similar to VGG
family of models (Simonyan and Zisserman, 2014) and those used in (Belilovsky et al., 2019).
It consists of 6 convolutions of size 3× 3, batchnorm and shape preserving padding, with
2× 2 maxpooling at layers 1 and 3. The width of the first layer is 128 and is doubled at each
downsampling operation. The final layer does not have an auxiliary model– it is followed by
a pooling and 2-hidden layer fully connected network, for all experiments. Two alternatives
to the CNN auxiliary of (Belilovsky et al., 2019) are explored (Tab. 1).

The baseline auxiliary strategy based on (Belilovsky et al., 2019) and (Jaderberg et al.,
2017) applies 2 CNN layers followed by a 2×2 averaging and projection, denoted as CNN-aux.
First, we explore a direct application of the spatial averaging to 2×2 output shape (regardless
of the resolution) followed by a 3-layer MLP (of constant width). This is denoted MLP-aux
and drastically reduces the FLOP count with minimal accuracy loss compared to CNN-aux.
Finally, we study a staged spatial resolution, first reducing the spatial resolution by 4× (and
total size 16×), then applying 3 1× 1 convolutions followed by a reduction to 2× 2 and a 3
layer MLP, that we denote as MLP-SR-aux. These latter two strategies that leverage the
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Relative FLOPS Acc.

CNN-aux 200% 92.2

MLP-aux 0.7% 90.6

MLP-SR-aux 4.0% 91.2

Table 1: Comparison of auxiliary networks on CIFAR. CNN-aux applied in previous work is
inefficient w.r.t. the primary module. We report flop count of the aux net relative
to the largest module. MLP-aux and MLP-SR-aux applied after spatial averaging
operations are far more effective with min. acc. loss.

Figure 5: Comparison of sequential and parallel training. Parallel catches up rapidly to
sequential.

spatial averaging produce auxiliary networks that are less than 5% of the FLOP count of
the primary network even for large spatial resolutions as in real world image datasets. We
will show that MLP-SR-aux is still effective even for the large-scale ImageNet dataset. We
note that these more effective auxiliary models are not easily applicable in the case of DNI’s
gradient prediction.

Sequential vs. Parallel Optimization of Greedy Objective We briefly compare the
sequential optimization of the greedy objective (Belilovsky et al., 2019; Bengio et al., 2007)
to the DGL (Alg. 1). We use a 6 layer CIFAR-10 network with an MLP-SR-aux auxiliary
model. In parallel we train the layers together for 50 epochs and in the sequential training
we train each layer for 50 epochs before moving to the subsequent one. Thus the difference
to DGL lies only in the input received at each layer (fully converged previous layer versus
not fully converged previous layer). The rest of the optimization settings are identical. Fig. 5
shows comparisons of the learning curves for sequential training and DGL at layer 4 (layer 1
is the same for both as the input representation is not varying over the training period).
DGL quickly catches up with the sequential training scheme and appears to sometimes
generalize better. Like Oyallon (2017), we also visualize the dynamics of training per layer
in Fig. 6, which demonstrates that after just a few epochs the individual layers build a
dynamic of progressive improvement with depth.

Multi-Layer modules We have so far mainly considered the setting of layer-wise decou-
pling. This approach however can easily be applied to generic modules. Indeed, approaches
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Figure 6: Per layer-loss on CIFAR: after few epochs, the layers build a dynamic of progressive
improvement in depth.

Backprop DDG DGL

93.53 93.41 93.5± 0.1

Table 2: ResNet-110(K = 2) for Backprop and DDG method from (Huo et al., 2018b). DGL
is run for 3 trials to compute variance. They give the same acc. with DGL being
update unlocked, DDG only backward unlocked. DNI is reported to not work in
this setting (Huo et al., 2018b).

such as DNI (Jaderberg et al., 2017) often consider decoupling entire multi-layer modules.
Furthermore the propositions for backward unlocking (Huo et al., 2018b,a) also rely on and
report they can often only decouple 100 layer networks into 2 or 4 blocks before observing
optimization issues or performance losses and require that the number of parallel modules
be much lower than the network depth for the theoretical guarantees to hold. As in those
cases, using multi-layer decoupled modules can improve performance and is natural in the
case of deeper networks. We now use such a multi-layer approach to directly compare to
the backward unlocking of (Huo et al., 2018b) and then subsequently we will apply this on
deep networks for ImageNet. From here on we will denote K the number of total modules a
network is split into.

Comparison to DDG Huo et al. (2018b) propose a solution to the backward locking
(less efficient than solving update-locking, see discussion in Sec 5). We show that even in this
situation the DGL method can provide a strong baseline for work on backward unlocking.
We take the experimental setup from (Huo et al., 2018b), which considers a ResNet-110
parallelized into K = 2 blocks. We use the auxiliary network MLP-SR-aux which has less
than 0.1% the FLOP count of the primary network. We use the exact optimization and
network split points as in (Huo et al., 2018b).

To assess variance in CIFAR-10 accuracy, we perform 3 trials. Tab. 2 shows that the
accuracy is the same across the DDG method, backprop, and our approach. DGL achieves
better parallelization because it is update unlocked. We use the parallel implementation
provided by (Huo et al., 2018b) to obtain a direct wall clock time comparison. We note that
there are multiple considerations for comparing speed across these methods (see Appendix
C).
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Figure 7: Evaluation of Async DGL. A sin-
gle layer is slowed down on average
over others, with negligible losses
of accuracy at even substantial de-
lays.

Model (training method) Top-1 Top-5

VGG-13 (DGL per Layer, K = 10) 64.4 85.8

VGG-13 (DGL K = 4) 67.8 88.0

VGG-13 (backprop) 66.6 87.5

VGG-19 (DGL K = 4) 69.2 89.0

VGG-19 (DGL K = 2) 70.8 90.2

VGG-19 (backprop) 69.7 89.7

ResNet-152 (DGL K = 2) 74.5 92.0

ResNet-152 (backprop) 74.4 92.1

Table 3: ImageNet results using training
schedule of (Xiao et al., 2019) for
DGL and standard e2e backprop.
DGL with VGG and ResNet ob-
tains similar or better accuracies,
while enabling parallelization and
reduced memory.

Wall Time Comparison We compare to the parallel implementation of (Huo et al.,
2018b) using the same communication protocols and run on the same hardware. We find for
K = 2, 4 GPU gives a 5%, 18% respectively speedup over DDG. With DDG K = 4 giving
approximately 2.3× speedup over standard backprop on same hardware (close to results
from (Huo et al., 2018b)).

4.2 Large-scale Experiments

Existing methods considering update or backward locking have not been evaluated on large
image datasets as they are often unstable or already show large losses in accuracy on smaller
datasets. Here we study the optimization of several well-known architectures, mainly the
VGG family (Simonyan and Zisserman, 2014) and the ResNet (He et al., 2016), with DGL
on the ImageNet dataset. In all our experiments we use the MLP-SR-aux auxiliary net
which scales well from the smaller CIFAR-10 to the larger ImageNet. The final module
has no auxiliary network. For all optimization of auxiliary problems and for end-to-end
optimization of reference models we use the shortened optimization schedule prescribed in
(Xiao et al., 2019). Results are shown in Tab. 3. We see that for all the models DGL can
perform as well and sometimes better than the end-to-end trained models, while permitting
parallel training. In all these cases the auxiliary networks are neglibile (see Appendix Table
4 for more details). For the VGG-13 architecture we also evaluate the case where the model
is trained layer by layer (K = 10). Although here performance is slightly degraded, we find
it is suprisingly high given that no backward communication is performed. We conjecture
that improved auxiliary models and combinations with methods such as (Huo et al., 2018a)
to allow feedback on top of the local model, may further improve performance. Also for the
settings with larger potential parallelization, slower but more performant auxiliary models
could potentially be considered as well.

The synchronous DGL has also favorable memory usage compared to DDG and to the
DNI method, DNI requiring to store larger activations and DDG having high memory
compared to the base network even for few splits (Huo et al., 2018a). Although not our

15



Figure 8: Buffer size vs. Acc. for Async DGL. Smaller buffers produce only small loss in
acc.

focus, the single worker version of DGL has favorable memory usage compared to standard
backprop training. For example, the ResNet-152 DGL K = 2 setting can fit 38% more
samples on a single 16GB GPU than the standard end-to-end training.

4.3 Asynchronous DGL with Replay

We now study the effectiveness of Alg. 2 with respect to delays. We use a 5 layer CIFAR-10
network with the MLP-aux and with all other architecture and optimization settings as in
the auxiliary network experiments of Sec. 4.1. Each layer is equipped with a buffer of size M
samples. At each iteration, a layer is chosen according to the pmf p(j), and a batch selected
from buffer Bj−1. One layer is slowed down by decreasing its selection probability in the
pmf p(j) by a factor S. We define S = p

p(j) , where p is the constant probability of any other

worker being selected, so p = (1− p(j))/(J − 1). Taken together his implies that:

S =
1

J − 1

(
1

p(j)
− 1

)
(7)

We evaluate different slowdown factors (up to S = 2.0). Accuracy versus S is shown in Fig.
7. For this experiment we use a buffer of size M = 50 samples. We run separate experiments
with the slowdown applied at each of the 6 layers of the network as well as 3 random seeds
for each of these settings (thus 18 experiments per data point). We show the evaluations
for 10 values of S. To ensure a fair comparison we stop updating layers once they have
completed 50 epochs, ensuring an identical number of gradient updates for all layers in all
experiments.

In practice one could continue updating until all layers are trained. In Fig. 7 we compare
to the synchronous case. First, observe that the accuracy of the synchronous algorithm is
maintained in the setting where S = 1.0 and the pmf is uniform. Note that even this is a
non-trivial case, as it will mean that layers inherently have random delays (as compared
to Alg. 1). Secondly, observe that accuracy is maintained until approximately 1.2× and
accuracy losses after that the difference remains small. Note that even case S = 2.0 is

16



somewhat drastic: for 50 epochs, the slowed-down layer is only on epoch 25 while those
following it are at epoch 50.

We now consider the performance with respect to the buffer size. Results are shown in
Fig. 8. For this experiment we set S = 1.2×. Observe that even a tiny buffer size can yield
only a slight loss in accuracy. Building on this demonstration there are multiple directions to
improve Async DGL with replay. For example improving the efficiency of the buffer Oyallon
et al. (2018), by including data augmentation in feature space (Verma et al., 2018), mixing
samples in batches, or improved batch sampling, among others.

4.4 Adaptive Online Compression for Async-DGL with Replay

We now evaluate the online compression proposed in Sec. 2.4. We consider the setting of
the previous Sec. 4.3. In the subsequent experiments on CIFAR-10 we will consider the
same simplified CNN architecture, however to simplify the analysis we will focus on just a 4
module version of this model which will allow us to explore in more depth the behavior of
the proposed approach.

Similarly to the previous section on Aync-DGL, we slow down the communication
between selected layers. This permits to consider a scenario where each layer is hosted
on a different node. In such a setting the communication bandwidth would naturally be
bounded. We follow the same training strategy as above: Each layer is asynchronously
optimized using SGD with an initial learning rate of 0.1 (with a decay factor of 0.2 every 15
epochs), momentum of 0.9, a weight decay equal to 5× 10−4, and a cross-entropy loss.After
completing the equivalent of 50 epochs each layer stops performing updates and only passes
signals to upper layers. As in the previous section we use a LIFO priority rule with a penalty
for reuse. In all our experiments, results are reported as an averaging over 5 seeds.

We follow the adaptive quantization procedure proposed in Sec. 2.4 that encodes and
decodes a modules local memory with a learned set of codebooks. With respect to this
buffered memory and quantization procedure all experiments are conducted with a buffer of
size M = 2 batches (note the batch size is 128). The number of codebooks with 256 atoms,
and a batch size of 128, unless otherwise stated. In all our experiments, we kept constant
the number of different codebooks at 32. Each setting was independently run with 5 random
seeds: we report the average accuracy with its corresponding confidence interval at 95%
level.

The results in this setting are illustrated in Fig. 9. Here we apply a slow-down factor in
the range [1, 1.6] to each layer, as defined in (7) and we keep all the other hyper-parameters
fixed. We compare the numerical accuracy with and without quantization. Compared to the
previous section, we refine our study by reporting the accuracy at every depth instead of
averaging the accuracies for each given slow-down factor regardless of the position at which
it was applied.

Note that, thanks to the quantization module, the communication bandwidth is reduced
by a factor 15.5, 23.3, 21.3 respectively, and the buffer memory is reduced with a factor in
15.8, 28.4, 28.4 respectively. We observe there are small, but potentially acceptable, accuracy
losses with quantization depending on where the delay is induced. If it is in the first 2 layers
the difference is typically less than 1.5%. This improves in cases where the delay is induced at
a layer. We hypothesize the 3rd module shows less performance gains when slowed down as
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Figure 9: Comparison between quantization and no quantization: Accuracy when the
communication between nodes i, i + 1 is slowed down for the layers i = 1, 2, 3.
Using quantization we observe a drop in performance when the slow-down is
applied on early layers, but we also note that the slow-down has positive impact
when applied to the layer 3. This is expected: layer slow-downs will affect the
distribution of the subsequent layers, except if applied to the final layer which can
then learn on top of almost converged features.
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Figure 10: Accuracy at the final layer of our model as a function of the number of atoms.
Only 7 bits are necessary to obtain our top accuracies.

it receives features from the previous layers which are potentially changing less dramatically
and are more stable. We note that even a 1.5% accuracy loss can be compensated by ability
to train much larger models due to parallelization thereby leading to potentially higher
accuracy models overall. The results suggest that our Quantized Async-DGL is robust to
the distribution shifts incurred by the lag. We now ablate various aspects of the Quantized
Async DGL.
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Figure 11: Accuracy of the final block as a function of codebook update frequency. Updating
the atoms only one out of 16 iterations still preserves the final accuracy with
almost no degradation, while leading to substantial bandwidth saving. In fact,
updating the codebook only once every 400 iterations leads to a drop of only 2%.
This is surprising and indicates that the codebook can be largely ignored when
measuring the bandwidth needed for this method

Codebook size We study the impact of the codebook size on the accuracy of a quantized
buffer. As expected, the number of atoms in the compression codebook is correlated with
performance for small codebook sizes and it reaches a plateau when the number of atoms
is large enough. Indeed, the more items in our dictionary, the better is the approximation
of the quantization. This means that for a large number of atoms, the accuracy behaves
similarly to the non-compressed version, whereas with a small number of atoms, the accuracy
depends on the compression rate. For these experiments, no nodes are artificially slowed
down. Our results in Fig. 10 illustrate the robustness of our approach. Indeed 128 or 256
atoms are enough to reach standard performances (256 atoms can be encoded using 8 bits,
which is to be compared with the 32 bits single floating point precision). The bandwidth
compression rate depends on the layer, but is always above 12 in this experiment. Despite
this compression, we can still recover accuracies at the level of those obtained in Sec. 5.

Update Frequency The codebook size has to be added to the bandwidth use, because a
step of synchronization is required as the distribution of the activations is changing with
time. Our hypothesis is that the distribution of the features will evolve slowly, making it
unnecessary to sync codebooks at every iteration. We choose an update frequency α ≤ 1,
(c.f. Sec. 2.4) and update the codebook only at a fraction α of the iterations. This makes
the communications of the dictionary negligible and the procedure may only have minor
impact on the final accuracy of our model. We thus propose to study this effect: we only
update the weights of the codebook every 1

α > 1 iterations. Fig. 11 shows that the accuracy
of our model is extremely stableeven at low update frequency. We note that updating the
codebook every 10 iterations preserves the accuracy of the final layer. Then the accuracy
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drops only by 2% even if the dictionaries of the quantization modules are updated only
once per epoch. The final point on our logarithmic scale corresponds to a setting where the
codebook is not updated at all: in this particular case, the codebook is randomly initialized,
and the network adapts to it. This shows the strength of our method.
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Figure 12: We compare the test accuracy obtained for our Asynchronous method when we
slow down a layer at various depths, with and without a quantization module at
a fixed memory budget. We used the hyper-parameters obtained from the Sec.
4.4 and we adjusted the size of the codebook such that the buffer memory used
both with and without a quantization step is the same. Interestingly, in every
settings, the algorithm which uses quantization outperforms the non-quantized
version. Note, if the layer is very out of sync, there is a substantial degradation
of the accuracy. Note that slowing down the final layer as in (c) slightly boost
the accuracy because this layer is fed with converged features during its last
steps of training.

Tradeoff between compression and buffer size at fixed memory budget In this
experiment, we design a setting where each node has the same amount of limited total
memory to store both the input and output dictionaries and the the buffer. We then
compare at fixed budget the difference between quantized and standard approaches in terms
of accuracy. For the non-quantized version, the buffer size is set at 128. For the quantized
version, we increase the buffer size until its memory use matches the non-quantized versions.
Overall the quantized version can store [1984 , 3277 , 3277 , 2726] samples at layer 1 to
4 respectively. The accuracy is compared between these in Figure 12. We observe the
same trend in terms of impact of delays on the accuracy as in Fig. 9. More importantly
we observe for a similar Buffer memory consumption that the quantized version reaches
better performances than the non-quantized one in almost all cases, which implies that our
quantization modules help improve the accuracy at a fixed memory budget. In addition, we
also have a (highly) favorable bandwidth compression factor (above 15). As a consequence,
for the same Buffer Memory budget, and a weaker bandwidth, the quantized version delivers
better performances with and without slow-downs (almost everywhere).
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5. Related work

To the best of our knowledge (Jaderberg et al., 2017) is the the first to directly consider the
update or forward locking problems in deep feed-forward networks. Other works (Huo et al.,
2018a,b) study the backward locking problem. Furthermore, a number of backpropagation
alternatives (Choromanska et al., 2018; Lee et al., 2014; Nø kland, 2016) can address
backward locking. However, update locking is a more severe inefficiency. Consider the case
where each layer’s forward processing time is TF and is equal across a network of L layers.
Given that the backward pass is a constant multiple in time of the forward, in the most ideal
case the backward unlocking will still only scale as O(LTF ) with L parallel nodes, while
update unlocking could scale as O(TF ).

One class of alternatives to standard back-propagation aims to avoid its biologically
implausible aspects, most notably the weight transport problem (Bartunov et al., 2018;
Nø kland, 2016; Lillicrap et al., 2014; Lee et al., 2014; Ororbia et al., 2018; Ororbia and Mali,
2019). Some of these methods (Lee et al., 2014; Nø kland, 2016) can also achieve backward
unlocking as they permit all parameters to be updated at the same time, but only once the
signal has propagated to the top layer. However, they do not solve the update or forward
locking problems. Target propagation uses a local auxiliary network as in our approach,
for propagating backward optimal activations computed from the layer above. Feedback
alignment replaces the symmetric weights of the backward pass with random weights. Direct
feedback alignment extends the idea of feedback alignment passing errors from the top to
all layers, potentially enabling simultaneous updates. These approaches have also not been
shown to scale to large datasets (Bartunov et al., 2018), obtaining only 17.5% top-5 accuracy
on ImageNet (reference model achieving 59.8%). On the other hand, greedy learning has
been shown to work well on this task (Belilovsky et al., 2019). We also note concurrent
work in the context of biologically plausible models by (Nøkland and Eidnes, 2019) which
improves on results from Mostafa et al. (2018), showing an approach similar to a specific
instantiation of the synchronous version of DGL. This work however does not consider the
applications to unlocking nor asynchronous training and cannot currently scale to ImageNet.

Another line of related work inspired by optimization methods such as Alternating
Direction Method of Multipliers (ADMM) (Taylor et al., 2016; Carreira-Perpinan and Wang,
2014; Choromanska et al., 2018) use auxiliary variables to break the optimization into
sub-problems. These approaches are fundamentally different from ours as they optimize for
the joint training objective, the auxiliary variables providing a link between a layer and its
successive layers, whereas we consider a different objective where a layer has no dependence
on its successors. None of these methods can achieve update or forward unlocking. However,
some (Choromanska et al., 2018) are able to have simultaneous weight updates (backward
unlocked). Another issue with ADMM methods is that most of the existing approaches
except for (Choromanska et al., 2018) require standard (“batch”) gradient descent and are
thus difficult to scale. They also often involve an inner minimization problem and have thus
not been demonstrated to work on large-scale datasets. Furthermore, none of these have
been combined with CNNs.

Distributed optimization based on data parallelism is a popular area in machine learning
beyond deep learning models and often studied in the convex setting (Leblond et al., 2018).
For deep network optimization the predominant method is distributed synchronous SGD
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(Goyal et al., 2017) and variants, as well as asynchronous (Zhang et al., 2015) variants. Our
work is closer to a form of model parallelism rather than data parallelism, and can be easily
combined with many data parallel methods (e.g. distributed synchronous SGD). Recently
federated learning, where the dataset used on each node is different, has become a popular
line of research Konečnỳ et al. (2015). Federated learning is orthogonal to our proposal, but
the idea of facilitating different data on each node could potentially be incorporated in our
framework. One direction for doing this would consider a class of models where individual
layers can provide both input and output to other layers as done in Huang et al. (2016).

Recent proposals for “pipelining” (Huang et al., 2018b) consider systems level approaches
to optimize latency times. These methods do not address the update, forward, locking
problems(Jaderberg et al., 2017) which are algorithmic constraints of the learning objec-
tive and backpropagation. Pipelining can be seen as a attempting to work around these
restrictions, with the fundamental limitations remaining. Removing and reducing update,
backward, forward locking would simplify the design and efficiency of such systems-level
machinery. Tangential to our work Lee et al. (2015) considers auxiliary objectives but with
a joint learning objective, which is not capable of addressing any of the problems considered
in this work.

We also note that since publication of Belilovsky et al. (2020) several works have
extended the methods and studied various things such as how it affects representations
Laskin et al. (2020) to allow for improved scalability. However, these works largely consider
the synchronous setting and have not extensively considered the asynchronous setting
emphasized in Sec. 4.3 and 4.4.

6. Conclusion

We have analyzed and introduced a simple and strong baseline for parallelizing per layer and
per module computations in CNN training. This work matches or exceeds state-of-the-art
approaches addressing these problems and is able to scale to much larger datasets than
others. In several realistic settings, for the same bytes range, an asynchronous framework
with quantized buffers can be more robust to delays than a non-quantized version while
providing better bandwidth. Future work can develop improved auxiliary problem objectives
and combinations with delayed feedback.
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Appendix A. Proofs

Lemma 1 Under Assumption 3 and 4, one has: ∀Θj ,Ep∗j−1

[
‖∇Θj`(Zj−1; Θj)‖2

]
≤ G.

Proof First of all, observe that under Assumption 4 and via Fubini’s theorem:∑
t

ctj−1 =
∑
t

∫
|ptj−1(z)− p∗j−1(z)| dz =

∫ ∑
t

|ptj−1(z)− p∗j−1(z)| dz <∞ (8)

thus,
∑

t |ptj − p∗j | is convergent a.s. and |ptj − p∗j | → 0 a.s as well. From Fatou’s lemma, one
has:

∫
p∗j−1(z)‖∇Θj`(z; Θj)‖2 dz =

∫
lim inf

t
ptj−1(z)‖∇Θj`(z; Θj)‖2 dz (9)

≤ lim inf
t

∫
ptj−1(z)‖∇Θj`(z; Θj)‖2 dz ≤ G (10)

then, observe that this implies that:

ptj(z) ≤ p∗j (z) + (ptj(z)− p∗j (z)) ≤ p∗j (z) + |ptj(z)− p∗j (z)| ≤ p∗j (z) +
∑
t

|ptj(z)− p∗j (z)| (11)

thus, supt p
t
j is integrable because the right term is integrable as well. Then, observe that:

‖∇`j,t‖|p∗j (z)− ptj(z)| = ‖∇`j,t‖1p∗j (z)<ptj(z)|p∗j (z)− ptj(z)|+ ‖∇`j,t‖1p∗j (z)≥ptj(z)|p∗j (z)− ptj(z)|

Then, the left term is bounded because:

‖∇`j,t‖1p∗j (z)<ptj(z)|p∗j (z)− ptj(z)| ≤ ‖∇`j,t‖1p∗j (z)<ptj(z)p
t
j(z) ≤ ‖∇`j,t‖1p∗j (z)<ptj(z) sup

t
ptj(z)

(12)

∫ ∑
t

1p∗j (z)≥ptj(z)(p
∗
j (z)− ptj(z)) dz ≤

∫ ∑
t

1p∗j (z)=ptj(z)|p∗j (z)− ptj(z)| dz <∞

In particular: ∫ ∑
t

1p∗j (z)≥ptj(z)p
∗
j (z) dz <∞

It implies that
∑

t 1p∗j (z)≥ptj(z) is almost surely finite, and, a.s. ∀z, ∃t0, p∗j (z) ≤ pt0j (z). In

particular this implies that a.s.:

∀z, p∗j (z) ≤ sup
t
ptj(z)
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Lemma 2 Under Assumptions 1, 3 and 4, we have:

E[L(Θt+1
j )] ≤ E[L(Θt

j)]− ηt
(
E[‖∇L(Θt

j)‖2]−
√

2Gctj−1

)
+
LG

2
η2
t ,

Observe that the expectation is taken over each random variable.

Proof By L-smoothness:

L(Θt+1
j ) ≤ L(Θt

j) +∇L(Θt
j)
T (Θt+1

j −Θt
j) +

L

2
‖Θt+1

j −Θt
j‖2 (13)

Substituting Θt+1
j −Θt

j on the right:

L(Θt+1
j ) ≤ L(Θt

j)− ηt∇L(Θt
j)
T∇Θj`(Z

t
j−1; Θt

j) +
Lη2

t

2
‖∇Θj`(Z

t
j−1; Θt

j)‖2 (14)

Taking the expectation w.r.t. Ztj−1 which has a density ptj−1, we get:

Eptj−1
[L(Θt+1

j )] ≤ L(Θt
j)− ηt∇L(Θt

j)
TEptj−1

[∇Θj`(Z
t
j−1; Θt

j)] +
Lη2

t

2
Eptj−1

[
‖∇Θj`(Z

t
j−1; Θt

j)‖2
]

From Assumption 3, we obtain that:

Lη2
t

2
Eptj−1

[
‖∇Θj`(Z

t
j−1; Θt

j)‖2
]
≤ Lη2

tG

2
(15)

Then, as a side computation, observe that:

‖Eptj−1

[
∇Θj`(Z

t
j−1; Θt

j)
]
−∇L(Θt

j)‖ = ‖
∫
∇`(z,Θt

j)p
t
j−1(z) dz −

∫
∇`(z,Θt

j)p
∗
j−1(z) dz‖

(16)

≤
∫
‖∇`(z,Θt

j)‖ |ptj−1(z)− p∗j−1(z)| dz (17)

=

∫ (
‖∇`(z,Θt

j)‖
√
|ptj−1(z)− p∗j−1(z)|

) √
|ptj−1(z)− p∗j−1(z)| dz

(18)

(19)

Let us apply the Cauchy-Swchartz inequality, we obtain:

‖Eptj−1

[
∇Θj`(Z

t
j−1; Θt

j)
]
−∇L(Θt

j)‖ ≤

√∫
‖∇`(z,Θt

j)‖2|ptj−1(z)− p∗j−1(z)| dz

√∫
|ptj−1(z)− p∗j−1(z)| dz

(20)

=

√∫
‖∇`(z,Θt

j)‖2|ptj−1(z)− p∗j−1(z)| dz
√
ctj−1

(21)
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Then, observe that:

∫
‖∇`(z,Θt

j)‖2|ptj−1(z)− p∗j−1(z)| dz ≤
∫
‖∇`(z,Θt

j)‖2
(
ptj−1(z) + p∗j−1(z)

)
dz (22)

= Eptj−1
[‖∇`(Zj−1,Θ

t
j)‖2] + Ep∗j−1

[‖∇`(Zj−1,Θ
t
j)‖2]

(23)

≤ 2G (24)

The last inequality follows from Lemma 4.1 and Assumption 3.
Then, using again Cauchy-Schwartz inequality:∣∣∣∣‖∇L(Θt

j)‖2 −∇L(Θt
j)
TEptj−1

[∇Θj`(Z
t
j−1; Θt

j)]

∣∣∣∣ =

∣∣∣∣∇L(Θt
j)
T
(
∇L(Θt

j)− Eptj−1
[∇Θj`(Z

t
j−1; Θt

j)]
)∣∣∣∣

(25)

≤ ‖∇L(Θt
j)‖ ‖Eptj−1

[
∇Θj`(Z

t
j−1; Θt

j)
]
−∇L(Θt

j)‖
(26)

≤ ‖∇L(Θt
j)‖
√

2Gctj−1 (27)

Then, taking the expectation leads to

∣∣E[‖∇L(Θt
j)‖2 −∇L(Θt

j)
TEptj−1

[∇Θj`(Z
t
j−1; Θt

j)]

]∣∣ ≤ E[

∣∣∣∣‖∇L(Θt
j)‖2 −∇L(Θt

j)
TEptj−1

[∇Θj`(Z
t
j−1; Θt

j)]

∣∣∣∣]
(28)

≤ E[‖∇L(Θt
j)‖]
√

2Gctj−1 (29)

≤
√

E[‖∇L(Θt
j)‖2]

√
2Gctj−1 (30)

(31)

However, observe that by Lemma 4.1 and Jensen inequality:

‖∇L(Θt
j)‖2 = ‖Ep∗j [∇Θj`(Z,Θ

t
j)]‖2 ≤ Ep∗j [‖∇Θj`(Z,Θ

t
j)‖2] ≤ G (32)

Combining this inequality and Assumption 3, we get:

E[L(Θt+1
j )] ≤ E[L(Θt

j)]− ηt
(
E[‖∇L(Θt

j)‖2]−
√

2Gctj−1

)
+
LG

2
η2
t ,

Proposition 3 Under Assumptions 1, 2, 3 and 4, each term of the following equation
converges:

T∑
t=0

ηtE[‖∇L(Θt
j)‖2] ≤ E[L(Θ0

j )] +G

T∑
t=0

ηt(
√

2ctj−1 +
Lηt
2

) (33)
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Proof Applying Lemma 2 for t = 0, ..., T − 1, we obtain (observe the telescoping sum), for
our non-negative loss:

T∑
t=0

ηtE[‖∇L(Θt
j)‖2] ≤ E[L(Θ0

j )]− E[L(ΘT+1
j )] +

√
2G

T∑
t=0

√
ctjηt +

LG

2

T∑
t=0

η2
t (34)

≤ E[L(Θ0
j )] +

√
2G

T∑
t=0

√
ctjηt +

LG

2

T∑
t=0

η2
t (35)

(36)

Yet,
∑√

ctjηt is convergent, as
∑
ctj and

∑
t η

2
t are convergent, thus the right term is

bounded.

Appendix B. Additional Descriptions of Experiments

Here we provide some additional details of the experiments. Code for experiments is provided
along with the supplementary materials.

Comparisons to DNI The comparison to DNI attempts to directly replicate the Appendix
C.1 (Jaderberg et al., 2017). Although the baseline accuracies for backprop and cDNI are
close to those reported in the original work, those of DNI are worse than those reported in
(Jaderberg et al., 2017), which could be due to minor differences in the implementation. We
utilize a popular pytorch DNI implementation available and source code will be provided.

Auxiliary network study We use SGD with momentum of 0.9 and weight decay 5×10−4

(Zagoruyko and Komodakis, 2016) and a short schedule of 50 epochs and decay factor of 0.2
every 15 epochs (Belilovsky et al., 2019).

Sequential vs Greedy optimization experiments We use the same architecture and
optimization as in the Auxiliary network study

Imagenet We use the shortened optimization schedule prescribed in (Xiao et al., 2019).
It consists of training for 50 epochs with mini-batch size 256, uses SGD with momentum of
0.9, weight decay of 10−4, and a learning rate of 0.1 reduced by a factor 10 every 10 epochs.

Appendix C. Detailed Discussion of Relative Speed of Competing Methods

Here we describe in more detail the elements governing differences between methods such
as DNI(Jaderberg et al., 2017), DDG/FA(Huo et al., 2018a), and the simpler DGL. We
will argue that if we take the assumption that each approach runs for the same number of
epochs or iterations and applies the same splits of the network then DGL is by construction
faster than the other methods which rely on feedback. The relative speeds of these methods
are governed by the following:

1. Computation besides forward and backward passes on primary network modules (e.g.
auxiliary networks forward and backward passes)
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Flops Net Flops Aux

VGG-13 (K = 4) 13 GFLOPs 0.2 GFLOP

VGG-19 (K = 4) 20 GFLOPs 0.2 GFLOP

ResNet-152 (K = 2) 11 GFLOP 0.02 GFLOP

Table 4: ImageNet comparisons of FLOPs for auxiliary model in major models trained.
Auxiliary networks are negligible.

2. Communication time of sending activations from one module to the next module

3. Communication time of sending feedback to the previous module

4. Waiting time for signal to reach final module

As discussed in the text our auxiliary modules which govern (1) for DGL are negligible
thus the overhead of (1) is negligible. DNI will inherently have large auxiliary models as
it must predict gradients, thus (1) will be much greater than in DGL. (2) should be of
equal speed across all methods given the same implementation and hardware. (3) does
not exist for the case of DGL but exists for all other cases. (4) applies only in the case of
backward unlocking methods (DDG/FA) and does not exist for DNI or DGL as they are
update unlocked.

Thus we observe that DGL by construction is faster than the other methods. We note
that for use cases in multi-GPU settings communication would need to be well optimized for
use of any of these methods. Although we include a parallel implementation based on the
software from (Huo et al., 2018b), an optimized distributed implementations of the ideas
presented here and related works is outside of the scope of this work.

C.1 Auxiliary Network Sizes and FLOP comparisons on ImageNet

We briefly illustrate the sizes of auxiliary networks. Lets take as an example the ImageNet
experiments for VGG-13. At the first layer the output is 224× 224× 64. The MLP-aux here
would be applied after averaging to 2× 2× 64, and would consists of 3 fully connected layers
of size 256 (2 ∗ 2 ∗ 64) followed by a projection to 1000 image categories. The MLP-SR-aux
network used would first reduce to 56× 56× 64 and then apply 3 layers of 1× 1 convolutions
of width 64. This is followed by reduction to 2 × 2 and 3 FC layers as in the MLP-aux
network. As mentioned in Sec. 4.2 the auxiliary networks are neglibile in size. We further
illustrate this in 4.

Appendix D. Additional pseudo-code

To illustrate the parallel implementations of the Algorithms we show a different pseudocode
implementation with an explicit behavior for each worker specified. The following Algo-
rithm 4 is equivalent to Algorithm 1 in terms of output but directly illustrates a parallel
implementation. Similarly 5 illustrates a parallel implementation of the algorithm described
in Algorithm 2. The probabilities used in Algorithm 5 are not included here as they are
derived from communication and computation speed differences. Finally we illustrate the
parallelism compared to backprop in 13
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Figure 13: We illustrate the signal propagation for three mini-batches processed by standard
back-propagation and with decoupled greedy learning. In each case a module
can begin processing forward and backward passes as soon as possible. For
illustration we assume same speed for forward and backward passes, and discount
the auxiliary network computation (negligible here).

Algorithm 4: DGL Parallel Imple-
mentation

Input: Stream S , {(xt0, yt)}t≤T of
samples or mini-batches;

1 Initialize Parameters {θj , γj}j≤J
2 Worker 0:
3 for xt0 ∈ S do
4 xt1 ← fθt0(xt0)

5 Send xt0 to worker 1

6 Compute ∇(γ1,θ1)L̂(yt, xt0; γt0, θ
t
0)

7 (θt+1
0 , γt+1

0 )← Step of parameters
(θt0, γ

t
0)

8 end
9 Worker j:

10 for t ∈ 0...T do
11 Wait until xtj−1 is available

12 xtj ← fθtj−1
(xtj−1)

13 Compute ∇(γj ,θj)L̂(yt, xtj ; γ
t
j , θ

t
j)

14 Send xtj to worker xtj+1

15 (θt+1
j , γt+1

j )← Step of parameters

(θtj , γ
t
j)

16 end

Algorithm 5: DGL Async Buffer
Parallel Impl.

Input: Stream S , {(xt0, yt)}t≤T ;
Distribution of the delay
p = {pj}j ; Buffer size M

1 Initialize: Buffers {Bj}j with size M ;
params {θj , γj}j

2 Worker j:
3 while training do
4 if j = 1 then (x0, y)← S
5 else (xj−1, y)← Bj−1
6

7 xj ← fθj−1(xj−1)

8 Compute ∇(γj ,θj)L̂(y, xj ; γj , θj)

9 (θj , γj)← Step of parameters
(θj , γj)

10 if j < J then Bj ← (xj , y)

11 end
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