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ABSTRACT

Radiative transfer out of local thermodynamic equilibrium (NLTE) has been increasingly adressed, mostly numerically, for about six
decades now. However, the standard NLTE problem most often refers to the only deviation of the distribution of photons from their
equilibrium, that is to say a Planckian distribution. Hereafter we revisit after Oxenius (1986, Kinetic theory of particles and Photons –
Theoretical Foundations of non–LTE Plasma Spectroscopy, Springer) the so-called full NLTE problem, which considers coupling and
therefore solving self–consistently for deviations from equilibrium distributions of photons as well as for massive particles constituting
the atmospheric plasma.
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1. Introduction

The “standard” nonlocal thermodynamic equilibrium (NLTE)
radiation transfer problem considers that the distribution of pho-
tons in a given “atmosphere”, that is, more generally, whatever
sample of celestial body material where light–matter interactions
are taking place, may depart from the equilibrium distribution
described by the Planck law (Planck 1900).

It is a routinely solved problem in astrophysics which, after
about six decades of constant endeavor, nowadays also con-
siders both complex atomic models and atmospheric structures
(see e.g., the monograph of Hubeny & Mihalas 2014). However,
the vast majority of these problems still rely on what became
a somewhat implicit assumption that the distribution of atoms
both responsible for, and experiencing light–matter interactions,
remain a priori known and characterized by the Maxwell–
Boltzmann equilibrium distribution. Another issue related to the
standard NLTE radiation transfer problem concerns the redistri-
bution of photons after scattering onto these very massive parti-
cles, at least in frequencies if we restrict ourselves to isotropic
scattering. It is also important to realize that, in the vast majority
of the cases, and even though the problem of partial frequency
redistribution (hereafter PRD) has been addressed quite early in
the 1960s (e.g., Avrett & Hummer 1965; Auer 1968 for pioneer-
ing works), the standard NLTE problem also remains limited to
the frame of complete redistribution (CRD) in most cases.

The solution of a full(er) NLTE radiation transfer problem
would consist in assuming that the velocity distribution func-
tions (VDF) of massive particles may also depart from an equi-
librium distribution, as it is now commonly assumed for the
photons. Therefore the solution to this problem would consist in
the self–consistent resolution of a set of kinetic equations both
for massive particles, potentially including free electrons, and
the photons.

This general issue has already been discussed and summa-
rized, mainly by Oxenius (1986; see also Oxenius & Simonneau
1994). However, so far and because of the inherent difficulty of

the problem, only a few studies have already been conducted in
the past (see e.g., Borsenberger et al. 1986, 1987).

We believe that the last decades of evolution of numerical
methods (see e.g., Lambert et al. 2016 and references therein, as
well as Noebauer & Sim 2019 for a recent review on Monte–
Carlo radiative transfer) for radiation transfer should allow one
to reconsider this issue, and evaluate up to which level of dif-
ficulty one could reasonably be able to achieve nowadays. This
new evaluation should also give us new hints about which kind
of astrophysical problems should be revisited, using full NLTE.

In this study, we set again the various equations govern-
ing this problem, using standard notations as much as possible.
We also adopt several physical assumptions, which have already
been discussed in past studies, in order to be able to set up initial
numerical experiments. We discuss partial versus complete fre-
quency redistribution, as seen from this description of the prob-
lem. We do indeed present some effects expected on departures
of the VDF of excited atoms versus the Maxwell–Boltzmann dis-
tribution, as well as significative differences between computed
and radiation-dependent emission profiles, and an a priori given
absorption profile for a simple two-level atom model. We finally
discuss future work in that somewhat forgotten physical frame
for the unpolarized radiation transfer problem.

2. A simplified Boltzmann equation for massive
particles

We write the evolution equation for a general distribution
F(t, r, u) as follows:

L[F] = C[F], (1)

where L is the Liouville operator and C is the collision operator.
Therefore, the left-hand side of Eq. (1) has the general

expression:

L[F] =
∂F
∂t

+
p
m
∂F
∂r

+ K
∂F
∂p

, (2)
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where after the time evolution term, we find an advection one
and finally a force term, where we used K to avoid any confusion
with the distribution F.

The right-hand side of Eq. (1) describes the various origins of
collisions, which may induce modifications to the distribution. It
is usually expressed as the sum of three contributions as follows:

C[F] =

(
δF
δt

)
rad.

+

(
δF
δt

)
inel.

+

(
δF
δt

)
el.
. (3)

As a matter of fact, two main mechanisms are able to pro-
duce changes in a distribution F. One of them is the so-called
streaming of the massive particles, which move on their trajec-
tories, and a second one is due to collisions between particles.

In the frame of this kinetic description, and even though the
classical and academic “two-level atom” case is the simplest
one we may consider, the general problem would consist in the
self-consistent solution of four coupled kinetic equations for the
atoms in their ground state (F1), the atoms in their excited state
(F2), electrons (Fe), and finally the photons (I), respectively.

However, and in order to be able to make the first steps in
resolving the extremely complex and cumbersome full NLTE
radiation transfer problem, we shall proceed with several sim-
plifying assumptions. First, we shall consider that only the VDF
of excited atoms, that is to say F2, may depart from a Maxwell-
Boltzmann distribution. As previously discussed by Oxenius
(1979), we shall consider that the velocity distribution of the
ground-state atoms and the free electrons remain Maxwellian
with the same temperature T . The latter is also supposed to be
low enough, that is kT � hν0, where ν0 is the central frequency
of the transition between the two atomic levels of our model, so
that: (i) the number density of excited atoms is much smaller
than the one of ground-state atoms, that is n2 � n1, and (ii)
stimulated emission may be further neglected.

Then we shall consider a time-independent problem for pho-
tons as well as a stationary and force-free problem for atoms.
And finally, following the debate between Oxenius (1965, 1979)
and Hubený (1981), we shall also neglect the potential stream-
ing (i.e., v.∂r ≡ 0) of these excited atoms. In that frame, the
Boltzmann equation for atoms can be summarized as follows:

C[F2] = 0, (4)

where C is the collision operator.

3. The kinetic equation of excited atoms

Each of the three contributions to the collision operator can be
explained now, following Oxenius (1986).

The first one involves the radiation field and can be expressed
as:(
δF2

δt

)
rad.

= n1B12J12(u) f1(u) − n2A21 f2(u), (5)

where stimulated emission has been neglected, and A21 and B12
are the usual Einstein coefficients for spontaneous emission and
radiative absorption, respectively. Here, we also introduced the
normalized to unity fi distribution, such as Fi(u) = ni fi(u).

The second one involves inelastic collisions and can be writ-
ten as follows:(
δF2

δt

)
inel.

= n1neC12 f1(u) − n2neC21 f2(u), (6)

where the Ci j are collisional (de)excitation coefficients and ne
is the electron density. We note that one may also consider that

the electrons are not necessarily characterized by a Maxwell–
Boltzmann velocity distribution.

Finally, and according to Oxenius (1986; see also
Bhatnagar et al. 1954), a good approximation for the elastic col-
lision term is:(
δF2

δt

)
el.

= n2Q2

[
f M(u) − f2(u)

]
, (7)

where Q2 is a velocity-changing elastic collision rate. After
Borsenberger et al. (1986), one may consider Q2 = n1vth.σel.,
where vth. is the “most probable” velocity of the atoms, and σel.
is an “average cross section” for this class of elastic collision.

The scattering integral J12, which appears in Eq. (5), is
defined as:

J12(u) =

∮
dΩ

4π

∫
α12(ξ)Iν(z,Ω)dν, (8)

where α12 is the atomic absorption profile and Iν(z,Ω) is the
usual specific intensity. At this stage we omit the potentiel
dependence with depth z of J12 on purpose, since we shall stay
away from the frame of radiation transfer in this study. The spe-
cific intensity (see Sect. 4) is also dependent on the direction Ω
of the radiation. All integrals dΩ mean an angular integration
over all possible directions of propagation of light, as is usual in
the field of radiation transfer. It is more important now to keep
in mind that this scattering integral is a function of the velocity
of the massive particles. Indeed, we have to take into account the
Fizeau–Doppler relationship between frequency ξ in the atomic
frame, and ν in the observer’s frame:

ν = ξ +

(
ν0

c

)
u ·Ω, (9)

where u is the velocity of the atoms and Ω is the direction of
propagation of the photons. This latter coupling and the explicit
dependence of J12 on the velocity of these “scattering centers,”
which constitute the atoms present in the atmospheric plasma,
also naturally lead to the role that will be played by their velocity
distribution.

The atomic absorption profile α12 is known a priori, and we
may consider either coherent scattering, that is:

α12(ξ) = δ(ξ − ν0), (10)

where ξ is the incoming photon frequency, or radiation damping
which is characterized by a Lorentzian profile such that:

α12(ξ) =

(a
π

) 1
(ξ − ν0)2 + a2 , (11)

and where, in both cases, ν0 is the central wavelength of the
transition we consider. In the remainder of this study, we shall
assume coherent scattering in the atomic frame, together with
“infinitely sharp” energy levels for the model spectral line
at ν0.

It is finally important to keep in mind that at this stage the
atomic emission profile η21 may differ from α12, in general. This,
combined with possible deviations from a Maxwell–Boltzmann
VDF for excited atoms will “naturally” lead to nonstandard as
well as radiation-dependent redistribution in frequency for the
photons.
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4. The kinetic equation of the photons

The radiation transfer equation (RTE) is also the kinetic equation
governing the distribution, or specific intensity I, of the pho-
tons. The correspondance between these two “forms” is nicely
described in Sect. 3 of Oxenius (1986).

Assuming the very usual 1D plane–parallel geometry, the
time-independent RTE can be written1 as:

∂Iν(z,Ω)
dz

= κν(z,Ω) [S ν(z,Ω) − Iν(z,Ω)] , (12)

where κν(z,Ω) is the absorption coefficient and S ν(z,Ω) is the
so-called source function, which a priori depends on depth z in
the atmosphere, frequency ν, and direction Ω.

The absorption coefficient is usually defined as:

κν(z,Ω) =

(
hν0

4π

) [
n1B12ϕν(Ω) − n2B21ψν(Ω)

]
, (13)

where B21 is the Einstein coefficient for stimulated emission,
such as g1B12 = g2B21 assuming that the statistical weights gi
and the (line) source function is, by definition, the ratio between
the emissivity:

ην(z,Ω) =

(
hν0

4π

)
n2A21ψν(Ω), (14)

and the absorption coefficient. And finally, the more usual RTE
introduces the optical depth τν(Ω) = −κν(z,Ω)dz in order to sub-
stitute the geometrical length for another quantity more relevant
to what photons effectively experience during multiple light–
matter interactions.

Should we completely neglect stimulated emission, that is
to say going beyond the (very usually) adopted so-called “weak
radiation field regime” for which stimulated emission is treated
as “negative” absorption (as in Eq. (13)), then the source func-
tion can be simply written as:

S ν(z,Ω) =
n2A21ψν(Ω)
n1B12ϕν(Ω)

. (15)

This assumption is also consistent with the low–temperature
assumption, which is also compatible with n1 � n2.

Furthermore, the respective (and potentially also depth-
dependent) emission and absorption profiles are defined as

ϕν(Ω) =

∫
α12(ξ) f1(u)d3u (16)

and

ψν(Ω) =

∫
η21(ξ,Ω) f2(u)d3u. (17)

In the latter expressions appear explicitly the respective VDFs
for these atoms on the ground state, f1, and for the ones in their
first excited state, f2.

In general, atomic profiles η21 and α12 are not identical.
Moreover, the emission profile η21 depends on the radiation field.
We return to this issue in Sect. 8.
1 As a matter of fact, for the respective kinetic equations of atoms and
photons to be equivalent, while being further solved self–consistently,
the issue of the streaming of particles described by a spatial deriva-
tive term, which remains further in the RTE but in the kinetic equation
for the excited atoms, has to be discussed carefully (see again Hubený
1981, and references therein).

5. A two–distribution, two-level atom problem

Hereafter, we shall therefore simplify the problem, considering
that only f2 and the specific intensity I may depart from equilib-
rium distributions.

We shall first reassess earlier results which may still be quite
largely unknown to the astronomical community by considering
coherent scattering, that is α12(ξ) = δ(ξ − ν0), where ν0 is the
central wavelength of the spectral line associated with our two-
level atom.

We therefore start with the additional simplifications of a
stationary, force-free, and no advection (or streaming) case for
which(
δF2

δt

)
rad.

+

(
δF2

δt

)
inel.

+

(
δF2

δt

)
el.

= 0. (18)

Under these assumptions, we can derive the following
expression for f2 and, while adopting a Maxwellian velocity dis-
tribution for electrons, using the more classic formalism such
that Ci j ← neCi j (see also Eq. (9.51) of Hubeny & Mihalas 2014
for instance), we have

n2(A21 + C21) f2(u) + n2Q2[ f2(u) − f M(u)]
= n1(B12J12(u) + C12) f1(u). (19)

Should we assume that f1,2 are both Maxwellian, which is a
common assumption even for NLTE radiation transfer problems,
and should we integrate Eq. (19) over all velocities, we recover
the classic form of the equation of statistical equilibrium (ESE)
for a two-level atom case, neglecting stimulated emission:

n2(A21 + C21) = n1(B12

∫
u

J12(u) f M(u)d3u + C12). (20)

We shall come back to the integral term after Eq. (30). We note
here that because this particular contribution vanishes after inte-
gration over velocities, the potential effects of velocity-changing
elastic collisions can be considered explicitly and reasonably
discussed, although only by using such a kinetic description.

Now from Eq. (19), we are able to derive an explicit expres-
sion for the nonequilibrium VDF f2, assuming that all atoms in
their fundamental state of energy follow a Maxwellian VDF, that
is to say f1 ≡ f M . As in Borsenberger et al. (1986), we shall nor-
malize the specific intensity to the “low temperature limit” of the
Planck function, that is the Wien function:

BW =

2hν3
0

c2

 e−hν0/kT . (21)

The use of this expression, instead of the Planck function, is also
consistent with our assumption of a negligible rate of stimulated
emission. We shall also define the ratio

J̄12 = J12/BW (22)

as well as use the following relationships, first between Einstein
coefficients

A21

B21
=

2hν3
0

c2

 , (23)

with g1B12 = g2B21, and where g1,2 are the statistical weights of
each level.

In addition, collisional rates are such that

n∗1C12 = n∗2C21, (24)
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where n∗1,2 are the LTE values of the respective densities of pop-
ulation, satisfying the Boltzmann law:(

n∗2
n∗1

)
=

(
g2

g1

)
e−hν0/kT . (25)

We shall therefore now introduce the normalized population,
which allows for some measurement of deviations from LTE:
n̄2 = n2/n∗2.

We now introduce:

ε =
C21

A21 + C21
, (26)

which is another parameter otherwise traducing the amount of
“departure from LTE” in a given atmosphere, and the less com-
mon:

ζ =
Q2

A21 + C21
, (27)

which characterizes the amount of elastic collisions. Assuming
that n1 = n∗1 and f1 ≡ f M , we may now rewrite the following:

n̄2 f2(u) − n̄2ζ[ f M(u) − f2(u)] =
[
ε + (1 − ε)J̄12(u)

]
f M(u). (28)

This expression is indeed identical to Eq. (2.44) of
Borsenberger et al. (1986) when one neglects streaming of
particles (his η = 0).

Now, integrating Eq. (28) over all velocities, we find that:

n̄2 = ε + (1 − ε)J12, (29)

where we defined

J12 =

∫
u

J̄12(u) f M(u)d3u, (30)

which is equivalent to the common J̄ scattering integral used in
the standard approach. We finally recover the following:

f2(u) =

[
ζ

1 + ζ
+

(
1

1 + ζ

)
ε + (1 − ε)J̄12(u)
ε + (1 − ε)J12

]
f M(u). (31)

This is the central relationship allowing us to quantify departures
from “Maxwellianity” for f2 and potential differences between
macroscopic emission and absorption profiles, depending on the
nature of the radiation field characterized by I.

6. Two comments on the standard theory

Complete redistribution in frequency relies on the a priori
assumption that the “macroscopic” emission and absorption pro-
file are identical. Then the line source function reduces to the
simple ratio S = n2A21/n1B12, that is to say a quantity inde-
pendent of the frequency after Eq. (15). It is also a considerable
simplification of the NLTE radiation transfer problem. Assum-
ing, as we do here, that the atomic profiles are identical, that is,
α12 ≡ η21, CRD also assumes the identity implicitly as follows:

f2 ≡ f1(≡ f M), (32)

whose effects therefore result from expressions given in
Eqs. (16) and (17). In that frame, we also recover that the nor-
malized source function S̄ = S/BW is such that

S̄ = n̄2 = ε + (1 − ε)J12. (33)

This expression is indeed consistent with the classical (CRD)
“two-level atom” case described in any radiation transfer text-
book following the publication of Avrett & Hummer (1965).

However, in eliminating the case of little astrophysical inter-
est of an isotropic “white” radiation field, Eq. (32) is clearly
inconsistent with the more general Eq. (31), unless setting ζ = 0
and ε = 1, that is assuming LTE. Therefore NLTE should always
come together with some partial frequency redistribution and no
complete redistribution a priori.

Additionally, even when “standard” partial frequency redis-
tribution is used, with a priori known redistribution functions, in
most cases a “branching ratio” usually defined as

γ =
A21 + C21

A21 + C21 + QE
(34)

is introduced (see Omont et al. 1972; Heinzel & Hubený 1982;
Heinzel et al. 1987) to form a linear combination of RII and RIII
redistribution such as

R(x′, x) = γRII(x′, x) + (1 − γ)RIII(x′, x), (35)

following the nomenclature of Hummer (1962), and where x′
and x are the usual incoming and outgoing reduced frequencies,
respectively, which are usually defined as:

x =
ν − ν0

∆νD
, (36)

with the Doppler width ∆νD = (ν0/c)vth. and the most probable
velocity vth. =

√
2kT/M as usual.

The elastic collision rate QE which appears in the branch-
ing ratio γ should not be confused with the Q2 elastic colli-
sion rate introduced in Eq. (7). The latter is indeed, and more
precisely, the rate of these velocity-changing elastic collisions,
that is a fraction of the total amount QE of elastic collisions.
Bommier (2016a), for instance, provides a synthetic but accu-
rate and valuable explanation about the different classes of
elastic collisions. Moreover, as mentioned in this discussion,
Landi Degl’Innocenti & Landolfi (2004; see their Sect. 13.2)
estimate that Q2 should be very small in solar–like atmospheres,
so that the so-called Boltzmann elastic collision term may be
practically neglected for radiative modeling under such physical
conditions.

Nevertheless, quantifying any significant effet due to elas-
tic collisions in the NLTE problem for other atmospheres with
physical conditions characterized by a more important amount
of velocity-changing collisions than in the solar–like case would
thus require using the more general theoretical frame we adopt
here (see also Belluzzi et al. 2013 for instance). Indeed, using
velocity integrated expressions such as Eqs. (20) or (29), which
is the case in the standard NLTE approach, and even with stan-
dard PRD, the elastic collision term introduced in Eq. (7) just
vanishes.

7. Quantifying departures from equilibrium

The stage is now set for the first evaluation of potential depar-
tures from “Maxwellianity,” owing to the nature of the radiation
field we may adopt.

For a first exploration, we shall first assume pure Doppler
broadening for the spectral line, that is to say coherent scattering
in the atom’s frame and

α12(ξ) = η21(ξ) = δ(ξ − ν0), (37)
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Fig. 1. Isotropic and normalized intensity profiles I vs. the reduced fre-
quency x, used for the evaluation of departures from the equilibrium
velocity distribution for the VDF of these excited atoms, f2. We adopted
different values for (i) the location of the (symmetric) peaks, and (ii)
of the central reversal of each profile. These variations can also mimic
some resonance lines observations that may form under different astro-
physical conditions.

where both atomic profiles are also assumed to be isotropic.
Should we moreover assume no elastic collisions so far, that is
ζ = 0, then after Eq. (31) we end up with

f2(u) =

[
ε + (1 − ε)J̄12(u)
ε + (1 − ε)J12

]
f M(u), (38)

where we also introduced the normalized velocity u = v/vth..
NLTE implies that ε < 1, which in turn necessarily implies

that f2 differs from being Maxwellian in general. Should these
differences be significant enough, then after Eq. (17) and despite
the equality between respective atomic profiles, we however
expect differences between macroscopic absorption and emis-
sion profiles, unlike what assumes, ab initio, the widely adopted
CRD.

The abovementioned assumptions lead to

J̄12(u) =
1
2u

∫ +u

−u
I(x)dx. (39)

Then, since f1 ≡ f M , using this classical expression for the (nor-
malized to unity) macroscopic absorption profile

ϕx =
1
√
π

e−x2
, (40)

we can also establish that

J12 =
1
√
π

∫ +∞

−∞

I(x)e−x2
dx, (41)

which finally allows us to evaluate departures of f2 from the
equilibrium distribution depending on the thus far given (and
normalized to unity) radiation field I(x).

According to these expressions, one can notice that, with
coherent scattering in the atom’s frame, it remains however an
ultimate option for “saving” the CRD case. Indeed, assuming
isotropic “white” light illumination, that is a frequency indepen-
dent radiation field such as I(x) = I0, is the only condition left to
us in order to keep f2 ≡ f M and therefore ψx ≡ ϕx.

Further illustrative computations have been made using sev-
eral incident radiation profiles, as displayed in Fig. 1. Our selec-
tion covers distinct possibilities of central reversal amplitudes,

Fig. 2. Ratios f2/ f M as a function of the normalized velocity u, for
different radiation field profiles, and for ε = 0 and ζ = 0. The same
linestyle convention as in Fig. 1 was adopted. The magnitude of these
departures from a Maxwellian velocity distribution depends on both (i)
the distance of the peaks of I vs. line center, and (ii) the amount of its
central reversal characterized by Imax./I(0).

that is to say Imax./I(0) as well as peaks located at different and
increasing positions away from line center. These may mimic
some observed and well-resolved resonance line profiles, sim-
ilar to one of the good candidates for future modeling such as
Lyα of H i.

Then, we computed ratios of f2/ f M according to Eq. (38),
and further adopting ε = 0. Our results for f2/ f M as a function
of the normalized velocity u are displayed in Fig. 2, for which
we used the same linestyle convention as in Fig. 1.

Departures from a Maxwellian distribution show up at
almost all normalized velocities u. These departures tend to
increase both with (i) an increasing distance of the peaks of
the incident radiation profile away from line center, as well as
with (ii) an increase of the central reversal of the incident pro-
file, which is characterized by the ratio between the maximum
value of the profile Imax and its central value I(0).

Finally, it is also possible to compute the ratio between the
macroscopic emission profile ψx and the (Gaussian) absorption
profile ϕx. Indeed, after Eqs. (38) and (17), and with ε = 0, one
can derive (see also Appendix A) that

ψx =
2

√
πJ12

∫ ∞

|x|
J̄12(u)ue−u2

du, (42)

for the case of coherent scattering in the atom’s frame.
We also note that, at this stage, with the knowledge of the

radiation-dependent emission profile, we are also able to com-
pute the source function, following Eq. (15).

Significant differences between emission and absorption pro-
files are put in evidence from our relatively simple computations.
They are displayed in Fig. 3 which shows macrocopic profile
ratios as a function of x for the same set of incident radiation
profiles as before.

For these ratios and the special case of coherent scattering
in the atom’s frame, we observe the same tendancies as the
ones already observed for the ratio between VDFs. It essentially
shows the very limit of the theoretical framework of CRD and
its intrinsic inconsistency with NLTE.
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Fig. 3. Ratios ψx/ϕx as a function of the reduced frequency x, for the
different radiation field profiles displayed in Fig. 1, using also the same
linestyle convention. We observe here, for the case of coherent scat-
tering in the atom’s frame, similar tendencies as the ones displayed in
Fig. 2 for the ratios between VDFs.

Fig. 4. Ratio f2/ f M vs. the normalized velocity u for ε = 10−7 (ζ = 0),
and a realistic H i Lyα illumination profile as observed by SoHO/Sumer.
The peak of the line profile is located at x ∼ 5, and the central self-
reversal is about 0.7 for this resonance line (see Fig. 5 of Gunár et al.
2020).

8. Discussion

So far, the radiation field has been imposed a priori using a sim-
ple I(x) function. Potential anisotropies of the radiation field
could be taken into account within this formalism of course.
Also, more realistic line profiles will be adopted further, as
we did for the computation of the ratio f2/ f M displayed in
Fig. 4. In that case, we used the profile of the H i Lyα resonance
line deduced from SoHO/Sumer solar observations (Gunár et al.
2020, in particular their Fig. 5). We adopted a temperature of
104 K, leading to a I(x) profile extending up to x ∼ 30. Then we
fixed ζ = 0 and ε = 10−7, that is a value which is quite typi-
cal of conditions usually met in solar prominences for instance
(see e.g., Paletou et al. 1993). Departures from a Maxwellian

distribution mainly appear significant around the peak of the line
profile at x ∼ 5 in our case, and in the line wings.

But the most important thing to address further will be the
self–consistent computation of the two distributions f2 and I.
This should be possible within an iterative cycle involving the
following: an initial guess for the source function S assuming for
instance both LTE and CRD, then a formal solution for the RTE,
allowing for the computation of J̄12 and J12. Then f2 should be
estimated, as well as ψx, making it possible to update the source
function further, start another iteration, and so forth, until reach-
ing convergence for both f2 and I.

We believe that state-of-the-art iterative methods presently
used for NLTE radiative transfer (see e.g., Lambert et al. 2016,
and references therein) will allow one to explore all of the
potential of this alternative and a more detailed theoreti-
cal frame, beyond what could be achieved at that time by
Borsenberger et al. (1986, 1987) and Atanackovič et al. (1987).

In parallel with this numerical set-up, we shall also consider
the more realistic case of “natural broadening” of the upper level
of the atomic transition. The alternative atomic absorption pro-
file is now a Lorentzian profile, whose expression was given in
Eq. (11). However, in such a case, atomic absorption and emis-
sion profiles will be different since the atomic emission profile
will now depend explicitly on the radiation field. Expressions for
this emission profile η21 are discussed in Appendix B of Oxenius
(1986); see also Hubený et al. (1983; their Sect. 4.3). The deriva-
tion of the latter expressions remains, however, questionable
and it more likely leads to erroneous coefficients (V. Bommier,
priv. comm.). Therefore, the modified emissivity consisting in
the sum of a “classical” (order-2) term with an extra “order-
4” contribution proposed by Bommier (1997) will be preferred.
In that frame, based on sound physical grounds, it appears that
only the order-2 term emissivity will be associated with the iter-
ative modifications of the VDF of the excited atoms. Indeed,
the so-called order-4 coefficient introduced by Bommier (1997)
involves the lower level atomic state (see her Eq. (92) for the
unpolarized case). However, as well as the order-2 contribution
(via the statistical equilibrium equation), the order-4 contribu-
tion2 to emissivity depends on the radiation field, so that will
also be need in order to be “runned to convergence” together
with the distributions I and f2. The associated numerical bur-
den will mainly amount to recomputing Voigt-like functions (see
e.g., Paletou et al. 2020) at every iteration, according to changes
in f2 and I, and at every depth in the atmosphere.

Finally, any significant effect of these velocity-changing
elastic collisions, which are “by construction” not taken into
account in the standard NLTE approach, could be properly dis-
cussed for different astrophysical situations using the present
formalism.

9. Conclusion

We have revisited and rewritten basic elements of Oxenius’
kinetic approach for NLTE spectral line formation, using more
conventional notations for. We also brought clarification to some
technical parts which were not always clearly explained in
his textbook and some other subsequent, but still remaining
“little acknowledged” studies. We note that similar elements of
this approach have been recently discussed again in the more
complete, but more likely less accessible frame of polarized

2 This very contribution is also reminiscent of (RII−RIII), which clearly
appears looking at Eq. (102) of Bommier (1997) for the special case of
an infinitely sharp lower atomic level.
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radiation transfer, using the density matrix formalism (see e.g.,
Belluzzi et al. 2013).

Here we fully agree with the statement about “the neces-
sity of resolving the statistical equilibrium equations for each
velocity class” expressed by Bommier (2016b; see her Sect. 5.3).
Therefore, in a next step, we shall implement an iterative numer-
ical scheme, based on pre-existing practices in astrophysical
radiation transfer (see e.g., Lambert et al. 2016 and references
therein) in order to compute self–consistently both for the spe-
cific intensity (or distribution of the photons) and, in a first stage,
for the velocity distribution of these excited atoms present in the
atmosphere. As a matter of fact, directly tackling the computa-
tion of the VDF of excited atoms also naturally leads to a gener-
alization of the PRD theoretical frame, somewhat, without using
any a priori defined redistribution function.

This will allow us to identify further and explore in more
detail plausible astrophysical situations for which this “full–
NLTE” approach for the very general issue of spectral line for-
mation will prove to be indispensable.
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Appendix A: Derivation of the macroscopic
emission profile ψx

We find it quite unfortunate that in his monograph, Oxenius
(1986) did not make the derivation of the macroscopic emission
profile, whose expression is given in Eq. (42), explicit. This is
why we propose the following steps.

We shall first assume that∮
δ(x − u ·Ω)dΩ =

2π
u

H(u − |x|), (A.1)

where H is the usual Heaviside or unit step function. Using
such an angular integration for the combination of our Eqs. (17)
and (38) when ε = 0 can be written as follows:

ψx =
1
J12

∮ (∫
J̄12(u)δ(x − u ·Ω) f M(u)d3u

)
dΩ

4π
. (A.2)

First, the angular integration will transform the Dirac
distribution modeling coherent scattering, into the Heaviside
function.

Then, using spherical coordinates in the velocity space for
the integration in u, that is

d3u = u2 sin(θ)dudθdϕ, (A.3)

where θ and ϕ are the usual, respectively, polar angle and
azimuth, one gets

ψx =
2π

π3/2J12

∫
J̄12(u)ue−u2

H(u − |x|)du, (A.4)

which finally leads to Eq. (42) using the property of the H func-
tion which is then different from 0 for u ≥ |x|.
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