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Abstract  

This study aims to implement multi-objective optimization of a gear unit in order to minimize 

the power loss and the vibrational excitation generated by the meshing, via a multi-scale 

approach that extends from gear contact to the complete transmission. All these indicators are 

closely linked to the macro and micro-geometry definition of the gear pair. The optimization is 

carried out using a genetic algorithm, namely the Non-Dominated Sorting Genetic Algorithm 

II (NSGA-II). The design variables chosen for the problem are the pressure angle and the helix 

angle, as macro-geometry characteristics of the gear, and/or the length and the amount of tooth 

profile modifications, as micro-geometry characteristics of the gear. Constraints are imposed in 

order to not exceed a maximum bending stress at the tooth root of the gear and to not fall below 

a minimum total contact ratio. From the results obtained, it is found that the multi-objective 

optimization with both micro and macro-geometry parameters simultaneously gives different 

results than those obtained with macro-geometry first and then micro-geometry parameters. In 

order to study the importance, or not, to take into account the complete gear unit, a comparison 

is made between the local power loss generated by gear tooth friction and the total power loss 

in the single stage gear unit in terms of design variables values. 

Keywords: multi-objective optimization, heuristics, transmission error, helical gear, tooth 

profile modification, thermal network, power losses, gear design. 

1. Introduction 
Gears are transmission and power components that have become largely widespread in the most 

varied fields of mechanical engineering. In many applications, such as machine tools, vehicles, 

lifting devices, etc., gears are part of the main and auxiliary mechanisms. Additionally, the gear 

responds favorably to the performance, precision and specific power requirements imposed in 

the modern mechanical architectures [1]. 

For that purpose, we should be able to design carefully these gears in order to respond to 

different aspects. The first aspect is the thermal behavior which is reflected in a minimization 

of several sources of power losses (tooth friction, bearings, seals and oil churning) in a single 

stage gear unit which are connected through a thermal network model. The second aspect is the 

noise and vibration behavior which is reflected in a minimization of the transmission error (TE) 

which is retained as a major source of gear noise [2], [3]. In order to fulfill these needs, 

optimization tools are used. 

The most used optimization methods are often non-standard and metaheuristic type. These 

methods may help to obtain an approximate value of the optimal solution and they apply to all 
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type of optimization problems. They are inspired by analogies with reality (physics, biology, 

and ethology). There are two types of optimization in the literature: mono-objective 

optimization, in which there is only one objective to be optimized and multi-objective 

optimization, in which there are two or more objectives to be optimized. A Pareto front is 

obtained in the case of multi-objective optimization. This Pareto front provides engineers with 

a set of non-comparable optimal solutions, i.e. improving at least one of the objectives 

compared to the other optimal Pareto points. This allows the engineer to choose the compromise 

that best fits his need. 

Several studies have reported on the optimization of gear design aimed at reducing power loss 

[4], weight of the gearbox [5], mesh excitation [6],[7] and the different issues encountered along 

the power drive line like optimal gear ratio and position of shaft axes [8].  

It can be noted that many mono-objective optimization approaches have been developed. For 

example, Buiga and Popa implemented the genetic algorithm (GA) for the mass optimization 

of a single stage helical gear unit, completed with the sizing of shafts and gear [9]. Chong et al. 

detailed an optimization algorithm with four steps [10]: i) the user selects the number of 

reduction stages, ii) the gear ratio at each stage is picked using a random search method, iii) test 

methods are applied to the gear basic parameters, iv) using the simulated annealing algorithm, 

the positions of gears are determined to minimize the volume of the gearbox. Conventionally, 

single-objective optimization of the gear leads to sub-optimal or unacceptable results in relation 

to other objectives. 

Multi-objective processes are increasingly used in gear design optimization, mainly due to the 

contradictory requirements (one solution may be better than another for some objectives and 

worse for other objectives). They are interested in optimization of various kinds of gears; 

namely, bevel gears ([11],[12], [13]), planetary gears ([14],[15],[16],[17]), cylindrical gears e.g. 

[18]. Let’s mention some works that focus on the influence of the design parameters associated 

with cylindrical gear macro-geometry. A two-stage gear system was studied by Sanghvi et al. 

using NSGA-II to optimize the volume and load carrying capacity simultaneously [19]. Face 

width, module, and number of teeth are considered as design variables. Yao considered three 

different objectives, i.e. center distance, bearing capacity coefficient, and meshing efficiency 

of the spur gear using NSGA-II algorithm and decision maker which consists to select the 

optimal solution from Pareto frontier obtained from NSGA-II [20]. Padmanabhan et al. used 

GA and analytic method, to minimize overall weight and center distance while maximizing the 

power delivered by the gear pair and efficiency of a spur gear pair, by considering module, 

tooth number and thickness as design variables [21]. Wei et al. used an adaptive genetic 

algorithm to minimize gearbox volume, transmission error and contact stress using various 

design variables [22]. Patil et al. presented the multi-objective optimization of a two-stage 

helical gearbox [23]. Gearbox volume and total power loss (without taking into account the 

churning losses) were minimized under mechanical and tribology constraints.  

In fact, a gear pair provides theoretically a kinematic input/output law but the presence of 

defects leads to adverse effects in terms of wear, lifetime and noise [24], [25]. To avoid these 

major problems, gear micro-geometry modifications are often adopted which correspond to the 

removal of a few micrometers of material. Profile modifications are introduced to eliminate 

premature contacts at engagement [26], to reduce the fluctuation of transmission error, and 

finally to decrease the level of power losses. In this sense, several studies have reported on the 

optimization of gear micro-geometry parameters, aimed at minimizing transmission error 

([25],[27],[28],[29]), efficiency, noise and durability ([30],[31],[32]). Let’s quote some of these 

studies. Ghribi implemented NSGA-II to improve the performance of spur and helical gears 

using tooth modifications [33]. The gears have been optimized based on several design criteria, 
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such as variation of transmission error and/or the product between contact pressure and sliding 

speed. The impact of tooth modification shape was demonstrated. Garambois et al. carried out 

a micro/macro geometry optimization to minimize excitation generated by the gear 

transmission using NSGA-II [6]. The fluctuations of transmission error and mesh stiffness were 

considered as the objective functions while the mechanical strength, maximum contact 

pressure, total contact ratio and specific sliding ratio were considered as constraints.  

Earlier works have implemented the optimization methods on gear pair and shafts and few of 

them have been done to optimize the whole power transmission, especially by taking into 

account the interaction between losses and temperatures. Therefore, there is still few research 

on the thermal aspects of gear transmissions. In fact, industrial concerns over the last years have 

mainly focused on problems of mechanical resistance, mass reduction, vibration and noise 

level, losses, often neglecting the consequences in terms of thermal heating. It should be noted 

that power loss estimations are heavily dependent on temperature distribution within a gear unit 

and that specific forecasts are based on models that combine temperature and power loss 

calculations. 

Therefore, this work seeks to implement optimization algorithm, via a multi-scale approach that 

ranges from gear contact to complete transmission (an enclosed gear drive composed of a one-

stage helical gear), in order to minimize the power loss and excitations generated by the gear 

pair from the design parameters of the teeth. NSGA-II algorithm is used as an optimization 

method. The remainder of this document is organized as follows. The first part presents the 

system under consideration. Then the transmission error and the sources of power losses are 

introduced and discussed. NSGA-II algorithm is briefly described in a section by focusing on 

the design problem (constraints, design variables, etc.). Finally, results of the optimization 

process are underlined with their corresponding variations. 

2. The studied gear unit  
The system under consideration is a single-stage helical gear unit, presented in Figure 1, 

equipped with a 29/80 helical gear pair whose characteristics are presented in Table 1. The 

pinion and the driven gear are mounted on two parallel shaft lines (the primary and the 

secondary shafts) supported by deep groove ball bearings [34] (see Figure 1). The whole set is 

enclosed in a steel right-angled parallelepiped housing (380 x 280 x 150 mm3) with mean 

thickness about 8 mm. The gear unit is splash lubricated by an oil whose properties are given 

in Table 3. The operating regime is carried out for an engine torque equal to 500 N m with a 

rotational speed of the input shaft equal to 3000 rpm. The oil volume is such that the free 

surface at rest is located at 15 mm below the shafts ‘axis. All the components of the studied 

system are made of steel with a Young’s modulus 𝐸 =  2.1 1011 Pa, with Poisson's ratio 𝜈 =
0.3 and density 𝜌 = 7800 kg m−3. 
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Figure 1. Single stage gear unit  

Table 1. Gear macro-geometry characteristics  

 Pinion Wheel 

Tooth number 𝑍 29 80 

Module 𝑚0 (mm) variable 

Tooth face width 𝑏 (mm) 30 

 Right hand helix Left hand helix 

Profile shift coefficient 𝑥 0.2 -0.2 

Addendum coefficient 𝑥𝑎 1.2 0.8 

Deddendum coefficient 𝑥𝑓 1.05 1.45 

Center distance 𝑎𝑤 (mm) 174 

Pressure angle 𝛼0 (°) variable 

Helix angle 𝛽 (°) variable 
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Table 2. Gear micro-geometry characteristics 

Longitudinal crowning (μm) 10 

Actual depth of modification at tooth tip 𝐸 (μm) variable 

Dimensionless extend of profile modification 𝛤   variable 

 

Table 3. Lubricant properties 

Kinematic viscosity at 40 °C (cSt) 120 

Kinematic viscosity at 100 °C (cSt) 15.9 

Fluid density (kg m−3) 860 

 

The pressure angle and the helix angle in Table 1, and the depth modification at tooth tips in 

Table 2. They represent the decision variables which are likely to vary during the optimization. 

The macro-geometry parameters are pressure angle α0, helix angle β and the micro-geometry 

parameters are the actual depth of modification profile 𝐸 and the dimensionless extend of 

profile modification 𝛤. These parameters have an impact on the transmission error and the 

power loss. 

3. Dynamic modeling and transmission error calculation  
The transmission error (TE) is defined as the deviation in the position of the driven gear, relative 

to its position when gears are geometrically perfect and infinitely rigid [35] and can be 

expressed as an angular deviation or as a distance by projection at the base plane. Voluntary 

geometry deviations like tooth modification, involuntary deviations like manufacturing errors 

[36] (gear misalignment, tooth spacing, run-out error, etc.), elastic deformation and tooth 

deflections are origins of TE. 

To study the behavior of gear transmission, it is necessary to model the physical system using 

a numerical model. The following part deals with the introduced dynamic model and permit to 

determine the equation of motion that enables to calculate the transmission error. 

3.1 Dynamic model  

The pinion and the wheel  are assimilated into two rigid cylinders each having six degrees of 

freedom and are connected to each other by an elastic connection (stiffness element) as shown 

in Figure 3 ([37], [38]). The 12 degrees-of-freedom are introduced as following: three 

translations 𝑢𝑘, 𝑣𝑘, 𝑤𝑘 are the displacements along respectively the 𝑼-axis according to the 

center distance, the 𝑽-axis perpendicular to 𝑼 and the axial axis 𝒁. 𝜑𝑘, 𝜓𝑘, 𝜃𝑘 are the rotations 

around 𝑼, 𝑽 and 𝒁-axis respectively (k=1 for the pinion and k=2 for the wheel) (see Figure 2). 

 The shaft elements (I, II, III, IV) are modelled using Timoshenko’s beam elements [39] with 

two nodes and six degrees-of-freedom by node as shown in Figure 3. They are connected to 

concentrated inertial elements modeling the motor (𝐼𝑚 = 0.2 kg m2) and receiver inertia      

(𝐼𝑟 = 2.0 kg m
2). Bearings are modeled by radial and axial stiffness’s elements                       

(𝑘𝑟1 = 1.5 10
8 N m−1, 𝑘𝑎1 = 1.2 10

8 N m−1, 𝑘𝑟2 = 2.5 108 N m−1, 𝑘𝑎2 = 2.2 10
8 N m−1). 

The housing is assumed to be infinitely rigid.  



 

6 

 

Figure 2. Gear system model such as 𝑿 is in the direction of the action line and 𝑼 is in the 

direction of the line 𝑂1𝑂2 centers 

  

Figure 3. Finite element model of gear transmission: roman numbers represent the shaft 

elements and arabic numbers represent the nodes  

3.2 Calculation of 𝐓𝐄  

This part presents the rules to calculate the transmission error.  

In fact, for a perfect and infinitely rigid gear without geometrical deviations, the theoretical 

input/output law is written as follows: 

 𝑅𝑏1𝛺1 𝑟𝑖𝑔𝑖𝑑 + 𝑅𝑏2 𝛺2 𝑟𝑖𝑔𝑖𝑑 = 0 (1) 

where 𝑅𝑏1, 𝑅𝑏2 are the base radius of the pinion and the wheel, 𝛺1 𝑟𝑖𝑔𝑖𝑑, 𝛺2 𝑟𝑖𝑔𝑖𝑑 are respectively 

the rotation speeds of the pinion and the wheel in the ideal case.  

However, a real gear never verifies these conditions. It presents a certain number of geometrical 

defects or shape corrections that cause a deviation between the actual position occupied by the 

gear and its theoretical position. Then, for a gear with geometrical deviations, new parameters 

related to the deviation between profiles are introduced.  

Wheel 

Pinion 
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Figure 4. Base plane and contact lines (𝒁: axial direction, 𝑇1, 𝑇2: points of tangency on pinion 

and gear base circles, 𝑀𝑖𝑗: potential point of contact)   

 
 

Figure 5. Configuration of the point of contact (inspired by [37]) 

The contact lines are discretized into several segments (see Figure 4). The geometrical center 

of each of these segments corresponds to a potential contact point 𝑀𝑖𝑗 where 𝑖 represents the 

line index and 𝑗 the segment index.  

Initial gaps are associated for the pinion and the wheel at each point 𝑀𝑖𝑗. Each of these 

deviations are defined by the distance between the real surface and the theoretical surface 

according to the external normal of the considered profile. The total normal deviation at the 

point of contact is defined by:  

 𝑒(𝑀𝑖𝑗) = 𝑒1(𝑀𝑖𝑗) + 𝑒2(𝑀𝑖𝑗) (2) 

with 𝑒1(𝑀𝑖𝑗), 𝑒2(𝑀𝑖𝑗) are the normal deviations according to the theoretical normal at the point 

𝑀𝑖𝑗 on the pinion and the wheel respectively (see Figure 5). This deviation (𝑒(𝑀𝑖𝑗)) is positive 

for an excess of material and negative when some material is withdrawn from the ideal 

geometry. At any given moment, there is at least one point of contact (𝑀∗) between the rigid 

teeth which is characterized by a maximum normal deviation 𝐸(𝑀∗) such as:  

 𝐸(𝑀∗) = 𝑀𝑎𝑥 (𝑒(𝑀𝑖𝑗))   (3) 

So, as a result of geometrical deviations, there is the appearance of deviations from the ideal 

case which leads to write following relation linking the rotational speeds in the ideal case and 

with geometrical deviations:  
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 {
𝛺1 = 𝛺1 𝑟𝑖𝑔𝑖𝑑 +

𝑑𝛩1
𝑑𝑡

𝛺2 = 𝛺2 𝑟𝑖𝑔𝑖𝑑 +
𝑑𝛩2
𝑑𝑡

 
(4) 

 

with 𝛩1, 𝛩2 are the angular position deviations of the pinion and the wheel from the ideal case. 

From the previous equations and under no-load conditions, the equation linking the rotation 

speed and the deviations is given by: 

 𝑅𝑏1𝛺1 + 𝑅𝑏2𝛺2 = −
1

cos(𝛽𝑏)
 
𝑑𝐸(𝑀∗)

𝑑𝑡
 (5) 

with 𝛺1, 𝛺2 are respectively the rotation speed of the pinion and the wheel, 𝛽𝑏 is the helix angle 

on the base plane and 𝐸(𝑀∗) is the maximum normal deviation on all potential contact points 

at a time 𝑡. 

The non-loaded static transmission error (NLTE), corresponding to very low input speed 

and torque (so that the teeth stay in contact without deformation), results exclusively from gear 

manufacturing and mounting errors and from the intentional modification of the micro-

geometry. Its calculation is illustrated for example in [40] and [41]. The time derivative of 

NLTE is defined as:  

 
𝑑

𝑑𝑡
(𝑁𝐿𝑇𝐸) = 𝑅𝑏1𝛺1 + 𝑅𝑏2𝛺2 = −

1

cos(𝛽𝑏)
 
𝑑𝐸(𝑀∗)

𝑑𝑡
 (6) 

The previous part presented infinitely rigid and non-deformable bodies. To take into account 

the elasticity, parameters are introduced. 

The relative deviation associated with a point (𝑀𝑖𝑗) on the contact line is defined as the 

difference between the maximum normal deviation (𝐸(𝑀∗)) present on the contact line at a 

given time and the total normal deviation at this point (𝑀𝑖𝑗). It is noted: 

 𝛿𝑒(𝑀𝑖𝑗) = 𝐸(𝑀
∗) − 𝑒(𝑀𝑖𝑗) (7) 

In addition to the geometrical deviations, taking into account the elasticity generates a contact 

action between the pinion (1) and the wheel (2). Each potential contact point (𝑀𝑖𝑗) is associated 

with an elementary stiffness (𝑘(𝑀𝑖𝑗)) and an equivalent normal deviation (𝑒(𝑀𝑖𝑗)) combining 

the contributions of the pinion and the wheel. Therefore and as previously mentioned and 

according to [37], the displacements of the pinion and the gear are small so it can be described 

by displacement screws whose co-ordinates associated are defined by: 

 {𝜏𝑘} = {
𝑼𝐤(𝑂𝑘) = 𝑢𝑘 𝑼 + 𝑣𝑘 𝑽 + 𝑤𝑘 𝒁 
𝝎𝐤 = 𝜑𝑘 𝑼 + 𝜓𝑘 𝑽 + 𝜃𝑘  𝒁

} (8) 

where 𝑂1, 𝑂2 are the pinion and gear centers respectively, 𝑘 =1 is associated to the pinion and 

𝑘 =2 to the wheel. 

The displacement mentioned in equation (8), which represents the degrees of freedom of the 

pinion and the wheel, is re-arranged in a vector form as: 

 𝒒T = 〈𝑢1, 𝑣1, 𝑤1, 𝜑1, 𝜓1, 𝜃1, 𝑢2, 𝑣2, 𝑤2, 𝜑2, 𝜓2, 𝜃2〉 (9) 

The transmission error (𝑇𝐸) is considered as an overall indicator of the behavior of a gear 

transmission. It takes into account the deformation of the teeth, as well as the deformations of 

the gear unit, the shape deviations and the assembly defects. Transmission error (𝑇𝐸) is 

expressed as a displacement on the base plane [38]: 
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𝑇𝐸 = 𝑅𝑏1 [∫ 𝛺1(𝜉)𝑑𝜉 + 𝜃1

𝑡

0

] + 𝑅𝑏2  [∫ 𝛺2(𝜉)𝑑𝜉 + 𝜃2

𝑡

0

]

= 𝑅𝑏1 𝜃1 + 𝑅𝑏2 𝜃2 + 𝑁𝐿𝑇𝐸 

(10) 

In fact, for each point (𝑀𝑖𝑗) on the contact line, the combined effect of the infinitesimal 

displacements of the pinion and the wheel (see 9) introduces a normal deviation 𝛿(𝑀) compared 

to the positions of the rigid bodies. To switch from infinitesimal wheel and pinion 

displacements to 𝛿(𝑀𝑖𝑗), the following expression is obtained: 

 𝛿(𝑀𝑖𝑗) = 𝑺(𝑀𝑖𝑗)
𝑇
 𝒒 (11) 

with  𝒒 is the vector of the pinion-gear pair degrees of freedom and 𝑺(𝑀𝑖𝑗) is a structural vector 

which depending on the gear geometry and expressed by: 

 
𝑺(𝑀𝑖𝑗) = [

𝒏𝟏
𝑶𝟏𝑴𝒊𝒋˄𝒏𝟏
−𝒏𝟏

−𝑶𝟐𝑴𝒊𝒋˄𝒏𝟏

] 

 

(12) 

The deflection ∆(𝑀𝑖𝑗) depends both on the normal deviation 𝛿(𝑀𝑖𝑗) and on the relative 

deviation 𝛿𝑒(𝑀𝑖𝑗) defined above: 

 ∆(𝑀𝑖𝑗) = 𝛿(𝑀𝑖𝑗) − 𝛿𝑒(𝑀𝑖𝑗) = 𝑺(𝑀𝑖𝑗)
𝑇
 𝒒 − 𝛿𝑒(𝑀𝑖𝑗) (13) 

The elasticity generates a contact action between the pinion (1) and the wheel (2) given by: 

 {
d𝑭1/2(𝑀𝑖𝑗) = 𝑘(𝑀𝑖𝑗) ∆(𝑀𝑖𝑗)d𝑀 𝒏𝟏    𝑠𝑖 ∆(𝑀) > 0

d𝑭1/2 =  𝟎                                         𝑠𝑖 ∆(𝑀) ≤ 0
 (14) 

with d𝑭 is the elemental force of the pinion on the wheel through d𝑀, 𝑘(𝑀𝑖𝑗) is the mesh 

stiffness per unit of contact length which can evolve with the load, 𝒏𝟏 is the outgoing unit 

normal of the pinion in 𝑀, ∆(𝑀𝑖𝑗) is the deflection. 

Thus, the resulting total mesh force and moment at the gear center (𝑂2) is: 

 {𝜏1/2(𝑂2)} =

{
 
 

 
 𝑭1/2 = ∫ 𝑘(𝑀𝑖𝑗) ∆(𝑀𝑖𝑗) d𝑀 𝒏𝟏

𝐿(𝑡)

𝑴1/2(𝑂2) = ∫ 𝑘(𝑀𝑖𝑗) ∆(𝑀𝑖𝑗) 𝑶𝟐𝑴 ˄𝒏𝟏 d𝑀 
𝐿(𝑡)

 (15) 

And, the same for the resulting total mesh force and moment at the pinion center (𝑂1) but with 

a negative sign. From equation (15) and (13), the resulting mesh force can be written as follows: 

 

{𝐹𝑀𝑖𝑗
} = 

−∫ 𝑘(𝑀𝑖𝑗) 𝑺(𝑴𝒊𝒋)𝑺(𝑴𝒊𝒋)
𝑇
d𝑀 𝒒

𝐿(𝑡)

+∫ 𝑘(𝑀𝑖𝑗) 𝛿𝑒(𝑀𝑖𝑗)𝑺(𝑴𝒊𝒋) d𝑀 𝒒
𝐿(𝑡)

= −[𝑲𝑮(𝑡)] 𝒒 + 𝑭𝒆(𝑡) 

(16) 

where [𝑲𝑮(𝑡)] is the time varying gear mesh stiffness matrix, 𝑭𝒆(𝑡) is the time varying 

excitation vector associated with tooth shape modifications and errors. 

During the operation of a gear, flexion and foundation of the teeth of both wheels and the local 

deformations associated with hertzian contact between the teeth occur. These deformations are 

characterized by a displacement between the teeth along the line of action. This displacement 

is not constant during the meshing, it depends not only on the transmitted load but also on the 
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angular position of the two wheels. So, this approximation can be related to the effort, defined 

previously through a defined link stiffness along the line of action that evolves over time. 

The equation of motion describing the dynamic behavior of the gear transmission can be written 

as [42],[37]: 

 [𝑴]�̈� + [𝑪] �̇� + [𝑲(𝑡, 𝒙)]𝒙 = 𝑭𝟎 + 𝑭𝟏(𝑡, 𝒙, 𝛿𝑒(𝑀)) + 𝑭𝟐(𝑡, �̇�1,2) (17) 

where 𝒙 is the degree-of-freedom coordinates vector (contains all the degrees of freedom), The 

mass matrix [𝑴] of the gear unit displayed in figure 1 is obtained by applying the Lagrange 

equations on the different elements of the transmission. [𝑪] is a damping matrix defined through 

equivalent modal damping coefficients. A constant modal damping factor 휁 = 0.1 is retained 

for all modes. [𝑲(𝑡, 𝒙)] is the equivalent non-linear time-dependent stiffness matrix (dependent 

on coordinates of system), 𝑭𝟎 is the external load vector, 𝑭𝟏(𝑡, 𝒙, 𝛿𝑒(𝑀)) is the time-dependent 

force vector including the contributions of shape modification,𝛿𝑒(𝑀) is the relative deviation, 

𝑭𝟐(𝑡, �̇�1,2) represents the inertial effects due to unsteady rotational speeds. 

The explicit form of the dependency between contact stiffness, state variables and geometry 

deviations is generally unknown. Hence, the integration of normal contact conditions was taken 

into account in the step-by-step integration process. Therefore, Newmark's implicit scheme is 

retained to solve equation (17)coupled to a normal contact algorithm ([37],[43]). 64 time steps 

are chosen for each mesh period (𝛥𝑡 = 0.01 ms). At each time step, two conditions must be 

verified for evaluating the instantaneous contact length. The loop handles the crushing. If the 

crushing is positive (i.e. the contact is assured at 𝑀𝑖𝑗) then the stiffness is positive and if the 

crushing is negative (i.e. there is no contact at 𝑀𝑖𝑗) then the stiffness is zero. 

4.  Calculation of power loss  
4.1 Thermal network  

The thermal network method allows to take into account the interconnection of different heat 

sources and to determine the bulk temperature of various components of the gear unit [44]. 

Therefore, the principle of this method is based on the decay of the model (single-stage helical 

gear unit) into isothermal elements (gears, shafts, bearings etc.). These elements are connected 

by thermal resistances which depend on the type of heat transfer,  i.e. conduction, free or forced 

convection and radiation [45]. The power losses are calculated by taking into account the 

temperature of the nodes to insure the thermo-mechanical coupling. 

To simulate the steady-state temperature distribution in the studied system, this one has been 

divided into 14 elements (Table 4). The housing is decomposed into three parts: i) a lower part 

which contains the oil sump, ii) a lateral part which supports bearings, iii) an upper part. The 

bearings and the shafts are assumed isothermal and are represented by a sole element. The 

meshing zone is the small interface between gears where friction occurs.  
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Figure 6. Thermal network for a single stage gear unit  

Table 4. Elements of the thermal network 

NODES COMPONENTS 

1 Ambient air  

2, 3, 4 Housing 

5 Oil 

6, 7 Bearings on primary’s shaft 

8, 9 Bearings on secondary’s shaft 

10 Input shaft 

11 Output shaft 

12 Pinion 

13 Wheel 

14 Meshing of gear teeth 

 

It is considered that the housing elements exchange by convection and radiation with the 

surrounding environment and also by convection with oil through their internal walls. 

Convection heat-transfer with oil is also taken into account for other elements, such as gears or 

bearings. Several elements (gears, bearings, shafts) are connected through conduction thermal 

resistances (see Figure 6). Analytical models used to quantify these different kinds of thermal 

resistances can be found in previous papers published by Changenet et al. ([44]-[45]). 

4.2 Calculation of power losses 

Different power losses are taken into account as heat sources in the thermal network 

(symbolized by arrows in Figure 6). 

4.2.1 Rolling- elements bearing losses 

Power losses in the bearings (𝑄𝑏𝑒𝑎𝑟𝑖𝑛𝑔) are calculated from Harris’ formula [34]. This loss is 

the sum of a load-dependent power loss in the bearing (𝑄1), as a result of elastic deformation 

and a sliding motion that occurs within the contact zones, and a no-load dependent loss in the 

bearing (𝑄0), affected by hydrodynamic losses in the lubricant. This power loss, injected at 

nodes 6, 7, 8 and 9 of the thermal network in Figure 6, is given by the formulae below: 

 𝑄𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑄0 + 𝑄1 (18) 
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with: 

No-load dependent power loss (𝑄0) given by: 

If  
60 𝛺

2 π
 𝜐 ≥ 2000 mm2 s−1 min−1 

 𝑄0 = 9.54 10−7 𝛺 𝑓0 (𝛺 𝜐)
2
3 𝑑𝑚

3
 (19) 

If  
60 𝛺 

2 𝜋
 𝜐 < 2000 mm2 s−1 min−1 

 𝑄0 = 𝛺 160 10−7 𝑓0 𝑑𝑚
3
 (20) 

where 𝜐 is the oil kinematic viscosity, 𝑑𝑚 is the mean diameter of bearing, 𝛺 is the rotational 

speed and 𝑓0 is a factor that depends on the type of bearing and lubrication. 

This work considers that ball bearings are lubricated through the oil sump. Therefore, the 

selected value of 𝑓0 is 2. 

Load dependent power loss (𝑄1) can be expressed as follows: 

 𝑄1 = 𝛺 𝑓1 𝑙1 𝑑𝑚 (21) 

where 𝑙1 is the load applied on the bearings and 𝑓1 is a constant that depends on bearing type. 

The selected value of 𝑓1 is 0.00075. 

4.2.2 Shaft seal losses  

This dissipation source is estimated through an empirical relationship proposed by Simrit [46]. 

Seal losses (𝑄𝑠𝑒𝑎𝑙) depend on rotational speed (𝜔) and shaft diameter (Ø). This power loss is 

applied at nodes 10 and 11 (see Figure 6):  

 𝑄𝑠𝑒𝑎𝑙 = 73.43 10−6 Ø2 𝛺 (22) 

4.2.3 Churning losses 

The studied gear transmission is splash lubricated, i.e., the pinions are immersed in an oil bath. 

The resulting heat flow is implemented at node 5 in Figure 6. Formulas from Changenet et al. 

[47] are used to estimate churning losses (𝑄𝑐ℎ𝑢𝑟𝑛𝑖𝑛𝑔): 

 𝑄𝑐ℎ𝑢𝑟𝑛𝑖𝑛𝑔 =
𝜌 3 𝑆𝑚 𝑅𝑝

3 𝐶𝑚

2
 (23) 

where 𝜌 is a fluid density, 𝑆𝑚 is a submerged surface area, 𝑅𝑝 is the gear pitch radius and 𝐶𝑚 

is a dimensionless torque depending on the fluid flow regime. 

4.2.4  Tooth friction losses  

This source of dissipation represents a significant part of the global losses in a mechanical 

transmission. It is associated with the interaction between contact surfaces and the shearing of 

the lubricant.  

The sliding velocity (𝑉𝑔) and the force (𝐹𝑟), calculated at point 𝑀𝑖𝑗(see Figure 4), vary through 

the action line. The average of the tooth friction loss (𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) is injected to the node 14 

in Figure 6 and can be estimated by the following equation: 

 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =∑𝑉𝑔(𝑀𝑖𝑗) F𝑟(𝑀𝑖𝑗) 𝐶𝑓 (24) 

where 𝐶𝑓 = 0.05 is the friction coefficient. This value is in accordance with the experimental 

data from [48]. 
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Therefore, in generalized form, the total power losses in the whole transmission (𝑄𝑡𝑜𝑡𝑎𝑙) is 

expressed by the following equation: 

 𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑏𝑒𝑎𝑟𝑖𝑛𝑔 + 𝑄𝑠𝑒𝑎𝑙 + 𝑄𝑐ℎ𝑢𝑟𝑛𝑖𝑛𝑔 + 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (25) 

5. The multi-objective optimization problem 
5.1 Problem formulation  

The aim of this article is to minimize the fluctuation of the transmission error and the power 

loss of a single-stage helical gear subjected to various constraints via a multi-objective 

optimization.  

Indeed, the Multi-Objective Optimization (MOO) is a part of the mathematical programming 

dealing with the minimization/ maximization of more than one conflicting objective functions 

over a feasible set [49]. In this study, we consider two distinct MOO cases:  

 In the first one, the two objective functions are the RMS value of transmission error 

fluctuation (𝑇𝐸𝑅𝑀𝑆) and tooth friction power loss (𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) regardless of the 

thermal network. 

 In the second one, the two objective functions are the RMS value of transmission error 

fluctuation (𝑇𝐸𝑅𝑀𝑆) and total power loss (𝑄𝑡𝑜𝑡𝑎𝑙) which is determined with the 

interaction between temperature and power losses. 

These two cases allow to carry out analyses about the impact of the thermal part on the whole 

power transmission.  

For the studied system, micro-geometry variables and/or macro-geometry variables are 

considered as the parameters of optimization. Macro-geometry variables are helix angle 𝛽 and 

pressure angle 𝛼0. The center distance 𝑎𝑤 is imposed leading to a variable module 𝑚0 

depending on values chosen for 𝛽. This relation is given by this formula:  

 𝑚0 =
2 𝑎𝑤 cos (𝛽)

𝑍1 + 𝑍2
 (26) 

Micro-geometry variables (𝐸1, 𝐸2, 𝛤1, 𝛤2) are defined by two parameters for each gear wheel 

([38],[50]). 𝐸𝑖 is the actual depth of modification at tooth tip. Dimensionless parameter 𝛤𝑖 is the 

ratio between the length of relief relative to the length of path of contact. The tip relief 

modification is linear (see Figure 7).  

 
 

Figure 7. Tooth modification projected on the action line (inspired by [33],[51]) 

Therefore, the design variables vector is: 

 𝑿 = {𝛽, 𝛼0, 𝐸1, 𝐸2, 𝛤1, 𝛤2} (27) 
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This optimization is carried out under some constraints that must be fulfilled in order to consider 

an acceptable Pareto front. These constraints are presented below. 

Total contact ratio (휀𝑡) describes working condition and is an element that influences 

gear oscillation, noise, strength, rotation and others. It is obtained from the sum of transverse 

(휀𝛼) and overlap (휀𝛽) contact ratios which are calculated from gear design, macro-geometry 

parameters and operating center distance and must be greater than 1.2 to ensure continuous 

transmission of motion.  

 
ℎ1(𝑿) = 휀𝑡 = 휀𝛼 + 휀𝛽 

ℎ1(𝑿) ≥1.2 
(28) 

The calculation of bending stress at the gear tooth root is based on strength of materials. 

Several correction coefficients are introduced to take into account approximation made and 

operating conditions. The following constraint based on a streamlined standard formula ISO-

6336-1 (method B) [52], must be checked for each of the two gears (wheel and pinion):  

 
ℎ2(𝑿) = 𝜎 =

𝐶

𝑅𝑝 𝑏 𝑚0
 𝑌𝑓 𝑌𝑠 𝑌𝛽 𝑌𝐵 𝑌𝐷𝑇𝐾𝐴 𝐾𝑉 𝐾𝑓𝛽 𝐾𝑓𝛼 

ℎ2(𝑿) ≤ 𝜎𝑙𝑖𝑚 

(29) 

here 𝐶 is the applied torque, 𝑅𝑝 is the pitch radius, 𝑏 is the contact width, 𝛽𝑏 is the base helix 

angle, 𝑌𝑓 is the tooth form factor, 𝑌𝑠 is the stress correction factor, 𝑌𝛽 is the helix angle factor, 

𝑌𝐵 is the rim thickness factor, 𝑌𝐷𝑇 is the tooth depth factor, 𝐾𝐴 is the application factor, 𝐾𝑉 is 

the dynamic factor, 𝐾𝑓𝛽 is the face load factor for tooth-root stress and 𝐾𝑓𝛼 is the transverse 

load factor for tooth-root stress. 

 The intensity of the tooth contact pressure during meshing is the origin of deterioration 

of tooth surfaces. It is therefore necessary to take this pressure into account in order to evaluate 

the mechanical strength of the gear. The maximum contact pressure is checked for each angular 

position:   

 
ℎ3(𝑿) = 𝑃𝑚𝑎𝑥 

ℎ3(𝑿) ≤ 𝑃𝑙𝑖𝑚 
(30) 

 

Thus, this study is described by two problems written as follows: 

 First MOO problem: {
min 𝑇𝐸𝑅𝑀𝑆

min𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
 subjected to {

ℎ1(𝑿) ≥ 1.2

ℎ2(𝑿) ≤ 500 MPa

ℎ3(𝑿) ≤ 1.2 GPa
  (31) 

 Second MOO problem: {
min 𝑇𝐸𝑅𝑀𝑆
min𝑄𝑡𝑜𝑡𝑎𝑙

        subjected to {

ℎ1(𝑿) ≥ 1.2

ℎ2(𝑿) ≤ 500 MPa

ℎ3(𝑿) ≤ 1.2 GPa
 (32) 

 𝑿 ∈ 𝑆  

𝑆 introduces the boundaries of the decision variables (feasible domain) which are presented in 

Table 5. 

  



 

15 

Table 5. Search range of decision variables 

Design variables  Search range 

Pressure angle 𝛼0 [15 − 25°] 
Helix angle 𝛽 [0 − 30°] 

Actual depth of modification at tooth tip 𝐸1, 𝐸2 [0 − 100 𝜇𝑚]  

Dimensionless extend of profile modification 𝛤1, 𝛤2 [0 − 0.5] 

 

In the result section, these problems will be detailed with the corresponding decision variables. 

Contrary to a single-objective optimization, the optimal solution is not a single solution, but 

rather a set of optimal solutions corresponding to the Pareto front. There are many approaches 

to solve MOO. The following section presents the retained method and its operation.   

5.2 Description of the retained optimization algorithm  

Metaheuristics are known to be interesting approaches for the solution of MOO. Many authors 

have adapted those approaches in their work. For instance, the methods of Czyzak and 

Jaszkiewicz is based on simulated annealing [53], while Hansen uses the tabou search method 

[54]. Gravel et al. suggest methods based on ant colony optimization for the solution of an 

industrial scheduling problem [55] and He et al. use an improved particle swarm method for 

optimal power flow [56]. It seems, however, that most multiple objective metaheuristic 

approaches make use of evolutionary methods such as genetic which are well suited to provide 

good approximations of the Pareto Front ([57],[58]). In fact, an increasing number of 

approaches exploit the principal of dominance in the Pareto front sense [59]. However, the use 

of this concept of dominance alone does not guarantee the diversity of the solutions obtained. 

Therefore, new evolutionary multiple objective algorithms using several mechanisms such as 

the concept of dominance, niching, elitism, etc. have been implemented ([59], [60]). These 

algorithms are said to be elitism because they allow the solutions to be memorized during the 

execution.   

Among these algorithms, the most commonly adopted optimization method to solve multi-

objective problems is the elitist genetic algorithm of non-dominant sorting NSGA-II and it is 

implemented in this study [41]. Indeed, NSGA-II is well established due to its efficiency, well 

testing and diversity preservation and it is a powerful optimization tool [61]. The popularity of 

NSGA-II means that it has been coded in several computer-programming languages. Many 

researches cited in their work numerous studies using this algorithm, for example in building 

design ([42], [43]) and especially in the field of gears ([44], [13]) 

 NSGA-II is characterized by a fast non-dominated sorting technique, an efficient crowding 

distance assignment approach to rank and select the population fronts, and genetic operators. 

The flowchart for this method is given in Figure 8 and a brief description of NSGA-II is given 

after. The NSGA-II algorithm starts with a random initial population 𝑃0 of 𝑁𝑃 input variables 

(with the use of constraints if any) and the objective functions are evaluated. Following function 

evolution of the individuals at each iteration, the individuals are classified as different ranks 

based on Pareto-optimal. Then, genetic operators such as tournament selection, arithmetic 

crossover [45] and uniform mutation, are used to produce an offspring 𝑄0, of the same size as 

𝑃0, from the best parents. After creating and evaluating of child population, both parents and 

offspring are merged to create the mixed population (𝑀𝑡=𝑃𝑡 ∪ 𝑄𝑡) at the t-th generation with 

size 2𝑁𝑝. This population is sorted again based on non-domination and crowding distance and 

only the 𝑁𝑃 best individuals are selected. Then the new population is selected as parents in the 
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next round. The process is repeated until the condition for termination is met (i.e. after a fixed 

number of iterations or generations) or when the population no longer evolves. The operators 

of the NSGA-II algorithm are guided by predefined parameters and presented in Table 6. 

 

 

Figure 8. Flowchart of NSGA-II algorithm 
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Table 6. NSGA-II parameters used for optimization 

Parameters of NSGA-II algorithm 
Parameter Value 

Population size 100 
Maximum number of generations 100 
Mutation rate  0.01 

Selection strategy  Tournament selection 

Crossover type (real) Arithmetic crossover 

Mutation type (real) Uniform mutation  

 

Numerous simulations have been performed to find suitable values for these parameters 

(population size, maximum number of generations, etc.). As an example, Figure 9 shows the 

evolution of the minimum of 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 versus the number of generations for optimization 

with macro-geometry variables 𝛼0 and 𝛽. It indicates that 100 generations correspond to a limit 

up to which no significant change is detected in the simulation performed. Concerning the size 

of population, 100 individuals are enough to search solutions in the variable domain and 

allowed to obtain reliable results. Figure 10(a) (respectively Figure 10(b)) presents the number 

of individuals corresponding to each pressure angle (respectively helix angle) interval for each 

generation. It shows that there is a variety of pressure angle 𝛼0 and helix angle 𝛽 values in the 

initial population (generation 0) and the solution converges from generation 90.  

 

Figure 9. 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 evolution vs. number of generation 
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Figure 10. Distribution of pressure angle 𝛼0 (a) and helix angle β (b) of individuals of the 

Pareto front vs. generation number 

 

6. Results and discussion  
Before to perform the MOO, power losses and 𝑇𝐸𝑅𝑀𝑆 are calculated for a reference point with 

and without profile modification. The geometrical parameters of a reference point are shown in 

Table 7. The corresponding mechanical and thermal characteristics are given in Table 8 and 

Figure 11.  

Table 7. Geometrical parameters of reference point 

Reference point 
Parameters   Value 

Pressure angle (𝛼0) 20° 
Helix angle (𝛽) 20° 
Module (𝑚0) 3 mm 

 

Table 8. Mechanical and thermal characteristics of reference point 

Reference point 
Parameters   Value 

𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  1131 W  
𝑄𝑡𝑜𝑡𝑎𝑙 1896 W  
𝑇𝑝𝑖𝑛𝑖𝑜𝑛 109.6° C 

𝑇𝑜𝑖𝑙 96.3° C 

𝑇𝐸𝑅𝑀𝑆 0.4 µm 
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Figure 11: Power loss sources for reference point 

The Figure 11 indicates that gear generates more than 80% including 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 and 

𝑄𝑐ℎ𝑢𝑟𝑛𝑖𝑛𝑔 of the total power loss. According to the Table 8, it is noticed that for the reference 

point, the exchange with the environment is sufficient to ensure that 𝑇𝑜𝑖𝑙 ≤ 100°C (in this case 

96.3°C). In contrast, the temperature of the gear is higher. As an example the bulk temperature 

of pinion is around 110°C.  

Thus, a multi-objective optimization is performed in the next section in order to analyze the 

interest of taking into account the whole transmission. 

6.1   Results with macro-geometry variables  

In this part, two problems are compared using two decision variables. Therefore, the design 

variables vector is 𝑿𝟏 = {𝛽, 𝛼0} and the two problems to be processed are presented as follows: 

First MOO problem: {
min 𝑇𝐸𝑅𝑀𝑆

min𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
   Subjected to {

ℎ1(𝑿𝟏) ≥ 1.2

ℎ2(𝑿𝟏) ≤ 500 MPa

ℎ3(𝑋) ≤ 1.2 GPa
  

𝑿𝟏  ∈ 𝑆 

Second MOO problem: {
min 𝑇𝐸𝑅𝑀𝑆

min𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
  Subjected to {

ℎ1(𝑿𝟏) ≥ 1.2

ℎ2(𝑿𝟏) ≤ 500 MPa

ℎ3(𝑋) ≤ 1.2 GPa
  

𝑿𝟏  ∈ 𝑆 

The results of the optimization of 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙 and 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛, with two 

macro-geometry variables 𝛽 and 𝛼0, are shown respectively in Figure 12 and Figure 13. 

Qtooth friction
Qchurning

Qbearing

Qseal
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Figure 12. Pareto front (𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙) with two design variables 𝛼0, 𝛽 (a). Solutions 

associated to Pareto front (b). 𝑃1, 𝑃2, 𝑃3 are specific points. (   )  0.8° ≤  𝛽 ≤ 10°.                       
(  )17.5° ≤  𝛽 ≤ 18.2°. 
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Figure 13. Pareto front (𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) with two design variables 𝛼0, 𝛽 (a). 

Solutions associated to Pareto front (b). 𝑃′1, 𝑃′2, 𝑃′3 are specific points. (   ) 0.5° ≤  𝛽 ≤ 10°.        
(  ) 18.6° ≤  𝛽 ≤ 21.4°. 

As can be seen in Figure 12(a), the Pareto front firstly shows a significant decrease of a total 

power losses 𝑄𝑡𝑜𝑡𝑎𝑙 (from 1910 to 1780 W) without a notable change of the 𝑇𝐸𝑅𝑀𝑆 (from 0.2 

to 0.4 μm). Then, a major variation of 𝑇𝐸𝑅𝑀𝑆 is observed (from 0.6 to 3.5 μm) at 

approximatively constant total power losses (from 1780 to 1740 W). Figure 13(a) shows a 

similar behavior with a decrease of the tooth friction power loss 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (from 1170 to 

1000 W) without notable change of 𝑇𝐸𝑅𝑀𝑆 (from 0.2 to 0.5 μm) and then a major variation of 

the 𝑇𝐸𝑅𝑀𝑆 (from 2.3 to 3.6 μm) at approximatively constant tooth friction power loss 

𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛. 

Figure 12(b) and Figure 13(b) show that the sudden change in slope of the Pareto front 

corresponds to two independent regions in terms of  𝛽 and 𝛼0 values. The first part of the Pareto 

front is associated with a variation of 𝛽 in the range [0.5° − 10°] and a constant value 𝛼0 equal 

to the upper limit of the search range (𝛼0 = 25°). The second part of the Pareto front is 

associated with a higher and almost constant value of  𝛽 (𝛽 ∈  [17.5° − 18.2°] in Figure 12(b) 

and 𝛽 ∈  [18.6° − 21.4°] in Figure 13(b)) and a variation of 𝛼0 in the range [20° − 25°]. This 

helix angle 𝛽 value corresponds to an overlap ratio 휀𝛽 ≈ 1 and a total contact ratio 휀𝑡 ≥ 2. A 

difference between the two problems can be noticed because we do not scan the same 𝛽 ranges. 

The helix angle can reach higher values by focusing on gear pair than in the whole transmission. 

In fact, taking into account the complete transmission, going up at helix angle 𝛽 has an impact 

on the one hand, on the immersed surface (𝑆𝑚) associated with the churning losses and, on the 

other hand, on the equivalent load applied to the bearings associated with the bearing losses. 

The Pareto front is browsed from specific point 𝑃3 located on the left side, to point 𝑃1, located 

on the right side, in the 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡 optimization. Similar notations for specific points are 

used for 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 optimization, namely 𝑃′3 to 𝑃′1. The features of these specific 

points are displayed in Table 9. Despite the previous interpretations, it can be observed that the 

two points 𝑃2 and 𝑃′2 have almost the same gear characteristics (𝛽 = 18.5°, 𝛼0 = 24.5°). Thus, 

when considering only the macro-geometry parameters (𝛼0, 𝛽), optimization performed from 

tooth friction loss can lead to solution similar to those obtained with optimization performed 

from total power loss.  
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Table 9. Features of specific points 

Parameters 
Coordinates of specific points on the Pareto front 

𝑃1 𝑃2 𝑃3 𝑃′1 𝑃′2 𝑃′3 

[𝛽(°), 𝛼0(°)] [0.8, 24.9] [18.2, 24.5] [17.9, 20.4] [0.5, 24.9] [18.7, 24.3] [18.7, 19.9] 

[𝐸1(μm), 𝐸2(μm)] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] 

[𝛤1, 𝛤2] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] 

[𝑇𝐸𝑅𝑀𝑆 (μm), 𝑄(W)] [3.6, 1740] [0.4, 1790] [0.3, 1880] [3.6, 980] [0.4, 1020] [0.2, 1140] 

 

In terms of total losses, the interest of the global model using a thermal network is to describe 

the temperature distribution. The bulk temperature of pinion (𝑇𝑝𝑖𝑛𝑖𝑜𝑛) varies between 108°C 

and 100°C for solutions between the specific points 𝑃3 and 𝑃1. It is noted that there is not much 

variation in temperature (only 8°C) since the losses are reduced by 140 W. 

6.2   Results with micro-geometry variables  

In this part, the specific point 𝑃2, such as 𝛼0 = 24.5° and 𝛽 = 18.5°, is chosen from the 

previous Pareto fronts in order to carry out  the micro-geometry optimization with four design 

variables 𝑿𝟐 = {𝐸1, 𝐸2, 𝛤1, 𝛤2} and compare the two problems below: 

First MOO problem: {
min 𝑇𝐸𝑅𝑀𝑆

min𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
   Subjected to {

ℎ1(𝑿𝟐) ≥ 1.2

ℎ2(𝑿𝟐) ≤ 500 MPa

ℎ3(𝑋) ≤ 1.2 GPa

  

𝑿𝟐  ∈ 𝑆 

Second MOO problem: {
min 𝑇𝐸𝑅𝑀𝑆

min𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
  Subjected to {

ℎ1(𝑿𝟐) ≥ 1.2

ℎ2(𝑿𝟐) ≤ 500 MPa

ℎ3(𝑋) ≤ 1.2 GPa
  

𝑿𝟐  ∈ 𝑆 
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Figure 14. Pareto front (𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙) with four design variables 𝐸1, 𝐸2, 𝛤1, 𝛤2 (a). 

Solutions associated to Pareto front (b). 𝑃4, 𝑃5 are specific points. 
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Figure 15. Pareto front (𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) with four design variables 𝐸1, 𝐸2, 𝛤1, 𝛤2 (a). 

Solutions associated to Pareto front (b). 𝑃′4, 𝑃′5 are specific points.  
 

Figure 14(a) and Figure 15(a) show that the two Pareto fronts correspond to continuous 

evolution of objective functions. From specific points 𝑃5 to 𝑃4, 𝑄𝑡𝑜𝑡𝑎𝑙 decreases from 1610 to 

1260 W and, from specific points 𝑃′5 to 𝑃′4, 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 decreases from 840 to 440 W, 

while 𝑇𝐸𝑅𝑀𝑆 varies from 0.3 to 1.5 μm in both cases. Table 10 shows that the specific points 

situated in each side of the Pareto fronts (𝑃5 and 𝑃4, respectively 𝑃′5 and 𝑃′4) have little 

different values for dimensionless parameters 𝛤1 and 𝛤2 (0.32 ≤ 𝛤1 ≤ 0.42, 0.29 ≤ 𝛤2 ≤ 0.34). 

However, specific point 𝑃5 (respectively 𝑃′5) corresponding to minimum 𝑇𝐸𝑅𝑀𝑆 presents a low 

amount of profile modification at tooth tip (𝐸1 = 𝐸2 = 14 μm) while specific point 𝑃4 

(respectively 𝑃′4) corresponding to minimum total power losses 𝑄𝑡𝑜𝑡𝑎𝑙 (respectively tooth 

friction power losses 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) presents a large amount of profile modification at tooth tip 

(𝐸1 = 88 μm and 𝐸2 = 65 μm, respectively 𝐸1 = 84 μm and 𝐸2 = 83 μm). It is well observed 

that there is more profile modifications by focusing on gear pair than in the whole transmission.  

Table 10. Features of specific points 

Parameters 
Coordinates of specific points on the Pareto front 

𝑃4 𝑃5 𝑃′4 𝑃′5 

 [𝛽(°), 𝛼0(°)] [18.5, 24.5] [18.5, 24.5] [18.5, 24.5] [18.5, 24.5] 

 [𝐸1(μm), 𝐸2(μm)] [88, 65] [14, 14] [84, 83] [14, 14] 

 [𝛤1, 𝛤2] [0.4, 0.33] [0.32, 0.33] [0.42, 0.29] [0.32, 0.34] 

 [𝑇𝐸𝑅𝑀𝑆 (μm),𝑄(W)] [1.4, 1260] [0.3, 1610] [1.5, 450] [0.3, 840] 

 

When the Pareto front is browsed from the specific point 𝑃5 towards the point 𝑃4, the decrease 

of total power losses 𝑄𝑡𝑜𝑡𝑎𝑙 (from 1610 to 1260 W) is mainly due to the decrease of tooth 

friction losses 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (from 830 to 450 W). It results in a decrease of the oil temperature 

(from 82 to 68°C) leading to an increase of oil viscosity and bearing losses (from 290 to 

309 W) with an almost constant value of churning losses 𝑄𝑐ℎ𝑢𝑟𝑛𝑖𝑛𝑔 (436 W) and seal losses 

𝑄𝑠𝑒𝑎𝑙 (58 W). Therefore, the relative weight of tooth friction losses 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 decreases 

significantly from 51% of total losses in 𝑃5 to 36% in 𝑃4. Therefore, if there is much profile 

modification such in gear pair, there is indeed a reduction of 𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 unless behind that 
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the gear unit will be colder and this will impact the losses independent of the load. This result 

shows the importance of taking account the whole gear unit and all sources of power losses. 

6.3   Results with micro and macro-geometry variables  

This part does not deal with the comparison between the two problems but it is concerned with 

the optimization of the entire mechanical transmission. So, the design variables vector is 𝑿 =
{𝛽, 𝛼0, 𝐸1, 𝐸2, 𝛤1, 𝛤2} and the problem to be treated is: 

{
min𝑇𝐸𝑅𝑀𝑆
min𝑄𝑡𝑜𝑡𝑎𝑙

   Subjected to {

ℎ1(𝑿) ≥ 1.2

ℎ2(𝑿) ≤ 500 MPa

ℎ3(𝑿) ≤ 1.2 GPa
   𝑿 ∈ 𝑆 

Figure 16 displays the Pareto front for 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙 with six design variables 

(𝛼0, 𝛽, 𝐸1, 𝐸2, 𝛤1, 𝛤2). It shows a continuous evolution of the objective functions with a variation 

of 𝑄𝑡𝑜𝑡𝑎𝑙 (from 1850 to 1240 W) and variation of 𝑇𝐸𝑅𝑀𝑆 (from 0.12 to 1.55 µm). Values for 

helix angle 𝛽 are almost constant for the whole Pareto front (17.1° ≤ 𝛽 ≤ 17.4° ). This helix 

angle 𝛽 value corresponds to an overlap ratio 휀𝛽 ≈ 1. When the Pareto front is browsed from 

the specific point 𝑃8 towards the point 𝑃6, an increase of pressure angle 𝛼0 is firstly observed 

(from 15.4° at 𝑃8 to 22.7° at 𝑃7) contributing to a 𝑇𝐸𝑅𝑀𝑆 value less than 0.4 µm as shown in 

Figure 17. This range is associated to small profile modifications at tooth tip (𝐸1 𝛤1 ≤ 10 μm, 

𝐸2 𝛤2 ≤ 5 μm). Then, the pressure angle is almost constant between 𝑃7 and 𝑃6 (𝛼0 ≈ 23°) while 

a large variation of profile modifications at tooth tip is observed (from 𝐸1 𝛤1 = 10 to 40 μm 

and from 𝐸2 𝛤2 = 5 to 20 μm) leading to a decrease of 𝑄𝑡𝑜𝑡𝑎𝑙 and an increase of 𝑇𝐸𝑅𝑀𝑆. 

 
Figure 16. Pareto front (𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙) with six design variables. 𝑃1, 𝑃2, 𝑃3 are specific 

points. (  ) 15.4° ≤ 𝛼0 ≤ 22.7°. (  )  𝛼0 > 22.7°. 
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Table 11: Features of specific points 

Parameters 
Coordinates of specific points on the Pareto front 

𝑃6 𝑃7 𝑃8 
[𝛽(°), 𝛼0(°)] [17.4, 23.2] [17.2, 22.7] [17.3, 15.4] 

[𝐸1(μm), 𝐸2(μm)] [85, 56] [21, 18] [82, 16] 

[𝛤1, 𝛤2] [0.46, 0.34] [0.35, 0.27] [0.35, 0.22] 

[𝑇𝐸𝑅𝑀𝑆 (μm), 𝑄(W)] [1.55, 1240] [0.37, 1550] [0.11, 1850] 

 

 
Figure 17. 𝑇𝐸𝑅𝑀𝑆 evolution as a function of pressure angle 
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Figure 18. Solutions associated to Pareto front 

 

The solutions associated to Pareto front are shown in Figure 18. A profile modification at the 

tip of the pinion larger than the one at the tip of the wheel is observed.  

Figure 19 displays the different optimal Pareto fronts obtained for the optimization of 𝑇𝐸𝑅𝑀𝑆 −
𝑄𝑡𝑜𝑡𝑎𝑙 using 2, 4 and 6 design variables (see sections 6.1, 6.2, 6.3).  
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Figure 19. Pareto fronts with different design variables of 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙 optimization            

(  ) reference point, (      ) 2 design variables, (   ) 4 design variables, (    ) 6 design variables  

It shows that the reference point is close to the Pareto front obtained with optimization 

performed using two macro-geometry parameters (𝛼0, 𝛽). This optimization leads to numerous 

values of helix angle 𝛽. However, optimization using micro and macro-geometry parameters 

leads to an almost constant value of 𝛽. It also allows a large improve of the gear unit efficiency. 

Compared to the optimization using four micro-geometry parameters, the optimization using 

micro and macro-geometry parameters leads to a wider Pareto front with a lower 𝑇𝐸𝑅𝑀𝑆 on the 

left side and lower power losses on the right side 𝑄𝑡𝑜𝑡𝑎𝑙. Therefore, successive optimizations 

with firstly macro-geometry variables and secondly micro-geometry variables taken into 

account separately is not equivalent to an optimization with micro and macro-geometry 

parameters taken into account simultaneously. 

7. Conclusion 
A multi-objective optimization was performed on a single-stage helical gear unit using a genetic 

algorithm NSGA-II in order to improve transmission error and efficiency. Two distinct 

approaches have been tested concerning the power losses (tooth friction power losses vs total 

power losses including churning, bearing and seal power losses). The set of design variables 

chosen for this optimization matches macro-geometry (pressure and helix angles) and/or micro-

geometry parameters (profile modifications). It is firstly noticed that the distinct approaches 

lead to different gear design optimal parameters. It is also noticed that an optimization with 

macro-geometry design variables leads to Pareto front with two independent regions in terms 

of helix angle and pressure angle  values. Taking account of micro-geometry design variables 

allows a significant improve of the gear unit efficiency. An optimization with both micro and 

macro-geometry design variables shows a continuous evolution of the objective functions 

corresponding to total power losses and the transmission error fluctuations.  

Acknowledgments:  

The authors are indebted to the institute Carnot Ingénierie@Lyon for its support and funding.  



 

29 

REFERENCES 

[1] H. Xu, A. Kahraman, N. E. Anderson, and D. G. Maddock, “Prediction of mechanical 

efficiency of parallel-axis gear pairs,” ASME, Journal of Mechanical Design, vol. 129, 

no. 1, pp. 58–68, 2007. 

[2] S. L. Harris, “Dynamic loads on the teeth of spur gears,” Proceedings of Institution of 

Mechanical Engineering, pp. 87–112, 1958. 

[3] H. Opitz, “Noise of gears,” Transactions of the Royal Society, vol. 263, pp. 369–380, 

1969. 

[4] D. Miler, D. Žeželj, A. Lončar, and K. Vučković, “Multi-objective spur gear pair 

optimization focused on volume and efficiency,” Mechanism and Machine Theory, vol. 

125, pp. 185–195, 2018. 

[5] H. Zarefar and S. N. Muthukrishnan, “Computer-aided optimal design via modified 

adaptive random-search algorithm,” Computer-Aided Design, vol. 25, no. 4, pp. 240–

248, 1993. 

[6] P. Garambois, J. Perret-Liaudet, and E. Rigaud, “NVH robust optimization of gear macro 

and microgeometries using an efficient tooth contact model,” Mechanism and Machine 

Theory, vol. 117, pp. 78–95, Nov. 2017. 

[7] Y. Wang, “Optimized tooth profile based on identified gear dynamic model,” 

Mechanism and Machine Theory, vol. 42, no. 8, pp. 1058–1068, 2007. 

[8] N. Marjanovic, B. Isailovic, V. Marjanovic, Z. Milojevic, M. Blagojevic, and M. Bojic, 

“A practical approach to the optimization of gear trains with spur gears,” Mechanism 

and Machine Theory, vol. 53, pp. 1–16, 2012. 

[9] O. Buiga and C. O. Popa, “Optimal mass design of a single-stage helical gear unit with 

genetic algorithms,” Proceedings of the Romanian Academy, Series A, vol. 13, no. 3, pp. 

243–250, 2012. 

[10] T. H. Chong, I. Bae, and G. J. Park, “A new and generalized methodology to design 

multi-stage gear drives by integrating the dimensional and the configuration design 

process,” Mechanism and Machine Theory, vol. 37, no. 3, pp. 295–310, 2002. 

[11] V. Simon, “Multi-objective optimization of hypoid gears to improve operating 

characteristics,” Mechanism and Machine Theory, vol. 146, pp. 1–15, 2020. 

[12] H. Ding, J. Tang, Y. Zhou, J. Zhong, and G. Wan, “A multi-objective correction of 

machine settings considering loaded tooth contact performance in spiral bevel gears by 

nonlinear interval number optimization,” Mechanism and Machine Theory, vol. 113, pp. 

85–108, 2017. 

[13] G. Chandrasekaran, V. S. Sreebalaji, R. Saravanan, and J. Maniraj, “Multiobjective 

optimisation of bevel gear pair design using NSGA-II,” Materials Today: Proceedings, 

vol. 16, pp. 351–360, 2019. 

[14] A. Parmar, P. Ramkumar, and K. Shankar, “Macro geometry multi-objective 

optimization of planetary gearbox considering scuffing constraint,” Mechanism and 

Machine Theory, vol. 154, p. 104045, 2020. 

[15] I. Hüseyin Filiz, S. Olguner, and E. Evyapan, “A study on optimization of planetary gear 

trains,” Acta Physica Polonica A, vol. 132, no. 3, pp. 728–733, 2017. 



 

30 

[16] D. Cui, G. Wang, Y. Lu, and K. Sun, “Reliability design and optimization of the 

planetary gear by a GA based on the DEM and Kriging model,” Reliability Engineering 

and System Safety, vol. 203, pp. 1–13, 2020. 

[17] K. Daoudi, E. M. Boudi, and M. Abdellah, “Genetic Approach for Multiobjective 

Optimization of Epicyclical Gear Train,” Mathematical Problems in Engineering, vol. 

2019, pp. 1–11, 2019. 

[18] S. chul Kim, S. gon Moon, J. hyeon Sohn, Y. jun Park, C. ho Choi, and G. ho Lee, 

“Macro geometry optimization of a helical gear pair for mass, efficiency, and 

transmission error,” Mechanism and Machine Theory, vol. 144, p. 103634, 2020. 

[19] R. C. Sanghvi, A. S. Vashi, H. . Patolia, and R. G. Jivani, “Multi-objective optimization 

of two-stage helical gear train using NSGA-II,” Journal of optimization, pp. 1–8, 2014. 

[20] Q. Yao, “Multi-objective optimization design of spur gear based on NSGA-II and 

decision making,” Advances in Mechanical Engineering, vol. 11, no. 3, pp. 1–8, 2019. 

[21] S. Padmanabhan, S. Ganesan, M. Chandrasekaran, and V. Srinivasa Raman, “Gear pair 

design optimization by genetic algorithm and FEA,” Proceedings of the International 

Conference on Frontiers in Automobile and Mechanical Engineering IEEE, pp. 396–

402, 2010. 

[22] R. Li, T. Chang, J. Wang, X. Wei, and J. Wang, “Multi-objective Optimization Design 

of Gear Reducer Based on Adaptive Genetic Algorithms,” in International Electronic 

Conference on Computer Science, 2008, pp. 273–277. 

[23] M. Patil, P. Ramkumar, and K. Shankar, “Multi-objective optimization of the two-stage 

helical gearbox with tribological constraints,” Mechanism and Machine Theory, vol. 

138, pp. 38–57, 2019. 

[24] A. Carbonelli, J. Perret-Liaudet, E. Rigaud, and A. Le Bot, “Particle swarm optimization 

as an efficient computational method in order to minimize vibrations of multimesh gears 

transmission,” Advances in Acoustics and Vibration, pp. 1–6, 2011. 

[25] A. Carbonelli, E. Rigaud, J. Perret-Liaudet, E. Pelloli, and D. Barday, “Robust 

optimization of a truck timing gear cascade : numerical and experimental results,” in 

Actes CFM 2013, 21ème Congrès Français de Mécanique, 2013, pp. 1–6. 

[26] M. Maatar and P. Velex, “Quasi-static and dynamic analysis of narrow-faced helical 

gears with profile and lead modifications,” ASME, Journal of Mechanical Design, vol. 

119, no. 4, pp. 474–480, 1997. 

[27] M. S. Tavakoli and D. R. Houser, “Optimum profile modifications for the minimization 

of static transmission errors of spur gears,” ASME, Journal of Mechanical Design, vol. 

108, no. 1, pp. 86–94, 1986. 

[28] J. A. Korta and D. Mundo, “Multi-objective micro-geometry optimization of gear tooth 

supported by response surface methodology,” Mechanism and Machine Theory, vol. 

109, pp. 278–295, 2017. 

[29] D. Ghribi, J. Bruyère, P. Velex, M. Octrue, and M. Haddar, “A contribution to the design 

of robust profile modifications in spur and helical gears by combining analytical results 

and numerical simulations,” ASME, Journal of Mechanical Design, vol. 134, no. 6, pp. 

1–9, 2012. 



 

31 

[30] A. Artoni, M. Gabiccini, M. Guiggiani, and A. Kahraman, “Multi-objective ease-off 

optimization of hypoid gears for their efficiency, noise, and durability performances,” 

ASME, Journal of Mechanical Design, vol. 133, no. 12, pp. 1–9, 2011. 

[31] C. I. L. Park, “Multi-objective optimization of the tooth surface in helical gears using 

design of experiment and the response surface method,” Journal of Mechanical Science 

and Technology, vol. 24, no. 3, pp. 823–829, 2010. 

[32] N. Driot, E. Rigaud, J. Sabot, and J. Perret-Liaudet, “Allocation of gear tolerances to 

minimize gearbox noise variability,” Acta Acustica united with Acustica, vol. 87, no. 1, 

pp. 67–76, 2001. 

[33] D. Ghribi, J. Bruyère, P. Velex, M. Octrue, and M. Haddar, “Multi-objective 

optimization of gear tooth profile modifications,” Design and modeling of mechanical 

systems, pp. 189–197, 2013. 

[34] T. A. Harris, Rolling analysis 4th Edition. New York, United States of America: John 

Wiley & Sons. . 

[35] D. B. Welbourn, “Fundamental Knowledge of Gear Noise,” in Proceedings of the 

Institution of Mechanical Engineers, 1979, pp. 9–14. 

[36] W. D. Mark, “Analysis of the vibratory excitation of gear systems: Basic theory,” 

Journal of the Acoustical Society of America, vol. 63, no. 5, pp. 1409–1430, 1978. 

[37] P. Velex and M. Maatar, “A mathematical model for analyzing the influence of shape 

deviations and mounting errors on gear dynamic behaviour,” Journal of Sound and 

Vibration, vol. 191, no. 5, pp. 629–660, 1996. 

[38] P. Velex, J. Bruyère, and D. R. Houser, “Some Analytical Results on Transmission 

Errors in Narrow-Faced Spur and Helical Gears: Influence Of Profile Modifications,” 

ASME, Journal of Mechanical Design, vol. 133, no. 3, pp. 1–11, 2011. 

[39] M. Lalanne, P. Berthier, and J. Der Hagopian, Mechanical Vibrations for Engineers. 

1983. 

[40] P. Velex, “On the relationship between gear dynamics and transmissions errors,” in 

JSME International Conference on Motion and Power Transmissions, 2009, pp. 249–

254. 

[41] E. Rigaud and D. Barday, “Modelling and Analysis of Static Transmission Error – Effect 

of Wheel Body Deformation and Interactions Between Adjacent Loaded Teeth,” in 4th 

World Congress on Gearing and Power Transmission, 1999, vol. 3, pp. 1961–1972. 

[42] M. Badaoui, V. Cahouet, F. Guillet, J. Danière, and P. Velex, “Modeling and detection 

of localized tooth defects in geared systems,” Journal of Mechanical Design, 

Transactions of the ASME, vol. 123, no. 3, pp. 422–430, 2001. 

[43] M. Maatar, P. Velex, and J. P. Raclot, “Some numerical methods for the simulation of 

geared transmission dynamic behavior formulation and assessment,” Journal of 

Mechanical Design, Transactions of the ASME, vol. 119, no. 2, pp. 292–298, 1997. 

[44] J. Durand De Gevigney, C. Changenet, F. Ville, and P. Velex, “Thermal modelling of a 

back-to-back gearbox test machine: Application to the FZG test rig,” Proceedings of the 

Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 226, 

no. 6, pp. 501–515, 2012. 



 

32 

[45] C. Changenet, X. Oviedo-Marlot, and P. Velex, “Power loss predictions in geared 

transmissions using thermal networks-applications to a six-speed manual gearbox,” 

Journal of Mechanical Design, Transactions of the ASME, vol. 128, no. 3, pp. 618–625, 

2006. 

[46] R. C. Martins, P. S. Moura, and J. O. Seabra, “MoS2/Ti low-friction coating for gears,” 

Tribology International, vol. 39, no. 12, pp. 1686–1697, 2006. 

[47] C. Changenet, G. Leprince, F. Ville, and P. Velex, “A Note on Flow Regimes and 

Churning Loss Modeling,” Journal of Mechanical Design, vol. 133, no. 12, pp. 1–5, 

2011. 

[48] C. M. C. G. Fernandes, P. M. T. Marques, R. C. Martins, and J. H. O. Seabra, “Gearbox 

power loss. Part II: Friction losses in gears,” Tribology International, vol. 88, pp. 309–

316, 2015. 

[49] E. Bruke and G. Kendall, Search methodologies: introductory tutorials in optimization 

and decision support techniques. Springer, 2013. 

[50] J. Bruyère and P. Velex, “Derivation of Optimum Profile Modifications in Narrow-Faced 

Spur and Helical Gears Using a Perturbation Method,” Journal of Mechanical Design, 

vol. 135, pp. 1–8, 2013. 

[51] P. Velex and F. Ville, “An analytical approach to tooth friction losses in spur and helical 

gears-influence of profile modifications,” Journal of Mechanical Design, Transactions 

of the ASME, vol. 131, no. 10, pp. 1–10, 2009. 

[52] “ISO 6336 -1. Calculation of load capacity of spur and helical gears,” 1996. 

[53] P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealing-a metaheuristicTechnique 

for multi-objective combinatorial optimization,” Journal Of Multi-Criteria Decision 

Analysis, vol. 7, pp. 34–47, 1998. 

[54] M. P. Hansen, “Tabu search for multiobjective optimization: MOTS,” in Proceedings of 

the Thirteenth International Conference on Multi-Criteria Decision Making (MCDM), 

1997, pp. 1–17. 

[55] M. Gravel, W. L. Price, and C. Gagné, “Scheduling continuous casting of aluminum 

using a multiple objective ant colony optimization metaheuristic,” European Journal of 

Operational Research, vol. 143, pp. 218–229, 2002. 

[56] S. He, J. Y. Wen, E. Prempain, Q. H. Wu, J. Fitch, and S. Mann, “An improved particle 

swarm optimization for optimal power flow,” in International conference on power 

system technology-POWERCON 2004, 2004, pp. 1–6. 

[57] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic 

algorithms,” in Proceedings of the 1st International Conference on Genetic Algorithms, 

1985, pp. 93–100. 

[58] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in 

multiobjective optimization,” Evolutionary Computation, vol. 3, no. 1, pp. 1–16, 1995. 

[59] E. Zitzler and L. Thiele, “An evolutionary algorithm for multiobjective optimization : 

The strength Pareto approach,” Zurich, 1998. 

[60] K. Deb and T. Goel, “Controlled elitist non-dominated sorting genetic algorithms for 

better convergence,” in International conference of evolutionary multi-criterion 



 

33 

optimization, 2001, pp. 67–81. 

[61] Y. Yusoff, M. S. Ngadiman, and A. M. Zain, “Overview of NSGA-II for Optimizing 

Machining Process Parameters,” Procedia Engineering, vol. 15, pp. 3978–3983, 2011. 

 

  



 

34 

Nomenclature 

𝑎𝑤 Center distance (mm) 

𝑏 Width of the gear (mm) 

𝑑𝑚 Mean diameter of bearing (mm) 

𝑒𝑖(𝑀) Total normal deviation (mm) 

𝑓0 Hydraulic loss factor 

𝑓1 Factor depending on bearing characteristics  

ℎ Heat transfer coefficient (W m−2 °C−1) 

𝑘𝑟𝑖 Radial stiffness of bearings (N m−1)   

𝑘𝑎𝑖 Axial stiffness of bearings (N m−1)   

𝑙1 Load applied on bearings (N) 

𝑚0 Module of gear (mm) 

𝒏𝟐 Outward unit normal vector to wheel tooth flanks 

𝒒 Pinion and gear degree-of-freedom vector 

𝑥𝑎 Addendum coefficient 

𝑥𝑓 Dedendum coefficient 

𝐶 Torque (N m) 

𝐶𝑓 Friction coefficient  

𝐶𝑚 Dimensionless torque  

[𝑪] Total viscous damping matrix 

𝐸 Young modulus (Pa)  

𝐸𝑖 actual depth of modification at tooth tip (μm) 

𝑭𝟎 External load vector (N) 

F𝑟(𝑖, 𝑗) Effort applied to the element (𝑖, 𝑗) 
𝐼𝑚 Concentrated inertial of the motor (kg m2  ) 

𝐼𝑟 Concentrated inertial of the receiver (kg m2) 
[𝑲(𝑡, 𝑿)] Equivalent non-linear time-dependent stiffness matrix 

[𝑴] Global constant mass matrix 

𝑀𝑖𝑗 Point of contact line  

𝑀∗ Point of contact between teeth  

MOO Multi-objective optimization 

𝑁𝐿𝑇𝐸 no-loaded static transmission error 

𝑃𝑏𝑎 Apparent base pitch (mm) 

𝑃𝑖 Points belonging to the Pareto front for a 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑡𝑜𝑡𝑎𝑙 optimization  

𝑃′𝑖 Points belonging to the Pareto front for a 𝑇𝐸𝑅𝑀𝑆 − 𝑄𝑔𝑒𝑎𝑟 optimization 

𝑃𝑡 Parent population in the t-th generation  

𝑄0 Load-dependent power loss in the bearing (W) 

𝑄1 No-load dependent loss in the bearing (W) 

𝑄𝑏𝑒𝑎𝑟𝑖𝑛𝑔 Total power loss in bearings (W) 

𝑄𝑐ℎ𝑢𝑟𝑛𝑖𝑛𝑔 Churning power loss (W) 

𝑄𝑡𝑜𝑜𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 Tooth friction power loss (W) 

𝑄𝑠𝑒𝑎𝑙 Total power loss in shaft seal (W) 

𝑄𝑡𝑜𝑡𝑎𝑙 Total power loss (W) 

𝑅𝑏𝑖 Base radius (mm) 

𝑅𝑝𝑖 Pitch radius (mm) 

𝑅𝑡ℎ Thermal resistance (°C W−1) 

RMS  root mean square value 

𝑆ℎ𝑜𝑢𝑠𝑖𝑛𝑔 Exchange surface area (mm2) 
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𝑆𝑚 Submerged surface area (m2) 

𝑇𝑎𝑖𝑟 Air temperature (°C) 

𝑇𝑝𝑖𝑛𝑖𝑜𝑛 Bulk temperature of pinion  

𝑇′1𝑇
′
2 Length of the path of contact on the base plane  (active contact length) 

𝑇𝐸𝑅𝑀𝑆 RMS of transmission error fluctuation   

𝑉𝑔(𝑖, 𝑗) Sliding velocity (m s−1) 

𝒙 Degree-of-freedom vector for the complete system 

𝑌𝐵 Rim thickness factor 

𝑌𝐷𝑇 Tooth depth factor 

𝑌𝑓 Tooth form factor  

𝑌𝑠 Stress correction factor 

𝑌𝛽 Stress correction factor 

𝑍𝑖 Number of teeth  

𝛼0 Pressure angle (°) 
𝛽 Helix angle (°) 
𝛿(𝑀) Normal displacement of the teeth due to the elasticity 

휀𝛼 Transverse contact ratio 

휀𝛽 Overlap contact ratio  

휀𝑡 Total contact ratio  

𝜃𝑖 Angular displacement  

𝜗 Oil kinematic viscosity (m2 s−1) 

ν Poisson’s ratio 

𝜌 Fluid density (kg m−3) 

𝜎 Bending stress (N mm−2 ) 

∆𝑡 Time step (s) 
𝛺  Rotational speed (rad s−1) 

𝛺1 𝑟𝑖𝑔𝑖𝑑 Rotation speed of the pinion in the ideal case (rad s−1) 

𝛺2 𝑟𝑖𝑔𝑖𝑑 Rotation speed of the wheel in the ideal case (rad s−1) 

Ø Shaft diameter (mm) 

𝛤 Dimensionless extend of profile modification   

 


