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Abstract

We investigate the use of multi-agent allocation techniques on
problems related to Earth observation scenarios with multiple
users and satellites. We focus on the problem of coordinating
users having reserved exclusive orbit portions and one central
planner having several requests that may use some intervals
of these exclusives. We define this problem as Earth Obser-
vation Satellite Constellation Scheduling Problem (EOSCSP)
and map it to a Mixed Integer Linear Program. As to solve
EOSCSP, we propose market-based techniques and a dis-
tributed problem solving technique based on Distributed Con-
straint Optimization (DCOP), where agents cooperate to al-
locate requests without sharing their own schedules. These
contributions are experimentally evaluated on randomly gen-
erated EOSCSP instances based on real large-scale or highly
conflicting observation order books.

1 Introduction
Recent years have shown a large increase in the development
of satellite constellations. Instead of considering individual
satellites, they take advantage of a group of satellites, some
of them often sharing the same orbital planes, to provide
richer services like positioning, telecommunication or Earth
observation (Walker 1984). With few satellites in a constel-
lation (e.g. two in the PLEIADES project (Lemaı̂tre et al.
2002)), and in low or medium Earth orbits (altitude inferior
to 35,000km), no region on Earth is permanently covered
by the constellation at any time. So, the main motivation to
increase the size of these constellations is to allow to cap-
ture with a high reactivity any point on Earth, as the Planet
company is doing with more than 150 Earth Observation
Satellites (EOS) (Shah et al. 2019). But, operating numer-
ous EOS requires improving cooperation between the assets
and on-board autonomy in order to make the best use of the
system, which becomes a highly combinatorial task. Besides
their growing number, constellations’ composition is evolv-
ing too. Recent technological advances allow the production
and deployment of agile EOS able to change their orienta-
tion, and to provide multiple types of image shooting with
multiple sensors. While providing richer services to multiple
users, this adds many degrees of freedom and decision vari-
ables to schedule EOS activity, and opens many challenges
(Wang et al. 2020). Among these challenges, we focus on the
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Figure 1: An Earth Observation system composed of a main
mission center u0, distributed stations (with ranges), agen-
cies emitting observation requests (to mission center), EOS
(with image footprint), communication satellites (linking
EOS), and exclusive users with their own ground stations.

collective scheduling of observations on a set of satellites
on which some users have exclusive access to some orbit
portions, using distributed techniques, as to spread decisions
among the different users of the constellation. This anwers to
strong user expectations to benefit on the one hand from the
advantages of a system shared between several stakeholders
(reduction of costs compared to a very expensive global sys-
tem) and on the other hand from the advantages of a propri-
etary system (ability to do what one wants with the satellite
and potentially without disclosing it to others). While the lit-
erature about multi-satellite scheduling is rich, as confirmed
by a recent review paper (Wang et al. 2020), considering
satellite constellations as shared resources requiring multi-
ple users to coordinate as to allocate tasks within exclusive
orbit portions is a completely novel problem, we address in
this paper, as illustrated in Figure 1.

In (Phillips and Parra 2021), marked-based approaches
are proposed to allocate observation tasks to a set of satel-
lite, where each satellite is managed by a different mis-
sion center. Mission centers coordinate their allocation us-
ing auction-based protocols, by bidding on the open obser-
vations depending on the impact on the on-board plan and
its reward (valued using the incidence angle of the sched-
uled observations). Contrary to this approach, in this study,



the distribution is related to some exclusive users having
full control on some orbit portions (using full direct task-
ing operation) or having bought some orbit portions outside
direct communication, on which they have full priority to
schedule observations. Here, the fact that schedules cannot
be performed by a single authority, for privacy reason in ex-
clusive windows, is a strong requirement. This is the rea-
son to provide distributed scheduler where agents coordinate
without disclosing their plans, while meeting coupling con-
straints like satellite capacity or inter-observation configura-
tion time, that could not be guaranteed by non-coordinated
schemes where users make their plans in parallel. We will
investigate here two different distributed resource allocation
and coordination schemes: market-based and DCOP-based
(distributed constraint optimization).

Section 2 illustrates and defines Earth Observation Satel-
lite Constellation Scheduling Problem (EOSCSP). Section 3
focuses on centralized solution methods Mixed-Integer Lin-
ear Program (MILP) and greedy approach to EOSCSP. Sec-
tion 4 expounds some market-based approaches to solve
EOSCSP, using different auction schemes (PSI, SSI and
CBBA), while Section 5 proposes another approach to coor-
dination between exclusive users using distributed constraint
optimization (DCOP).

We experimentally evaluate these different algorithms us-
ing randomly generated instances, in Section 6. Finally, Sec-
tion 7 concludes the paper with some perspectives.

2 EOSCSP Model
This section illustrates the problem we investigate using a
sample scenario, and then provides some core definitions.

2.1 Sample Scenario
Figure 2 illustrates a scenario, where we consider: 3 satel-
lites, each having a given planning period (e.g. planning on
the next orbit, or on horizons depending on the communica-
tion windows between the satellite and ground stations); 1
user u0 without exclusive orbit portion; 2 users having ex-
clusive orbit portions such that user u1 owns exclusives on
satellite s0 and on satellite s1 (hashed red), user u2 owns
exclusives on satellite s0 and on satellite s2 (hashed blue);
several requests to be performed before a due date, denoted
ri,j for the jth request for user i; several observation op-
portunities (simply observations) per request, denoted oi,j,k
for the kth observation for the jth request of the ith user.
Only one observation should be planned to fulfill the re-
quest on temporal slots depending on the satellites’ orbits
and the position of zones of interest (slots are represented
as transparent areas). More precisely, we consider 2 obser-
vations per request, such that observations o1,0,0 and o1,0,1
are private for user u1 (in red), observations o2,0,0, o2,0,1,
o2,1,0, and o2,1,1 are private for user u2 (in blue), obser-
vations o0,j,k’s (in green) which are directly requested to
the central scheduler u0 by other clients without exclusives.
The proposed solution fulfills all requests, by allowing non
exclusive user u0 to position observation on exclusive or-
bit portions (e.g. o0,0,0 in on u1’s exclusive on satellite s0).
A simplified energy constraint states that a satellite cannot
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Figure 2: An example with 3 satellites, 2 exclusive users
(red and blue) with exclusives (hashed areas), and 1 non-
exclusive user (green). Observation time windows appear as
transparent surfaces. Solid surfaces represent an optimal so-
lution.

perform more than nmax observations on its scheduling pe-
riod (here, nmax = 4), and there are minimal transition times
between two observations o and p, depending on o and p
and the date at which the transition is triggered on a given
satellite. At the global level, each exclusive user (u1 or u2)
could have its own scheduling system to manage its exclu-
sive periods, and a central scheduling system (u0) manages
observations o0,j,k’s. In the end, every user and the central
scheduler have a local scheduling problem to solve. Solving
them in a separate manner may lead the central scheduler not
to be able to book slots on exclusive orbit portions, while it
may improve the solution. Without coordination, and with a
non-cooperative management of exclusive slots, the overall
schedule might not be optimal, wrt the number of possible
scheduled observations. Moreover, exclusive users may gain
from this cooperation by making profits from observation
scheduled on their orbit portions. Thus, we propose here to
coordinate the scheduling processes between users.

2.2 Definitions and Notations
Let’s provide the core concepts of this scheduling problem.

Definition 1 An Earth Observation Satellite Constellation
Scheduling with Exclusives Problem (or EOSCSP) is de-
fined by a tuple P = 〈S,U ,R,O〉, such that S is a set of
satellites, U is a set of users,R is a set of requests, andO is
a set of observations to schedule to fulfill requests inR.

Definition 2 A satellite is defined as a tuple s =
〈tstart
s , tend

s , κs, τs〉 with tstart
s ∈ R the start time of its orbit

plan, tend
s ∈ R the end time of its orbit plan, κs ∈ N+ its ca-



pacity (i.e. the maximum number of observations during its
orbit plan), τs : O×O → R the function defining transition
times between two given observations.

Definition 3 A user is defined as a tuple u = 〈eu, pu〉
with a (possibly empty) set of exclusive time windows eu =
{(s, (tstart, tend)) | s ∈ S, [tstart, tend] ⊆ [tstart

s , tend
s ])} ⊂

(S×(R×R)), and a priority pu ∈ N+ (the lower the better,
used in case of conflict). We note U ex (resp. Unex) the set of
users owning (resp. not owning) exclusives.

We assume here that only one user has no exclusive orbit
portion, the central planner, denoted u0, i.e. Unex = {u0},
and there is no overlapping exclusive portions.

Definition 4 A request is defined as a tuple r =
〈tstart
r , tend

r ,∆r, ρr, pr, ur, θr〉, with a validity time window
defined by tstart

r ∈ R and tend
r ∈ R, a duration ∆r ∈ R, a

reward ρr ∈ R if r is fulfilled, a latitude-longitude-altitude
position (LLA) to observe pr, a requester ur ∈ U and a list
θr ∈ 2O of observation opportunities to fulfill the request.

θr is dynamically computed on current constellation con-
figuration and requested LLA position pr, since several ag-
ile satellites, by changing their orientation may acquire the
same position, thus generating several observation opportu-
nities.

Definition 5 An observation is defined as a tuple o =
〈tstart
o , tend

o ,∆o, ro, ρo, so, uo, po〉, with a validity time win-
dow defined by tstart

o ∈ R and tend
o ∈ R, a request ro to

which it contributes, a duration ∆o ∈ R (∆o = ∆ro ), a
reward ρo ∈ R (combined from ro and information about
the weather), a satellite so on which this observation can
be scheduled, an owner uo ∈ U (uo = uro ), and a priority
po ∈ N+ (po = pro ).

The difference between request reward and observation
reward comes from the fact that, in practice, weather condi-
tions or incidence angle of an observation may increase or
decrease the basic reward for a given request. So, our model
can consider different rewards, but in this study we only fo-
cus on cases where observation rewards are directly inher-
ited from the requests.

Definition 6 A solution to an EOSCSP is a mappingM =
{(o, t) | o ∈ O, t ∈ [tstart

o , tend
o ]} assigning a start time

to at most one observation per request such that exclu-
sive users have their observations scheduled on their re-
spective exclusive windows, and the overall reward is max-
imized (sum of the rewards of the scheduled observations):
arg maxM

∑
(o,t)∈M ro.

Definition 7 An EOSCSP for user u, denoted P [u] =
〈S,U ,R[u],O[u]〉 (or EOSCSP[u]), is an EOSCSP, sub-
problem of another EOSCSP P = 〈S,U ,R,O〉 restricted
to requests and observations from u, where R[u] = {r| r ∈
R, ur = u} ⊆ R and O[u] = {o| o ∈ O, uo = u} ⊆ O.

More generally, we note P [x] (resp. P [x]) the problem P
limited to the only components related to x, x being a re-
quest, an observation or a satellite. Later on, we will also
use the notations P [∅|M] (resp. P [ul, . . . , um|M]) to de-
fine the problem (resp. sub-problem for users ul, . . . , um)

given some predefined allocationM of some observations.
Moreover, we will use notation P to appoint the EOSCSP
P , where only requests and related observations that can
be scheduled outside exclusive are considered (i.e. obser-
vations whose time windows intersect non exclusive or-
bit portions). Finally, we note the union of two problems
P = 〈S,U ,R,O〉 and P ′ = 〈S ′,U ′,R′,O′〉, P ∪ P ′ =
〈S ∪ S ′,U ∪ U ′,R∪R′,O ∪O′〉.

3 Centralized Problem Solving for EOSCSP
We present here centralized approaches to EOSCSP. First,
this planning problem is modeled as a MILP. Decision vari-
ables are the following. xs,o ∈ {0, 1} is the decision to per-
form observation o from satellite s, ts,o ∈ R is the start
date for the observation o on satellite s, βs,o,p ∈ {0, 1} is
the precedence between observations on the same satellite,
equals to 1 if o is before p on s.

max
xs,o

∑
o∈O,s∈S ρoxs,o (1)

s.t. ∀s ∈ S,∀r ∈ R,∀o ∈ O,∀p ∈ O, o 6= p

2− βs,o,p − βs,p,o ≥ xs,o (2)
2− βs,o,p − βs,p,o ≥ xs,p (3)
βs,o,p + βs,p,o ≤ 1 (4)
ts,p − ts,o ≥ τs(o, p) + ∆o −∆max

s,o,pβs,o,p, ∆max
s,o,p > 0

(5)
ts,o − ts,p ≥ τs(p, o) + ∆p −∆max

s,p,oβs,p,o, ∆max
s,p,o > 0

(6)∑
o∈O xs,o ≤ κs (7)∑
o∈θ(r) xs,o ≤ 1 (8)

xs,o ∈ {0, 1} (9)

ts,o ∈ [tstart
o , tend

o ] ⊂ R (10)
βs,o,p ∈ {0, 1} (11)

with ∆max
s,o,p = tend

o − tstart
p + ∆o + τs(o, p)

(2) to (6) ensure precedence of observations and their dis-
tance is at least the transition time required on their satel-
lite. (7) enforces the number of observations booked on a
satellite does not exceed its capacity. (8) checks at most
one observation per request is scheduled. (9) to (11) are do-
main definitions. This MILP can be solved using off-the-
shelf solvers like CPLEX or Gurobi, but they will hardly
scale up when dealing with larger problems (e.g. more than
100 observations with 3 satellites and 3 users). To ensure
observations from exclusive users have priority over non-
exclusive users’ observations, their reward must be set to a
high value. Thus, the solver will prefer scheduling exclusive
observations within their time window instead of scheduling
another observation with less priority. While the solution to
this problem is optimal, it requires each exclusive user to
fully disclose request information to the central planner.

As to solve large problems, one approach is to apply
a greedy allocation consisting in planning first exclusive
users’s observations and then more urgent observations, as
described in Algorithm 1. In practice, this is the technique



used by most satellite/constellation operators and is a can-
didate competitor for benchmarking solution methods (Cho
et al. 2018; Wang et al. 2020). For doing so, observations
are sorted in increasing order on priority and start time cri-
teria (line 2). Then, for each observation in this sorted list,
the first free slot on its satellite orbit plan is found (line 4-8).
This algorithm is not optimal, but provides very fast solu-
tions. However, as for MILP, this solution requires sharing
all the constraints and information with a central planner.

Algorithm 1: Greedy EOSCSP solver
Data: An EOSCSP P = 〈S,U ,R,O〉
Result: An assignmentM

1 M← {}
2 Osorted ← sort(O)
3 R← {(s, [])} | s ∈ S}
4 for o ∈ Osorted do
5 t← first slot(o, P,R)
6 if t 6= ∅ then
7 M←M∪ {(o, t)}
8 Osorted ← Osorted \ θ(ro)

9 returnM

Function first slot (o, P = 〈S,U ,R,O〉, R)
10 for (s, [tstart, tend]) ∈ domains(o) do
11 if |R[s]| < κs then
12 if R[s] = [] then
13 if tend ≥ tstart + ∆o then
14 R[s] = {(o, (s, tstart))}
15 return (s, tstart)

16 else
17 i← 0
18 while i ≤ |R[s]| do
19 tstart′ ← tstart

20 if i > 0 then
21 (oi−1, (s, ti−1))← R[s][i− 1]

22 tstart′ ← max(tstart, ti−1 +
∆oi−1 + τs,oi−1,o)

23 if tstart′ + ∆o ≤ tend then
24 if i = |R[s]| then
25 tupper ← tend

26 tend′ ← tstart′ + ∆o

27 else
28 (oi, (s, ti))← R[s][i]
29 tupper ← ti
30 tend′ ← tstart′ + ∆o + τs,o,oi

31 if tstart′ < tend′ ≤ tupper then
32 R[s] =

insert(R[s], (o, (s, tstart′)), i)

33 return (s, tstart′)

34 i+ +

35 return ∅

4 Auction-based Coordination for EOSCSP
One vision to allocate resources and/or tasks between sev-
eral agents (here, our exclusive users) consists in market-
based approaches, that have proven their flexibility, effi-
ciency, fairness, and privacy-preservation of users’ plans
and resources. In multi-robot task allocation problems, such
approaches are used to allocate tasks to robots, and inte-
grate them into their plans (Dias et al. 2006). In our set-
ting, one could consider allocating requests to satellites by
such market-based mechanisms, as proposed in (Phillips and
Parra 2021), with the difference that distribution is not re-
lated to satellites, but to exclusive users and their exclusive
orbit portions. This is the approach we follow in this sec-
tion. But first, let’s introduce the auction-based mechanisms
we will implement.

4.1 Some Background on Market-based
Allocation

A generic task allocation framework consists in a set of re-
sources and a set of tasks to be performed by resources. The
objective is to assign tasks to resources so that it maximizes
some objective (e.g. the number of assigned tasks, or the
sum of the rewards of the tasks). So this is classical allo-
cation problem that can be modeled as a MILP, as seen in
previous section. Now, the idea is that the requests to be
scheduled are open for bidding by an auctioneer. Bidders
(the exclusive users) valuate the requests depending on their
current plan, and bid for some requests, as illustrated in Fig-
ure 3. The most expensive computations in this process are
the bidding step by each bidder, which can have an exponen-
tial number of bundles to valuate, and the winner determina-
tion problem (WDP) which amounts to solving an Integer
Linear Program with a potentially exponential size, and falls
into the combinatorial auction (CA) frameworks (Cramton,
Shoham, and Steinberg 2010).

According to literature on multi-robot task allocation
(Dias et al. 2006) and multi-satellite observation allocation
(Phillips and Parra 2021), to overcome these computational
limits, the classical relaxation consists in only allowing bid-
ding on item (and not on bundles). When bidders bid on the
whole set of items in parallel, we fall into PSI framework
(Koenig et al. 2006). When the auctioneer announces items
iterativelly, and bidders build their bid knowing the previous
item allocation, we fall into the SSI framework (Koenig et al.
2006). In general PSI has very good performances with very
limited computation time, while PSI solution quality are of-
ten limited, since bidders cannot easily reason on bundles.
More recently, consensus-based bundle algorithm (CBBA)
combines ideas from auctions and consensus to converge
faster than SSI while yielding similar solutions and hav-
ing the benefits of traditional consensus algorithms (Choi,
Brunet, and How 2009). CBBA is a fully distributed solu-
tion to implement a computationally cheap variant of com-
binatorial auctions (CA). Each bidder constructs a unique
bundle of items it wishes to be assigned to, with respect to
the marginal cost associated with the inclusion of the consid-
ered item into its current bundle. Then during the consensus
phase, the bidders compare their bids with their teammates
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Figure 3: A sample auction process with one auctioneer a
and n bidders bi, following five main steps: (1) announce-
ment of the items to allocate, (2) valuation of the items or
bundles by each bidder, (3) communication of the computed
bids, (4) winner determination problem solving, and (5) al-
location of items to bidders.

bids. If a robot is outbid on an item t, it drops the item and all
the items added after it, as the exclusion of t made the val-
uation of their marginal cost obsolete. This algorithm have
been extensively studied and modified to improve its perfor-
mances and adapt it to specific scenarios, like multi-satellite
observation allocation (Phillips and Parra 2021).

4.2 Mapping EOSCSP to Auctions
Mapping an EOSCSP P to a market-based allocation prob-
lem is quite straightforward. Bidders are exclusives users
in Uex, and items are non exclusive requests in R emit-
ted by the central planner u0, playing the role of auction-
eer. The idea is that each exclusive user u computes an ini-
tial planMu with its own requests by solving P [u]. Then,
u0 announces the requests, either as a whole (for PSI and
CBBA) or iterativelly (for SSI). Each exclusive user u valu-
ates each single request with function bid (for PSI and SSI)
or bundle with function bundle (for CBBA) by comput-
ing the marginal cost to integrate the given item or bundle
x in its current plan. We redirect the reader to the original
CBBA paper for more details about the bundle construc-
tion (Choi, Brunet, and How 2009). bid(r,Mu) simply
amounts to solve P [u] ∪ P [r] and to assess the difference
with the current planMu. It returns the bid itself Bu[r] (best
marginal cost) and the schedule for one observation to ful-
fill r, σu[r] = (o, t). The bids (on single items or bundles)
are then sent to the auctioneer u0 (for PSI and SSI) which
determines the winners, or to the other bidders sharing in-
terest on the same request, namely Nu, to find a consensus
(for CBBA). Once the winners are determined, requests are
allocated to the winners. If there remain some non allocated
requests, u0 attempts to schedule them outside any exclu-
sive window. These processes are sketched in Algorithms 2,
3 and 4.

In PSI and SSI, the ⊕ operator is used to add σu[r] =
(o, t) in the current plan. Depending on the setting, it can be

Algorithm 2: psi EOSCSP solver
Data: An EOSCSP P = 〈S,U ,R,O〉
Result: An assignmentM

1 Mu0 ← ∅
2 for each u ∈ Uex do concurrently
3 Mu ← solve(P [u])
4 for each r ∈ R do Bu[r], σu[r]← bid(r,Mu)

// send Bu, σu to u0

5 for each r ∈ R do
6 w ← arg maxu∈Uex{Bu[r]}
7 Mu0 ←Mu0 ∪ {σw[r]}
8 Mw ←Mw ⊕ σw[r] // send Mw[r] to w

9 Mu0 ← solve(P [u0|Mu0 ])
10 return

⋃
u∈UMu

Algorithm 3: ssi EOSCSP solver
Data: An EOSCSP P = 〈S,U ,R,O〉
Result: An assignmentM

1 Mu0 ← ∅
2 for each u ∈ Uex do concurrentlyMu ← solve(P [u])
3 for each r ∈ sorted(R) do
4 for each u ∈ Uex do
5 Bu[r], σu[r]← bid(r,Mu)

// send Bu[r], σu[r] to u0

6 w ← arg maxu∈Uex{Bu[r]}
7 Mu0 ←Mu0 ∪ {σw[r]}
8 Mw ←Mw ⊕ σw[r] // send Mw[r] to w

9 Mu0 ← solve(P [u0|Mu0 ])
10 return

⋃
u∈UMu

Algorithm 4: cbba EOSCSP solver
Data: An EOSCSP P = 〈S,U ,R,O〉
Result: An assignmentM

1 Mu0 ← ∅
2 for each u ∈ Uex do concurrentlyMu ← solve(P [u])
3 for each r ∈ sorted(R) do
4 for each u ∈ Uex do
5 Nu ← candidates(r)
6 Ru ←Ru ∪ {r}

7 while conflict do
8 for each u ∈ Uex do concurrently
9 Bu,Wu, Tu ← bundle(u)

// send Bu,Wu, Tu to Nu

10 for each u ∈ Uex do concurrently
// solve conflicts and determine
Mu (see (Choi, Brunet, and How
2009))

11 for each u ∈ Uex do
12 Mu0 ←Mu0 ∪ {(o, t)|(o, t) ∈Mu, uo = u0}

13 Mu0 ← solve(P [u0|M])
14 return

⋃
u∈UMu



a simple aggregation if there is no conflict, or may require
removing some already planned observations with lower re-
ward. In SSI and CBBA, requests are sorted before looping
over. This sorting can be done wrt due date, reward, or any
combination of criteria. In the experiments, we will use the
due date.

5 DCOP-based Coordination for EOSCSP
Another approach to implement the allocation of requests
between the multiple candidate exclusive users is to adopt
a distributed constraint optimization vision. We devise here
a cooperation mechanism between exclusive users to coor-
dinate their scheduling process, by exchanging messages to
reach an agreement on request allocations while meeting the
coupling constraints, such as the capacity constraints.

5.1 Some Background on DCOP
One way to model inter-agent coordination problems is to
formalize them as distributed constraint optimization prob-
lems (DCOP) (Petcu and Faltings 2005).

Definition 8 A discrete Distributed Constraint Optimiza-
tion Problem (or DCOP) is a tuple 〈A,X ,D, C, µ〉, where:
A = {a1, . . . , a|A|} is a set of agents; X = {x1, . . . , xn}
are variables owned by the agents; D = {Dx1

, . . . ,Dxn
}

is a set of finite domains, such that variable xi takes values
in Dxi

= {v1, . . . , vk}; C = {c1, . . . , cm} is a set of soft
constraints, where each ci defines a cost ∈ R+ ∪ {+∞}
for each combination of assignments to a subset of vari-
ables (a constraint is initially known only to the agents in-
volved); µ : X → A is a function mapping variables to
their associated agent; f :

∏
Dxi → R is an objective func-

tion, representing the global cost of a complete variable as-
signment. The optimization objective is represented by func-
tion f , which, in general, is considered as the sum of costs:
f =

∑
i ci. A solution to a DCOP P is a complete assign-

ment to all variables. A solution is optimal if it minimizes f .

DCOP have been widely studied and applied in many ar-
eas of reference (Fioretto, Pontelli, and Yeoh 2018). They
have many interesting properties: (i) focus on decentralized
approaches where agents negotiate a joint solution through
local message exchanges; (ii) exploitation of the domain
structure (by encoding it in constraints) to address hard com-
putational problems; (iii) wide variety of solution meth-
ods ranging from exact methods to heuristic and approxi-
mate techniques; such as, for example, ADOPT (Modi et al.
2005), DPOP (Petcu and Faltings 2005), MaxSum (Farinelli
et al. 2008), DSA (Zhang et al. 2005) or MGM (Mah-
eswaran, Pearce, and Tambe 2004), to name only the most
famous.

5.2 Coordinating Exclusive Users with DCOP
As for combinatorial auctions, using DCOPs for allocating
all requests as a whole is too computationally expensive to
be used. So we will use the same idea than SSI, and con-
sider requests sequentially, and coordinate exclusive user for
each request using a DCOP solver, instead of auctions in
SSI. This lets the non exclusive users coordinate to choose

which one will fulfill it by scheduling an observation in its
exclusive time windows. Algorithm 5 sketches this method,
coined s dcop (for sequential DCOP). First, exclusive users
also solve their own local sub-problem concurrently (line 1).
Then, for each request r in the ordered list of remaining re-
quests (line 2), a new DCOP instance is collectively built
between the exclusive users (line 3), and then solved (line
4) using any DCOP solver available (DPOP in our experi-
ments). Once all requests have been considered, u0 gathers
the sub-solutions to build its own final solution, by schedul-
ing as many observation outside exclusive time windows as
possible (line 6-7). Note that, the inner plan of each exclu-
sive user remains private, and only non exclusive schedule
observation are communicated to u0 (plus some extra infor-
mation to handle inter-observation transition times).

Algorithm 5: s dcop EOSCSP solver
Data: An EOSCSP P = 〈S,U ,R,O〉
Result: An assignmentM

1 for each u ∈ Uex do concurrentlyMu ← solve(P [u])
2 for each r ∈ sort(R) do
3 p← build DCOP(θr,M,Mu1 , . . . ,Mun , P )
4 Mu1 , . . . ,Mun ← solve DCOP(p)
5 for each u ∈ Uex do concurrently
6 M′u ← {(o, t) ∈Mu|uo ∈ Unex}

// send M′u to u0

7 Mu0 ← solve(P [u0|
⋃

u∈Uex

M′u])

8 return
⋃

u∈UMu

5.3 DCOP Model
Let’s specify now the DCOP instance to be built in line 3 of
Algorithm 5 for a given request r, and a current scheduling
(M,Mu1 , . . . ,Mun ), as required in Definition 8. Straight-
forwardly, the set of agents is the set of exclusive users
which can potentially schedule the current request r:

A = {u ∈ Uex|∃(s, (tstart
u , tend

u )) ∈ eu,∃o ∈ θr
s.t. so = s, [tstart

u , tend
u ] ∩ [tstart

o , tend
o ] 6= ∅} (12)

We note O[u]r = {o ∈ θr|∃(s, (tstart
u , tend

u )) ∈ eu, s.t. so =
s, [tstart

u , tend
u ] ∩ [tstart

o , tend
o ] 6= ∅} these observations related

to request r that can be scheduled on u’s exclusives. Each
such agent will own binary decision variables, one for each
observation o ∈ O[u]r and exclusive e in its exclusives eu,
stating whether it schedules o in e or not:

X = {xe,o|e ∈
⋃
u∈A eu, o ∈ O[u]r} (13)

D = {Dxe,o = {0, 1}|xe,o ∈ X} (14)

The mapping µ associates each variable xe,o to e’s owner.
Constraints should check that at most one observation is

scheduled per request (15), that satellites are not overloaded
(16), that at most one agent serves the same observation (17).∑

e∈⋃u∈A eu
xe,o ≤ 1, ∀u ∈ X ,∀o ∈ O[u]r (15)∑

o∈{o∈O[u]r|u∈A,so=s},e∈
⋃

u∈A eu
xe,o ≤ κ∗s, ∀s ∈ S (16)



with κ∗s being the current capacity of s given the already
scheduled observations inM,Mu1 , . . . ,Mun .∑

e∈⋃u∈A eu
xe,o ≤ 1, ∀o ∈ O (17)

Beside, the cost to integrate an observation in the current
user’s schedule should be assessed to guide the optimization
process. We thus add soft constraint to each xe,o:

c(xe,o) = π(o,Muo), ∀xe,o ∈ X (18)

where π evaluates the best cost obtained when schedul-
ing o and any combination of observations from Muo

, as
to consider all possible revisions of uo’s current schedule.
Practically, instead of computing π each time, some con-
straint compilation can be used to assess all these combina-
tions only once. These exponential number of alternatives
are evaluated using polynomial greedy algorithm. To sum
up:

C = {(15), (16), (17), (18)} (19)

6 Experimental Evaluation
Experiments aim to analyze the performances of the in-
vestigated algorithms with a growing number of requests
(and observations). They are coded in Python 3.7 and ex-
ecuted on 20-core Intel(R) Xeon(R) CPU E5-2660 v3 @
2.60GHz, 62GB RAM, Ubuntu 18.04.5 LTS. We ran 30 in-
stances of randomly generated EOSCSP with seed in [0:29]
for each problem size, and plot the average, with [0.05, 0.95]
confidence. The solve procedure used in psi, ssi, cbba
and s dcop is the greedy algorithm. The DCOP algorithm
used by s dcop is the DPOP implementation from pyDCOP
(Rust, Picard, and Ramparany 2019). Randomly generated
values are uniformly chosen within provided intervals. The
computation time reported latter is a centralized computa-
tion time (no real distribution over several computers).

Highly conflicting problems. We evaluate the algorithms
on very conflicting small-scale problems (5 min planning
horizon). We generate EOSCSPs with 3 satellites with a ca-
pacity of 20 observations, 4 exclusive users emitting 2 to 20
requests each, 8 exclusive portions per user with a random
duration in [15:20], a central planner emitting 8 to 80 re-
quests, 10 observation opportunities per request of duration
5 that can be scheduled in a time window with duration in
[10:20], and a reward in [10:50:10] for exclusive user, and
in [1:5] for central planner. Satellites’ time window is [0,
300]. Transition times between observations are uniformly
equals to 1. Exclusives are randomly positioned, while en-
suring they do not overlap. Observation time windows are
randomly positioned, as to ensure they are either included in
one exclusive, or outside any exclusive. There are many ob-
servation overlaps, and as many requests from central plan-
ner than all requests from the exclusive users.

Figure 4 shows the results for this setting. Reward-wise,
all the distributed algorithms except itnex2ex are almost
as good as greedy, which is our baseline. Still, cbba and
s dcop provides the best distributed solutions. The decline

with growing number of observations is due to the satellites’
capacity saturation. s dcop and cbba’s performances are at
the cost of extra computation time, while remaining reason-
able (approx. 1000 seconds), contrary to optimal solver (e.g.
CPLEX) that cannot solve instances with more than 100
observations (not displayed here). s dcop’s higher compu-
tation time results from pre-computing function π and the
underlying DPOP solving procedure. cbba computational
overhead is due to bundle valuation. At some point (prob-
lems larger than 750 observations to schedule), cbba re-
quires more time to compute than s dcop. This is due to
the exponentially growing number of bundles to consider
and the fact that at this size, with such a conflicting setting,
the cbba neighborhood network is a complete graph, mean-
ing that each user has to resolve conflicts with all the other
users. Communication-wise, psi exchanges few large mes-
sages, since all requests are communicated to all users, re-
sulting in exchanging more 10Mb in larger instances. ssi and
s dcop exchange numerous messages of smaller size (only
sending bids on requests of interest), due to the sequential
process they follow. On its side, cbba exchanges fewer mes-
sages of small size (approx. total 30kB in large instances),
which makes it a very relevant candidate in distributed set-
tings, with good compromise between solution quality and
communication load. If reactiveness is a requirement, ssi re-
mains the best candidate.

Realistic problems. Here, we generate large-scale EOSC-
SPs, with realistic parameters, with respect with order books
provided by our partners, to schedule thousands of observa-
tions in a 6-hour planning horizon. We generate instances
as previously but with 8 satellites with a capacity of 500
observations, 5 exclusive users with 20 to 100 requests
each, 10 exclusive orbit portions per user with a duration in
[300:600], 1 central planner with 25 to 250 requests, 5 ob-
servation opportunities per request of duration of 20 that can
be scheduled in a time window with duration in [40:60] in-
cluded in an exclusive windows (there is no request outside
exclusive windows in this setting), and the planning time
window is [0, 21600].

Figure 5 shows results for this setting. All algorithms
provide good quality solutions equivalent to greedy. The
results obtained in this setting, only focusing on observa-
tions inside exclusive windows, confirm the performances of
the different benchmarked algorithm, except that here cbba
does require more time to compute than s dcop. This is due
to the fact that these larger instances are less conflicting,
and that the neighborhoods are no longer complete. Let’s
note that both s dcop and cbba are very distributed in na-
ture, and performs many computation concurrently. There-
fore there is room for computation speedup in real dis-
tributed settings.

7 Conclusion and Synthesis
This paper investigated for the first time the use of dis-
tributed and multi-agent techniques to solve the novel
EOSCSP, keeping in mind the need to limit information
disclosure between users. We defined core components of
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Figure 4: Results for the investigated distributed solution methods on highly conflicting small-scale problems.
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Figure 5: Results for the investigated distributed solution methods on problems with realistic large-scale order books.

EOSCSP, and proposed a straightforward MILP encoding to
optimally solve such problems. This is unfortunately non us-
able in practice, even on small instances. We thus proposed
a greedy and fast algorithm to solve EOSCSP. We devised
and implemented several distributed algorithms (psi, ssi,
cbba and s dcop), all keeping the inner user plans private.
s dcop and cbba provides solutions equivalent to the best
evaluated algorithms on over-conflicting problems. This has
a cost: higher communication load and computation time
to assess the reward to integrate an observation in a given
schedule. Yet, these techniques are fully distributable, and
may gain from concurrent execution. On realistic large scale
problems, the solution quality is still very good wrt. greedy.
While, these problems still require less coordination be-
cause the probability for overlapping observations is smaller,
EOSCSP still implies numerous observations from exclusive
users, which makes the computation of the s dcop evalua-
tion function π and the construction of the cbba bundles
expensive. A good compromise is thus to use ssi in larger
settings, since computation time, communication-load are
very limited, while providing good quality solutions. Note
that this investigation was also a very good terrain for con-
fronting DCOP-based and Market-based techniques, which
are most often not compared in the literature.

This work raises several perspectives, notably the devel-

opment of dedicated DCOP or CBBA solvers adapted to
EOSCSP specificity, e.g. the use of the evaluation function π
or the construction of bundles, that may result from a learn-
ing process, instead of a systematic assessment of every al-
ternative. On may also consider devising dedicated bidding
language to assess bundles and perform the winner deter-
mination problem in a efficient manner. Finally, we are cur-
rently working on integrating uncertainties about observa-
tion success into the decision process, which leads to even
more complex problems to solve.
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