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GLOBAL EXISTENCE, UNIFORM BOUNDEDNESS, AND STABILIZATION IN

A CHEMOTAXIS SYSTEM WITH DENSITY-SUPPRESSED MOTILITY AND

NUTRIENT CONSUMPTION

JIE JIANG, PHILIPPE LAURENÇOT, AND YANYAN ZHANG

Abstract. Well-posedness and uniform-in-time boundedness of classical solutions are investigated
for a three-component parabolic system which describes the dynamics of a population of cells inter-
acting with a chemoattractant and a nutrient. The former induces a chemotactic bias in the diffusive
motion of the cells and is accounted for by a density-suppressed motility. Well-posedness is first
established for generic positive and non-increasing motility functions vanishing at infinity. Growth
conditions on the motility function guaranteeing the uniform-in-time boundedness of solutions are
next identified. Finally, for sublinearly decaying motility functions, convergence to a spatially homo-
geneous steady state is shown, with an exponential rate for consumption rates behaving linearly near
zero.

1. Introduction

Spatially periodic stripe patterns are ubiquitous in biological systems and often play vital roles
in embryogenesis and development. However, the underlying developmental mechanism remains
unclear and attracts a lot of research interest. Recently, a mathematical model for autonomous
periodic stripe pattern formation was proposed in [29]:

∂tu = ∆(uγ(v)) + θuf(n) in (0,∞)× Ω ,

∂tv = Dv∆v + αu− βv in (0,∞)× Ω ,

∂tn = Dn∆n− ksθuf(n) in (0,∞)× Ω ,

(1.1)

where the consumption rate f is given by

f(s) =
s2

s2 +Kn

, s ≥ 0 .

Here, Ω is a bounded domain of RN , N ≥ 1, and u, v, and n denote the cell density, the signal
concentration, and the nutrient level, respectively, while the cell motility γ is a positive function and
θ, Dv, Dn, ks, and Kn are positive constants. The key feature of this model is a density-suppressed
cellular motility γ, which stands for a repressive effect of the signal (and hence of the cell density) on
the cell motility. More precisely, cells perform random walks via the swim-and-tumble motion at low
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concentrations and are more motile while, at high concentrations, these cells tumble incessantly, a
process which impedes their motion and results in a vanishing macroscopic motility. Numerical and
experimental analyses indicate that such a motility control can establish a spatially periodic structure
in a growing bacteria population without the recourse to other mechanisms. Subsequently, in order
to better understand the effect of density-suppressed motility in pattern formations, a simplified
two-component version of (1.1) with a population growth was further analyzed numerically and
experimentally in [14]:

∂tu = ∆(uγ(v)) in (0,∞)× Ω ,

τ∂tv = ∆v + u− βv in (0,∞)× Ω .
(1.2)

This model can also correctly capture the dynamics at the propagating front where new stripes are
formed. We remark that system (1.2) belongs to the general class of chemotaxis models proposed
by Keller & Segel in their seminal work [25] in the 1970s, based on a local sensing mechanism for
chemotaxis. It is worth pointing out here that system (1.2) is readily obtained from (1.1) by setting
θ = 0.
As already mentioned, a key feature of chemotaxis models involving density-suppressed motility

is the possible degeneracy of the diffusion in the cell’s equation when the signal intensity v becomes
unbounded and the motility γ vanishes at infinity. Then global well-posedness and boundedness of
classical solutions to reaction-diffusion systems like (1.1) or (1.2) are not directly provided by classical
theories for parabolic systems. The analysis of these issues have thus attracted a lot of interest in
the mathematical literature recently, with a focus on the simplified two-component system (1.2).
More precisely, when N = 2, global existence and boundedness of classical solutions are first

obtained in [32] when assuming γ to be bounded from below by a positive constant. This assumption
is relaxed in [18] where global existence is shown for any positive and non-increasing motility function
γ converging to zero at infinity, permitting a vanishing limit at infinity. When τ = 0, uniform-in-time
boundedness of classical solutions with a vanishing motility is first obtained when γ(s) = s−k for any
k < ∞ in [1] and later extended in [16] to τ ≥ 0 and any non-increasing motility function decaying
slower than any negative exponential function at infinity. Negative exponential functions appear to
be critical for the dynamics of (1.2) and the specific choice of motility function γ(s) = e−χs, χ > 0,
is studied in [24] and [17, 18] by different methods, uncovering a critical mass phenomenon with the
same threshold value as the classical Keller-Segel system. More precisely, classical solutions to (1.2)
are uniformly-in-time bounded when the initial mass lies below a certain threshold value [11,17,18],
while unbounded global classical solutions are constructed for some initial conditions having an initial
mass exceeding this threshold value [17, 18, 24].
In higher space dimensions N ≥ 3, global existence and boundedness of classical solutions to (1.2)

are established when τ = 0 and γ(s) = s−k with any k < 2/(N − 2) in [1], as well as in [16, 34] by
different approaches. As shown recently in [21], when τ = 0, global existence of classical solutions
to (1.2) is a generic feature and is true for arbitrary positive motility functions γ which are not
necessarily monotone decreasing or decaying to zero at infinity. Uniform-in-time boundedness of
classical solutions to (1.2) is established in [21] when γ(s) ∼ s−k as s→ ∞ with any k < N/(N − 2),
a range which is likely to be optimal and extends the above mentioned papers, as well as [20] where
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the case k < min{1, 4/(N − 2)} is considered. When τ > 0, global existence of classical solutions
to (1.2) is asserted in [19] for any positive, non-increasing and asymptotically vanishing motility.
To the best of our knowledge, uniform-in-time boundedness is only available when γ(s) = s−k with
k ≤ 1/[N/2] in [16, 18]. Here, [N/2] denotes the maximal integer less or equal to N/2.
To complete this overview of the existing literature on (1.2), we mention that weak solutions are

constructed in [11–13,28,32]. Several studies have also been devoted to (1.2) when a logistic growth
is included. The latter actually alters significantly the mathematical properties of (1.2) and its
dissipative effect fosters boundedness of classical solutions. We refer to [17,22,33] for studies in this
direction.

In contrast to its two-component counterpart (1.2), the three-component system (1.1) has received
little attention. As far as we know, global existence and boundedness of classical solutions to (1.1) are
established in [23] when N = 2 and γ is a bounded Lipschitz continuous function which is bounded
from below by a positive constant. Still in the two-dimensional case, global existence of classical
solutions is subsequently shown in [30] when the motility γ is a positive and decreasing function
with a vanishing limit at infinity. Uniform-in-time boundedness of these solutions is then obtained
provided 1/γ grows at most algebraically at infinity, a result which is consistent with what is known
for (1.2) [18].
The aim of this paper is a thorough study of the well-posedness of (1.1) in arbitrary space dimen-

sions, along with that of the uniform-in-time boundedness of its solutions, which not only provides
a far-reaching improvement upon [23, 30] but also on [18, 19]. More precisely, on the one hand, we
show the existence and uniqueness of classical solutions to (1.1) for any motility function γ which is
positive and non-increasing with a vanishing limit at infinity in any space dimension. On the other
hand, uniform-in-time boundedness of classical solutions to (1.1) is obtained for motility functions
decaying slower than any negative exponential at infinity in the two-dimensional case and for motility
functions satisfying γ(s) ∼ s−k for an arbitrary k < N/(N − 2) in higher space dimension. While
the former extends [30] to motility functions such as γ(s) = e−sα, α ∈ (0, 1), the latter improves [18]
after setting θ = 0 in (1.1), since 1/[N/2] < N/(N − 2). Moreover, when 1/γ looks like a sublinear
function, we proceed partly along the lines of [13] to construct a Lyapunov functional for (1.1) which
allows us to identify the long-term behavior of classical solutions to (1.1).
Before describing precisely the outcome of this paper, we recall that two different approaches

have been developed in the literature to tackle the degeneracy issue while studying the existence
of classical solutions to (1.2). The first method relies on the derivation of a L∞

t L
p
x-estimate for u

for some p > N/2 by energy and duality methods, which gives rise to an L∞
t,x-estimate for v, the

latter being deduced from the equation for v due to standard regularity theory for parabolic/elliptic
equations. However, this method needs restrictive assumptions on γ, see, e.g., [1, 24, 32, 34]. The
other approach is based on a two-step comparison argument proposed in [17,18]. The key ingredient
lies in the introduction of an intermediate auxiliary function w which is the solution to a linear elliptic
equation. Owing to the specific structure of the cell’s equation, suitable applications of elliptic and
parabolic comparison principles allow one to derive an upper bound on w, as well as a control from
above on v by w. An upper bound for v thus follows and subsequently leads to the global existence of
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classical solutions in any space dimension for rather generic motility functions [19,21]. This approach
also turns out to be particularly efficient to investigate the uniform-in-time boundedness issue but
requires a more refined argument, as developed in [16,20,21]. In fact, an important intermediate step
is the derivation of an evolution equation for w with a source term growing sublinearly with w. The
analysis performed in this paper is actually based on a further development of this second method.

Coming back to (1.1), we focus here on the global well-posedness of (1.1) for a general class of
motility functions γ and consumption rates f , as well as on the uniform-in-time boundedness of its
solutions. In addition, we shall investigate the long-term behavior of its solutions for a suitable class
of motility functions γ. To reduce the number of parameters in (1.1), we first perform the rescaling

t̄ = τt , x̄ = x/L , (u, v, n)(t, x) = (ū, Hv̄,Mn̄)(t̄, x̄) ,

γ̄(s) = γ(Hs)/(τL2) , f̄(s) = θf(Ms)/τ ,

with
τ = Dn/Dv , L =

√

Dv , H = α , M = ks .

Dropping the bars, the system (1.1) becomes

∂tu = ∆(uγ(v)) + uf(n) , (t, x) ∈ (0,∞)× Ω , (1.3a)

τ∂tv = ∆v − βv + u , (t, x) ∈ (0,∞)× Ω , (1.3b)

∂tn = ∆n− uf(n) , (t, x) ∈ (0,∞)× Ω , (1.3c)

∇(uγ(v)) · ν = ∇v · ν = ∇n · ν = 0 , (t, x) ∈ (0,∞)× ∂Ω , (1.3d)

(u, v, n)(0) =
(

uin, vin, nin
)

, x ∈ Ω , (1.3e)

which only involves two positive parameters τ > 0 and β > 0. Here, Ω is a bounded domain of
R

N (N ≥ 1) with smooth boundary. The motion of cells is biased by the local concentration v of
chemotactic signal and is prescribed by the motility γ(v) of cells, which is a positive function of
v. Recall that, due to the density-suppressed effect, γ is a non-increasing function on (0,∞). The
function f is non-negative and represents the consumption rate of nutrients by cells, which generalizes
the particular form given in (1.1).

To begin with, we introduce some basic assumptions and notations. Throughout this paper we use
the short notation ‖ · ‖p for the norm ‖ · ‖Lp(Ω) with p ∈ [1,∞]. For the initial condition (uin, vin, nin),
we require that

(

uin, vin, nin
)

∈ W 1,N+1(Ω;R3) , uin 6≡ 0 ,

uin ≥ 0 , nin ≥ 0 , vin > 0 in Ω̄ .
(1.4)

The motility function γ and consumption rate f are assumed to satisfy

γ ∈ C3((0,∞)) , γ > 0 , γ′ ≤ 0 in (0,∞) , lim
s→∞

γ(s) = 0 , (A1)

and

f ∈ C1([0,∞)) , f(0) = 0 and f ≥ 0 on (0,∞) , (1.5)



On a Chemotaxis System with Density-Suppressed Motility and Nutrient Consumption 5

respectively. Clearly, f ≡ 0 satisfies (1.5), so that the results obtained below equally apply to the
two-component system (1.2).
We are now in a position to state our first main result concerning global existence of classical

solutions to (1.3).

Theorem 1.1. Let N ≥ 1. Suppose that γ and f satisfy assumptions (A1) and (1.5), respectively,
and that the initial condition (uin, vin, nin) satisfies (1.4). Then problem (1.3) has a unique global
non-negative classical solution (u, v, n) ∈ C([0,∞)× Ω̄;R3) ∩ C1,2((0,∞)× Ω̄;R3).

Observe that (A1) does not require γ to be bounded as s → 0, so that our analysis includes in
particular γ(s) = s−k for k > 0. This feature is actually not surprising in view of (2.4) below,
which states that v has a time-independent positive lower bound v∗, which is also independent of the
choice of γ. Also, since no growth condition is required on γ in Theorem 1.1, a noticeable outcome
of Theorem 1.2 is that the density-suppressed motility plays a fundamental role in preventing finite
time blowup, which is in sharp contrast with the classical Keller-Segel system.

We next investigate the boundedness of classical solutions to (1.3) under certain decay assumptions
of γ at infinity and begin with the two-dimensional case N = 2.

Theorem 1.2. Assume N = 2 and consider f satisfying (1.5). Suppose that γ satisfies assump-
tion (A1) and that there is χ > 0 such that

lim inf
s→∞

eχsγ(s) > 0 . (A2eχ)

If the initial condition (uin, vin, nin) satisfies (1.4) with

‖uin + nin‖1 <
4π

χ
, (1.6)

then the global classical solution (u, v, n) to (1.3) is uniformly-in-time bounded; that is,

sup
t≥0

{‖u(t)‖∞ + ‖v(t)‖∞ + ‖n(t)‖∞} <∞ , (1.7)

and, for any t0 > 0,

sup
t≥t0

{

‖u(t)‖C1(Ω̄) + ‖v(t)‖C1(Ω̄) + ‖n(t)‖C1(Ω̄)

}

<∞ . (1.8)

In particular, if γ satisfies (A1) and (A2eχ) for all χ > 0, then the global classical solution to
(1.3) is uniformly-in-time bounded for any initial condition (uin, vin, nin) satisfying (1.4).

A similar result is obtained in [30] under the stronger assumption that 1/γ decays algebraically
at infinity. Theorem 1.2 shows that this assumption can be relaxed and applies in particular to
γ(s) = e−βsθ with any β > 0 and θ ∈ (0, 1).

Remark 1.3. The boundedness results in Theorem 1.2 are optimal. Indeed, when γ(s) = e−χs and
f ≡ 0 (so that (1.3) reduces to (1.2)), a critical mass phenomenon is observed in [18,24]. Uniform-
in-time boundedness is obtained when the total mass of cells is less than the critical value 4π/χ.
Moreover, finite-time blowup is excluded in [11,18] by different methods and initial conditions having
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a sufficiently large total mass of cells which lead to unbounded solutions to (1.3) (with f ≡ 0) are
constructed in [18,24].

We turn to higher space dimensions N ≥ 3 and first point out that the assumption (A2eχ) is not
sufficient to guarantee uniform-in-time boundedness of global classical solutions. Indeed, it is shown
in [19] that, for an arbitrarily given m > 0, there always exist radially symmetric initial conditions
(uin, vin) with m = ‖uin‖1 in the ball Ω = BR(0) such that the corresponding global classical solution
to (1.3) with γ(s) = e−s and f ≡ 0 is unbounded. It is thus likely that uniform-in-time boundedness
requires more restrictive growth conditions on 1/γ at infinity. Specifically, the following algebraic
growth assumption is requested on 1/γ:

there are k ≥ l ≥ 0 such that lim inf
s→∞

skγ(s) > 0 and lim sup
s→∞

slγ(s) <∞. (A2)

We assume in addition that

there is b0 ∈ (0, 1] such that, for any s ≥ s0 > 0,

sγ(s) + (b0 − 1)

∫ s

1

γ(η)dη ≤ K0(s0) ,

where K0(s0) > 0 depends only on γ, b0, and s0 .

(A3)

A suitable choice of the exponents k and l in (A2) leads us to the boundedness of global solutions
to (1.3) in higher dimensions, which we state now.

Theorem 1.4. Let N ≥ 3 and consider f satisfying (1.5). Suppose that γ satisfies assumption (A1)
and assumption (A2) for some k ≥ l ≥ 0 satisfying

k <
N

N − 2
and k − l <

2

N − 2
.

Assume further that, either γ satisfies assumption (A3), or the parameter l in (A2) is such that

l > (N−4)+
N−2

. Then, for any initial condition (uin, vin, nin) satisfying (1.4), the global classical solution
(u, v, n) to (1.3) is uniformly-in-time bounded in the sense that it satisfies (1.7) and (1.8).

The assumption (A3) is somewhat a technical one and is satisfied by several typical examples of
motility functions γ, including (a1 + s)−k1, (a1 + s)−k1 log−k2(a2 + s), and (a1 + s)−k1 + (a2 + s)−k2 ,
with ai ≥ 0 and ki > 0 (i = 1, 2), which also satisfy (A1) and (A2eχ). We emphasize that, when
γ satisfies (A2) with l ≥ 1, then γ(s) ≤ Cs−l for s large enough, which in turn guarantees that
sγ(s) ≤ C and the validity of (A3) with b0 = 1. We refer to Lemma 2.6 below for a more detailed
discussion.
A direct consequence of Theorem 1.4 is that, when N ≥ 3 and γ(s) ∼ s−k as s → ∞ for some

0 < k < N/(N − 2), global classical solutions to (1.3) are uniformly-in-time bounded. In view of
what is already known in the two-dimensional case, the main question left open is the optimality of
the exponent N/(N − 2) and it will be our future task to study whether the exponent N/(N − 2) is
critical for boundedness of solutions.
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Remark 1.5. It is worth mentioning once more that, given non-negative functions (uin, vin, nin) ∈
W 1,N+1(Ω;R3) such that uin 6≡ 0, vin > 0 in Ω̄ and nin ≡ 0, the corresponding solution (u, v, n)
to (1.3) satisfies n ≡ 0 due to f(0) = 0 and (u, v) is actually a solution to (1.2). An interesting
consequence of this property is that, when γ satisfies (A1), global existence of solutions to (1.2) follows
from Theorem 1.1 and we thus provide an alternative proof of [19, Theorem 1.1]. Assuming further
that γ satisfies the assumptions of Theorem 1.4, we also deduce from Theorem 1.4 the uniform-in-time
boundedness of classical solutions to (1.2), thereby extending [16,18].

Our final result deals with the large time behavior of globally bounded solutions to (1.3) when 1/γ
grows at most linearly at infinity.

Theorem 1.6. Suppose that f satisfies (1.5) with f > 0 on (0,∞) and that the initial condition
satisfies (1.4). Assume that γ satisfies (A1) and

sγ′(s) + γ(s) ≥ 0 , s ∈ (0,∞) . (1.9)

If (u, v, n) is a non-negative classical solution to (1.3) which is uniformly-in-time bounded, then

lim
t→∞

(‖u(t)−m‖∞ + ‖v(t)−m‖∞ + ‖n(t)‖∞) = 0 ,

where m , ‖uin + nin‖1/|Ω|.
In addition, if f satisfies

lim inf
s→0+

f(s)/s > 0, (1.10)

then there exist δ0 > 0 and C > 0 depending on Ω, γ, f , and the initial data such that

‖u(t)−m‖∞ + ‖v(t)−m‖∞ + ‖n(t)‖∞ ≤ Ce−δ0t for all t ≥ 0.

A first consequence of Theorem 1.6 is that there is no pattern formation in the dynamics of (1.3)
when γ satisfies (A1) and (1.9), as already observed in [1, 13, 20]. Since the latter somehow means
that γ(s) ∼ Cs−l as s → ∞ for some l ∈ (0, 1] and thus that γ decays rather slowly at infinity,
pattern formation in (1.3) can only be triggered by a motility function which decreases sufficiently
rapidly at infinity, an observation which fully complies with [29].
The proof of Theorem 1.6 is divided into two steps: we first show that the Lyapunov functional

constructed in [13] for the two-component system (1.2) can be modified in a suitable way (with terms
involving n in particular) to give rise to a Lyapunov functional for (1.3). It is worth pointing out
that the Lyapunov functional constructed here (and in [13]) is different from that obtained in [1]
when τ = 0. The second step is devoted to the derivation of a lower bound of the dissipation of
the Lyapunov functional in terms of the Lyapunov functional itself, which eventually leads to the
exponential decay.

As a consequence of the above results, we have the following result for motility functions which
are negative power laws.

Proposition 1.7. Let N ≥ 2 and assume that γ(s) = s−k for some k > 0 and that f satisfies (1.5).
For any initial condition (uin, vin, nin) satisfying (1.4), problem (1.3) has a global classical solution.
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Moreover, it is uniformly-in-time bounded when, either k < ∞ and N = 2, or k < N/(N − 2) and
N ≥ 3. In addition, if 0 < k ≤ 1 and f > 0 on (0,∞), then the global classical solution to (1.3)
converges to (m,m, 0) as time goes to infinity, and the convergence takes place at an exponential rate
provided that f satisfies (1.10).

The main idea of our proof relies on an improved comparison method. In fact, we not only
need a control of v from above by a suitably defined auxiliary function via the two-step comparison
argument originally developed in [18], but also require a reverse control of v from below. The latter
goal is achieved by a third step comparison argument developed in the present contribution. In order
to illustrate our strategy more explicitly, we restrict ourselves to the case f ≡ 0, which actually
corresponds to the simplified two-component system (1.2). Later, we will explain how to extend the
argument to the more involved three-component case.
To begin with, we introduce the auxiliary function w = A−1u, whereA denotes the elliptic operator

−∆+ β in Ω with homogeneous Neumann boundary conditions on ∂Ω. Applying A−1 to both sides
of (1.3a) gives the following key identity:

∂tw + uγ(v) = βA−1[uγ(v)] , (1.11)

which unveils the intrinsic mechanism of the density-suppressed motility and the nonlinear coupling
structure. In fact, thanks to the monotonicity of γ and the elliptic comparison principle, one observes
that

0 ≤ A−1[uγ(v)] ≤ A−1[γ(v∗)u] = γ(v∗)w, (1.12)

where v∗ is a time-independent positive lower bound for v given in (2.4) below. Integrating the key
identity (1.11) and using the non-negativity of uγ(v) entail that

0 ≤ w(t, x) ≤ Ceβγ(v∗)t , (t, x) ∈ [0,∞)× Ω . (1.13)

We remark that, if τ = 0, then w = v and the bound (1.13) actually shows the boundedness of
v. However, when τ > 0, there holds w = v + τA−1[∂tv] and deriving a comparison between w
and v is more involved and requires additional arguments. Specifically, introducing the parabolic
operator Lz = τ∂tz − ∆z + βz and a function Γ satisfying Γ′ = γ, the monotonicity of γ and the
key identity (1.11) allow us to show by delicate calculations that Lv ≤ L(w + Γ(v) + K) for some
constant K > 0. Then we may employ the parabolic comparison principle to get v ≤ w+Γ(v) +K.
Next, the monotonicity and the vanishing limit of γ imply that Γ(s) ≤ αs for all s > 0 and some
0 < α < 1. As a result, we obtain an upper control of v by w:

v ≤ w +K

1− α
, (1.14)

which, together with the previously obtained upper bound (1.13), gives finally an upper bound for
v.
The upper bound (1.14) plays a key role in the previous studies performed in [16, 18, 19, 21]

concerning existence and boundedness in the two-component system (1.2). However, it does not
provide the boundedness of classical solutions to (1.2) in higher dimensions N ≥ 3 when τ > 0.
To better highlight the difficulty to be overcome, let us recall that the strategy set up in [21] to
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prove boundedness of classical solutions to (1.2) when τ = 0 is to regard the key identity (1.11) as a
quasilinear parabolic equation for v with a non-local source term. Indeed, since w = v when τ = 0,
an alternative form of (1.11) is:

∂tv − γ(v)∆v + βvγ(v) = βA−1[uγ(v)]. (1.15)

Then, using once more the elliptic comparison principle and the monotonicity of γ, one may manip-
ulate the non-local term to derive the following inequality

A−1[uγ(v)] ≤ Γ(v) + C . (1.16)

At this stage, one may further notice that, in the special case γ(s) ∼ s−k as s → ∞, the function Γ
is controlled at infinity by Cs(1−k)+ when k 6= 1, or by Csε for any ε > 0 when k = 1, see Lemma 2.5
below. Based upon this key observation, a delicate iterative argument is applied to (1.15) to establish
a time-independent upper bound for v provided that k < N/(N − 2), see [21]. In order to emphasize
the need of (1.16), we mention that a control of the non-local term A−1[uγ(v)] by a linear function
of v as done in (1.12) only allows one to derive a uniform-in-time upper bound on v when, either
k < 2 and N = 3, or k ∈ (0, 1] ∩ (0, 4/(N − 2)) and N ≥ 4, see [20].
In contrast, when τ > 0, the situation becomes rather involved, as w 6= v and the alternative form

of the key identity (1.11), which reads

∂tw − γ(v)∆w + βwγ(v) = βA−1[uγ(v)] , (1.17)

in that case, features both v and w. In order to derive a single equation for w, we aim at replacing
γ(v) by γ(w) in the above identity. Owing to the monotonicity of γ and the non-negativity of
−∆w + βw = u, a two-sided control of v by w will do the job. For this purpose, we develop an
additional argument to establish the reverse estimate w ≤ C(v+1). Together with (1.14) and positive
lower bounds on v and w which are derived independently, we finally arrive at the two-sided control
C1w ≤ v ≤ C2w, which in turn implies that

uγ(C2w) ≤ uγ(v) ≤ uγ(C1w) , (1.18)

due to the monotonicity of γ. Recalling that u = A[w], we deduce from (1.17) and (1.18) that

∂tw − γ(C2w)∆w + βγ(C2w)w ≤ βA−1[uγ(C1w)] . (1.19)

Now, (1.19) looks very much like (1.15) and we may proceed as in the derivation of (1.16) to estimate
the non-local term A−1[uγ(C1w)] by Γ(w) + C. We are then able to carry out an iterative Moser
technique to get a uniform-in-time upper bound for w provided that k < N/(N − 2). Then a
time-independent upper bound of v follows as well.
Having obtained the uniform-in-time boundedness of v, we can further show that w and v are

Hölder-continuous with respect to both t and x by establishing a local energy estimate, following a
classical approach developed in [26]. Thanks to this property, we can employ the theory developed by
Amann in [4–8] to find a representation formula for w, which involves a parabolic evolution operator
having properties similar to an analytic semigroup. The estimates for the parabolic evolution operator
given in [8] enable us to derive the (time-independent) W 1,∞-estimates of w and v, which in turn
give rise to the uniform-in-time boundedness of u.
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Let us finally point out that a careful modification of the above mentioned arguments is needed
when dealing with the three-component system (1.3). In fact, since it is no longer the total mass
of u which is invariant throughout time evolution but that of u + n, a second auxiliary function
S , A−1[u+ n] is introduced. While only an upper bound on v in terms of S is needed to establish
global existence as stated in Theorem 1.1, the uniform-in-time boundedness reported in Theorem 1.4
requires more work and a two-sided control of v by S is in fact needed in the proof.

The remainder of the paper is organized as follows. In Section 2, we provide some preliminary
results and recall some useful lemmas. In Section 3, we revisit the comparison argument and develop
an additional argument to derive the above mentioned two-sided control. In Section 4, we study the
global existence of classical solutions to (1.3). In Section 5, we prove uniform-in-time boundedness
of classical solutions in the two-dimensional case N = 2, while the case of higher space dimension
N ≥ 3 is dealt with in Section 6. The last section is devoted to the large time behavior of bounded
classical solutions to (1.3) when γ satisfies (A1) and (1.9) and f satisfies (1.5) and (1.10).

2. Preliminaries

In this section, we recall some useful results. We begin with the existence of local classical solutions
which mainly follows from the theory developed by Amann in [4–7] and the comparison principle,
along with positivity properties of the heat equation.

Theorem 2.1. Suppose that γ satisfies (A1) and (uin, vin, nin) satisfies (1.4). Then there exists
Tmax ∈ (0,∞] such that problem (1.3) has a unique non-negative classical solution (u, v, n) ∈
C([0, Tmax)× Ω̄;R3) ∩ C1,2((0, Tmax)× Ω̄;R3). The solution (u, v, n) satisfies the mass conservation

∫

Ω

(u(t, x) + n(t, x)) dx =

∫

Ω

(uin(x) + nin(x)) dx for all t ∈ (0, Tmax) , (2.1)

and

‖uin + nin‖1 ≥ ‖u(t)‖1 ≥ ‖uin‖1 > 0 for all t ∈ (0, Tmax). (2.2)

Moreover, for any 1 ≤ p ≤ ∞, there holds

‖n(t)‖p ≤ ‖nin‖p for all t ∈ (0, Tmax), (2.3)

and there is v∗ > 0 depending only on Ω, vin, and ‖uin‖1 such that

v(t, x) ≥ v∗ , (t, x) ∈ [0, Tmax)× Ω̄ . (2.4)

Finally, if Tmax <∞, then

lim sup
tրTmax

‖u(t)‖∞ = ∞.

Proof. We set D0 = R× (0,∞)×R, so that (uin, vin, nin) ranges in D0 according to (1.4). Owing to
the regularity (A1), (1.5), and (1.4) of γ, f , and the initial conditions, we infer from [7, Theorems 14.4
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& 14.6] (with s = 1 and p = N + 1) that there is a unique classical solution (u, v, n) ∈ C([0, Tmax)×
Ω̄;D0) ∩ C1,2((0, Tmax)× Ω̄;R3) to (1.3) and that, if Tmax <∞, then

lim sup
tրTmax

(

‖u(t)‖∞ + ‖v(t)‖∞ +

∥

∥

∥

∥

1

v(t)

∥

∥

∥

∥

∞

+ ‖n(t)‖∞
)

= ∞.

First, (1.3a), (1.3c), (1.5), and the comparison principle guarantee that

u(t, x) ≥ 0 , ‖nin‖∞ ≥ n(t, x) ≥ 0 , (t, x) ∈ [0, Tmax)× Ω̄ .

Using again the non-negativity of f , the just established non-negativity of u and n allows us to derive
the mass conservation (2.1), the upper and lower bounds (2.2), and the integrability estimates (2.3)
on n. Next, owing to the lower bound (2.2) on ‖u‖1 and the assumed positivity of vin, we deduce
the lower bound (2.4) from [15, Lemma 2.6].
Assume finally that Tmax < ∞. According to (2.3) and (2.4), ‖n‖∞ and ‖1/v‖∞ cannot blow up,

while (1.3b) and the comparison principle imply that ‖v‖∞ ≤ max{‖vin‖∞, ‖u‖∞/β}. Consequently,
‖u(t)‖∞ has to be unbounded as t→ Tmax and the proof is complete. �

Throughout this paper, we set

γ∗ , sup
s≥v∗

γ(s) , f ∗ , sup
0≤s≤‖nin‖∞

f(s) <∞.

Then, in view of (2.3) and (2.4), there holds

0 < γ(v) ≤ γ∗ for all (t, x) ∈ [0, Tmax)× Ω̄ , (2.5)

and

0 ≤ f(n) ≤ f ∗ for all (t, x) ∈ [0, Tmax)× Ω̄ . (2.6)

Next, we let (·)+ = max{·, 0} and recall the following result, see [3, Proposition (9.2)], [9,
Lemme 3.17], or [1, Lemma 2.2].

Lemma 2.2. Let f ∈ L1(Ω). For any 1 ≤ q < N
(N−2)+

, there exists a positive constant C1(q)

depending only on Ω and β such that the solution z ∈ W 1,1(Ω) to
{

−∆z + βz = f, x ∈ Ω ,

∇z · ν = 0 , x ∈ ∂Ω ,
(2.7)

satisfies

‖z‖q ≤ C1(q)‖f‖1 .

When N = 2, we need the following result given in [34, Lemma 3.3], which is similar to the
celebrated Brezis-Merle inequality [10, Theorem 1], see [31, Proposition 6.1] and [32, Lemma A.3]
for related results.
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Lemma 2.3. Assume that N = 2. For any f ∈ L1(Ω) such that

‖f‖1 = Λ > 0

and 0 < R < 4π
Λ
, there is C2(Λ, R) > 0 depending on Ω, β, Λ, and R such that the solution z to (2.7)

satisfies
∫

Ω

eRzdx ≤ C2(Λ, R) .

We next define

Γ(s) =

∫ s

1

γ(η)dη , s > 0 , (2.8)

and recall the following simple relation between γ and Γ derived in [18, Lemma 6].

Lemma 2.4. Assume (A1) and let ε > 0. There is C3(ε) > 0 depending on ε and γ such that

sγ(s)− γ(s0) ≤ Γ(s) ≤ εs+ C3(ε) , s ≥ s0 > 0 . (2.9)

Proof. Let ε > 0. Owing to (A1), there is sε > 1 such that γ(s) ≤ ε for s ≥ sε. Consequently, if
s ≥ 1, then

Γ(s) =

∫ sε

1

γ(η) dη +

∫ s

sε

γ(η) dη ≤ sεγ(1) + ε(s− sε)+ ≤ sεγ(1) + εs ,

while Γ(s) ≤ 0 for s ∈ [s0, 1) (when this interval is non-empty). We have thus proved the upper

bound for Γ with C3(ε) , sεγ(1).
Consider next s ∈ [1,∞) ∩ [s0,∞). Since γ is non-increasing,

sγ(s)− γ(s0) ≤ (s− 1)γ(s) ≤ Γ(s) .

If s ∈ [s0, 1) (when this interval is non-empty), then, using again the monotonicity of γ,

sγ(s)− Γ(s) = sγ(s) +

∫ 1

s

γ(η) dη ≤ (s+ 1− s)γ(s) ≤ γ(s0) ,

and the proof is complete. �

We next turn to an upper bound for Γ when the growth condition (A2) is satisfied.

Lemma 2.5. Under the assumptions (A1) and (A2), there is C4 > 0 depending on γ such that, for
all s ≥ 1,

Γ(s) ≤ Γ∗(s) ,















C4 log s, when l = 1

C4(s
1−l − 1)

1− l
, when l 6= 1.
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Proof. In view of assumption (A2), there are s0 > 1 and C > 0 such that slγ(s) ≤ C for all s ≥ s0.
In addition, the monotonicity of γ and the non-negativity of l ensure that slγ(s) ≤ sl0γ(1) for all
1 ≤ s ≤ s0. Thus, s

lγ(s) ≤ C for all s ≥ 1, from which we deduce that

Γ(s) =

∫ s

1

γ(η)dη ≤ C

∫ s

1

η−ldη =















C log s, when l = 1,

C(s1−l − 1)

1− l
, when l 6= 1,

as claimed. �

We next provide some sufficient conditions on γ which guarantee that it satisfies assumption (A3).

Lemma 2.6. Assume that γ ∈ C1((0,∞)) is positive and one of the following cases holds.

(a) The function γ is non-increasing on (0,∞) and there is A > 0 such that
∫ 2s

s

γ(η) dη ≤ A , s ≥ 1 ;

(b) There are b0 ∈ (0, 1] and s1 > 0 such that sγ′(s) + b0γ(s) ≤ 0 for all s ≥ s1;
(c) There are constants l > 0 and 0 < Bl ≤ Al <∞ such that (1− l)Al < Bl and

Bl = lim inf
s→∞

slγ(s) ≤ lim sup
s→∞

slγ(s) = Al.

Then assumption (A3) is fulfilled.

Proof. We consider s0 > 0 and handle the three cases in different ways.
Case (a). In that case, we observe that, for s ≥ max{s0, 1},

sγ(s) ≤ 2

∫ s

s/2

γ(η) dη ≤ 2A ,

while sγ(s) ≤ γ(s0) for s ∈ [s0, 1) (when this interval is non-empty). Consequently, assumption (A3)
is satisfied with b0 = 1.

Case (b). In that case, we may assume s1 ≥ max{s0, 1} and find that, for s ≥ s1,

sγ(s) + (b0 − 1)Γ(s) =

∫ s

s1

(ηγ′(η) + b0γ(η)) dη + s1γ(s1) + (b0 − 1)Γ(s1)

≤s1γ(s1) ,
due to the non-negativity of Γ(s1). For s ∈ [s0, s1), we observe that

sγ(s) + (b0 − 1)Γ(s) ≤s1‖γ‖L∞(s0,s1) + (1− b0)

∫ 1

min{1,s0}

γ(η)dη

≤(1 + s1)‖γ‖L∞(min{1,s0},s1) .

Thus, (A3) also holds.
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Case (c). In that case, for any ε ∈ (0, Bl),there is sε ≥ max{1, s0} such that

Bl − ε ≤ slγ(s) ≤ Al + ε , s ≥ sε .

In particular, for b0 ∈ (0, 1],

sγ(s) + (b0 − 1)Γ(s) ≤ sγ(s) + (b0 − 1)

∫ s

sε

γ(η) dη

≤ (Al + ε)s1−l − (1− b0)(Bl − ε)

∫ s

sε

η−l dη , s ≥ sε , (2.10a)

while
sγ(s) + (b0 − 1)Γ(s) ≤ 2sε‖γ‖L∞(s0,sε) , s ∈ [s0, sε] . (2.10b)

At this point, either l ≥ 1 and we readily deduce from (2.10) with b0 = 1 and ε = ε1 = Bl/2 that
(A3) is satisfied with b0 = 1 and K0(s0) = Al +Bl + 2sε1‖γ‖L∞(s0,sε1 )

.
Or l ∈ (0, 1). Since (1− l)Al < Bl, we choose

b0 =
Bl − (1− l)Al

2Bl
∈ (0, 1) and ε = ε2 =

(1− b0)Bl − (1− l)Al

2− l − b0
∈ (0, Bl) .

It then follows from (2.10a) that, for any s ≥ sε2 ,

sγ(s) + (b0 − 1)Γ(s) ≤ (1− l)(Al + ε2)− (1− b0)(Bl − ε2)

1− l
s1−l +

(1− b0)(Bl − ε2)

1− l
s1−l
ε2

≤ (2− l − b0)ε2 − (1− b0)Bl + (1− l)Al

1− l
s1−l +

Bl

1− l
s1−l
ε2

=
Bl

1− l
s1−l
ε2 .

Gathering (2.10b) with the above choice of b0 and the above inequality entails that (A3) is satisfied
in that case as well and completes the proof. �

We finally recall the following lemma given in [27, Lemma A.1] which we shall use later in Sec-
tion 6.1 to complete the Alikakos-Moser iterative argument.

Lemma 2.7. Let θ > 1, b ≥ 0, c ∈ R, κ0 ≥ 1, κ1 ≥ 1, and δ0 be given numbers such that

δ0 +
c

θ − 1
> 0.

We consider the sequence (δj)j≥0 of real numbers defined by

δj+1 = θδj + c , j ∈ N.

Assume further that (ηj)j≥0 is a sequence of positive real numbers satisfying

η0 ≤ κδ01 ,

ηj+1 ≤ κ0δ
b
j+1max{κδj+1

1 , ηθj} , j ∈ N .

Then the sequence (η
1/δj
j )j≥0 is bounded.
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3. A Two-sided Estimate by a Comparison Argument

In this section, we fix initial conditions (uin, vin, nin) satisfying (1.4) and denote the corresponding
classical solution to (1.3) given by Theorem 2.1 by (u, v, n), which is defined on [0, Tmax) for some
Tmax ∈ (0,∞]. We improve the comparison method proposed in [18] (see also [17, 28]) to develop
a two-sided control estimate of v by some auxiliary functions which we define now. Specifically,
introducing the operator A on L2(Ω) defined by

dom(A) , {z ∈ H2(Ω) : ∇z · ν = 0 on ∂Ω} , Az , −∆z + βz , z ∈ dom(A) , (3.1)

we recall that A generates an analytic semigroup on Lp(Ω) and is invertible on Lp(Ω) for all p ∈
(1,∞). We then set

S(t) , A−1[(u+ n)(t)] ≥ 0 , t ∈ [0, Tmax) , (3.2)

and

w(t) , A−1[u(t)] ≥ 0 , t ∈ [0, Tmax) , (3.3)

the non-negativity of S and w being a consequence of that of u + n and u and the comparison
principle. Firstly, due the time continuity of u and n,

Sin , S(0) = A−1[uin + nin] and win , w(0) = A−1[uin] ,

and it follows from the regularity assumption (1.4) on the initial conditions that Sin and win both
belong to W 3,N+1(Ω).
Secondly, we remark that, due to [15, Lemma 2.3], (1.4), (2.1), and (2.2), there are positive

constants S∗ and w∗ depending only on N , Ω, β, and the initial data such that

S ≥ S∗ and w ≥ w∗ in [0, Tmax)× Ω̄ . (3.4)

In addition, since u ≤ u+ n ≤ u+ ‖nin‖∞ in (0, Tmax)× Ω by (2.3) (with p = ∞), it readily follows
from (3.2), (3.3), and the comparison principle that

w ≤ S ≤ w +
‖nin‖∞
β

in [0, Tmax)× Ω̄ . (3.5)

Now we derive two key identities involving the auxiliary functions S and w and supplement (3.4)
with pointwise upper bounds for S and w, respectively.

Lemma 3.1. Assume that γ satisfies (A1). The following two key identities hold

∂tS + uγ(v) + n = βA−1[uγ(v) + n] (3.6)

and

∂tw + uγ(v) = A−1[βuγ(v) + uf(n)] (3.7)

in (0, Tmax)× Ω. Moreover,

w(t, x) ≤ S(t, x) ≤ Sin(x)eβmax{γ∗,1}t , (t, x) ∈ [0, Tmax)× Ω̄ . (3.8)
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Proof. By definition of A, we rewrite (1.3a) and (1.3c) as:

∂tu = −A[uγ(v)] + βuγ(v) + uf(n) in (0, Tmax)× Ω (3.9)

and

∂tn = −A[n] + βn− uf(n) in (0, Tmax)× Ω . (3.10)

Adding (3.9) and (3.10), we obtain

∂t(u+ n) +A[uγ(v) + n] = β(uγ(v) + n) in (0, Tmax)× Ω .

Applying A−1 to both sides of the above identity gives the key identity (3.6). As for the identity (3.7),
it simply follows by applying A−1 on both sides of (3.9).
We next infer from (2.5), (3.6), the non-negativity of γ, u, and n, and the (elliptic) comparison

principle that,

∂tS ≤ ∂tS + uγ(v) + n ≤ βA−1[uγ(v) + n] ≤ βA−1[γ∗u+ n]

≤ βmax{γ∗, 1}A−1[u+ n] = βmax{γ∗, 1}S
in (0, Tmax) × Ω. Integrating the above differential inequality with respect to time and using (3.5)
give (3.8). �

The next lemma establishes an upper bound on v in terms of S (and thus also in terms of w in
view of (3.5)). The proof is the same as [18, Lemma 7] with a minor modification.

Lemma 3.2. Assume that γ satisfies assumption (A1) and consider ρ ≥ 1 such that τγ(ρ) < 1.
There is K1(ρ) > 0 depending on Ω, γ, τ , β, the initial data, and ρ such that

v(t, x) ≤ 1

1− τγ(ρ)

(

S(t, x) +K1(ρ)

)

, (t, x) ∈ [0, Tmax)× Ω̄ . (3.11)

Proof. Introducing the parabolic operator

Lz , τ∂tz +Az = τ∂tz −∆z + βz (3.12)

and using (1.3b), we first observe that

γ(v)u = γ(v)(τ∂tv −∆v + βv)

=

(

τ∂tΓ(v)−∆Γ(v) + βΓ(v)

)

+ γ′(v)|∇v|2 + β (vγ(v)− Γ(v))

= LΓ(v) + γ′(v)|∇v|2 + β (vγ(v)− Γ(v)) . (3.13)

Substituting the identities (3.2) and (3.6) into (1.3b) and making use of (3.13), we deduce that

Lv = τ∂tv −∆v + βv = u+ n− n = LS − τ∂tS − n

= LS + τ(uγ(v) + n)− βτA−1[uγ(v) + n]− n

= L (S + τΓ(v)) + τγ′(v)|∇v|2 + βτ (vγ(v)− Γ(v))− βτA−1[uγ(v) + n] + (τ − 1)n. (3.14)
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Since γ′(v)|∇v|2 is non-positive by (A1) and A−1[uγ(v) + n] is non-negative by the comparison
principle, it follows from (2.3) (with p = ∞), (2.5), (3.14), and Lemma 2.4 (with s0 = v∗) that

Lv ≤ L (S + τΓ(v)) + βτγ(v∗) + τ‖nin‖∞ . (3.15)

Now, in view of the assumption (1.4) on the initial data, we may choose a positive constant K1 ≥
(βτγ(v∗) + τ‖nin‖∞) /β such that

K1 ≥ vin(x)− Sin(x)− τΓ(vin)(x) , x ∈ Ω̄ .

We then deduce from (3.15) and the parabolic comparison principle that

v(t, x) ≤ S(t, x) + τΓ(v(t, x)) +K1 , (t, x) ∈ [0, Tmax)× Ω̄ . (3.16)

Finally, pick ρ ≥ 1 such that 0 < τγ(ρ) < 1, the existence of which is granted by (A1). Then, by
(A1),

Γ(s) ≤







ργ(1) + (s− ρ)γ(ρ) ≤ ργ(1) + sγ(ρ) , s ∈ [ρ,∞) ,

ργ(1) ≤ ργ(1) + sγ(ρ) , s ∈ [v∗, ρ] ,

so that τΓ(v) ≤ τγ(ρ)v+ τργ(1) in [0, Tmax)× Ω̄. Combining this estimate with (3.16) completes the
proof. �

Since lim
s→∞

γ(s) = 0 by (A1), a tight control from S on v follows from Lemma 3.2 by picking ρ

sufficiently large, as reported in the next result.

Proposition 3.3. Assume (A1) and consider ε > 0. There is L1(ε) > 0 depending on Ω, γ, τ , β,
the initial data, and ε such that

v ≤ (1 + ε)S + L1(ε) in [0, Tmax)× Ω̄ . (3.17)

Moreover, there is B > 0 depending on Ω, γ, τ , β, and the initial data such that, setting w̃ , Bw
and S̃ , BS,

v ≤ w̃ ≤ S̃ in [0, Tmax)× Ω̄ . (3.18)

Proof. By (A1), there is ρε ≥ 1 such that 1 < (1− τγ(ρε))(1 + ε). It then follows from (3.11) (with
ρ = ρε) that

v ≤ (1 + ε)S + (1 + ε)K1(ρε) in [0, Tmax)× Ω̄ ,

from which we deduce (3.17) with L1(ε) , (1+ ε)K1(ρε). We next infer from (3.4), (3.5), and (3.17)
(with ε = 1) that, in [0, Tmax)× Ω̄,

v ≤ 2S +
L1(1)

S∗
S ≤

(

2 +
L1(1)

S∗

)(

w +
‖nin‖∞
β

)

≤
(

2 +
L1(1)

S∗

)(

w +
‖nin‖∞
βw∗

w

)

= Bw ≤ BS
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with

B ,

(

2 +
L1(1)

S∗

)(

1 +
‖nin‖∞
βw∗

)

,

which completes the proof. �

Next, we aim to derive a reverse relation between v and S, which will play a crucial role in Section 6.
To begin with, we prove the following result.

Lemma 3.4. Assume (A1). There is K2 > 0 depending on Ω, γ, τ , β, and the initial data such that

S ≤ v + βτA−1[Γ(v)] +K2 in [0, Tmax)× Ω̄ .

Proof. Applying A−1 to both sides of (3.13), we obtain

A−1[uγ(v)] = A−1

[

LΓ(v) + γ′(v)|∇v|2 + β (vγ(v)− Γ(v))

]

= LA−1Γ(v) +A−1

[

γ′(v)|∇v|2 + β (vγ(v)− Γ(v))

]

.

We then infer from (1.3b), (3.2), (3.6), and the above identity that

Lv = u+ n− n = LS − τ∂tS − n

= LS + τuγ(v) + (τ − 1)n− βτA−1[uγ(v) + n]

= LS + τuγ(v) + (τ − 1)n− βτLA−1[Γ(v)]

− βτA−1

[

n+ γ′(v)|∇v|2 + β(vγ(v)− Γ(v))

]

,

which implies, together with the non-negativity of uγ(v), n, and −A−1[γ′(v)|∇v|2], that
LS ≤ L

(

v + βτA−1[Γ(v)]
)

+ βτA−1
[

n+ β (vγ(v)− Γ(v))
]

+ n .

We further deduce from (2.3) (with p = ∞), (2.4), (2.9) (with s0 = v∗), and the elliptic comparison
principle that

LS ≤ L
(

v + βτA−1[Γ(v)]
)

+ (1 + τ)‖nin‖∞ + βτγ(v∗) .

We now take K2 ≥ [(1 + τ)‖nin‖∞ + βτγ(v∗)] /β such that

K2 ≥ Sin(x)− vin(x)− βτA−1[Γ(vin)](x) , x ∈ Ω̄ ,

and conclude with the help of the parabolic comparison principle that

S(t, x) ≤ v(t, x) + βτA−1[Γ(v)](t, x) +K2 , (t, x) ∈ [0, Tmax)× Ω̄ .

This completes the proof. �

After this preparation, we are in a position to derive an upper bound on S and w in terms of v,

using additionally either assumption (A3) or assumption (A2) with l > (N−4)+
N−2

. We begin with the
former.



On a Chemotaxis System with Density-Suppressed Motility and Nutrient Consumption 19

Proposition 3.5. Assume (A1) and (A3). There is A > 0 depending only on Ω, γ, τ , β, b0, K0(v∗),
and the initial data such that

v ≥ AS ≥ Aw in [0, Tmax)× Ω̄ .

Proof. On the one hand, it follows from (3.18), see Proposition 3.3, and the monotonicity of Γ that

Γ(v) ≤ Γ(S̃) in [0, Tmax)× Ω̄ and the elliptic comparison principle ensures that

A−1[Γ(v)] ≤ A−1[Γ(S̃)] in [0, Tmax)× Ω̄ . (3.19)

On the other hand, since S̃ = BS and γ, u, n, and B are all non-negative, we infer from (A1) and
(3.2) that

A[Γ(S̃)] = −∆Γ(S̃) + βΓ(S̃) = γ(S̃)A[S̃]− γ′(S̃)|∇S̃|2 + β
(

Γ(S̃)− S̃γ(S̃)
)

≥ Bγ(S̃)(u+ n) + β
(

Γ(S̃)− S̃γ(S̃)
)

≥ β
(

Γ(S̃)− S̃γ(S̃)
)

. (3.20)

Furthermore, since S̃ = BS ≥ BS∗ by (3.4), assumption (A3) (with s0 = BS∗) gives

Γ(S̃)− S̃γ(S̃) ≥ b0Γ(S̃)−K0(BS∗) .

Hence, recalling (3.20),

A[Γ(S̃)] ≥ βb0Γ(S̃)− βK0(BS∗) = A
[

βb0A−1[Γ(S̃)]−K0(BS∗)
]

,

from which we deduce that

Γ(S̃) ≥ βb0A−1[Γ(S̃)]−K0(BS∗) in [0, Tmax)× Ω̄ , (3.21)

by the elliptic comparison principle. It then readily follows from (3.19) and (3.21) that

A−1[Γ(v)] ≤ A−1[Γ(S̃)] ≤ Γ(S̃)

βb0
+
K0(BS∗)

βb0
in [0, Tmax)× Ω̄ . (3.22)

Now combining (3.22) and Lemma 3.4, we conclude that

S̃ ≤ Bv +
τB

b0
Γ(S̃) +

τBK0(BS∗)

b0
+BK2 in [0, Tmax)× Ω̄ .

Owing to (3.4), we may now use Lemma 2.4 (with s0 = BS∗ and ε = b0/(2τB)) to obtain

S̃ ≤ Bv +
S̃

2
+
τB

b0
C3

(

b0
2τB

)

+
τBK0(BS∗)

b0
+BK2 in [0, Tmax)× Ω̄ .

Consequently, introducing

1

A
, 2 +

1

v∗

[

2τ

b0
C3

(

b0
2τB

)

+
2τK0(BS∗)

b0
+ 2K2

]

,
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we deduce from (2.4) and the above inequality that

S̃ ≤ 2Bv +

[

2τB

b0
C3

(

b0
2τB

)

+
2τBK0(BS∗)

b0
+ 2BK2

]

v

v∗
≤ Bv

A
in [0, Tmax)× Ω̄ .

Recalling that w ≤ S by (3.5) and that S̃ = BS, we have thus established that Aw ≤ AS ≤ v in
[0, Tmax)× Ω̄ as claimed. �

We finally establish a similar result when γ satisfies (A1) and, either N ≤ 3, or N ≥ 4 and the
parameter l in (A2) satisfies l > N−4

N−2
. We emphasize that, in the most biologically relevant case

N ≤ 3, the reverse estimate holds without additionally assuming (A2) or (A3).

Proposition 3.6. Assume (A1) and that, either N ≤ 3, or N ≥ 4 and the parameter l in (A2)
satisfies l > N−4

N−2
. There is A > 0 depending only on Ω, γ, τ , β, and the initial data such that

v ≥ AS ≥ Aw in [0, Tmax)× Ω̄ .

Proof. We begin with the case N ≤ 3. Owing to the monotonicity and non-negativity (A1) of γ,
there holds Γ(s) ≤ γ(1)s for all s > 0 and we infer from the elliptic comparison principle that
A−1[Γ(v)] ≤ γ(1)A−1[v] in [0, Tmax)× Ω̄. Then,

‖A−1[Γ(v)]‖∞ ≤ γ(1)‖A−1[v]‖∞ ≤ C‖A−1[v]‖H2 ≤ C‖v‖2 ≤ C‖u‖1 ≤ C

in [0, Tmax) × Ω̄, thanks to (2.2), Lemma 2.2, and the continuous embedding of H2(Ω) in L∞(Ω).
Here and throughout the proof, C denotes positive constants depending only on Ω, γ, τ , β, and the
initial data. Together with (2.4) and Lemma 3.4, this estimate implies that

S ≤ v + C +K2 ≤
(

1 +
C +K2

v∗

)

v in [0, Tmax)× Ω̄ ,

which completes the proof of Proposition 3.6 for N ≤ 3.
We next turn to N ≥ 4 when γ additionally satisfies (A2) with l > N−4

N−2
and handle in a different

way the cases l > 1, l = 1, and l ∈
(

N−4
N−2

, 1
)

.

- l > 1: Since |Γ(v)| ≤ C in [0, Tmax) × Ω̄ by (A1), (2.4), and Lemma 2.5, Proposition 3.6
readily follows from the elliptic comparison principle and Lemma 3.4 in that case.

- l ∈
(

N−4
N−2

, 1
)

: We first note that the lower bound on l guarantees that we can find q ∈
(1, N/(N − 2)) satisfying also q > N(1 − l)/2. Next, by (A1), (2.4), and Lemma 2.5, the
function Γ has a sublinear growth at infinity and |Γ(v)| ≤ Cv1−l in [0, Tmax) × Ω̄. Using
again (2.2), Lemma 2.2, the elliptic comparison principle, and the continuous embedding of
W 2,q/(1−l)(Ω) in L∞(Ω), we find

‖A−1[Γ(v)]‖∞ ≤ C‖A−1
[

v1−l
]

‖∞ ≤ C‖A−1
[

v1−l
]

‖W 2,q/(1−l)

≤ C‖v1−l‖q/(1−l) = C‖v‖1−l
q ≤ C‖u‖1−l

1 ≤ C

in [0, Tmax)× Ω̄. We then proceed as above to complete the proof of Proposition 3.6 in that
case.
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- l = 1: We fix δ ∈ (0, 2/(N − 2)) and q ∈ (1, N/(N − 2)) such that q > δN/2. Since
|Γ(v)| ≤ Cvδ in [0, Tmax)× Ω̄ by (A1), (2.4), and Lemma 2.5, we argue as in the previous case
(with δ instead of 1− l) to complete the proof of Proposition 3.6.

�

4. Global Existence of Classical Solutions

In this section, we consider the existence of global classical solutions under the assumptions of
Theorem 1.1. We first prove that v is Hölder continuous with respect to both t and x, which allows
us to apply the theory developed by Amann in [6, 8] for non-autonomous linear parabolic equations
to derive a W 2θ,p-estimate for w with any p > N and θ ∈ ((N + p)/2p, 1). In turn, we will obtain a
W 1,∞-estimate for v, which finally gives rise to Lp-estimates for u with any p > 1 by standard energy
estimates.
From now on, we assume that γ and the initial data satisfy (A1) and (1.4), respectively, and that

(u, v, n) is the corresponding solution to (1.3) provided by Theorem 2.1 and defined on [0, Tmax). We
fix t∗ ∈ (0, Tmax) and infer from Theorem 2.1 that

M(t∗) , ‖u(t∗)‖C2(Ω̄) + ‖v(t∗)‖C2(Ω̄) + ‖n(t∗)‖C2(Ω̄) <∞ . (4.1)

Throughout this section, C and (Ci)i≥5 denote positive constants depending only on Ω, γ, f , τ , β,
the initial data, t∗, and M(t∗) introduced in (4.1). Dependence upon additional parameters will be
indicated explicitly.

4.1. Hölder estimates for v. Introducing

ϕ , A−1[uγ(v)] , (4.2)

and
ψ , A−1[uf(n)], (4.3)

we observe from (3.3) and the key identity (3.7) that w solves the initial boundary value problem

∂tw + uγ(v) = βϕ+ ψ , (t, x) ∈ (0, Tmax)× Ω , (4.4a)

−∆w + βw = u , (t, x) ∈ (0, Tmax)× Ω , (4.4b)

∇w · ν = 0, , (t, x) ∈ (0, Tmax)× ∂Ω , (4.4c)

w(0) = win , x ∈ Ω . (4.4d)

We now fix T ∈ (0, Tmax) and set J = [0, T ]. By (2.4), (3.4), Lemma 3.1, and Lemma 3.2, there are
positive constants v∗(T ) and w∗(T ) such that

0 < v∗ ≤ v(t, x) ≤ v∗(T ) in J × Ω̄ , (4.5)

0 < w∗ ≤ w(t, x) ≤ w∗(T ) in J × Ω̄ , (4.6)

and we infer from (2.5), (2.6), (4.6), and the elliptic comparison principle that

0 ≤ βϕ+ ψ = A−1[βuγ(v) + uf(n)] ≤
(

βγ∗ + f ∗
)

w ≤
(

βγ∗ + f ∗
)

w∗(T ) in J × Ω̄ . (4.7)
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We now proceed along the lines of [26, Chapter V, Section 7] and [5, Section 5] to derive a local
energy bound for v.

Lemma 4.1. Let δ ∈ (0, 1). There is C5(T ) > 0 such that, if ϑ ∈ C∞(J × Ω̄), 0 ≤ ϑ ≤ 1,
σ ∈ {−1, 1}, and h ∈ R are such that

σw(t, x)− h ≤ δ , (t, x) ∈ suppϑ , (4.8)

then
∫

Ω

ϑ2(σw(t)− h)2+ dx+
γ∗(T )

2

∫ t

t0

∫

Ω

ϑ2|∇(σw(s)− h)+|2 dxds

≤
∫

Ω

ϑ2(σw(t0)− h)2+ dx+ C5(T )

∫ t

t0

∫

Ω

(

|∇ϑ|2 + ϑ|∂tϑ|
)

(σw(τ)− h)2+ dxds

+ C5(T )

∫ t

t0

∫

Ah,ϑ,σ(s)

ϑ dxds

for 0 ≤ t0 ≤ t ≤ T , where

Ah,ϑ,σ(s) , {x ∈ Ω : σw(s, x) > h} , s ∈ [0, T ] .

Proof. By (4.4),

1

2

d

dt

∫

Ω

ϑ2(σw − h)2+ dx = σ

∫

Ω

ϑ2(σw − h)+∂tw dx+

∫

Ω

(σw − h)2+ϑ∂tϑ dx

= −σ
∫

Ω

ϑ2(σw − h)+uγ(v)dx+ σ

∫

Ω

ϑ2(σw − h)+(βϕ+ ψ) dx (4.9)

+

∫

Ω

(σw − h)2+ϑ∂tϑdx .

Either σ = 1 and it follows from (A1), (3.3), (4.4b), (4.5), and the non-negativity of u and w that

−σ
∫

Ω

ϑ2(σw − h)+uγ(v)dx ≤ −γ(v∗(T ))
∫

Ω

ϑ2(w − h)+u dx

= −γ(v∗(T ))
∫

Ω

ϑ2(w − h)+(βw −∆w) dx

≤ −γ(v∗(T ))
∫

Ω

∇
[

ϑ2(w − h)+
]

· ∇w dx

≤ −γ(v∗(T ))
∫

Ω

ϑ2|∇(w − h)+|2 dx

+ 2γ(v∗(T ))

∫

Ω

ϑ|∇ϑ|(w − h)+|∇(w − h)+| dx .



On a Chemotaxis System with Density-Suppressed Motility and Nutrient Consumption 23

Or σ = −1 and we infer from (2.5), (3.3), (4.4b), and (4.6) that

−σ
∫

Ω

ϑ2(σw − h)+uγ(v)dx ≤ γ∗
∫

Ω

ϑ2(−w − h)+u dx

= γ∗
∫

Ω

ϑ2(−w − h)+(βw −∆w) dx

≤ βγ∗w∗(T )

∫

Ω

ϑ2(−w − h)+ dx

+ γ∗
∫

Ω

∇
[

ϑ2(−w − h)+
]

· ∇w dx

≤ −γ∗
∫

Ω

ϑ2|∇(−w − h)+|2 dx

+ 2γ∗
∫

Ω

ϑ|∇ϑ|(−w − h)+|∇(−w − h)+| dx

+ C(T )

∫

Ω

ϑ2(−w − h)+ dx .

Recalling that γ∗ = γ(v∗) ≥ γ(v∗(T )) by (A1), we have thus shown that

−σ
∫

Ω

ϑ2(σw − h)+uγ(v)dx ≤ −γ(v∗(T ))
∫

Ω

ϑ2|∇(σw − h)+|2 dx

+ C(T )

∫

Ω

ϑ|∇ϑ|(σw − h)+|∇(σw − h)+| dx

+ C(T )

∫

Ω

ϑ2(σw − h)+ dx .

Inserting this estimate in (4.9) and using (4.7) and Young’s inequality lead us to

1

2

d

dt

∫

Ω

ϑ2(σw − h)2+ dx ≤ −γ(v∗(T ))
∫

Ω

ϑ2|∇(σw − h)+|2 dx

+
γ(v∗(T ))

2

∫

Ω

ϑ2|∇(σw − h)+|2 dx+ C(T )

∫

Ω

|∇ϑ|2(σw − h)2+ dx

+ C(T )

∫

Ω

ϑ2(σw − h)+ dx+
(

βγ∗ + f ∗
)

w∗(T )

∫

Ω

ϑ2(σw − h)+ dx

+

∫

Ω

(σw − h)2+ϑ|∂tϑ|dx

≤ −γ(v
∗(T ))

2

∫

Ω

ϑ2|∇(σw − h)+|2 dx

+ C(T )

∫

Ω

(

|∇ϑ|2 + ϑ|∂tϑ|
)

(σw − h)2+ dx+ C(T )

∫

Ω

ϑ2(σw − h)+ dx .
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We now use (4.8) to estimate from above the last term by

C(T )

∫

Ω

ϑ2(σw − h)+ dx ≤ δ

∫

Ah,ϑ,σ

ϑ2 dx ≤
∫

Ah,ϑ,σ

ϑ dx ,

and integrate the above differential inequality over (t0, t) to complete the proof. �

We are now in a position to apply [26, Chapter II, Theorem 8.2] to obtain a Hölder estimate for
w.

Corollary 4.2. There is αT ∈ (0, 1) depending on Ω, γ, f , τ , β, T , and the initial data such that
w ∈ CαT (J × Ω̄).

Proof. Let δ ∈ (0, 1). It follows from Lemma 4.1 that the estimate [26, Chapter II, Equation (7.5)]
holds true (with parameters q = r = 2(1+κ) = (2N+4)/N satisfying [26, Chapter II, equation (7.3)]).
Consequently, according to [26, Chapter II, Remark 7.2], there is C(T ) > 0 such that

w ∈ B̂2([0, T ]× Ω̄, w∗(T ), C(T ), (2N + 4)/N, δ, 2/N) .

Taking also into account the smoothness of the boundary of Ω and the Hölder continuity of win ∈
Cα0(Ω̄) for some α0 ∈ (0, 1), which stems from the definition win = A−1[uin], the regularity (1.4)
of uin, and elliptic regularity, we then infer from [26, Chapter II, Lemma 8.1 & Theorem 8.2] that
w ∈ CαT ([0, T ]× Ω̄) for some αT ∈ (0, 1) depending on T , but also on other parameters as indicated
in the statement of Corollary 4.2. �

Next, we may use the standard regularity theory of parabolic equations to obtain a Hölder estimate
for v as in [19, Lemma 3.1].

Proposition 4.3. The function v belongs to C1+αT ,αT (J × Ω̄) with the exponent αT given in Corol-
lary 4.2.

Proof. Set r , A−1[v] and rin , A−1[vin]. In view of the regularity vin ∈ W 1,N+1(Ω), there is
α0 ∈ (0, 1/(N + 1)) such that rin ∈ C2+α0(Ω̄). Besides, we infer from (1.3b) that r is a solution to

τ∂tr −∆r + βr = w , (t, x) ∈ (0, Tmax)× Ω ,

∇r · ν = 0 , (t, x) ∈ (0, Tmax)× ∂Ω ,

r(0) = rin , x ∈ Ω ,

so that standard regularity theory of heat equations, along with Corollary 4.2, ensures that r belongs
C1+αT ,2+αT (J × Ω̄). As a result, we obtain that v = βr −∆r ∈ C1+αT ,αT (J × Ω̄). �

4.2. Lq-estimates for u. Thanks to the just derived Hölder estimates on v, we may now proceed
as in [5, Section 6] to establish bounds on w in appropriate fractional Sobolev spaces, which do not
depend on Tmax.

Lemma 4.4. Let T ∈ (0, Tmax). For any p ∈ (1,∞) and θ ∈
(

1+p
2p
, 1
)

, there is C6(p, θ, T ) > 0 such

that
‖w(t)‖W 2θ,p ≤ C6(p, θ, T ) , t ∈ [0, T ] .
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Proof. We set D , (v∗/2, 2v
∗(T )) and J = [0, T ], where v∗ and v∗(T ) are defined in (2.4) and (4.5),

respectively. For s ∈ D, we define the elliptic operator A(s) by A(s)z := −γ(s)∆z and the boundary
operator Bz := ∇z · ν. We point out that A(s) is uniformly elliptic for s ∈ D since minD{γ} > 0 due

to (A1). For t ∈ J , let Ã(t) be the Lp-realization of (A(v(t)),B) with domain

W 2,p
B (Ω) := {z ∈ W 2,p(Ω) : ∇z · ν = 0 on ∂Ω} .

As in the proof of [5, Theorem 6.1], the assumptions on γ and Proposition 4.3 guarantee that

Ã ∈ BUCα(J,L(W 2,p(Ω), Lp(Ω)))

and that Ã(J) is a regularly bounded subset of Cα(J,H(W 2,p(Ω), Lp(Ω))) in the sense of [4, Section 4]
(or, equivalently, the condition [8, (II.4.2.1)] is satisfied). By [6, Theorem A.1], see also [8, Theo-

rem II.4.4.1], there is a unique parabolic fundamental solution Ũ associated to {Ã(t) : t ∈ J} and
there exist positive constants M > 0 and ω > 0 such that

‖Ũ(t, s)‖L(W 2,p(Ω)) + ‖Ũ(t, s)‖L(Lp(Ω)) + (t− s)‖Ũ(t, s)‖L(Lp(Ω),W 2,p(Ω)) ≤Meω(t−s) (4.10)

for 0 ≤ s < t ≤ T . Since θ ∈
(

1+p
2p
, 1
)

, it follows from [7, Theorem 5.2] that

(

Lp(Ω),W 2,p
B (Ω)

)

θ,p

.
=W 2θ,p

B (Ω) , {z ∈ W 2θ,p(Ω) : ∇z · ν = 0 on ∂Ω} ,

and we infer from [8, Lemma II.5.1.3] that there is Mθ > 0 such that

‖Ũ(t, s)‖L(W 2θ,p
B

(Ω)) + (t− s)θ‖Ũ(t, s)‖L(Lp(Ω),W 2θ,p
B

(Ω)) ≤Mθe
ω(t−s) (4.11)

for 0 ≤ s < t ≤ T . We deduce from (4.4) that w solves

∂tw + Ã(·)w = F , t ∈ J ,

w(0) = win ,
(4.12)

where

F (t, x) ,
(

βϕ+ ψ − βwγ(v)
)

(t, x) , (t, x) ∈ J × Ω .

We recall that, according to (2.5), (4.6), and (4.7),

‖F (t)‖∞ ≤ C7(T ) ,
(

βγ∗ + f ∗
)

w∗(T ) + βw∗(T )γ∗ , t ∈ J , (4.13)

while the continuity of u, v and w, see Theorem 2.1, ensures that

F ∈ C(J × Ω̄) . (4.14)

Owing to (4.4) and (4.14), we observe that w is the unique classical solution to (4.12) on J and
thus has the representation formula

w(t) = Ũ(t, 0)win +

∫ t

0

Ũ(t, s)F (s) ds , t ∈ J , (4.15)
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according to [8, Remarks II.2.1.2 (a)]. We then infer from (4.11), (4.13), and (4.15) that, for t ∈ J ,

‖w(t)‖W 2θ,p ≤Mθe
ωt‖win‖W 2θ,p +Mθ

∫ t

0

(t− s)−θeω(t−s)‖F (s)‖p ds

≤Mθe
ωT ‖win‖W 2,p + C7(T )Mθ|Ω|1/p

∫ t

0

(t− s)−θeω(t−s) ds . (4.16)

Since
∫ t

0

(t− s)−θeω(t−s) ds =

∫ t

0

s−θeωs ds ≤ T 1−θeωT

1− θ
, t ∈ J ,

we conclude from (4.16) that

‖w(t)‖W 2θ,p ≤ C(p, θ, T ) , t ∈ J ,

and the proof is complete. �

With an appropriate choice of θ and p in Lemma 4.4, we are able to prove that v is bounded in
W 1,∞(Ω) for positive times, which will further give rise to Lq-estimates for u with any q ∈ (1,∞).

Proposition 4.5. Let T ∈ (t∗, Tmax). For any q ∈ (1,∞), there is C8(q, T ) > 0 such that

‖u(t)‖q ≤ C8(q, T ) , t ∈ [0, T ] .

Proof. We fix p ∈ (N,∞) and

N + p

2p
< θ′ < θ < 1 .

From (3.3) and Lemma 4.4, we deduce that

‖u(t)‖W 2θ−2,p = ‖A[w(t)]‖W 2θ−2,p ≤ C‖w(t)‖W 2θ,p ≤ C(T ) , t ∈ [0, T ] . (4.17)

Introducing

W ξ,p
B (Ω) ,







{z ∈ W ξ,p(Ω) : ∇z · ν = 0 on ∂Ω} , (p+ 1)/p < ξ ≤ 2 ,

W ξ,p(Ω) , (1− p)/p < ξ < (p+ 1)/p ,

see [7, Section 7], and observing that the choice of θ and p guarantees that 2θ − 2 > (1 − p)/p, the

realization in W 2θ−2,p
B (Ω) of A generates an analytic semigroup in W 2θ−2,p

B (Ω), see [7, Theorem 8.5],
and the interpolation space is characterized by

(

W 2θ−2,p
B (Ω),W 2θ,p

B (Ω)
)

1+θ′−θ,p
= W 2θ′,p

B (Ω)
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(up to equivalent norms). We then infer from (1.3b), (4.1), (4.17), and [8, Theorem V.2.1.3] that,
for t ∈ [t∗, T ],

‖v(t)‖W 2θ′,p ≤
∥

∥e−(t−t∗)Av(t∗)
∥

∥

W 2θ′,p +

∫ t

t∗

∥

∥e−(t−s)Au(s)
∥

∥

W 2θ′,p ds

≤ Ce−βt/2‖v(t∗)‖W 2θ′,p + C

∫ t

t∗

(t− s)θ−θ′−1e−β(t−s)/2‖u(s)‖W 2θ−2,p ds

≤ C‖v(t∗)‖W 2,p + C(T )

∫ t

t∗

(t− s)θ−θ′−1e−β(t−s)/2 ds

≤ C(T )(1 +M(t∗)) .

As the choice of θ′ guarantees that W 2θ′,p(Ω) is continuously embedded in C1(Ω̄), the above estimate
implies that

‖∇v(t)‖∞ ≤ C(T ) , t ∈ [t∗, T ] . (4.18)

Having at hand theW 1,∞-boundedness of v in [t∗, T ], it becomes simple to derive the Lq-boundedness
of u with any q > 1. To see this, let us multiply (1.3a) by uq−1 and integrate by parts to obtain that

1

q

d

dt

∫

Ω

uq dx+ (q − 1)

∫

Ω

γ(v)uq−2|∇u|2 dx

= −(q − 1)

∫

Ω

γ′(v)uq−1∇u · ∇v dx+

∫

Ω

uqf(n) dx .

(4.19)

By Young’s inequality, the boundedness (2.6) of f(n), and the boundedness of |γ′(v)|2

γ(v)
on [0, T ]× Ω̄

due to (A1), (2.4), and (4.5), we infer that, for t ∈ [t∗, T ],

− (q − 1)

∫

Ω

γ′(v)uq−1∇u · ∇v dx+
∫

Ω

uqf(n) dx

≤ q − 1

2

∫

Ω

γ(v)uq−2|∇u|2 dx+ q − 1

2

∫

Ω

|γ′(v)|2
γ(v)

uq|∇v|2 dx+ f ∗

∫

Ω

uq dx

≤ q − 1

2

∫

Ω

γ(v)uq−2|∇u|2 dx+
(

C(q, T ) sup
[t∗,T ]

‖∇v‖∞ + f ∗
)

∫

Ω

uq dx .

We then use (4.18) to deduce that, for t ∈ [t∗, T ],

d

dt

∫

Ω

uq dx+
q(q − 1)

2

∫

Ω

γ(v)uq−2|∇u|2 dx ≤ C(q, T )

∫

Ω

uq dx .

Integrating the above differential inequality over [t∗, t] for t ∈ [t∗, T ] provides the boundedness of
‖u‖q in [t∗, T ], while that on [0, t∗] is a consequence of Theorem 2.1. �
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Proof of Theorem 1.1. With the aid of Proposition 4.5, we may further use a standard bootstrap
argument to prove that, for any 0 < T < Tmax, there is C(T ) > 0 independent of Tmax such that

sup
0≤t≤T

‖u(t)‖∞ ≤ C(T ) .

According to Theorem 2.1, we deduce that Tmax = ∞ and thus Theorem 1.1 is proved. �

5. Uniform-in-time Boundedness in 2D

The main outcome of Theorem 1.1 being the global existence of classical solutions to (1.3) under the
sole assumption (A1), we are next interested in the uniform-in-time boundedness of these solutions
under certain decay assumptions as stated in Theorem 1.2 and Theorem 1.4.
In this section, we first show the uniform-in-time boundedness of classical solutions to (1.3) in the

two-dimensional case. The proof is based on the particular smoothing properties of elliptic equations
with right-hand side in L1(Ω), as exemplified in Lemma 2.3. Similar arguments are carried out
in [16, Section 3.1] for the two-component system (1.2).
Throughout this section, C and (Ci)i≥9 denote positive constants depending only on Ω, γ, f , τ , β,

and the initial data. Dependence upon additional parameters will be indicated explicitly.

To begin with, we derive a time-independent H1-bound on w.

Lemma 5.1. Assume (A1) and (A2eχ) and that ‖uin + nin‖1 < 4π/χ for some χ > 0. There is
C9(χ) > 0 such that

sup
t≥0

(

‖∇w(t)‖2 + ‖w(t)‖2 +
∫ t+1

t

∫

Ω

u2γ(v) dxds

)

≤ C9(χ) .

Proof. We multiply the key identity (3.7) by u and integrate over Ω. Recalling that w = A−1[u] by
(3.3) and that A−1 is self-adjoint, we obtain

1

2

d

dt

(

‖∇w‖22 + β‖w‖22
)

+

∫

Ω

u2γ(v) dx =

∫

Ω

uA−1[βuγ(v) + uf(n)] dx

=

∫

Ω

(βuγ(v) + uf(n))A−1[u] dx

=

∫

Ω

(βγ(v) + f(n))uw dx .

Hence, owing to (2.5) and (2.6),

1

2

d

dt

(

‖∇w‖22 + β‖w‖22
)

+

∫

Ω

u2γ(v) dx ≤ (βγ∗ + f ∗)

∫

Ω

uw dx .

Also, it follows from (3.3) that

‖∇w‖22 + β‖w‖22 =
∫

Ω

wu dx.
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Combining the above inequalities and using Young’s inequality, we arrive at

d

dt

(

‖∇w‖22 + β‖w‖22
)

+ ‖∇w‖22 + β‖w‖22 + 2

∫

Ω

u2γ(v) dx

=(2βγ∗ + 2f ∗ + 1)

∫

Ω

wu dx

≤
∫

Ω

u2γ(v) dx+
(2βγ∗ + 2f ∗ + 1)2

4

∫

Ω

w2

γ(v)
dx.

We thus obtain

d

dt

(

‖∇w‖22 + β‖w‖22
)

+ ‖∇w‖22 + β‖w‖22 +
∫

Ω

u2γ(v) dx ≤ C

∫

Ω

w2

γ(v)
dx . (5.1)

We now deduce from the assumption (A2eχ) that there exist b > 0 and sχ > v∗ depending on χ
such that eχsγ(s) ≥ 1/b for all s ≥ sχ. Since γ(s) ≥ γ(sχ) for s ∈ (0, sχ], we end up with

1

γ(s)
≤ max

{

b,
1

γ(sχ)

}

eχs , s > 0 . (5.2)

Now, for ε > 0, we infer from (3.5), (3.17), (5.2), and the elementary inequality eεs ≥ ε2s2, s > 0,
that

∫

Ω

w2

γ(v)
dx ≤ C(χ)

∫

Ω

w2eχv dx ≤ C(χ)

∫

Ω

S2eχ(1+ε)S+χL1(ε) dx

≤ C(χ)eχL1(ε)

χ2ε2

∫

Ω

eχ(1+2ε)S dx .

(5.3)

Since ‖u+ n‖1 = ‖uin + nin‖1 < 4π/χ by (1.6) and (2.1), we may choose εχ > 0 such that

χ(1 + 2εχ) <
4π

‖uin + nin‖1

(

say εχ ,
π

χ‖uin + nin‖1
− 1

4

)

(5.4)

and deduce from (3.2) and Lemma 2.3 that
∫

Ω

eχ(1+2εχ)S dx ≤ C2(‖uin + nin‖1, χ(1 + 2εχ)) . (5.5)

Gathering (5.1), (5.3) (with ε = εχ), and (5.5) gives

d

dt

(

‖∇w‖22 + β‖w‖22
)

+ ‖∇w‖22 + β‖w‖22 +
∫

Ω

u2γ(v) dx ≤ C(χ) ,

from which Lemma 5.1 follows after integration with respect to time. �

Proposition 5.2. Assume (A1) and (A2eχ) and that ‖uin + nin‖1 < 4π/χ for some χ > 0. There
is C10(χ) > 0 such that

sup
t≥0

(‖w(t)‖∞ + ‖v(t)‖∞) ≤ C10(χ) . (5.6)



30 J. Jiang, Ph. Laurençot & Y. Zhang

Proof. Let p ∈ (1, 2) and ε > 0 to be specified later. Since u = A[w] by (3.3), we infer from the
Sobolev embedding theorem, Hölder’s inequality, and (5.2) that

‖w‖∞ ≤C(p)‖w‖W 2,p ≤ C(p)‖u‖p

≤C(p)
(
∫

Ω

u2γ(v) dx

)
1
2
(
∫

Ω

(γ(v))−
p

2−p dx

)
2−p
2p

≤C(p, χ)
(
∫

Ω

u2γ(v) dx

)
1
2
(
∫

Ω

e
χp
2−p

v dx

)
2−p
2p

≤C(p, χ, ε)
(
∫

Ω

u2γ(v) dx

)
1
2
(
∫

Ω

e
χp
2−p

(1+ε)S dx

)
2−p
2p

. (5.7)

Choosing p = pχ ,
2+4εχ
2+3εχ

∈ (1, 2) with εχ defined in (5.4), we observe that

χpχ
(2− pχ)

(1 + εχ) = χ(1 + 2εχ)

and we deduce from (5.5) and (5.7) (with ε = εχ and p = pχ) that

‖w‖∞ ≤ C(χ)

(
∫

Ω

u2γ(v) dx

)
1
2

.

Combining the above estimate with Lemma 5.1, we obtain, for t ≥ 0,
∫ t+1

t

‖w(s)‖∞ ds ≤
(
∫ t+1

t

‖w(s)‖2∞ ds

)

1
2

≤ C(χ)

(
∫ t+1

t

∫

Ω

u2γ(v) dxds

)

1
2

≤ C(χ) . (5.8)

Now, observing that (2.5), (2.6), (3.7), the non-negativity of u and γ, and the elliptic comparison
principle imply that

∂tw ≤ ∂tw + uγ(v) = A−1 [βuγ(v) + uf(n)] ≤ (βγ∗ + f ∗)A−1[u] = (βγ∗ + f ∗)w ,

we realize that w(t+ 1, x) ≤ e(βγ
∗+f∗)(t+1−s)w(s, x) for all (s, x) ∈ (t, t + 1)× Ω. Consequently,

‖w(t+ 1)‖∞e(βγ
∗+f∗)(s−t−1) ≤ ‖w(s)‖∞ , s ∈ [t, t+ 1] ,

and it follows from (5.8) and the above inequality after integration with respect to s over [t, t + 1]
that

‖w(t+ 1)‖∞
1− e−(βγ∗+f∗)

βγ∗ + f ∗
≤ C(χ) .

Since we already know that ‖w(t)‖∞ ≤ C for t ∈ [0, 1] by Lemma 3.1, we have thus proved that

‖w(t)‖∞ ≤ C(χ) for t ≥ 0 .

The claimed boundedness of v now readily follows in view of (3.18) and the non-negativity of v. �

Proof of Theorem 1.2. With Proposition 4.5 at hand, we argue in the same manner as in the proof
of Theorem 1.4 in the next section, to which we refer. �
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6. Uniform-in-time Boundedness in Higher Dimensions

In this section, we turn to the higher dimensional case N ≥ 3 and recall that, besides (A1),
we assume that the growth of 1/γ at infinity is monitored by (A2) with k < N/(N − 2) and
k − l < 2/(N − 2). We further assume that, either the growth of s 7→ sγ(s) is balanced by that of Γ
as requested by (A3), or that the parameter l in (A2) satisfies l > (N − 4)+/(N − 2).
Throughout this section, C and (Ci)i≥11 denote positive constants depending only on Ω, γ, f , τ ,

β, the initial data, the constants B and A defined in Proposition 3.3 and in Propositions 3.5 and 3.6,
respectively, and the parameters k and l involved in (A2). Dependence upon additional parameters
will be indicated explicitly.

6.1. Time-independent upper bound estimates. First, we derive a uniform-in-time upper bound
for v by a Moser type iteration under the assumptions of Theorem 1.4. More precisely, we prove the
following result.

Proposition 6.1. There is v∗ > 0 depending only on Ω, γ, f , τ , β, the initial data, the constants B
and A defined in Proposition 3.3 and in Propositions 3.5 and 3.6, respectively, and the parameters k
and l involved in (A2) such that

sup
t≥0

‖v(t)‖∞ ≤ v∗ .

The proof of Proposition 6.1 consists of the following lemmas. We recall that, by Proposition 3.3
and Propositions 3.5 and 3.6,

Ŝ , AS ≤ v ≤ S̃ = BS in [0,∞)× Ω̄ . (6.1)

Lemma 6.2. Introducing the function

γ0(s) , min

{

1,
1

γ∗

}

γ(s) , s > 0 , (6.2)

the function S̃ satisfies the following differential inequality

∂tS̃ +Bγ0(S̃)(u+ n) ≤ βB

A
Γ(S̃) + C11 in (0,∞)× Ω . (6.3)

Proof. First, we recall the key identity (3.6):

∂tS + uγ(v) + n = βA−1[uγ(v) + n] in (0,∞)× Ω .

On the one hand, thanks to (2.5), (6.1), and the non-increasing property of γ0, there holds

B(uγ(v) + n) ≥ B

(

uγ(v) +
n

γ∗
γ(v)

)

≥ Bγ0(v)(u+ n) ≥ Bγ0(S̃)(u+ n) .

It follows that

∂tS̃ +Bγ0(S̃)(u+ n) ≤ βBA−1[uγ(v) + n] in (0,∞)× Ω . (6.4)
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On the other hand, recalling that ϕ = A−1[uγ(v)], see (4.2), we infer from (6.1), the definition
(3.2) of S, and the monotonicity (A1) of γ that

AA[ϕ] = Auγ(v) ≤ A(u+ n)γ(v) ≤ A(u+ n)γ(Ŝ) = Aγ(Ŝ)A[S] = (βŜ −∆Ŝ)γ(Ŝ)

= −∆Γ(Ŝ) + βΓ(Ŝ) + γ′(Ŝ)|∇Ŝ|2 + β
(

Ŝγ(Ŝ)− Γ(Ŝ)
)

≤ A[Γ(Ŝ)] + β
(

Ŝγ(Ŝ)− Γ(Ŝ)
)

in (0,∞)× Ω .

In view of (3.4) and Lemma 2.4 (with s0 = AS∗), we obtain

AA[ϕ] ≤ A[Γ(Ŝ)] + βγ(AS∗) = A[Γ(Ŝ) + γ(AS∗)] in (0,∞)× Ω ,

while (1.3d) guarantees that ∇ϕ · ν = ∇(Γ(v) + γ(AS∗)) · ν = 0 on (0,∞) × ∂Ω, from which we
deduce, according to (6.1), the elliptic comparison principle, and the increasing property of Γ, that

Aϕ ≤ Γ(Ŝ) + γ(AS∗) ≤ Γ(S̃) + γ(AS∗) in (0,∞)× Ω .

In addition, using again the elliptic comparison principle, along with (2.3) (with p = ∞), gives

‖A−1[n(t)]‖∞ ≤ ‖n(t)‖∞
β

≤ ‖nin‖∞
β

for t ≥ 0 .

Combining the above inequalities with (6.4) completes the proof. �

As in [21], we next combine (A2) and (6.3) to derive a differential inequality for ‖S̃‖p for p ∈
(1 + k,∞).

Lemma 6.3. There are positive constants C12 > 0 and C13 > 0 such that, for any p > 1 + k,

d

dt
‖S̃‖pp + C12

p(p− k − 1)

(p− k)2
‖∇S̃ p−k

2 ‖22 + C12p‖S̃‖p−k
p−k ≤ C13p

∫

Ω

(

S̃p−1Γ(S̃) + S̃p−1
)

dx .

Proof. First, the definition (6.2) of γ0 and assumption (A2) guarantee that there exist b > 0 and
sb > s0 depending only on γ such that, for s ≥ sb,

1

γ0(s)
=

γ∗

min{1, γ∗}γ(s) ≤ bsk ,

while the monotonicity of γ0 ensures that

1

γ0(s)
≤ 1

γ0(sb)
≤ sk

BkSk
∗γ0(sb)

, s ∈ [BS∗, sb] .

Therefore,
1

γ0(s)
≤ Csk , s ∈ [BS∗,∞) . (6.5)

Now, multiplying the inequality (6.3) by S̃p−1 for some p > 1 + k and integrating over Ω, we obtain

1

p

d

dt
‖S̃‖pp +B

∫

Ω

(u+ n)γ0(S̃)S̃
p−1 dx ≤ βB

A

∫

Ω

S̃p−1Γ(S̃) dx+ C11‖S̃‖p−1
p−1 .
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Thanks to (6.5) and the fact S̃ = BS ≥ BS∗, see (3.4), we derive that

B

∫

Ω

(u+ n)γ0(S̃)S̃
p−1 dx ≥ BC

∫

Ω

S̃p−k−1(u+ n) dx. (6.6)

Next, recalling that βS̃ −∆S̃ = B(u+ n) by the definition (3.2) of S, we observe that

B

∫

Ω

S̃p−k−1(u+ n) dx =

∫

Ω

S̃p−k−1(βS̃ −∆S̃) dx

= β‖S̃‖p−k
p−k + (p− k − 1)

∫

Ω

S̃p−k−2|∇S̃|2 dx

= β‖S̃‖p−k
p−k +

4(p− k − 1)

(p− k)2
‖∇S̃ p−k

2 ‖22.

Collecting the above estimates leads to the stated differential inequality and completes the proof. �

Next, we state the following lemma which can be proved in the same way as [21, Lemma 4.4].

Lemma 6.4. For any

p > max

{

2(N − 1)

N − 2
, l +

N(k − l)

2

}

and ε > 0, there holds
∫

Ω

(

S̃p−1Γ(S̃) + S̃p−1
)

dx ≤ ε‖S̃ p−k
2 ‖2H1 + C14(ε, p) , t ≥ 0 . (6.7)

Then, in the same manner as in [21, Lemma 4.5], we can derive from Lemma 6.3 and Lemma 6.4

the following uniform-in-time estimates for S̃ in Lp(Ω) for any p ≥ 1.

Lemma 6.5. For any p ≥ 1, there is C15(p) > 0 such that

‖S̃(t)‖p ≤ C15(p) , t ≥ 0 .

With the above preparation, we are ready to use a Moser’s iteration technique along the lines of [2]
to establish the boundedness of S̃ in L∞(Ω) as stated in Proposition 6.1, see also [21].

Proof of Proposition 6.1. We recall that (2.5), (6.4), and the elliptic comparison principle imply that

∂tS̃ +Bγ0(S̃)(u+ n) ≤ βBγ∗A−1[u] + βBA−1[n] in (0,∞)× Ω .

Since A−1[u] and A−1[n] are both non-negative and S = A−1[u + n] by (3.2), we may bound from
above the right-hand side of the above inequality by βBmax{1, γ∗}A−1[u+n] = βmax{1, γ∗}S̃, thus
obtaining

∂tS̃ +Bγ0(S̃)(u+ n) ≤ C16S̃ in (0,∞)× Ω ,

with C16 = βmax{γ∗, 1}. Then, for any p ≥ 2 + k,

d

dt
‖S̃‖pp + p

∫

Ω

(u+ n)γ0(S̃)S̃
p−1dx ≤ C16p‖S̃‖pp.
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We also infer from (3.2) and (6.6) that

B

∫

Ω

(u+ n)γ0(S̃)S̃
p−1dx ≥ BC

∫

Ω

(u+ n)S̃p−k−1dx = C

∫

Ω

(βS̃ −∆S̃)S̃p−k−1dx

= C‖S̃‖p−k
p−k + 4C

p− k − 1

(p− k)2
‖∇S̃ p−k

2 ‖22.

Observing that

p(p− k − 1)

(p− k)2
≥ 1

2

for p ≥ 2 + k and combining the above inequalities give

d

dt
‖S̃‖pp + C17‖S̃

p−k
2 ‖2H1 ≤ C16p‖S̃‖pp. (6.8)

The remaining of the proof is then similar to the corresponding argument in the proof of [21,
Proposition 4.1]. We nevertheless sketch it below for the sake of completeness. By Hölder’s, Sobolev’s,
and Young’s inequalities,

2C16p‖S̃‖pp ≤ 2C16p‖S̃
p−k
2 ‖ 2N

N−2
‖S̃‖

p+k
2

N(p+k)
N+2

≤ Cp‖S̃ p−k
2 ‖H1‖S̃‖

p+k
2

N(p+k)
N+2

≤ C17‖S̃
p−k
2 ‖2H1 + Cp2‖S̃‖p+k

N(p+k)
N+2

.

Combining (6.8) and the above estimate, we find

d

dt
‖S̃‖pp + C16p‖S̃‖pp ≤ 2C16p‖S̃‖pp − C17‖S̃

p−k
2 ‖2H1 ≤ Cp2‖S̃‖p+k

N(p+k)
N+2

. (6.9)

Let us now define two sequences (pj)j≥0 and (Xj)j≥0 by

pj+1 =
N + 2

N
pj − k, j ≥ 0, p0 =

kN

2
+

2(N − 1)

N − 2
,

Xj = sup
t≥0

‖S̃(t)‖pjpj , j ≥ 0.
(6.10)

Note that Xj <∞ for all j ≥ 0 due to Lemma 6.5 since the choice of p0 guarantees that

pj+1 > pj > p0 >
kN

2
, j ≥ 0 , and lim

j→∞
pj = ∞. (6.11)

For j ≥ 0, we take p = pj+1 in (6.9) and use (6.10) to obtain

d

dt
‖S̃‖pj+1

pj+1
+ C16pj+1‖S̃‖pj+1

pj+1
≤ Cp2j+1‖S̃‖

(N+2)pj
N

pj ≤ Cp2j+1X
N+2
N

j .
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After an integration with respect to time, we find

‖S̃(t)‖pj+1
pj+1

≤ ‖S̃in‖pj+1
pj+1

e−C16pj+1t + Cpj+1X
N+2
N

j

(

1− e−C16pj+1t
)

≤ max
{

|Ω|‖S̃in‖pj+1
∞ , Cpj+1X

N+2
N

j

}

for all t ≥ 0, where S̃in = BSin. Hence,

Xj+1 ≤ Cpj+1max
{

‖S̃in‖pj+1
∞ , X

N+2
N

j

}

, j ≥ 0 .

Owing to (6.10) and recalling thatX0 is finite by Lemma 6.5, we are in a position to apply Lemma 2.7

with θ = N+2
N

, b = 1, and c = −k to conclude that the sequence
(

X
1/pj
j

)

j≥0
is bounded. Since

‖v(t)‖∞ ≤ ‖S̃(t)‖∞ = lim
j→∞

‖S̃(t)‖pj ≤ sup
j≥0

{

X
1/j
j

}

, t ≥ 0 ,

by (6.1), we have shown the uniform-in-time boundedness of v. �

6.2. Improved regularity. With the time-independent upper bound on v derived in Proposi-
tion 6.1, we may argue in the same manner as in Section 4 to derive the uniform-in-time boundedness
of (u, v, n). More precisely, we set J = [0,∞) and regard w as a solution to the following initial
boundary value problem

∂tw + uγ(v) = βϕ+ ψ , (t, x) ∈ (0,∞)× Ω , (6.12a)

−∆w + βw = u , (t, x) ∈ (0,∞)× Ω , (6.12b)

∇w · ν = 0 , (t, x) ∈ (0,∞)× ∂Ω , (6.12c)

w(0) = win , x ∈ Ω , (6.12d)

the source term ϕ and ψ being still defined by (4.2) and (4.3), respectively.
In view of (2.4) and Proposition 6.1, we have

0 < v∗ ≤ v(t, x) ≤ v∗ in J × Ω̄ , (6.13)

while (3.4), (6.13), and Propositions 3.5 and 3.6 imply that

w∗ ≤ w(t, x) ≤ w∗ =
v∗

A
in J × Ω̄ . (6.14)

Also, by (2.5), (2.6), (6.14), and the elliptic comparison principle,

0 ≤ βϕ+ ψ = A−1[βuγ(v) + uf(n)] ≤
(

βγ∗ + f ∗
)

w ≤
(

βγ∗ + f ∗
)

w∗ in J × Ω̄ . (6.15)

Thanks to these properties, we may then argue as in the proof of Proposition 4.3 to derive the Hölder
continuity of v.

Proposition 6.6. There is α ∈ (0, 1) such that v ∈ BUCα(J, Cα(Ω̄)).
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As in Section 4.2, we now exploit the Hölder regularity on v provided by Proposition 6.6 and, as
in the proofs of Lemma 4.4, we proceed along the lines of [5, Section 6] to establish the boundedness
of the trajectory {w(t) : t ≥ 0} in W 2θ,p(Ω) for all p ∈ (N,∞) and θ ∈ ((N + p)/2p, 1). We here
take advantage of the validity of the needed bounds with constants which do not depend on time to
derive estimates which also do not depend on time.

Lemma 6.7. For any p ∈ (N,∞) and θ ∈ ((N + p)/2p, 1), there is C18(p) > 0 such that

‖w(t)‖W 2θ,p ≤ C18(p) , t ≥ 0 .

Proof. Recall that J = [0,∞). With the same notations as in Lemma 4.4, we now have a unique
parabolic fundamental solution Ũ associated to {A(t) : t ∈ J} and there exist time-independent
positive constants M > 0, Mθ > 0, and ω > 0 such that

‖Ũ(t, s)‖L(W 2,p(Ω)) + ‖Ũ(t, s)‖L(Lp(Ω)) + (t− s)‖Ũ(t, s)‖L(Lp(Ω),W 2,p(Ω)) ≤Meω(t−s) (6.16)

and
‖Ũ(t, s)‖L(W 2θ,p

B
(Ω)) + (t− s)θ‖Ũ(t, s)‖L(Lp(Ω),W 2θ,p

B
(Ω)) ≤Mθe

ω(t−s) (6.17)

for 0 ≤ s < t.
We then pick µ > ω and deduce from (6.12) that w solves

∂tw + (µ+ A(·))w = F + µw , t > 0 ,

w(0) = win ,
(6.18)

with F = βϕ+ ψ − βwγ(v). By (6.15) and the boundedness v and w, there is C19 > 0 such that

‖F (t) + µw(t)‖∞ ≤ C19 , t ∈ J . (6.19)

Owing the continuity of u, v, and w provided by Theorem 1.1,

F + µw ∈ C(J × Ω̄) ,

so that w is the unique classical solution to (6.18) on J . Using again [8, Remarks II.2.1.2 (a)], we
conclude that w is given by the representation formula

w(t) = e−µtŨ(t, 0)win +

∫ t

0

e−µ(t−s)Ũ(t, s)(F + µw)(s) ds , t ≥ 0 . (6.20)

We then infer from (6.17), (6.19), and (6.20) that, for t ≥ 0,

‖w(t)‖W 2θ,p ≤Mθe
(ω−µ)t‖win‖W 2θ,p +Mθ

∫ t

0

(t− s)−θe(ω−µ)(t−s)‖(F + µw)(s)‖p ds

≤ C(p, θ) + C19Mθ|Ω|1/p
∫ t

0

(t− s)−θe(ω−µ)(t−s)ds

≤ C(p, θ) , (6.21)

since

Iθ ,

∫ ∞

0

s−θe(ω−µ)s ds <∞ .
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�

Last, we shall derive uniform-in-time Lq-estimates for u and q ∈ (1,∞).

Proposition 6.8. For any q ∈ (1,∞), there is C20(q) > 0 such that

sup
t≥0

‖u(t)‖q ≤ C20(q) .

Proof. We fix t∗ > 0 and first argue as in the beginning of the proof of Proposition 4.5 to show that

‖∇v(t)‖∞ ≤ C , t ∈ [t∗,∞) , (6.22)

taking advantage here that the bounds we use do not depend on time and that the infinite integral
with respect to time converges as it features the negative exponential t 7→ e−βt/2.
It remains to establish the uniform-in-time Lq-boundedness of u for any q > 1. Recalling the

boundedness (2.6) of f(n) and the uniform-in-time boundedness of |γ′(v)|2

γ(v)
on [0,∞)× Ω̄ which is a

consequence of (A1) and (6.13), we can argue in the same manner as in the proof of Proposition 4.5
to obtain that, for t ≥ t∗,

d

dt
‖u‖qq +

q(q − 1)

2

∫

Ω

γ(v)uq−2|∇u|2dx+ ‖u‖qq ≤
(

C(q) sup
[t∗,∞)

‖∇v‖∞ + f ∗ + 1

)

‖u‖qq

≤C21(q)‖u‖qq . (6.23)

Since γ(v) ≥ γ(v∗) due to (6.13) and the monotonicity (A1) of γ, we infer from Sobolev’s embedding
that

q(q − 1)

2

∫

Ω

γ(v)uq−2|∇u|2 dx+ ‖u‖qq ≥
2(q − 1)γ(v∗)

q

∥

∥∇uq/2
∥

∥

2

2
+
∥

∥uq/2
∥

∥

2

2

≥ min

{

2(q − 1)γ(v∗)

q
, 1

}

∥

∥uq/2
∥

∥

2

H1

≥ C22(q)‖u‖qqN
N−2

. (6.24)

It next follows from (2.2), Hölder’s and Young’s inequalities that, for ε > 0,

‖u‖qq ≤ ‖u‖
Nq(q−1)
N(q−1)+2

qN
N−2

‖u‖
2q

N(q−1)+2

1 ≤ ‖u‖
Nq(q−1)
N(q−1)+2

qN
N−2

‖uin + nin‖
2q

N(q−1)+2

1 ≤ ε‖u‖qqN
N−2

+ C(q, ε) .

Consequently,

‖u‖qqN
N−2

≥
‖u‖qq
ε

− C(q, ε) ,

which gives, together with (6.24),

q(q − 1)

2

∫

Ω

γ(v)uq−2|∇u|2 dx+ ‖u‖qq ≥
C22(q)

ε
‖u‖qq − C23(q, ε) . (6.25)
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Combining (6.23) and (6.25) with ε = C22(q)/2C21(q), we end up with

d

dt
‖u‖qq + C21(q)‖u‖qq ≤ C(q) , t ≥ t∗ , (6.26)

from which the uniform-in-time bounded of the Lq-norm of u follows. �

Theorem 1.4 is now a straightforward consequence of Proposition 6.8 and a bootstrap argument.

Proof of Theorem 1.4. With the aid of Proposition 6.8, we may further use a standard bootstrap
argument (cf. [1, Lemma 4.3]) to prove that

sup
t≥0

‖u(t)‖∞ ≤ C ,

and thus complete the proof of (1.7). We then use the smoothing and decaying properties of the
semigroup associated with the operator A to deduce from (1.3b), (1.3c), and (1.7) that both v and n
belong to L∞((t0,∞);C1(Ω̄)), while this property for u follows from (1.3a) and [5, Theorem 5.2]. �

7. Stabilization toward the spatially homogeneous solution

In this section, we study the stabilization of bounded classical solutions to (1.3) toward the spa-
tial homogeneous solution (m,m, 0) under the assumptions of Theorem 1.6. More precisely, let
(uin, vin, nin) be initial conditions satisfying (1.4) and assume that the corresponding non-negative
classical solution (u, v, n) to (1.3) provided by Theorem 2.1 is global (Tmax = ∞) and bounded.
Recalling (2.4), there are positive constants u∗ ≥ 1, v∗ > 0, and v∗ ≥ 1 such that

0 ≤ u(t, x) ≤ u∗ , 0 < v∗ ≤ v(t, x) ≤ v∗ , (t, x) ∈ [0,∞)× Ω . (7.1)

We next set

γ1(s) , sγ(s) and Γ1(s) ,

∫ s

1

γ1(η)dη =

∫ s

1

ηγ(η)dη , s > 0 .

Due to assumptions (A1) and (1.9), we have

γ′ ≤ 0 ≤ γ′1 . (7.2)

We also denote the mean value of z ∈ L1(Ω) by 〈z〉; that is,

〈z〉 , 1

|Ω|

∫

Ω

z(x) dx .

Introducing a∗ , min{1, v∗, 〈uin〉} > 0 and a∗ , max{u∗, v∗}, we infer from (2.2) and (7.1) that
(

〈u(t)〉, v(t)
)

∈ [a∗, a
∗]2 , t ∈ [0,∞) . (7.3)

For simplicity, we only consider the case τ = β = 1 hereafter, the computations performed below
being the same in the general case, while the derived identities feature additional factors depending
on τ and β. Then κ and (κi)i≥1 denote positive constants depending only on Ω, γ, f , the initial data,
and the parameters (u∗, v∗, v

∗) introduced in (7.1).
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7.1. A Lyapunov functional. Building upon a construction designed in [13] for the system (1.2),
we introduce in this section a Lyapunov functional, which plays a key role in the study of the long
time behavior of classical solutions to (1.3).
For t ≥ 0, we define the unique solution U(t) to the elliptic equation

−∆U(t) = u(t)− 〈u(t)〉 in Ω , ∇U(t) · ν = 0 on ∂Ω , 〈U(t)〉 = 0 . (7.4)

Then, by (1.3a) and (7.4),

1

2

d

dt
‖∇U‖22 = −

∫

Ω

U∂t∆U dx =

∫

Ω

U∂tu dx

=

∫

Ω

U∆(uγ(v)) dx+

∫

Ω

Uuf(n) dx

=

∫

Ω

uγ(v)∆U dx+

∫

Ω

Uuf(n) dx

=

∫

Ω

(〈u〉 − u)uγ(v) dx+

∫

Ω

Uuf(n) dx . (7.5)

To handle the first term on the right-hand side of (7.5), we proceed as in [13] to obtain

J0 ,

∫

Ω

(〈u〉 − u)uγ(v) dx

=

∫

Ω

(〈u〉 − 2v)uγ(v) dx+

∫

Ω

vγ1(v) dx−
∫

Ω

(v − u)2γ(v) dx .

Since
∫

Ω

(〈u〉 − 2v)uγ(v) dx =

∫

Ω

(〈u〉 − 2v)γ(v)(∂tv −∆v + v) dx

= 〈u〉 d
dt

∫

Ω

Γ(v) dx− 2
d

dt

∫

Ω

Γ1(v) dx−
∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx

+ 〈u〉
∫

Ω

γ1(v) dx− 2

∫

Ω

vγ1(v) dx ,

we obtain

J0 = 〈u〉 d
dt

∫

Ω

Γ(v) dx− 2
d

dt

∫

Ω

Γ1(v) dx−
∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx

−
∫

Ω

(v − 〈u〉)γ1(v) dx−
∫

Ω

(v − u)2γ(v) dx .
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Consequently, inserting the above formula for J0 in (7.5) and using (1.3a), we obtain

d

dt

[‖∇U‖22
2

+ 2

∫

Ω

Γ1(v) dx− 〈u〉
∫

Ω

Γ(v) dx

]

= −
(
∫

Ω

Γ(v) dx

)

d

dt
〈u〉 −

∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx

−
∫

Ω

(v − 〈u〉)γ1(v) dx−
∫

Ω

(v − u)2γ(v) dx+

∫

Ω

Uuf(n) dx

= −
∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx−
∫

Ω

(v − 〈u〉)(γ1(v)− γ1(〈u〉)) dx

−
∫

Ω

(v − u)2γ(v) dx+

∫

Ω

Uuf(n) dx− γ1(〈u〉)
∫

Ω

(v − 〈u〉) dx

− 〈Γ(v)〉‖uf(n)‖1 .

Finally, in view of (1.3a) and (1.3b), we observe that

− d

dt
(γ1(〈u〉)‖v‖1) = γ1(〈u〉)

∫

Ω

(v − 〈u〉) dx− γ′1(〈u〉)〈v〉‖uf(n)‖1 ,

|Ω| d
dt

(

γ1(〈u〉)〈u〉 − Γ1(〈u〉)
)

= γ′1(〈u〉)〈u〉
d

dt
‖u‖1 = γ′1(〈u〉)〈u〉‖uf(n)‖1,

and

|Ω| d
dt

(

〈u〉Γ(〈u〉)− Γ1(〈u〉)
)

= Γ(〈u〉) d
dt
‖u‖1 = Γ(〈u〉)‖uf(n)‖1.

Gathering the above identities gives

d

dt

[‖∇U‖22
2

+ 2

∫

Ω

Γ1(v) dx− 〈u〉
∫

Ω

Γ(v) dx− γ1(〈u〉)‖v‖1

+ |Ω|
(

γ1(〈u〉)〈u〉+ 〈u〉Γ(〈u〉)− 2Γ1(〈u〉)
)

]

= −
∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx−
∫

Ω

(v − 〈u〉)(γ1(v)− γ1(〈u〉)) dx

−
∫

Ω

(v − u)2γ(v) dx+

∫

Ω

Uuf(n) dx− [〈Γ(v)〉+ γ′1(〈u〉)〈v〉] ‖uf(n)‖1

+ (γ′1(〈u〉)〈u〉+ Γ(〈u〉))‖uf(n)‖1 .

Let K∗ > 0 to be specified later. As

K∗
d

dt
‖n‖1 = −K∗‖uf(n)‖1 ,
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we end up with

d

dt

[‖∇U‖22
2

+ 2

∫

Ω

Γ1(v) dx− 〈u〉
∫

Ω

Γ(v) dx− γ1(〈u〉)‖v‖1 +K∗‖n‖1

+ |Ω|
(

γ1(〈u〉)〈u〉+ 〈u〉Γ(〈u〉)− 2Γ1(〈u〉)
)]

= −
∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx−
∫

Ω

(v − 〈u〉)(γ1(v)− γ1(〈u〉)) dx

−
∫

Ω

(v − u)2γ(v) dx+

∫

Ω

Uuf(n) dx− [K∗ + 〈Γ(v)〉+ γ′1(〈u〉)〈v〉] ‖uf(n)‖1

+ (γ′1(〈u〉)〈u〉+ Γ(〈u〉))‖uf(n)‖1 .

(7.6)

It now follows from (7.1), Poincaré-Wirtinger’s inequality

κ0‖z − 〈z〉‖22 ≤ ‖∇z‖22 , z ∈ H1(Ω) , (7.7)

and Sobolev’s embedding that, when N ≥ 3,

‖U(t)‖2N/(N−2) ≤ κ‖U(t)‖H1 ≤ κ‖u− 〈u〉‖2 ≤ κ , t ≥ 0 .

As U also solves −∆U +U = U + u− 〈u〉 in Ω with ∇U · ν = 0 on ∂Ω, elliptic regularity provides a
bound on U in W 2,2N/(N−2)(Ω) and hence in L2N/(N−6)+(Ω). Thus, after a finite number of iterations,
we conclude that there is U∗ > 0 depending only on Ω and u∗ such that

|U(t, x)| ≤ U∗ , (t, x) ∈ [0,∞)× Ω . (7.8)

A simpler argument gives (7.8) when N ∈ {1, 2}. We now choose

K∗ , 1 + U∗ + u∗ sup
[a∗,a∗]

{γ′1}+ 2Γ(a∗) ≥ 1 ,

so that, by (7.1), (7.2), (7.3), (7.8), and the monotonicity of Γ1,
∫

Ω

Uuf(n) dx−
[

K∗ + 〈Γ(v)〉+ γ′1(〈u〉)〈v〉 − γ′1(〈u〉)〈u〉 − Γ(〈u〉)
]

‖uf(n)‖1

≤
[

U∗ + u∗ sup
[a∗,a∗]

{γ′1}+ 2Γ(a∗)−K∗

]

‖uf(n)‖1

≤ −‖uf(n)‖1 .

We then infer from (7.2), (7.6), and the above estimate that

d

dt
L+D1 +D2 +D3 +D4 ≤ 0 , (7.9)
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where

L ,
‖∇U‖22

2
+ 2

∫

Ω

Γ1(v) dx− 〈u〉
∫

Ω

Γ(v) dx− γ1(〈u〉)‖v‖1 +K∗‖n‖1

+ |Ω|
(

γ1(〈u〉)〈u〉+ 〈u〉Γ(〈u〉)− 2Γ1(〈u〉)
)

,

D1 ,

∫

Ω

[2γ′1(v)− 〈u〉γ′(v)] |∇v|2 dx ≥ 0 ,

D2 ,

∫

Ω

(v − 〈u〉)(γ1(v)− γ1(〈u〉)) dx ≥ 0 ,

D3 ,

∫

Ω

(v − u)2γ(v) dx ≥ γ(v∗)

∫

Ω

(v − u)2 dx ≥ 0 ,

D4 , ‖uf(n)‖1 ≥ 0 .

We also note that the convexity of Γ1 and −Γ, see (7.2), and the non-negativity of 〈u〉 guarantee
that

L =
‖∇U‖22

2
+K∗‖n‖1 + 2

∫

Ω

(

Γ1(v)− Γ1(〈u〉)
)

dx

+ 〈u〉
∫

Ω

(

− Γ(v) + Γ(〈u〉)
)

dx− γ1(〈u〉)
∫

Ω

(

v − 〈u〉
)

dx

≥ ‖∇U‖22
2

+K∗‖n‖1 + 2

∫

Ω

γ1(〈u〉)
(

v − 〈u〉
)

dx− 〈u〉γ(〈u〉)
∫

Ω

(

v − 〈u〉
)

dx

− γ1(〈u〉)
∫

Ω

(

v − 〈u〉
)

dx

≥ ‖∇U‖22
2

+K∗‖n‖1 ≥ 0 . (7.10)

A first consequence of (7.9) and (7.10) is that

∫ ∞

0

(

4
∑

i=1

Di(s)

)

ds ≤ L(0) <∞ . (7.11)

Next, since 〈u(t)〉 ≥ 〈uin〉 > 0 by (2.2) and −γ′ ≥ 0 by (7.2), we notice that

D1 ≥
∫

Ω

[

2γ′1(v)− 〈uin〉γ′(v)
]

|∇v|2 dx.

We furthermore observe that 2γ′1(s) − 〈uin〉γ′(s) > 0 for all s > 0. Otherwise, there is s0 > 0 such
that 2γ′1(s0)− 〈uin〉γ′(s0) = 0 and it follows that γ′1(s0) = γ′(s0) = 0 due to the non-negativity (7.2)
of γ′1 and −γ′. Thus, 0 = γ′1(s0) = s0γ

′(s0) + γ(s0) = γ(s0), which contradicts the positivity of γ in
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(0,∞). Consequently, there exists κ1 > 0 such that

D1 ≥
∫

Ω

[

2γ′1(v)− 〈uin〉γ′(v)
]

|∇v|2 dx ≥ κ1‖∇v‖22 . (7.12)

Hence, by (7.11),
∫ ∞

0

‖∇v(t)‖22 dt <∞ . (7.13)

Next, by (1.3b), (7.1), (7.2), and Cauchy-Schwarz’ inequality,

‖∂tv‖22 +
1

2

d

dt
‖∇v‖22 =

∫

Ω

(u− v)∂tv dx (7.14)

≤ 1

2
‖∂tv‖22 +

1

2
‖u− v‖22 ≤

1

2
‖∂tv‖22 +

D3

2γ(v∗)
.

Hence,

‖∂tv‖22 +
d

dt
‖∇v‖22 ≤

D3

γ(v∗)
. (7.15)

We then infer from (7.11) and (7.15) that

sup
t≥0

{‖∇v(t)‖H1}+
∫ ∞

0

‖∂tv(s)‖22 ds <∞ . (7.16)

7.2. Stabilization toward the spatially homogeneous solution. We are now in a position
to study the large time behaviour of (u, v, n) and first exploit the previous analysis to prove the
convergence of (u(t), v(t), n(t)) to the spatially homogeneous steady state (m,m, 0) as t→ ∞.

Lemma 7.1. Recalling that m = 〈uin + nin〉, there holds

lim
t→∞

(

‖u(t)−m‖∞ + ‖v(t)−m‖∞ + ‖n(t)‖∞
)

= 0.

Proof. By Theorem 2.1,
m = 〈u(t) + n(t)〉 , t ≥ 0 , (7.17)

and
mu , lim

t→∞
〈u(t)〉 ≥ 〈uin〉 > 0 , mn , lim

t→∞
〈n(t)〉 ∈ [0, 〈nin〉] . (7.18)

Thanks to (1.3b) and (7.18), we also see that

lim
t→∞

〈v(t)〉 = mu . (7.19)

It next follows (7.11), (7.16), and Cauchy-Schwarz’ inequality that
∫ ∞

0

‖(u− v)(t)∂tv(t)‖1 dt ≤ 1

2

∫ ∞

0

‖(u− v)(t)‖22 dt+
1

2

∫ ∞

0

‖∂tv(t)‖22 dt

≤ 1

2γ(v∗)

∫ ∞

0

D3(t) dt +
1

2

∫ ∞

0

‖∂tv(t)‖22 dt <∞ .
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Consequently, (u− v)∂tv belongs to L1((0,∞)× Ω) and it follows from (7.14) and (7.16) that

V∞ , lim
t→∞

‖∇v(t)‖22 = ‖∇vin‖22 + 2

∫ ∞

0

∫

Ω

(u− v)(t)∂tv(t) dxdt− 2

∫ ∞

0

‖∂tv(t)‖22 dt

is well-defined and finite. But (7.13) implies that V∞ = 0 and we end up with

lim
t→∞

‖∇v(t)‖2 = 0 . (7.20)

We now combine (7.19), (7.20), and Poincaré-Wirtinger’s inequality (7.7) to obtain

lim
t→∞

‖v(t)−mu‖2 ≤ lim
t→∞

[

‖v(t)− 〈v(t)〉‖2 +
√

|Ω||〈v(t)〉 −mu|
]

≤ 1√
κ0

lim
t→∞

‖∇v(t)‖2 = 0 .

Together with the boundedness (7.1) of v in L∞(Ω), the above convergence implies that

lim
t→∞

‖v(t)−mu‖p = 0 , p ∈ [1,∞) . (7.21)

Next, according to (1.3c)

1

2

d

dt
‖n− 〈n〉‖22 =

∫

Ω

(n− 〈n〉)∂tn dx = −‖∇n‖22 −
∫

Ω

(n− 〈n〉)uf(n) dx

≤ −‖∇n‖22 + 〈n〉‖uf(n)‖1 .

It then follows from (2.3) (with p = 1) and Poincaré-Wirtinger’s inequality (7.7) that

d

dt
‖n− 〈n〉‖22 + κ0‖n− 〈n〉‖22 + ‖∇n‖22 ≤ 2〈n〉‖uf(n)‖1 ≤ 2〈nin〉‖uf(n)‖1 . (7.22)

Integrating (7.22) and using (7.11), we end up with

lim
t→∞

‖n(t)− 〈n(t)〉‖2 = 0 ,

which, together with (7.18), yields that

lim
t→∞

‖n(t)−mn‖2 = 0 . (7.23)

Next, by (7.1), (7.2), and (7.11),

γ(v∗)

∫ ∞

0

‖(v − u)(s)‖22 ds ≤
∫ ∞

0

D3(s) ds <∞ ,

so that

lim
t→∞

∫ t+1

t

‖(v − u)(s)‖22 ds = 0 . (7.24)
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Consequently, by (2.3),
∫ t+1

t

‖v(s)f(n(s))‖1 ds ≤
∫ t+1

t

‖(v − u)(s)f(n(s))‖1 ds+

∫ t+1

t

‖u(s)f(n(s))‖1 ds

≤ |Ω|1/2 sup
[0,‖nin‖∞]

{f}
(
∫ t+1

t

‖(v − u)(s)‖22 ds

)1/2

+

∫ t+1

t

‖u(s)f(n(s))‖1 ds .

Since the right-hand side of the above inequality converges to zero as t → ∞ by (7.11) and (7.24),
we conclude that

lim
t→∞

∫ t+1

t

‖v(s)f(n(s))‖1 ds = 0 .

Since (7.21) and (7.23) entail also a.e. convergences, we deduce from Fatou’s lemma that

muf(mn) = 0 .

Thus, mn = 0 and mu = m in view of the positivity assumption f(s) > f(0) = 0 for all s > 0.
It remains to show the convergence of u to m. Since

∂t(u− 〈u〉) = ∆(uγ(v)) + uf(n)− 〈uf(n)〉 in (0,∞)× Ω

by (1.3a), we deduce from (7.1), (7.2), and Young’s inequality that

d

dt
‖u− 〈u〉‖22 = −2

∫

Ω

γ(v)|∇u|2 dx− 2

∫

Ω

uγ′(v)∇u · ∇v dx

+ 2

∫

Ω

(u− 〈u〉)(uf(n)− 〈uf(n)〉) dx

≤ −
∫

Ω

γ(v)|∇u|2 dx+

∫

Ω

|γ′(v)|2
γ(v)

u2|∇v|2 dx+ 2

∫

Ω

(u− 〈u〉)uf(n) dx

≤ −γ(v∗)‖∇u‖22 + κ‖∇v‖22 + κD4 .

A further use of Poincaré-Wirtinger’s inequality (7.7) gives

d

dt
‖u− 〈u〉‖22 ≤ −γ(v

∗)

2
‖∇u‖22 −

κ0γ(v
∗)

2
‖u− 〈u〉‖22 + κ

(

‖∇v‖22 +D4

)

. (7.25)

Then, the above inequality, together with (7.11), (7.13), and (7.18) yields that

lim
t→∞

‖u(t)−m‖2 = 0. (7.26)

Finally, the convergence of (u, v, n) toward (m,m, 0) in Lp(Ω;R3) for all p ∈ [1,∞) readily fol-
lows from (2.3), (7.1), (7.21), (7.23), and (7.26). Making use of smoothing and decaying prop-
erties of parabolic equations as outlined at the end of the proof of Theorem 1.4, the trajectory
{(u(t), v(t), n(t)) : t ≥ 1} is actually bounded in C1(Ω̄), from which the convergence of (u, v, n)
toward (m,m, 0) in L∞(Ω;R3) follows by an interpolation argument. �
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7.3. The exponential stabilization. In this section, we prove the exponential stabilization under
the addition assumption

f0 , lim inf
s→0+

f(s)

s
> 0 , (7.27)

bearing in mind that f > 0 on (0,∞) and satisfies (1.5). Owing to Lemma 7.1 and the above
assumption, we may now assume there is t0 > 0 such that the trajectory {(u(t), v(t), n(t)) : t ≥ t0}
is sufficiently close to the spatially homogeneous solution (m,m, 0); that is,

‖u(t)−m‖∞ ≤ m

2
, t ≥ t0 , (7.28)

and

f(n(t, x)) ≥ f0
2
n(t, x) , (t, x) ∈ [t0,∞)× Ω̄ . (7.29)

Lemma 7.2. There exist κ2 > 0 and κ3 > 0 such that, for all t ≥ t0,

‖u(t)−m‖∞ + ‖v(t)−m‖∞ + ‖n(t)‖∞ ≤ κ2e
−κ3t .

Proof. In order to show the exponential stabilization, we need to establish some control on the
Lyapunov functional by the dissipation terms. First, by (1.3b), (7.4), Poincaré-Wirtinger’s inequality
(7.7), (7.12), and Young’s inequality,

‖∇U‖22 ≤‖u− 〈u〉‖22 ≤ κ
(

‖u− v‖22 + ‖v − 〈v〉‖22 + ‖〈v〉 − 〈u〉‖22
)

≤κ
(

‖u− v‖22 + ‖∇v‖22 + ‖〈∂tv〉‖22
)

≤κ
(

D1 +D3 + ‖∂tv‖22
)

. (7.30)

Next, since

Γ1(v) = Γ1(〈u〉) + γ1(〈u〉)(v − 〈u〉) + 1

2
γ′1(ξ1)(v − 〈u〉)2

and

Γ(v) = Γ(〈u〉) + γ(〈u〉)(v − 〈u〉) + 1

2
γ′(ξ2)(v − 〈u〉)2

with some ξi, i = 1, 2, depending on (t, x) and lying between v and 〈u〉, we notice that, using again
(1.3b), as well as the bounds (7.3) and the regularity (A1) of γ,

Γ1(v)− Γ1(〈u〉) + γ1(〈u〉)〈u〉 − γ1(〈u〉)v =
1

2
γ′1(ξ1)(v − 〈u〉)2

≤ sup
[a∗,a∗]

{γ′1}
[

(v − 〈v〉)2 + (〈v〉 − 〈u〉)2
]

≤ κ
[

(v − 〈v〉)2 + |〈∂tv〉|2
]

.

Similarly,

Γ1(v)− Γ1(〈u〉)− 〈u〉Γ(v) + 〈u〉Γ(〈u〉) = 1

2
(γ′1(ξ1)− 〈u〉γ′(ξ2)) (v − 〈u〉)2

≤ κ
[

(v − 〈v〉)2 + |〈∂tv〉|2
]

.
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Consequently, due to (7.12) and Poincaré-Wirtinger’s inequality (7.7),

2

∫

Ω

Γ1(v) dx− 〈u〉
∫

Ω

Γ(v) dx− γ1(〈u〉)‖v‖1 + |Ω|
(

γ1(〈u〉)〈u〉+ 〈u〉Γ(〈u〉)− 2Γ1(〈u〉)
)

=

∫

Ω

[Γ1(v)− Γ1(〈u〉) + γ1(〈u〉)〈u〉 − γ1(〈u〉)v] dx

+

∫

Ω

[Γ1(v)− Γ1(〈u〉)− 〈u〉Γ(v) + 〈u〉Γ(〈u〉)] dx

≤ κ

∫

Ω

[

(v − 〈v〉)2 + |〈∂tv〉|2
]

dx

≤ κ
(

‖∇v‖22 + ‖∂tv‖22
)

≤ κ
(

D1 + ‖∂tv‖22
)

. (7.31)

Next, (7.28) and (7.29) indicate that, for all t ≥ t0,

D4 = ‖uf(n)‖1 ≥
m

2
‖f(n)‖1 ≥

mf0
4

‖n‖1 . (7.32)

Thus, it follows from (7.30), (7.31), and (7.32) that, for t ≥ t0,

L ≤ κ4
(

D1 +D3 +D4 + ‖∂tv‖22
)

,

with κ4 ≥ 1. Combining the above estimate with (7.9), (7.12), and (7.15), we obtain, for δ1 ∈ (0, 1),
δ2 ∈ (0, 1), and t ≥ t0,

d

dt
(L+ δ1‖∇v‖22) + δ2(L+ δ1‖∇v‖22) +

4
∑

i=1

Di + δ1‖∂tv‖22

≤ δ2(L+ δ1‖∇v‖22) +
δ1

γ(v∗)
D3

≤ δ2κ4
(

D1 +D3 +D4 + ‖∂tv‖22
)

+
δ1δ2
κ1

D1 +
δ1

γ(v∗)
D3

≤
(

δ2κ4 +
δ1
κ1

+
δ1

γ(v∗)

) 4
∑

i=1

Di + δ2κ4‖∂tv‖22 .

Then, picking δ1 ∈ (0, 1) and δ2 ∈ (0, 1) such that

δ2 ,
δ1
2κ4

and

(

1

2
+

1

κ1
+

1

γ(v∗)

)

δ1 ,
1

2
,

we finally arrive at
d

dt
(L+ δ1‖∇v‖22) + δ2(L+ δ1‖∇v‖22) ≤ 0, t ≥ t0 . (7.33)

Integrating the above differential inequality leads us to

L(t) + δ1‖∇v(t)‖22 ≤ (L(t0) + δ1‖∇v(t0)‖22)e−δ2(t−t0) for all t ≥ t0.
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Recalling (7.10), we obtain

‖∇U(t)‖22 + ‖∇v(t)‖22 + ‖n(t)‖1 ≤ κe−δ2t , t ≥ t0 . (7.34)

We next deduce from (7.22), (7.25), and the definition of D4 that

d

dt

(

‖u− 〈u〉‖22 + ‖n− 〈n〉‖22
)

≤ −γ(v
∗)

2
‖∇u‖22 −

κ0γ(v
∗)

2
‖u− 〈u〉‖22 + κ

(

‖∇v‖22 + ‖uf(n)‖1
)

− ‖∇n‖22 − κ0‖n− 〈n〉‖22 + 2〈n〉‖uf(n)‖1 .
Since

κ‖uf(n)‖1 + 2〈n〉‖uf(n)‖1 ≤ (κ+ 2m)u∗ max
[0,‖nin‖∞]

|f ′|‖n‖1 ≤ κ‖n‖1

by (1.5), (2.1), (2.3) (with p = ∞), and (7.1), we infer from the above estimates that

d

dt

(

‖u− 〈u〉‖22 + ‖n− 〈n〉‖22
)

≤ −κ0γ(v
∗)

2
‖u− 〈u〉‖22 + κ

(

‖∇v‖22 + ‖n‖1
)

− κ0‖n− 〈n〉‖22

≤ −δ3
(

‖u− 〈u〉‖22 + ‖n− 〈n〉‖22
)

+ κ
(

‖∇v‖22 + ‖n‖1
)

,

with 2δ3 , κ0 min{γ(v∗), 2} > 0. Integrating the above differential inequality and using (7.34) and
Poincaré-Wirtinger’s inequality (7.7) give

‖u(t)− 〈u(t)〉‖22 + ‖v(t)− 〈v(t)〉‖22 + ‖n(t)− 〈n(t)〉‖22 ≤ Ce−min{δ2,δ3}t for all t ≥ t0 . (7.35)

Finally, by (1.3b), (2.1), and (7.34),

|〈n(t)〉| = ‖n(t)‖1
|Ω| ≤ κe−δ2t , t ≥ t0 ,

|〈u(t)〉 −m| = |〈n(t)〉| ≤ κe−δ2t , t ≥ t0 ,

and

|〈v(t)〉 −m| =
∣

∣

∣

∣

(

〈v(t0)〉 −m
)

et0−t +

∫ t

t0

(

〈u(s)〉 −m
)

es−t ds

∣

∣

∣

∣

≤ |〈v(t0)〉 −m|et0−t +

∫ t

t0

|〈u(s)〉 −m|es−t ds

≤
(

〈v(t0)〉+m
)

et0−t + κe−δ2t , t ≥ t0 ,

recalling that 0 < δ2 < 1. Together with (7.35), the above estimates entail that

‖u(t)−m‖22 + ‖v(t)−m‖22 + ‖n(t)‖22 ≤ Ce−δ4t for all t ≥ t0 , (7.36)

with δ4 , min{δ2, δ3} ∈ (0, 1).
With the exponential convergence (7.36) at hand, we can further improve the exponential conver-

gence to more regular spaces via standard bootstrap argument. A similar procedure can be found
in [20]. Hence we omit the details here. �
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Proof of Theorem 1.6. Theorem 1.6 follows directly from Lemma 7.1 and Lemma 7.2. �
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