
HAL Id: hal-03247353
https://hal.science/hal-03247353v2

Submitted on 5 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logarithmic Schrödinger equation with quadratic
potential

Rémi Carles, Guillaume Ferriere

To cite this version:
Rémi Carles, Guillaume Ferriere. Logarithmic Schrödinger equation with quadratic potential. Non-
linearity, 2021, 34 (12), pp.8283-8310. �10.1088/1361-6544/ac3144�. �hal-03247353v2�

https://hal.science/hal-03247353v2
https://hal.archives-ouvertes.fr


Logarithmic Schrödinger equation with quadratic potential

Rémi Carles and Guillaume Ferriere

ABSTRACT. We analyze dynamical properties of the logarithmic Schrödinger equation

under a quadratic potential. The sign of the nonlinearity is such that it is known that in

the absence of external potential, every solution is dispersive, with a universal asymptotic

profile. The introduction of a harmonic potential generates solitary waves, corresponding

to generalized Gaussons. We prove that they are orbitally stable, using an inequality related

to relative entropy, which may be thought of as dual to the classical logarithmic Sobolev

inequality. In the case of a partial confinement, we show a universal dispersive behavior

for suitable marginals. For repulsive harmonic potentials, the dispersive rate is dictated by

the potential, and no universal behavior must be expected.

1. Introduction

We consider the logarithmic Schrödinger equation in the presence of an external po-

tential,

(1.1) i∂tu+
1

2
∆u = V (x)u + λ ln

(
|u|2
)
u, u|t=0 = u0,

with x ∈ Rd, d > 1, and λ ∈ R. The potential V is smooth and real-valued, V ∈
C∞(Rd;R), and the main results of the present paper concern the case where V is qua-

dratic in x. This equation is Hamiltonian; mass and energy are formally independent of

time:

(1.2)

M(u(t)) = ‖u(t)‖2L2(Rd),

E(u(t)) :=
1

2
‖∇u(t)‖2L2(Rd) +

∫

Rd

V (x)|u(t, x)|2dx

+ λ

∫

Rd

|u(t, x)|2
(
ln |u(t, x)|2 − 1

)
dx.

On the other hand, due to the presence of the potential V , the momentum,

Im

∫

Rd

ū(t, x)∇u(t, x)dx,

is not conserved. As it will not be considered in this paper, we do not discuss the evolution

of this quantity. The logarithmic nonlinearity was introduced in [8] to satisfy the following
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tensorization property: if V decouples space variables in the sense that

V (x) =

d∑

j=1

Vj(xj),

where Vj ∈ C∞(R;R), and if the initial datum is a tensor product,

u0(x) =

d∏

j=1

u0j(xj),

then the solution to (1.1) is given by

u(t, x) =
d∏

j=1

uj(t, xj),

where each uj solves a one-dimensional equation,

i∂tuj +
1

2
∂2
xj
uj = Vj(xj)uj + λ ln

(
|uj |2

)
uj, uj|t=0 = u0j .

Of course, a similar property remains if e.g. V (x1, x2, x3) = V12(x1, x2) + V3(x3), and

u0(x1, x2, x3) = u012(x1, x2)u03(x3). As can easily be checked, the above logarithmic

nonlinearity is the only one satisfying this tensorization property. This property will be

evoked several times in the rest of this paper.

The logarithmic nonlinearity has since been adopted in several physical models, in

quantum mechanics [37], quantum optics [8, 26, 31, 12], nuclear physics [28], Bohmian

mechanics [32], effective quantum gravity [38], theory of superfluidity and Bose-Einstein

condensation [5]. See also [33, 34]. The papers [38, 39, 10] have provided evidences that

the logarithmic model may generalize the Gross-Pitaevskii equation, used in the case of

two-body interaction, to the case of three-body interaction.

As proposed in [38, 39], the logarithmic nonlinearity may appear as a relevant model

to provide a universal mechanism describing the deformation of the quantum wave equa-

tion due to non-trivial vacuum. It thus appears as a serious candidate to extend quantum

mechanics thanks to a nonlinear model, likely to help understand quantum gravity. In the

absence of external potential (V = 0), the case λ < 0 is certainly the most physically rel-

evant: stationary solutions known as Gaussons are present and stable under the dynamics

(see below), while for λ > 0, (enhanced) dispersion is always present; see Theorem 1.1 for

a complete mathematical statement, showing that it is indeed hopeless to look for stable

structures if λ > 0.

In [10], the presence of an harmonic trap was considered, in order to describe logarith-

mic BEC. As in the case without potential, an important feature of the model is that many

Gaussian solutions are available, as explored into more details in Section 3.3. Stationary

solutions (generalized Gaussons) are still available in the case λ < 0. Their stability was

investigated numerically in [10], and analyzed mathematically in [4]. The presence of the

harmonic trap implies that stable structures are now also present in the case λ > 0, as

shown numerically in [10], and analyzed more precisely in the present paper.

Considering for V a harmonic potential is not only physically relevant, it has also a

natural mathematical motivation, which we now explain.
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1.1. Mathematical background. The first mathematical study of (1.1) appears in

[19] (see also [18]), where the Cauchy problem is addressed for V ∈ Lp(Rd) + L∞(Rd),
with p > 1 and p > d/2. As noticed in [9], in the case λ < 0 with V = 0, (1.1) admits

a solitary wave of the form eiωtφ(x), where φ is a Gaussian, called Gausson. The orbital

stability of this solitary wave was established in [17] in the radial case, and in [3] in the

general case. Still in the case λ < 0 with V = 0, it was shown in [19] that if u0 ∈ W , the

energy space given by

W =
{
f ∈ H1(Rd), |f |2 ln |f |2 ∈ L1(Rd)

}
,

then there exists a unique, global, solution u ∈ L∞(R;W ) (see also [23, 27]), and in [17]

that no such solution is dispersive. The global Cauchy problem in the case V = 0, λ > 0
was treated in [23] and [16].

As noticed in [8], in the case V = 0, λ ∈ R, if u0 is a Gaussian, then u(t, ·) is a

Gaussian for all time. The evolution of Gaussians was analyzed more precisely in [6, 16,

21]: in the case λ < 0, they behave like breathers, in the sense that |u(t, ·)| is periodic in

time, while if λ > 0, they all are dispersive with a similar rate τ(t), and τ(t)d|u(t, xτ(t))|2
has a universal limit, that is, a Gaussian whose variance does not depend on the initial

Gaussian u0.

The latter property has been established for initial data which are not necessarily

Gaussian, in [16], and the description of the convergence was refined in [22]. Denote

Σ = H1 ∩ F(H1) =
{
f ∈ H1(Rd), x 7→ |x|f(x) ∈ L2(Rd)

}
.

THEOREM 1.1 ([16, 22]). Let V = 0 and λ > 0. For u0 ∈ Σ\{0}, (1.1) has a unique

solution u ∈ L∞
loc(R; Σ)). Introduce the solution τ ∈ C∞(R) to the ODE

(1.3) τ̈ =
2λ

τ
, τ(0) = 1 , τ̇ (0) = 0 .

Then, as t → ∞, τ(t) ∼ 2t
√
λ ln t and τ̇ (t) ∼ 2

√
λ ln t. Introduce γ(x) := e−|x|2/2, and

rescale the solution to v = v(t, y) by setting

(1.4) u(t, x) =
1

τ(t)d/2
v

(

t,
x

τ(t)

) ‖u0‖L2(Rd)

‖γ‖L2(Rd)

exp
(

i
τ̇(t)

τ(t)

|x|2
2

)

.

Then we have
∫

Rd





1
y

|y|2



 |v(t, y)|2dy −→
t→∞

∫

Rd





1
y

|y|2



 γ2(y)dy,

and

|v(t, ·)|2 ⇀
t→∞

γ2 weakly in L1(Rd).

Finally, denoting by W1 the Wasserstein distance1, there exists C such that

W1

( |v(t)|2
πd/2

,
γ2

πd/2

)

6
C√
ln t

, t > e.

1For ν1 and ν2 probability measures,

W1(ν1, ν2) = inf

{
∫

Rd×Rd
|x− y|dµ(x, y); (πj)♯µ = νj

}

,

where µ varies among all probability measures on Rd × Rd, and πj : Rd × Rd → Rd denotes the canonical

projection onto the j-th factor. See e.g. [35]
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The case where V is harmonic, V (x) = |x|2, was considered in [4], in the case λ < 0:

there exists an analogue of the Gausson, that is a solution of the form b0e
iωte−a0|x|

2/2, and

it is orbitally stable. In the following statement, we adapt the numerical values to (1.1) and

unify the statements from [3] (without potential) and [4] (with potential, where (1.1) is no

longer translation invariant):

THEOREM 1.2 ([3, 4]). Let d > 1 and λ < 0. Suppose that

V (x) =
κ(κ+ 2λ)

2
|x|2, κ > −2λ > 0.

Then the (generalized) Gausson is given by φν(x) = e−
ν+κd/2

2λ e−κ|x|2/2, for ν ∈ R. It

generates a standing wave u(t, x) = φν(x)e
iνt solution to (1.1), which is orbitally stable

in the energy space: For any ε > 0, there exists η > 0 such that if u0 ∈ X satisfies

‖u0 − φν‖X < η, then the solution u to (1.1) exists for all t ∈ R, and

• Case without potential: κ = −2λ and X = W ,

sup
t∈R

inf
θ∈R

inf
y∈Rd

‖u(t)− eiθφν(· − y)‖W < ε.

• Case with potential: κ > −2λ and X = Σ,

sup
t∈R

inf
θ∈R

‖u(t)− eiθφν‖Σ < ε.

1.2. Main results. To make things clear, we first show that the Cauchy problem (1.1)

is globally well-posed in Σ, provided that the potential V is smooth and at most quadratic.

This naturally generalizes the results known in the case of a power nonlinearity (see e.g.

[15]).

PROPOSITION 1.3. Let V ∈ C∞(Rd;R), at most quadratic, in the sense that ∂αV ∈
L∞(Rd) as soon as |α| > 2. For u0 ∈ Σ, there exists a unique solution u ∈ L∞

loc(R; Σ) ∩
C(R;L2(Rd)) to (1.1). Moreover, the mass M(u(t)) and the energy E(u(t)) are indepen-

dent of time.

The above result was established in [4] in the case where V is an isotropic harmonic

potential, and λ < 0. We prove Proposition 1.3 by adapting the strategy from [16], which

is different from the one in [4], inspired by [19].

REMARK 1.4. The case of a time dependent potential V could be considered as well,

with very few modifications regarding Proposition 1.3 (see [15]), as well as in the descrip-

tion of the propagation of Gaussian functions in Section 3.3.

In the rest of this introduction, and for the other results, we assume λ > 0.

1.2.1. Full harmonic confinement. We first consider the case of a full, isotropic con-

finement: V (x) = ω2

2 |x|2. This confinement completely alters the dynamics of the case

λ > 0, since solitary waves now exist, while from Theorem 1.1, all Σ-solutions are disper-

sive when V = 0. To make the connexion with the case λ < 0 considered in [4] explicit,

rewrite ω2 as ω2 = κ(κ+ 2λ), κ > 0.

THEOREM 1.5. Let d > 1 and λ > 0. Suppose that

V (x) =
κ(κ+ 2λ)

2
|x|2, κ > 0.

Then the (generalized) Gausson is given by φν(x) = e−
ν+κd/2

2λ e−κ|x|2/2, for ν ∈ R. It

generates a standing wave u(t, x) = φν(x)e
iνt solution to (1.1), which is orbitally stable
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in the energy space: For any ε > 0, there exists η > 0 such that if u0 ∈ Σ satisfies

‖u0 − φν‖Σ < η, then the solution u to (1.1) exists for all t ∈ R, and

sup
t∈R

inf
θ∈R

‖u(t)− eiθφν‖Σ < ε.

We see in particular that in the limit case V = 0, corresponding to κ = 0, φν is no

longer an L2-function. To prove Theorem 1.5, we essentially resume the approach from

[4], based on the Cazenave-Lions method [20], as well as on a variational characterization

of the generalized Gausson. In the case λ < 0, this characterization relies on the logarith-

mic Sobolev inequality and the description of equality cases. In the present framework,

the logarithmic Sobolev inequality is replaced by a rather natural counterpart, involving a

momentum instead of a derivative, see Lemma 4.2.

REMARK 1.6. The case of anisotropic confinement in all directions,

V (x) =

d∑

j=1

ω2
j

2
x2
j , ωj > 0,

can be addressed with straightforward adaptations, by considering suitable anisotropic

Gaussian functions in all steps of the proof, including Lemma 4.2.

1.2.2. Partial harmonic confinement. In the same spirit as e.g. [2, 7], we now assume

d > 2, and that V is confining in some but not all directions: suppose that the space

variable is now (x′, x′′) ∈ Rd1 × Rd2 , with d1, d2 > 1, d1 + d2 = d, and

V (x′, x′′) =
ω2

2
|x′|2.

We show that dispersion is always present in x′′, in the sense that Theorem 1.1 remains

valid for u, provided that suitable integration in x′ is considered.

THEOREM 1.7. Let (x′, x′′) ∈ Rd1 × Rd2 , with d1, d2 > 1, d1 + d2 = d, and

V (x′, x′′) =
ω2

2
|x′|2, ω > 0.

Suppose λ > 0. Let u0 ∈ Σ \ {0}, and resume the notation γ(x′′) := e−|x′′|2/2. Introduce

ρ(t, y) := τ(t)d2

∫

Rd1

|u (t, x′, yτ(t))|2 dx′ × πd2

‖u0‖2L2(Rd)

.

Then we have
∫

Rd2





1
y

|y|2



 ρ(t, y)dy −→
t→∞

∫

Rd2





1
y
|y|2



 γ2(y)dy,

and

ρ(t, ·) ⇀
t→∞

γ2 weakly in L1(Rd),

along with

W1

( |ρ(t)|2
πd2/2

,
γ2

πd2/2

)

6
C√
ln t

, t > e.

Theorem 1.7 can be informally restated by saying that
∫

Rd1

|u(t, x′, x′′)|2dx′
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is dispersive in the variable x′′, with rate τ(t)−d2 . Such a dispersive property on a marginal

was used in [2] as a first step (following from Morawetz estimates) to prove scattering for

NLS with a power-like nonlinearity and a partial confinement. In the present framework,

no scattering result can be inferred.

Indeed, considering tensorized initial data of the form u0(x) = u01(x
′)u02(x

′′), we

have u(t, x) = u1(t, x
′)u2(t, x

′′), where u1 solves (1.1) with a fully confining potential,

and u2 solves (1.1) with V = 0, hence obeys Theorem 1.1 (with d replaced by d2). In

particular, u1 may correspond to solutions described in Theorem 1.5, or be a Gaussian

breather (see Section 3.3), showing that integrating with respect to x′ first, in the above

result, makes perfect sense, and the dynamics in the x′ variable is independent of the

dispersion stated in Theorem 1.7.

1.2.3. Repulsive harmonic potential. We finally present some results in the repulsive

harmonic case,

(1.5) i∂tu+
1

2
∆u = −ω2 |x|2

2
u+ λu ln

(
|u|2
)
, u|t=0 = u0,

for x ∈ Rd and ω, λ > 0. In the case λ = 0, any defocusing energy-subcritical power-like

nonlinearity |u|2σu, 0 < σ < 2
(d−2)+

, is short range for scattering, since the repulsive har-

monic potential induces an exponential decay in time ([13]). In particular, in the dispersive

frame (meaning after rescaling the wave function in terms of the time dependent disper-

sion, eωt in this case), any asymptotic profile can be reached. On the other hand for ω = 0,

Theorem 1.1 shows that there is only one profile (if one considers the modulus only) which

can be reached in the dispersive frame. The case ω, λ > 0 is therefore a borderline case

from these two perspectives: do we have scattering, or a universal behavior? In the next

result, we give a partial answer to this question, showing the same dispersive rate as in the

linear case λ = 0, and ruling out a universal behavior in the sense of Theorem 1.1.

PROPOSITION 1.8. Let ω, λ > 0 and let τ− be the solution to the ODE

(1.6) τ̈− = ω2τ− +
2λ

τ−
, τ−(0) = 1, τ̇−(0) = 0.

There exists µ∞ > 0 such that, as t → ∞, τ−(t) ∼ µ∞eωt, τ̇−(t) ∼ ωµ∞eωt. For u0 ∈ Σ
and the solution u ∈ L∞

loc(R; Σ) to (1.5), consider the rescaling

u(t, x) =
1

τ−(t)d/2
v

(

t,
x

τ−(t)

)

exp

(

i
τ̇−(t)

τ−(t)

|x|2
2

)

.

Then v is bounded and not dispersive, in the sense that

sup
t>0

∫

Rd

(
1 + |y|2 +

∣
∣ln |v(t, y)|2

∣
∣
)
|v(t, y)|2dy < ∞.

We can find two initial data

u01(x) = e−|x|2/2+iβ1|x|
2/2, u02(x) = e−|x|2/2+iβ2|x|

2/2, βj > 0,

such that the corresponding vj ’s satisfy

|vj(t, ·)|2 −→
t→∞

γ2
j in L1(Rd), with γ1 6= γ2.

In the same spirit as the comments following the statement of Theorem 1.7, we em-

phasize that the dynamics associated to the logarithmic nonlinearity (1.1) is completely
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different from the dynamics for NLS with a power-type nonlinearity. Typically, in [14],

the case of a saddle potential, for x ∈ Rd, d > 2,

V (x) = ω2
1x

2
1 − ω2

2x
2
2,

was considered. There is confinement in the first direction, and a strong dispersion in the

second one. In the case of a defocusing power-like nonlinearity |u|2σu, we have global

existence in Σ. Given u0 ∈ Σ, at least if σ > 2/d and ω2 is sufficiently large compared to

ω1, there is scattering in the sense that there exist u± ∈ Σ such that

‖UV (−t)u(t)− u±‖Σ −→
t→±∞

0, UV (t) = e−itH , H = −1

2
∆ + V.

Proposition 1.8 shows that for a logarithmic nonlinearity, there is still an exponential dis-

persion in x2, but the tensorization property implies that no scattering result can hold.

1.3. Outline of the paper. In Section 2, we show how to prove Proposition 1.3. In

Section 3, we describe more precisely some remarkable properties related to the loga-

rithmic nonlinearity in the presence of a quadratic potential: invariances, special trans-

forms, and propagation of Gaussian data. Theorem 1.5 is proven in Section 4, relying on

Lemma 4.2, which can be thought of as a dual to the logarithmic Sobolev inequality. In

Section 5, we address the proof of Theorem 1.7, by showing essentially how to consider

a suitable setting in order to relate this result to Theorem 1.1. Finally, Proposition 1.8 is

proved in Section 6.

2. Cauchy problem

In this section, we briefly explain the proof of Proposition 1.3, which can be addressed

like in the case without potential considered in [16]. The main issue is that the logarithmic

nonlinearity is not Lipschitz continuous at the origin. Proceeding as in [16], we first regu-

larize the nonlinearity by saturating the logarithm near zero, and consider the sequence of

approximate solutions given by

(2.1) i∂tu
ε +

1

2
∆uε = V (x)uε + λ ln

(
ε+ |uε|2

)
uε, uε

|t=0 = u0,

where V , λ and u0 are as in Proposition 1.3, and ε > 0. For fixed ε > 0, the above

nonlinearity is locally Lipschitzian, with moderate growth at infinity, ensuring that it is L2-

subcritical. Since the potential V is smooth and at most quadratic, local-in-time Strichartz

estimates are available for H = − 1
2∆+V , the same as in the case V = 0 (see e.g. [15] and

references therein). Therefore, for every ε > 0, there is a unique, global solution at the L2

level. Again, at fixed ε > 0, the nonlinearity is smooth, so higher regularity is propagated:

uε,∇uε, xuε ∈ C(R;L2(Rd)).

The sequence (uε)0<ε61 converges, thanks to compactness arguments based on uni-

form a priori estimates. Since λ ∈ R and V is real-valued, the L2-norm of uε is indepen-

dent of time, ‖uε(t)‖L2 = ‖u0‖L2 . For 1 6 j 6 d, differentiating (2.1) with respect to xj

yields

i∂t∂juε +
1

2
∆∂juε = V (x)∂ju

ε + ∂jV (x)uε + λ ln
(
ε+ |uε|2

)
∂juε

+ 2λ
1

ε+ |uε|2
Re(ūε∂juε)uε.
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By assumption on V , |∂jV (x)| . 1 + |x|, so the standard L2 estimate yields

d

dt
‖∇uε(t)‖2L2 6 C

(
‖uε(t)‖2L2 + ‖xuε(t)‖2L2 + ‖∇uε(t)‖2L2

)
,

where C is independent of ε. Similarly,

i∂t (xjuε) +
1

2
∆(xjuε) = ∂ju

ε + V (x)xju
ε + λ ln

(
ε+ |uε|2

)
xjuε,

hence

d

dt
‖xuε(t)‖2L2 6 2

∫

Rd

|xuε(t, x)||∇uε(t, x)|dx 6 ‖xuε(t)‖2L2 + ‖∇uε(t)‖2L2 .

In view of the conservation of the mass, Gronwall lemma implies that there exists C inde-

pendent of ε such that

‖xuε(t)‖2L2 + ‖∇uε(t)‖2L2 6 C
(
‖u0‖2L2 + ‖xu0‖2L2 + ‖∇u0‖2L2

)
eC|t|, t ∈ R.

Therefore, we have compactness in space for the sequence (uε)ε. Compactness in time

follows from (2.1). Arzela-Ascoli theorem yields a converging subsequence, hence the

existence part of Proposition 1.3.

The conservation of mass and energy can be proven like in [19] (see also [18]).

Uniqueness follows from the remark that any solution u ∈ L∞
loc(R; Σ) to (1.1) actually

belongs to C(R;L2(Rd)), since the equation implies ∂tu ∈ L∞
loc(R;H

−1+F(H−1)) (see

[16]), and from the argument discovered in [19]:

LEMMA 2.1 (Lemma 9.3.5 from [18]). We have
∣
∣Im

((
z2 ln |z2|2 − z1 ln |z1|2

)
(z̄2 − z̄1)

)∣
∣ 6 4|z2 − z1|2 , ∀z1, z2 ∈ C .

For two solutions u1, u2 ∈ L∞
loc(R; Σ) to (1.1), the difference w = u2 − u1 solves

i∂tw +
1

2
∆w = V (x)w + λ

(
ln
(
|u2|2

)
u2 − ln

(
|u1|2

)
u1

)
, w|t=0 = 0,

and the standard L2 estimate yields, along with the above lemma,

1

2

d

dt
‖w(t)‖2L2(Rd) = λ Im

∫

Rd

(
ln
(
|u2|2

)
u2 − ln

(
|u1|2

)
u1

)
(ū2 − ū1)(t) dx

6 4λ‖w(t)‖2L2(Rd),

hence w ≡ 0 from Gronwall lemma.

3. Remarkable algebraic properties of (1.1)

3.1. Invariants. Apart from the conservations of mass and energy, (1.1) is invariant

with respect to translation in time, but not in space in general, due to the potential V . When

V is zero or exactly quadratic, there is a Galilean invariance (whose expression depends

on the signature of ∇2V ). Having the tensorization property in mind, recall the formulas

for d = 1:

• Case V = 0: if u(t, x) solve (1.1), then for any v ∈ R, so does u(t, x −
vt)eivx−iv2t/2.

• Case V (x) = ω2x2/2: if u(t, x) solve (1.1), then for any v ∈ R, so does

u

(

t, x− v
sin(ωt)

ω

)

eivx cos(ωt)−iv2 cos(ωt)
sin(ωt)

2ω .
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• Case V (x) = −ω2x2/2: if u(t, x) solve (1.1), then for any v ∈ R, so does

u

(

t, x− v
sinh(ωt)

ω

)

eivx cosh(ωt)−iv2 cosh(ωt) sinh(ωt)
2ω .

The logarithmic nonlinearity causes a rather unique invariance, as noticed in [16] for V =
0, a property which remains in the presence of V : If u solves (1.1), then for all k ∈ C, so

does

ku(t, x)e−itλ ln |k|2 .

This shows that the size of the initial data alters the dynamics only through a purely time

dependent oscillation, a feature which is fairly unusual for a nonlinear equation. In ad-

dition, considering k > 0, differentiating the above formula with respect to k and letting

k → 0 shows that for t > 0 arbitrarily small, the flow map u0 7→ u(t) cannot be C1,

whichever function spaces are considered for u0 and u(t), respectively; it is at most Lips-

chitzian.

3.2. Special potentials. It is a standard fact that if V is linear in x, V (x) = E · x for

some fixed E ∈ Rd, the influence of V is explicit, in the sense that if u solves (1.1) with

this V , and v solves (1.1) with V = 0 (and the same initial datum), then u and v are related

through

v(t, x) = u

(

t, x− t2

2
E

)

e
i
(

tE·x− t3

3 |E|2
)

.

See e.g. [15], where this formula is extended to the case where E depends on time.

On the other hand, lens transforms (see e.g. [15]) seem to be useless in the case of a

logarithmic nonlinearity. If u solves (1.1) with V = 0, for ω > 0 and |t| < π/(2ω), set

(3.1) w+(t, x) =
1

(cos(ωt))
d/2

e−iω2 |x|2 tan(ωt)u

(
tan(ωt)

ω
,

x

cos(ωt)

)

.

Then w+ solves

i∂tw
+ +

1

2
∆w+ =

λ

cos(ωt)2
ln
(
cos(ωt)d|w+|2

)
w+ + ω2 |x|2

2
w+, w+

|t=0 = u0 .

The time dependent factor in front of the nonlinearity shows a strong difference with (1.1),

and the equation in w+ is not necessarily more pleasant to study. The case of a repulsive

harmonic potential V (x) = −ω2|x|2/2 is similar (replace ω by iω).

3.3. Propagation of Gaussian initial data. A remarkable feature of (1.1) is that

when the potential is a polynomial of degree at most two in space, then an initial Gaussian

data evolves as a Gaussian for all time. Plugging a time-dependent Gaussian function into

the logarithmic nonlinearity, we readily see that this remarkable property is related to the

well-known fact that the same holds in the case of the linear Schrödinger equation with

potential; see e.g. [24, 25, 29, 30].

In view of the tensorization property described in the introduction, we consider the

case d = 1, and a quadratic potential,

(3.2) i∂tu+
1

2
∂2
xu = λ ln

(
|u|2
)
u+Ω

x2

2
u, u|t=0 = u0,

whereΩ ∈ R is a constant. We seek u(t, x) = b(t)e−a(t)x2/2 (in particular u0 is Gaussian).

Plugging this into (3.2), we find:

iḃ =
1

2
ab+ λb ln |b|2 ; iȧ = a2 + 2λRe a− Ω.
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Seeking a under the form

a =
1

τ2
− i

τ̇

τ

leads to

(3.3) τ̈ =
2λ

τ
+

1

τ3
− Ωτ.

As long as the solution is smooth, multiply by τ̇ and integrate in time:

(3.4) (τ̇ )2 = C0 + 4λ ln τ − 1

τ2
− Ωτ2.

In the case of a (constant) harmonic potential, we write Ω = ω2: τ is bounded, regardless

of the sign of λ. Typically, we have generalized Gaussons for each sign of λ: u(t, x) =

Cνe
−kx2/2+iνt solves (3.2) if and only if

ω2 − 2λk = k2 ; −ν − k

2
= λ ln(C2

ν ).

For u to be an L2 function in space, only one choice is possible for k,

k = −λ+
√

λ2 + ω2.

Like in [21], we see that τ is always periodic, and Gaussian data propagate as breathers in

general, as a solitary wave in the specific case discussed above. Writing ω2 = κ(κ+ 2λ),
κ > max(0,−2λ), we recover the generalized Gausson of the introduction, φν(x) =

e−
ν+κ/2

2λ e−κ|x|2/2, with k = κ (and d = 1 here).

In the case of a (constant) repulsive harmonic potential, we write Ω = −ω2, and (3.3)

becomes

(3.5) τ̈ = ω2τ +
2λ

τ
+

1

τ3
.

Assuming τ(0) > 0, we see that τ remains positive and bounded away from zero for all

time, since (3.4) becomes

(3.6) τ̇ (t)2 = C0 + ω2τ(t)2 + 4λ ln τ(t) − 1

τ(t)2
.

Therefore, in the case λ > 0, there exists δ > 0 such that

τ(t) > δ, ∀t ∈ R.

We infer trivially

τ̈ > ω2δ,

hence

(3.7) τ(t) −→
t→∞

∞, τ̇ (t) −→
t→∞

∞.

Therefore, we may approximate τ by the solution to

(3.8) τ̈ = ω2τ.

In particular, the presence of the repulsive harmonic potential causes dispersion with an

exponential dispersive rate. We analyze more precisely this situation in Section 6.
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4. Full harmonic confinement

In this section, we prove Theorem 1.5, by following the strategy of Cazenave and

Lions [20], and proving some rigidity property of the generalized Gausson. We recall that

V (x) =
κ(κ+ 2λ)

2
|x|2, κ > 0,

and we denote ω2 = κ(κ+ 2λ) for conciseness.

4.1. Technical preliminary. We introduce the action and the Nehari functional:

Sν(u) := E(u) + ν‖u‖2L2,

Iν(u) := ‖∇u‖2L2 + ω2‖xu‖2L2 + 2λ

∫

Rd

|u|2 ln |u|2dx + 2ν‖u‖2L2 = 2Sν(u) + 2λ‖u‖2L2.

We also define the quantity

D(ν) = inf{Sν(u) |u ∈ Σ(Rd) \ {0}, Iν(u) = 0}
= −λ sup{‖u‖2L2 |u ∈ Σ(Rd) \ {0}, Iν(u) = 0},

and the set of ground states by

Gν := {φ ∈ Σ(Rd) \ {0} | Iν(u) = 0, Sν(φ) = D(ν)}.
At this stage, we emphasize a major difference between the case of a power nonlinear-

ity and the logarithmic nonlinearity. For power-type nonlinearities, it is standard to either

minimize the action, or minimize the energy with a fixed mass, the two approaches being

equivalent in the case of homogeneous nonlinearities. In the case of a logarithmic nonlin-

earity, the Nehari functional is constant along the flow of the equation, and minimizing the

action without constraint, or the energy with a fixed mass, does not seem adequate. This

characterization of the ground state in the case of a logarithmic nonlinearity is already

present in [3, 4]. A key step of the analysis consists in showing that Gν = {eiθφν , θ ∈ R},

with φν defined in Theorem 1.5,

φν(x) = e−
ν+κd/2

2λ e−κ|x|2/2.

First, we note that the energy functional E defined in (1.2) is of class C1, and for

u ∈ Σ, its Fréchet derivative is given by

E′(u) = −∆u+ ω2|x|2u+ λu ln |u|2.
As a consequence, Sν and Iν are of class C1, and for u ∈ Σ

〈S′
ν(u), u〉 = Iν(u).

We will also need the following compactness result:

LEMMA 4.1. For any sequence (um) uniformly bounded in Σ, there exists a subse-

quence (still denoted (um)) and some u ∈ Σ such that:

• um −→
m→∞

u in L2(Rd),

• um −→
m→∞

u a.e. in Rd,

• The following convergence also holds:

lim
m→∞

∫

Rd

|um|2 ln |um|2dx =

∫

Rd

|u|2 ln |u|2dx.
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SKETCH OF THE PROOF. The first two points are standard. For the third point, using

the fact that for all δ > 0, there exists Cδ > 0 such that for all y > 0

|y2 ln y2| 6 Cδ(y
2−δ + y2+δ),

we get,
∣
∣
∣
∣

∫

Rd

|um − u|2 ln |um − u|2dx
∣
∣
∣
∣
6 C

(
1 + ‖um‖2Σ + ‖u‖2Σ

)
‖um − u‖L2 −→

m→∞
0.

The third point then follows from Brézis-Lieb lemma [11], in the convex case (see also [3,

Lemma 2.3]). �

4.2. Variational analysis. The main novelty to prove orbital stability in the case

λ > 0 is a result which may be viewed as a dual of the celebrated logarithmic Sobolev

inequality:

LEMMA 4.2. Let f ∈ F(H1(Rd)) and a > 0:

(4.1) −
∫

Rd

|f(x)|2 ln
( |f(x)|2

‖f‖2L2

)

dx 6 a

∫

Rd

|x|2|f(x)|2dx+
d

2
‖f‖2L2 ln

π

a
.

There is equality if and only if |f(x)| = ce−a|x|2/2, with c = ‖f‖L2(a/π)d/2.

Assuming ‖f‖L2 = 1, we also have

−
∫

Rd

|f(x)|2 ln
(
|f(x)|2

)
dx 6

d

2
ln

(
2eπ

d

∫

Rd

|x|2|f(x)|2dx
)

.

REMARK 4.3. The above inequalities are not translation invariant, just like the usual

logarithmic Sobolev inequality is not translation invariant on the Fourier side. However,

we must take much more than translation on the Fourier side into account, as the inequality

is obviously invariant by multiplication by eiφ(x) for φ real-valued, not necessarily linear

in x.

The second inequality is the counterpart of the classical optimal logarithmic Sobolev

inequality, for ‖f‖L2 = 1,
∫

Rd

|f(x)|2 ln
(
|f(x)|2

)
dx 6

d

2
ln

(
d

2eπ
‖∇f‖2L2

)

,

established in [36].

PROOF. For a > 0, consider the normalized Gaussian

νa(x) =
( a

π

)d/2

e−a|x|2.

It is normalized to ensure that νa is a probability density. In view of the Csiszár-Kullback

inequality (see e.g. [1, Th. 8.2.7]), for µ, ν probability densities,

‖µ− ν‖2L1(Rd) 6 2

∫

Rd

µ(x) ln

(
µ(x)

ν(x)

)

dx.

Let µ(x) = |f(x)|2/‖f‖2L2 and ν = νa: since the above relative entropy (right-hand side)

is non-negative, we have
∫

Rd

|f(x)|2 ln
( |f(x)|2
‖f‖2L2νa(x)

)

dx > 0.

Replacing νa by its explicit value and expanding yields (4.1).
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Moreover, equality holds in (4.1) if and only if the relative entropy is zero, and Csiszár-

Kullback inequality implies that µ(x) = νa(x).

Suppose ‖f‖L2 = 1. The map a 7→ αa − β ln a + c, α, β > 0 reaches its minimum

for a = β/α, so we optimize (4.1) with α = ‖xf‖2L2 , β = d
2 and c = d

2 lnπ,

−
∫

Rd

|f(x)|2 ln
(
|f(x)|2

)
dx 6

d

2
ln

(
2e

d
‖xf‖2L2

)

+
d

2
lnπ,

hence the announced inequality. �

LEMMA 4.4 (Ground energy and ground states). Let ν ∈ R. Then the quantity D(ν)
is given by

D(ν) = −λ‖φν‖2L2 = −λπ
d
2 κ−d

2 e−
ν+κd/2

λ .

Moreover,

Gν =
{
eiθφν , θ ∈ [0, 2π[

}
.

PROOF. Let u ∈ Σ\{0} such that Iν(u) = 0. First, we apply Lemma 4.2 with a = κ:

(4.2) 2λκ‖xu‖2L2 + 2λ

∫

Rd

|u(x)|2 ln |u(x)|2dx > 2λ‖u‖2L2

(

ln ‖u‖2L2 − d

2
ln

π

κ

)

.

Using the fact that ω2 = κ2 + 2λκ, we thus get

(4.3) 0 = Iν(u) > ‖∇u‖2L2 + κ2‖xu‖2L2 + 2λ‖u‖2L2

(

ln ‖u‖2L2 − d

2
ln

π

κ

)

+ 2ν‖u‖2L2.

Moreover, since the ground state of the harmonic oscillator −∆+ κ2|x|2 is e−κ|x|2/2, the

bottom of the spectrum is κd, thus

(4.4) ‖∇u‖2L2 + κ2‖xu‖2L2 > κd‖u‖2L2,

with equality if and only if there exists µ ∈ C such that u(x) = µ e−κ|x|2/2. Thus, there

holds

0 > 2λ‖u‖2L2

(

ln ‖u‖2L2 − d

2
ln

π

κ
+

κd

2λ
+

ν

λ

)

.

Therefore, since u 6= 0, we get:

ln ‖u‖2L2 − d

2
ln

π

κ
+

κd

2λ
+

ν

λ
6 0,

which yields

(4.5) ‖u‖2L2 6 π
d
2 κ− d

2 e−
ν
λ−κd

2λ .

Since this inequality holds for all u ∈ Σ \ {0} such that Iν(u) = 0, we get

D(ν) > −λπ
d
2 κ− d

2 e−
ν
λ−κd

2λ .

Moreover, there is equality in this last inequality if and only if there is equality in all the

previous inequalities (4.2), (4.4) and (4.5). From the previous discussion, equality in both

(4.2) and (4.4) is equivalent to u(x) = µ e−κ|x|2/2 for some µ ∈ C. Putting this condition

in the last case of equality shows that |µ|2 = e−
ν+κd/2

λ . Therefore, all the inequalities are

equalities if and only if there exists θ ∈ [0, 2π[ such that u = eiθφν . The conclusion then

readily follows. �

REMARK 4.5. If we had to consider equality in (4.2) only, then θ would be a map

from Rd to R, not necessarily constant. On the other hand, equality in (4.4) forces θ to be

constant.
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4.3. Minimizing sequences. As a final preparation for the proof of Theorem 1.5, we

characterize minimizing sequences.

LEMMA 4.6. {u ∈ Σ \ {0}, Iν(u) = 0} is a bounded subset of Σ.

PROOF. Let u ∈ Σ \ {0} such that Iν(u) = 0. By definition of D(ν), we know that

‖u‖2L2 6 −λ−1D(ν).

Moreover, using (4.3), we get

‖∇u‖2L2 + κ2‖xu‖2L2 6 −2λ‖u‖2L2 ln ‖u‖2L2 + 2λ‖u‖2L2

(d

2
ln

π

κ
+ 2ν

)

.

Using the fact that −x lnx 6 e−1 for all x > 0, we get

‖∇u‖2L2 + κ2‖xu‖2L2 6 2λe−1 − 2D(ν)

(
d

2
ln

π

κ
+ 2ν

)

,

hence the conclusion, since the L2-norm is controlled by −D(ν). �

LEMMA 4.7. Let (un) be a minimizing sequence for D(ν). Then there exists φ ∈ Gν

such that, up to a subsequence,

‖un − φ‖Σ −→
n→∞

0.

PROOF. By definition of D(ν), we know that

‖un‖2L2 −→
n→∞

−λ−1D(ν).

Moreover, Lemmas 4.6 and 4.1 show that there exists φ ∈ Σ such that, up to a subsequence,

un ⇀ φ weakly in Σ,

un → φ strongly in L2(Rd),

lim
n→∞

∫

Rd

|un|2 ln |un|2dx =

∫

Rd

|φ|2 ln |φ|2dx.

In particular, this yields

‖φ‖L2 = −λ−1D(ν).

Moreover, using again (4.3), there holds

‖∇un‖2L2 + κ2‖xun‖2L2 6 −2λ‖un‖2L2 ln ‖un‖2L2 + 2λ‖un‖2L2

(
d

2
ln

π

κ
− ν

λ

)

,

and

−2λ‖un‖2L2 ln ‖un‖2L2 + 2λ‖un‖2L2

(
d

2
ln

π

κ
− ν

λ

)

−→
n→∞

2D(ν)

(

ln
(
−λ−1D(ν)

)
− d

2
ln

π

κ
+

ν

λ

)

= −κd

λ
D(ν),

by using Lemma 4.4. Thus, using again (4.4), we get

−κd

λ
D(ν) = κd‖φ‖L2 6 ‖∇φ‖2L2 + κ2‖xφ‖2L2

6 lim inf
(
‖∇un‖2L2 + κ2‖xun‖2L2

)

6 lim sup
(
‖∇un‖2L2 + κ2‖xun‖2L2

)
6 −κd

λ
D(ν).
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Therefore, there is equality in all of the above inequalities. In particular,

‖∇φ‖2L2 + κ2‖xφ‖2L2 = lim
(
‖∇un‖2L2 + κ2‖xun‖2L2

)
,

which proves that

un → φ strongly in Σ.

With all the previous convergences, the convergence of Iν(un) to Iν(φ) is now obvious,

and therefore Iν(φ) = 0. Since D(ν) = −λ‖φ‖L2 , we obtain φ ∈ Gν . �

4.4. Orbital stability. Theorem 1.5 is then classically proved by contradiction. As-

sume that there exist ε > 0, u0n ∈ Σ and tn ∈ R such that

inf
θ∈R

‖u0n − eiθφν‖Σ −→
n→∞

0,(4.6)

inf
θ∈R

‖un(tn)− eiθφν‖Σ > ε for any n ∈ N.(4.7)

Set vn = un(tn). By (4.6) and the conservation laws, we obtain

‖vn‖2L2 = ‖u0n‖2L2 −→
n→∞

‖φν‖2L2,

E(vn) = E(u0n) −→
n→∞

E(φν).

In particular, there also holds

Sν(vn) −→
n→∞

Sν(φν) = D(ν).

Since Iν(f) = 2E(f) + 2(λ+ ν)‖u‖2L2 ,

Iν(vn) −→
n→∞

Iν(φν) = 0.

Next, define the sequence fn = ρnvn with

ρn = exp

(

− Iν(vn)

2‖vn‖2L2

)

.

It is clear that Iν(fn) = 0 and limn ρn = 1, so that ‖vn − fn‖Σ → 0 and thus Sν(fn) →
D(ν). Therefore, (fn) is a minimizing sequence for D(ν). Applying Lemma 4.7, there

exists φ ∈ Gν such that, up to a subsequence, fn → φ strongly in Σ. Therefore

(4.8) vn → φ strongly in Σ.

Moreover, since φ ∈ Gν , Lemma 4.4 gives the existence of θ ∈ [0, 2π[ such that φ = eiθφν .

Therefore, (4.8) contradicts (4.7).

5. Partial harmonic confinement

5.1. Preparation of the proof. In this section, we explain how to prove Theorem 1.7,

by adapting elements of proof introduced in [16, 22]. Like in Theorem 1.1, we rescale the

initial unknown u to a new unknown v through the formula

(5.1) u(t, x′, x′′) =
1

τ(t)d2/2
v

(

t, x′ x
′′

τ(t)

) ‖u0‖L2(Rd)

‖γ‖L2(Rd2)

exp
(

i
τ̇ (t)

τ(t)

|x′′|2
2

)

,

where we emphasize that at this stage, γ is a function of the d2-dimensional variable x′′.

The function ρ involved in Theorem 1.7 is then simply

ρ(t, y) =

∫

Rd1

|v(t, x′, y)|2dx′, y ∈ R
d2 .
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We readily check that (1.1) is then equivalent to

i∂tv+
1

2
∆x′v+

1

2τ(t)2
∆yv = λ ln

(
|v|2
)
v+

(
ω2

2
|x′|2 + λ|y|2

)

v+θ(t)v, v|t=0 = αu0,

with α = ‖γ‖L2(Rd2)/‖u0‖L2(Rd), and where θ is real-valued and depends on time only,

θ(t) = −λ

(

d2 ln τ(t)− 2 ln
‖u0‖L2(Rd)

‖γ‖L2(Rd2)

)

= −λ

(

d2 ln τ(t) − 2 ln
‖u0‖L2(Rd)

πd2/2

)

.

Changing v(t, x′, y) to v(t, x′, y)ei
∫ t
0
θ(s)ds does not affect the function ρ involved in the

statement of Theorem 1.7, and removes the last term from the above equation, so we may

assume that v solves

(5.2) i∂tv+
1

2
∆x′v+

1

2τ(t)2
∆yv = λ ln

(
|v|2
)
v+

(
ω2

2
|x′|2 + λ|y|2

)

v, v|t=0 = v0,

where v0 is such that ‖v0‖L2(Rd) = ‖γ‖L2(Rd2). The equation (5.2) is still Hamiltonian,

but since it is no longer autonomous, we have a dissipated energy: setting

E(t) = 1

2
‖∇x′v‖2L2(Rd) +

1

2τ(t)2
‖∇yv‖2L2(Rd) + λ

∫

Rd

|v(t, x′, y)|2 ln |v(t, x′, y)|2dx′dy

+

∫

Rd

(
ω2

2
|x′|2 + λ|y|2

)

|v(t, x′, y)|2dx′dy,

we have
dE
dt

= − τ̇

τ3
‖∇yv‖2L2(Rd) 6 0.

This implies crucial a priori estimates:

LEMMA 5.1. Let u0 ∈ Σ, λ, ω > 0. There exists C > 0 such that

sup
t>0

∫

Rd

(
1 + |x′|2 + |y|2 +

∣
∣ln |v(t, x′, y)|2

∣
∣
)
|v(t, x′, y)|2dx′dy 6 C,

sup
t>0

(
1

2
‖∇x′v‖2L2(Rd) +

1

2τ(t)2
‖∇yv‖2L2(Rd)

)

6 C.

In addition,
∫ ∞

0

τ̇(t)

τ(t)3
‖∇yv(t)‖2L2(Rd) < ∞.

SKETCH OF THE PROOF. We resume the main lines of the proof of [16, Lemma 4.1].

Write E = E+ − E−, where

E+ =
1

2
‖∇x′v‖2L2 +

1

2τ(t)2
‖∇yv‖2L2 +

∫

Rd

(
ω2

2
|x′|2 + λ|y|2

)

|v(t, x′, y)|2dx′dy

+ λ

∫

|v(t,x′,y)|2>1

|v(t, x′, y)|2 ln |v(t, x′, y)|2dx′dy.

Note that E+ is the sum of non-negative terms only. Since E is non-increasing, for t > 0,

E+(t) 6 E(0) + E−(t) = E(0) + λ

∫

|v|61

|v(t, x′, y)|2 ln 1

|v(t, x′, y)|2 dx
′dy

. 1 +

∫

Rd

|v(t, x′, y)|2−εdx′dy,
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for any ε > 0 sufficiently small. Then ‖v‖L2−ε . ‖v‖1−δ(ε)
L2 ‖(|x′| + |y|)v‖δ(ε)L2 with

δ(ε) → 0 as ε → 0. In view of the conservation of the L2-norm of v (which is equal to the

L2-norm of u), we infer, for 0 < ε ≪ 1 , E− . E1/2
+ (for instance), hence

E+(t) . 1, ∀t > 0.

Therefore, each term in E+ is bounded, and so is E−.

Since E is bounded, the integral of Ė is bounded, hence the last part of the lemma. �

5.2. Convergence of momenta. The proof of (1.7) stems from the same arguments

as in [16].

5.2.1. Center of mass. Introduce

I1(t) := Im

∫

Rd

v̄(t, x′, y)∇yv(t, x
′, y)dx′dy, I2(t) :=

∫

Rd

y |v(t, x′, y)|2dx′dy.

We compute

İ1 = −2λI2, İ2 =
1

τ2(t)
I1,

and so Ĩ2 := τI2 satisfies
¨̃I2 = 0. Since τ(t) ∼ 2t

√
λ ln t as t → ∞, we infer that

I2(t) = O(ln t)−1/2.

5.2.2. Second order momentum. Rewriting in terms of v the conservation of the en-

ergy for u, (1.2), we find:

E(u0) =
1

2
‖∇x′v‖2L2(Rd) +

1

2τ(t)2
‖∇yv‖2L2(Rd) +

(τ̇ )2

2

∫

Rd

|y|2|v(t, x′, y)|2dx′dy

+
τ̇

τ
Im

∫

Rd

v̄(t, x′, y)y · ∇yv(t, x
′, y)dx′dy +

ω2

2

∫

Rd

|x′|2|v(t, x′, y)|2dx′dy

+ λ

∫

Rd

|v(t, x′, y)|2 ln |v(t, x′, y)|2dx′dy − λd2π
d2 ln τ

+ 2λ‖u0‖2L2(Rd) ln

(‖u0‖L2(Rd)

πd2/2

)

.

In view of Lemma 5.1, the first, second, fifth, sixth, and last terms on the right-hand side

are bounded in time. In view of Lemma 5.1 and Cauchy-Schwarz inequality, the fourth

term is O(τ̇ ) = O(
√
ln t), and we obtain

(τ̇ )2

2

∫

Rd

|y|2|v(t, x′, y)|2dx′dy − λd2π
d2 ln τ = O(

√
ln t),

which yields, since (τ̇ )2 = 4λ ln τ (multiply (1.3) by τ̇ and integrate),
∫

Rd

|y|2|v(t, x′, y)|2dx′dy =
d2
2
πd2 +O

(
1√
ln t

)

=

∫

Rd2

|y|2γ(y)2dy +O
(

1√
ln t

)

,

hence (1.7).

5.3. Convergence of the profile. To prove the end of Theorem 1.7, we use a Madelung

transform: define R, J1 and J2 by

R(t, x′, y) = |v(t, x′, y)|2, J1(t, x
′, y) = Im (v̄(t, x′, y)∇x′v(t, x′, y)) ,

J2(t, x
′, y) = Im (v̄(t, x′, y)∇yv(t, x

′, y)) .
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We check that (5.2) implies

∂tR+∇x′ · J1 +
1

τ(t)2
∇y · J2 = 0,

∂tJ2 + λ∇yR+ 2λyR =
1

4τ(t)2
∆y∇yR− 1

τ(t)2
∇y · (Re (∇yv ⊗∇y v̄))

+
1

2
∇x′ · Re (v̄ ((∇x′ ⊗∇y) v)−∇x′ v̄ ⊗∇yv) .

We do not write the evolution law for J1, as it is not needed for the argument.

REMARK 5.2. Despite the fact that v(t) might not be H2, the term v̄ (∇x′ ⊗∇y) v is

still well defined in D′((0,∞)×Rd) owing to the fact that v is in L∞
loc((0,∞);H1) and to

the relation:

v̄ (∇x′ ⊗∇y) v = ∇y (v̄∇x′v)−∇y v̄ ⊗∇x′v.

We note that

ρ(t, y) =

∫

Rd1

R(t, x′, y)dx′,

and we set

j(t, y) =

∫

Rd1

J2(t, x
′, y)dx′.

These new unknowns solve, in D′((0,∞)× Rd2):







∂tρ+
1

τ(t)2
∇y · j = 0,

∂tj + λ∇yρ+ 2λyρ =
1

4τ(t)2
∆y∇yρ−

1

τ(t)2
∇y · µ,

where

µ(t, y) =

∫

Rd1

Re (∇yv ⊗∇y v̄) (t, x
′, y)dx′.

At this stage, in view of the a priori estimates provided by Lemma 5.1, we have the same

ingredients are those needed in [16, Section 5.3] and [22, Lemma 4.4], hence the weak

convergence and the estimate of the Wasserstein distance in Theorem 1.7.

6. Repulsive harmonic potential

In this section, we consider (1.5), that is

i∂tu+
1

2
∆u = −ω2 |x|2

2
u+ λu ln

(
|u|2
)
, u|t=0 = u0,

for x ∈ Rd and ω, λ > 0.

6.1. Analysis of the dispersion. We first resume the analysis started in Section 3.3

in the Gaussian case, and consider τ solving (3.5). We discuss the dependence upon initial

data at the end.
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6.1.1. Direct error estimate. Let τTeff solve

τ̈Teff = ω2τTeff , τTeff(T ) = τ(T ), τ̇Teff(T ) = τ̇ (T ).

Consider the error eT = τ − τTeff . It solves

ëT − ω2eT =
2λ

τ
+

1

τ3
,

and Duhamel’s formula reads

eT (t) = 2λ

∫ t

T

sinh (ω(t− s))

ω

ds

τ(s)
+

∫ t

T

sinh (ω(t− s))

ω

ds

τ(s)3
.

In view of (3.7), for t > T ≫ 1,

|eT (t)| 6 ε

∫ t

T

sinh (ω(t− s))

ω
ds 6

ε

ω2
cosh (ω(t− T )) .

On the other hand,

τTeff(t) ∼
t→∞

1

2

(

τ(T ) +
τ̇ (T )

ω

)

eω(t−T ).

We infer from (3.7) that τ grows exponentially in time, since τ(T ) + τ̇(T )
ω ≫ ε. In view

of (3.6), τ̇ also grows exponentially in time:

(6.1) eωt & τ(t) & eωt, eωt & τ̇ (t) & eωt, t > 0.

6.1.2. Analysis of the main ODE. Setting µ(t) = τ(t)e−ωt, we prove that µ(t) → µ∞

as t → ∞. It solves

(6.2) µ̈+ 2ωµ̇ =
2λ

µ
e−2ωt +

1

µ3
e−4ωt,

hence
d

dt

(
µ̇e2ωt

)
=

2λ

µ
+

1

µ3
e−2ωt > 0.

We know from the previous section that

(6.3) 1 . µ(t) . 1,

and the previous bound becomes

d

dt

(
µ̇e2ωt

)
& 1.

The map t 7→ µ̇(t)e2ωt is increasing, and

µ̇(t)e2ωt & t− c −→
t→∞

∞.

Then (6.2) implies

µ̈(t)e2ωt . −t+ c −→
t→∞

−∞.

Therefore, for t sufficiently large, µ̇ is positive decreasing, hence has a non-negative limit

as t → ∞, and µ̈ ∈ L1. But (6.2) implies that µ̇ and µ̈ are simultaneously L1, so µ̇ ∈ L1

and the limit of µ̇ has to be zero. This yields the existence of µ∞ > 0 such that

µ(t) −→
t→∞

µ∞, hence τ(t) ∼
t→∞

µ∞eωt.

In view of (3.6), and since τ̇ > 0 (at least for t ≫ 1), we infer

τ̇ (t) ∼
t→∞

ωµ∞eωt.
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6.1.3. Dependence of µ∞. First, we get another integral expression for τ . Define

F (t) := 2λ
τ(t) +

1
τ(t)3 . Then there holds

τ̈ − ω2τ = F,

which leads to

d

dt

(

eωt(τ̇ − ωτ)
)

= F (t) eωt,

and thus

eωt(τ̇ − ωτ) = (τ̇ (0)− ωτ(0)) +

∫ t

0

F (s)eωsds.

Therefore, we get

τ(t) = eωt
[

τ(0) +
1− e−2ωt

2ω
(τ̇ (0)− ωτ(0)) +

∫ t

0

e−2ωs

∫ s

0

F (r)eωrdrds
]

.

After some easier computations, we get

(6.4) τ(t) = τ(0) cosh(ωt) +
τ̇ (0)

ω
sinh(ωt) +

eωt

2ω

∫ t

0

e−ωrF (r)dr

− e−ωt

2ω

∫ t

0

F (r)eωrdr.

We also already know that τ(t) ∼ µ∞eωt, so in particular F (t) ∼ 2λ
µ∞

e−ωt, and thus

∫ t

0

F (r)eωrdr = O(t),

∫ ∞

0

F (r)e−ωrdr < ∞.

Therefore, (6.4) leads to an expression for µ∞:

(6.5) µ∞ = τ(0) +
τ̇ (0)

ω
+

1

2ω

∫ ∞

0

e−ωr

(
2λ

τ(r)
+

1

τ(r)3

)

dr.

Moreover, from the fact that F > 0 and eωte−ωr − e−ωteωr > 0 for all 0 6 r 6 t, (6.4)

also gives for all t > 0:

τ(t) > τ(0) cosh(ωt) +
τ̇ (0)

ω
sinh(ωt).

Assume τ̇ (0) = τ1 > 0 and τ(0) = τ0 > 0. Then, the last term in the right-hand side of

(6.5) can be estimated. First:

0 6

∫ ∞

0

e−ωr 2λ

τ(r)
dr 6

∫ ∞

0

e−ωr 2λ

τ0 cosh(ωr) +
τ1
ω sinh(ωr)

dr

6

∫ ∞

0

e−2ωr 4λ

τ0(1 + e−2ωr) + τ1
ω (1 − e−2ωr)

dr

6 − 2λ

ω(τ0 − τ1
ω )

[

ln
(

τ0(1 + e−2ωr) +
τ1
ω
(1− e−2ωr)

)]∞

0

6
2λ

ω( τ1ω − τ0)
ln
(

1 +
τ1
ω − τ0

2τ0

)

.
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Then, we also have

0 6

∫ ∞

0

e−ωr 1

(τ(r))3
dr 6

∫ ∞

0

e−ωr 1
(

τ0 cosh(ωr) +
τ1
ω sinh(ωr)

)3 dr

6

∫ ∞

0

e2ωr 16λ
(

τ0(1 + e2ωr) + τ1
ω (e2ωr − 1)

)3 dr

6 − 4λ

ω(τ0 +
τ1
ω )

[(

τ0(1 + e2ωr) +
τ1
ω
(e2ωr − 1)

)−2
]∞

0

6
2λ

ω( τ1ω + τ0) τ0
.

Then, as soon as τ0 is fixed, we get an expansion of µ∞ with respect to τ1 with (6.5):

(6.6) µ∞ =
τ1
ω

+ τ0 +O
(
ln τ1
τ1

)

.

6.2. Back to the PDE. We now address the general case, in the sense that u0 need

not be Gaussian. As announced in Proposition 1.8, change the unknown u to v, through

the formula

(6.7) u(t, x) =
1

τ−(t)d/2
v

(

t,
x

τ−(t)

)

exp
(

i
τ̇−(t)

τ−(t)

|x|2
2

)

,

with τ− solution to (1.6), that is, (3.5) where the last term is discarded (this simplifies a

little bit the computations, and the discarded term brings no extra information any way).

Then (3.2) is equivalent, up to an irrelevant time dependent phase (like previously), to

(6.8) i∂tv +
1

2τ2−
∆v = λ|y|2v + λv ln |v|2 , v|t=0 = u0,

provided that we assume

(6.9) τ−(0) = 1, τ̇−(0) = 0.

6.2.1. Hamiltonian structure and consequences. Set

E(t) = 1

2τ−(t)2
‖∇v(t)‖2L2

︸ ︷︷ ︸

=:Ekin(t)

+λ

∫

Rd

|y|2|v(t, y)|2dy + λ

∫

Rd

|v(t, y)|2 ln |v(t, y)|2dy.

We compute

Ė(t) = −2
τ̇−(t)

τ−(t)
Ekin(t).

We readily infer, with the same proof as in the case ω = 0 given in [16, Lemma 4.1], as

already sketched in the proof of Lemma 5.1:

LEMMA 6.1. For u0 ∈ Σ and λ > 0, there holds

sup
t>0

(∫

Rd

(
1 + |y|2 +

∣
∣ln |v(t, y)|2

∣
∣
)
|v(t, y)|2dy + 1

τ−(t)2
‖∇v(t)‖2L2(Rd)

)

< ∞,

and ∫ ∞

0

τ̇−(t)

τ3−(t)
‖∇v(t)‖2L2(Rd)dt < ∞.
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SKETCH OF THE PROOF. Write E = E+ − E−, where

E+ =
1

2τ−(t)2
‖∇v(t)‖2L2 + λ

∫

Rd

|y|2|v(t, y)|2dy + λ

∫

|v|>1

|v(t, y)|2 ln |v(t, y)|2dy.

Note that E+ is the sum of non-negative terms only. Since E is non-increasing, for t > 0,

E+(t) 6 E(0) + E−(t) = E(0) + λ

∫

|v|61

|v(t, y)|2 ln 1

|v(t, y)|2 dy

. 1 +

∫

Rd

|v(t, y)|2−εdy,

for any ε > 0 sufficiently small. Then ‖v‖L2−ε . ‖v‖1−δ(ε)
L2 ‖yv‖δ(ε)L2 with δ(ε) → 0 as

ε → 0, and we conclude like in the proof of Lemma 5.1. �

Since the L2-norm of v is independent of time, the boundedness of the momentum

of v is an evidence that v is not dispersive, while the boundedness of |v|2 in LlogL is an

evidence that v does not grow to infinity. Therefore τ− describes the dispersive rate of any

solution to (1.5).

6.2.2. Center of mass. Introduce

I1(t) := Im

∫

Rd

v(t, y)∇v(t, y)dy , I2(t) :=

∫

Rd

y|v(t, y)|2dy .

We compute:

(6.10) İ1 = −2λI2 , İ2 =
1

τ2−(t)
I1 .

Set Ĩ2 := τ−I2. We compute, in view of (3.5),

d2

dt2
Ĩ2 = ω2Ĩ2, hence τ−(t)I2(t) = a0 cosh(ωt) + b0

sinh(ωt)

ω
.

In view of (6.9),

a0 = I2(0), b0 = İ2(0) = I1(0).

We infer

I2(t) ∼
t→∞

a0 + b0
2

eωt

τ−(t)
∼

t→∞

a0 + b0
2µ∞

=
I1(0) + I2(0)

2µ∞
.

Unlike in the case ω = 0 considered in [16, 22], the asymptotic center of mass of v is not

zero in general (while it is always zero in the context of Theorem 1.1); this is like in the

scattering case, where the asymptotic profile has no reason to be centered at the origin (as

shown by the existence of wave operators).

Integrating in time the first equation in (6.10), we infer

I1(t) ∼
t→∞

−λt
I1(0) + I2(0)

µ∞
,

provided that I1(0) + I2(0) 6= 0. This suggests that v is oscillatory.
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6.2.3. More on large time behavior. At this stage, we have established two differences

with the dynamics of logNLS (without potential): the dispersion is the one dictated by the

repulsive harmonic potential, that is, exponential, and in the dispersive frame (working

with v), the asymptotic center of mass is not necessarily zero.

The next natural question would be to decide between a general asymptotic behavior

for |v| (like in the case ω = 0) or a complete scattering theory. We are not able to fully

validate the second option, which is the most likely in view of the result on the center of

mass, but the Gaussian case shows that no universal profile must be expected for the large

time behavior of |v|.
To see this, consider d = 1 and two Gaussian initial data

u01(x) = e−x2/2+iβ1x
2/2, u02(x) = e−x2/2+iβ2x

2/2, βj > 0.

In other words, we start from two distinct Gaussian data, whose moduli (hence all Lebesgue

norms and momenta, for instance) are equal. The corresponding solutions u1 and u2 are

given by the formula presented in Section 3.3, boiling the description down to the analysis

of the ODE (3.5):

uj(t, x) = bj(t)e
−x2/(2τj(t)

2)+iτ̇j(t)x
2/(2τj(t)), τj(t) ∼

t→∞
µ∞,je

ωt.

In view of Section 6.1, we have

µ∞,j = 1 +
βj

ω
+O

(
lnβj

βj

)

as βj → ∞,

and so for β2 ≫ β1 ≫ 1, the corresponding functions vj have different (asymptotic

centers of mass and) asymptotic profiles. The fact that |vj |2 converges strongly in L1 to

the corresponding limiting Gaussian is straightforward; see e.g. [16, Corollary 1.11].
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