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Abstract

We analyze families of primal high-order hybridizable discontinuous Galerkin (HDG) methods
for solving degenerate (second-order) elliptic problems. One major trouble regarding this class
of PDEs concerns its mathematical nature, which may be nonuniform over the domain. Due
to the local degeneracy of the diffusion term, it can be purely hyperbolic in a subregion and
elliptic in the rest. This problem is thus quite delicate to solve since the exact solution is
discontinuous at interfaces separating both elliptic and hyperbolic parts. The proposed HDG
method is developed in a unified and compact fashion. It can efficiently handle pure diffusive
or advective regimes and intermediate regimes that combine the above mechanisms for a
wide range of Péclet numbers, including the delicate situation of local evanescent diffusion.
To this end, an adaptive stabilization strategy based on addition of jump-penalty terms is
then considered. A θ-upwind-based scheme is favored for the hyperbolic region, and an
inspired Scharfetter–Gummel-based technique is preferred for the elliptic region. The well-
posedness of the HDG method is also discussed by analyzing the consistency and discrete
coercivity properties. Extensive numerical experiments are finally considered to verify the
model’s robustness for all the abovementioned regimes.

Keywords: Primal hybridizable discontinuous Galerkin, interior penalty methods,
degenerate second-order elliptic problems, adaptive penalty strategy, upwind-based scheme,
Scharfetter–Gummel scheme, extensive numerical experiments

1. Introduction

Degenerate second-order elliptic equations are well-established models to describe a wide
variety of phenomena in real-life applications, such as pure diffusion or advection problems,
and mixed problems combining the above mechanisms for a wide range of Péclet numbers [24].
A detrimental situation may arise in the context of locally evanescent diffusivity. Indeed, its
mathematical nature is nonuniform over the entire domain, as it can be purely hyperbolic in
a subregion and elliptic in the rest. Consequently, the state variable can be discontinuous at
interfaces separating both subregions according to the wind flow sense [9, 10, 14]. This critical
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situation is easily encountered in the context of mass transport in fractured porous media. It
is well known that fractures deeply affect the transport phenomena since they represent the
preferential fluid flow paths. The large variability of the velocity’s magnitude indicates that
the advection mechanism is predominant in the fractures as compared with the rest of the
domain. During recent decades, different authors have analyzed this model problem, although
mainly in the context of discontinuous Galerkin (DG) methods (see, e.g., [10, 14, 17] and the
extensive references therein). The success story of DG methods is because they combine
advantages of finite volume and finite element methods, and they are well-suited to capture
large gradients or discontinuities of exact solutions [25]. Despite all of these advantages, DG
methods are generally more expensive than most other numerical methods due to their high
number of coupled degrees of freedom (DOFs) and their large stencils. It is in this context
that the HDG methods were initially devised: as a way to circumvent these drawbacks.

The HDG methods were first introduced by Cockburn et al. in [7] and have been applied
successfully to various physical problems [4, 8, 12, 22, 21, 20, 23, 19]. They can be considered
as a new class of DG methods that are eligible for static condensation. For that application,
an additional discrete variable is introduced corresponding to the trace approximation of the
state variable on the mesh skeleton. Thus, the interior-based DOFs can be easily eliminated
by solving a local problem at the element level so that only skeleton-based DOFs remain. The
problem is then closed by (weakly) imposing transmission conditions on the mesh skeleton,
leading to a smaller and sparser final matrix system. In practice, DG methods and their
HDG counterparts do not coincide because the latter use a richer definition of numerical
traces. Consequently, HDG methods turn out to be more accurate than their predecessors in
many situations, and they are thus more efficiently implementable and highly parallelizable
[15, 18]. Despite all of these assets, the literature is relatively scarce concerning the resolu-
tion of degenerate elliptic equations by the class of HDG methods, which is the purpose of
the present work. To the best of our knowledge, only Di Pietro et al. recently designed a
primal discontinuous skeletal method based on the hybrid-high order (HHO) formalism for
the diffusive part to address this kind of issue [9, 11].

In the present paper, we focus instead on the class of interior penalty HDG methods de-
noted by H-IP and its three well-known variants, namely, the incomplete (H-IIP), symmetric
(H-SIP), and nonsymmetric (H-NIP) schemes [16, 28]. Indeed, the families of interior penalty
methods are well-suited for solving degenerate elliptic equations since the diffusion term might
not be invertible at every point of the domain; i.e., they belong to the class of κ-methods.
For this aim, both diffusive and advective-reactive contributions are discretized separately.
The stability of these contributions is ensured by adding jump-penalty terms, which corre-
spond to the discrepancy between interior- and interface-based DOFs, on the mesh skeleton.
The stabilization penalty parameters are selected in accordance with the nature of the local
cellwise problem reducing to an upwinding-based scheme in the hyperbolic subregion [3] and
the Scharfetter–Gummel (SG) scheme elsewhere [2, 9]. Thus, the stated H-IP formalism can
treat in an automatic fashion the pure diffusion or advection-reaction processes or (mixed)
advection-diffusion-reaction processes characterized by a diffusion- or advection-dominated
regime, i.e., a wide range of Péclet numbers - including the delicate situation of local evanes-
cent diffusion. A stability analysis is then investigated by establishing the consistency and
discrete coercivity properties. Numerical experiments are also presented to prove the following
assertions, such as the high-order accuracy and robustness of the discretization method.

The material is organized as follows. In Section 2, we describe the homogeneous Dirichlet

2



boundary value problem in the sense of Fichera [24] by introducing some specific notations,
and we precisely define the corresponding discrete setting in Section 3. In Section 4, we derive
the discrete bilinear and linear operators of the discretization method, briefly discuss the static
condensation and stability analysis, and precisely delineate the stabilization strategy. In Sec-
tion 5, extensive numerical experiments are investigated using h- and p-refinement strategies
for all abovementioned regimes. We end with some concluding remarks and perspectives.

2. Boundary value problem

We consider the stationary linear advection-diffusion-reaction model problem in its con-
servative form,

∇ · (−κ∇u+ βu) + γu = f in Ω, (1)

where Ω ⊂ Rd is a bounded polyhedral domain (d ≥ 2) with boundary ∂Ω ⊂ Rd−1. The
boldface fonts are used throughout the paper to characterize any vector- or matrix-valued
functions. In the physical context of contaminant transport in a porous media, κ : Ω→ Rd,d
represents an anisotropic heterogeneous dispersion tensor, which is itself a function of the
Darcy velocity field β : Ω → Rd, γ : Ω → R+, the reaction coefficient, and f : Ω → R, a
forcing term. We then assume that the constitutive coefficients of (1) satisfy the following
minimal regularity requirements:

∗ κ ∈ [L∞(Ω)]d,d is a symmetric positive semidefinite matrix-valued function verifying
that

κ‖ζ‖2, ≤ ζtκ(x)ζ ≤ κ̄‖ζ‖2, , ∀ζ ∈ Rd, a.e. x ∈ Ω. (2)

where κ̄ ≥ κ ≥ 0 denote the largest and smallest eigenvalues of κ, respectively. Under
the hypothesis (2), we shall assume the existence of a subdomain Ωell (resp. Ωhyp)
corresponding to the elliptic (resp. hyperbolic) region such that

Ωell := {x ∈ Ω : ζtκ(x)ζ > 0, ∀ζ ∈ Rd},
Ωhyp := {x ∈ Ω : ζtκ(x)ζ = 0, ∀ζ ∈ Rd}, (3)

verifying that Ω = Ωell ∪ Ωhyp and Ωell ∩ Ωhyp = ∅ (nonoverlapping subregions).

∗ β ∈ [L∞(Ω)]d is s.t. ∇ · β ∈ L∞(Ω),

∗ γ ∈ L∞(Ω) verifying that the following standard coercivity condition holds

∃γ0 ∈ R s.t. γ(x) +
1

2
∇ · β(x) ≥ γ0 > 0, a.e. x ∈ Ω. (4)

Let us now introduce the following disjoint boundary sets as defined by Olĕınik and Radkevič
[24] (see, e.g., Di Pietro et al. [9] and references therein);

Γ− := {x ∈ ∂Ω : ntκ(x)n > 0 or β · n < 0},
Γ+ := {x ∈ ∂Ω : ntκ(x)n = 0 and β · n ≥ 0}, (5)

where n denotes the unit outward normal to ∂Ω. Thus, the disjoint subsets Γ± will be referred
to as the nondegenerate inflow and degenerate outflow/no-flow parts of the boundary ∂Ω,
respectively, verifying that ∂Ω = Γ− ∪ Γ+ and Γ− ∪ Γ+ = ∅. For clarity of our exposition,
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we supplement the partial differential equation (1) with the following homogeneous Dirichlet
boundary conditions, namely,

u = 0 on Γ−. (6)

Let us remark that the Dirichlet boundary conditions are only prescribed for portions of ∂Ω
touching the elliptic region or the hyperbolic region, provided that the advective field flows
into the domain. Let us now summarize some physical situations commonly encountered in
the literature for which Dirichlet boundary conditions (6) adapt automatically:

I Nondegenerate problems. Here, κ is assumed to be a symmetric positive definite matrix-

valued function on the whole domain Ω. Hence, Ωell = Ω and the Dirichlet boundary
condition is automatically enforced for the whole boundary Γ− = ∂Ω. This situa-
tion includes the pure diffusive regime as well as the mixed advective-diffusive regime.
Here, the weak solution u of the problem (1) respects some regularity requirements
i.e., u ∈ H1(Ω), but it may present some sharp fronts along the characteristic direction
β, particularly for the advective-dominated regime.

I Fully degenerate problems. Here, Ωell = ∅ and we recover the standard advection-

reaction problem defined in Ωhyp respecting the coercivity condition (4) and the usual
definition of the inflow Γ− or outflow Γ+ parts of the boundary ∂Ω. Following these
assumptions, the problem is well-posed with no smoothing properties i.e., u ∈ L2(Ω),
and discontinuities in the solution u induced by f will propagate along the flow field β,
giving rise to internal layers.

I Locally degenerate problems. We assume that both Ωhyp and Ωell are nonempty subsets.

The model problem is then purely hyperbolic in Ωhyp and elliptic in the rest. Thus, we
now define the common interface I := {x ∈ Ω : ∂Ωhyp ∩ ∂Ωell}. We emphasize that
such problems are particularly delicate to solve since the solution can be discontinuous
at the portion I− := {x ∈ I : β(x) · nI < 0}, where nI is an (arbitrary) oriented
unit normal vector pointing out of the elliptic region. Concretely, I− corresponds to a
subset of I where the advection field flows from the hyperbolic side to the elliptic side.
Thus, we set I+ := I\I−.

For a given forcing term f ∈ L2(Ω), the continuous problem reads:

∇ · (−κ∇u+ βu) + γu = f in Ω,
[[u]] = 0 on I+,
u = 0 on Γ−,

(7)

where [[·]] denotes the standard DG-jump trace operator as defined in [1]. The well-posedness
of the boundary value problem (7) has been analyzed by Olĕınik and Radkevič in [24]. They
proved the existence and uniqueness of a weak solution for homogeneous and nonhomogeneous
Dirichlet boundary conditions, respectively. The main objective of the present paper is to
propose, in a unified formalism, an inspired interior penalty HDG method that can treat all
of these abovementioned physical situations in an automated fashion. Before doing so, let
us specify the discrete setting concerning mesh assumptions, the definition of trace operators
and the approximation spaces that will be used later in the rest of this paper.
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3. Discrete setting

3.1. Mesh notations

Let h be a positive parameter, and assume without loss of generality that h ≤ 1. We
denote by T ell

h (resp. T hyp
h ) a conformal partition of the subdomain Ωell (resp. Ωhyp) satisfying

T ell
h ∩T

hyp
h = ∅. The set of all mesh elements is denoted by Th, i.e., Th := T ell

h ∪T
hyp
h , where h

stands for the largest diameter of all elements. We precisely state here that the sets of mesh
elements T ell

h and T hyp
h can be composed of several types of geometric elements, i.e., hybrid

meshes. Following our notation, the generic term interface indicates a (d − 1)-dimensional
geometric object with a positive measure, i.e., an edge if d = 2 and a face if d = 3. The
set of boundary interfaces is denoted by Fb

h, i.e., F ∈ Fb
h if there exists E in Th such that

F := ∂E ∩ ∂Ω. We assume that the set Fb
h coincides with the disjoint boundary partition

Fb±
h , i.e., the boundary interfaces lying entirely in one of the subsets Γ±. Likewise, we denote

by F i
h the set of interior interfaces, i.e., F ∈ F i

h if there exists E1 and E2 in Th such that
F := ∂E1 ∩ ∂E2. The set of all interfaces is denoted by Fh, i.e., Fh := F i

h ∪ Fb
h, and we

set F±h := F i
h ∪ F

b±
h . In particular, we denote by Ih the subset of F i

h, which belongs to I
(Ih ⊂ F i

h), i.e., Ih corresponds here to the discrete counterpart of I. We assume first that for

any interface F ∈ Ih (i) there exist E1 ∈ T ell
h and E2 ∈ T hyp

h such that F := ∂E1∩∂E2, and (ii)
F lies entirely in one of the disjoint subsets I±h corresponding to the discrete counterpart of I±,
respectively. Moreover, for any mesh element E ∈ Th, we denote by FE := {F ∈ Fh : F ⊂ ∂E}
the set of interfaces composing the boundary of E, and we set ηE := card(FE). For all elements
X of Th or Fh, we denote by |X| and hX the measure and diameter of X, respectively.

3.2. Approximation spaces

For any polyhedral domain D ⊂ Rd with ∂D ⊂ Rd−1, we denote by (·, ·)0,D (resp. 〈·, ·〉0,∂D)
the L2-inner product in L2(D) (resp. L2(∂D)) equipped with its natural norm ‖ · ‖0,D (resp.
‖ · ‖0,∂D). Similarly, we denote by Hs(D) the usual Hilbert space of index s on D equipped
with its natural norm ‖ · ‖s,D and seminorm | · |s,D, respectively. In particular, if s = 0, then
we set H0(D) = L2(D). We now denote by Hs(Th) the usual broken Sobolev space and by
∇h the broken gradient operator acting on Hs(Th) with s ≥ 1. Let us now introduce compact
notation associated with the discrete L2-inner scalar product:

(·, ·)0,Th :=
∑
E∈Th

(·, ·)0,E , 〈·, ·〉0,∂Th :=
∑
E∈Th

〈·, ·〉0,∂E and 〈·, ·〉0,Fh :=
∑
F∈Fh

〈·, ·〉0,F , (8)

and we denote by ‖ · ‖0,Th , ‖ · ‖0,∂Th and ‖ · ‖0,Fh its corresponding norms, respectively. As
usual in HDG methods, we consider broken Sobolev spaces:

Pk(Th) := {vh ∈ L2(Th) : vh|E ∈ Pk(E), ∀E ∈ Th}, (9)

and similarly for Pk(Fh). Here, Pk(X) denotes the space of polynomials of at least degree
k on X, where X corresponds to a generic element of Th or Fh, respectively. For H-IP
discretization, two types of discrete variables are necessary to approximate the weak solution
u of problem (7). First, the discrete variable uh ∈ Vh is defined within each mesh element,
and its trace ûh ∈ V̂0h is defined on the mesh skeleton with respect to the imposed Dirichlet
boundary conditions at the boundary part Γ−. Thus, we set:

Vh := Pk(Th) and V̂0h := {v̂h ∈ Pk(Fh) : v̂h|F = 0, ∀F ∈ Fb−
h }. (10)
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For clarity, we introduce compact discrete variables uh := (uh, ûh) and vh := (vh, v̂h) belong-
ing to the composite approximation space Vh := Vh × V̂0h, i.e., uh,vh ∈ Vh. Finally, let us
retain the discrete trace inequalities. For all vh ∈ Vh, the following holds,

‖vh‖0,F ≤ Ctrh
−1/2
E ‖vh‖0,E , (11)

where Ctr is a positive constant independent of hE .

3.3. Discrete trace operators

Let [[·]] denote the standard DG-jump operator as introduced by Brezzi et al. in [3]. For
all E ∈ Th and F ∈ ∂E, we now define the HDG-jump operator of the composite discrete
variable vh ∈ Vh across F as [[[vh]]]E,F := (vh|F − v̂h|F)nE,F , where nE,F denotes the unit
normal vector to F pointing out of E. To ensure that confusion cannot arise, we voluntary
omit the subscripts E and F from the definition, and we simply write [[[vh]]] := (vh − v̂h)n.
Finally, we define the weighted-average operator denoted {{·}}ω and its conjugate {{·}}ω. For
all F ∈ F i

h with F := ∂E1 ∩ ∂E2 and v ∈ Hs(Th) with s ≥ 1, we set:

{{v}}ω := ω1v1 + ω2v2 and {{v}}ω := ω2v1 + ω1v2, (12)

where vi = v|Ei,F and ω := (ω1, ω2) is a double-valued function verifying that weights satisfy
ω1 + ω2 = 1. If F ∈ Fb

h, we then assume that {{v}}ω = {{v}}ω := v. If ω = (1/2, 1/2), we then
recover the classical average operator, and we will omit the subscript ω in their definitions.
These definitions (12) are also available for any vector-valued function v.

4. Hybridizable interior penalty discontinuous Galerkin method

In this section, we describe the primal HDG method for solving the problem (7). First,
we derive it intuitively, and we then propose a compact notation of all of these variants. The
consistency and coercivity properties are also discussed in order to ensure the well-posedness
of the discrete problem. Finally, we suggest an adaptive strategy for selecting suited penalty
parameters with respect to the coercivity requirement for all mentioned regimes.

4.1. Intuitive derivation

The discrete formulation of the continuous model problem (7) can be intuitively derived
with respect to the three following steps:

I Global weak formulation: Let uh,vh ∈ Vh. For all E ∈ Th, multiplying (1) by a test
function vh, and integrating by parts over E, we obtain a local equation:

−(σh(uh),∇hvh)0,E + 〈σ̂h(uh) · n, vh〉0,∂E + (µuh, vh)0,E = (f, vh)0,E , (13)

where σh(uh) := −κ∇huh +βuh corresponds to the approximation of the total flux on
E and σ̂h(uh), its trace approximation on ∂E that we will precisely define below. By
summing (13) over all elements E of Th, we then obtain the global equation,

−(σh(uh),∇hvh)0,Th + 〈σ̂h(uh) · n, vh〉0,∂Th + (µuh, vh)0,Th = (f, vh)0,Th . (14)

Let us precisely state at this stage that σ̂h(uh) can be evaluated independently on both
sides of a given interface. Consequently, an additional equation needs to be included in
(14) to ensure the continuity requirements.
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I Transmission conditions: By considering that v̂h ∈ V̂0h vanishes on Fb−
h , we impose the

global transmission requirements respecting the outflow boundary condition on Fb+

h :

〈σ̂h(uh) · n, v̂h〉0,∂Th = 〈(β · n)ûh, v̂h〉0,Fb+
h
, (15)

which is the statement of weak continuity of σ̂h(uh) · n across the mesh skeleton F+
h .

Thus, substituting (15) into (14) leads to

−(σh(uh),∇hvh)0,Th+(µuh, vh)0,Th+〈σ̂h(uh), [[[vh]]]〉0,∂Th+〈(β·n)ûh, v̂h〉0,Fb+
h

= (f, vh)0,Th .

(16)

I Numerical Flux in the HDG sense: The discrete problem (16) is then closed by setting
σ̂h(uh) at the element level. For all E ∈ Th, we assume the following simple form:

σ̂h(uh) := σh(uh) + τ [[[uh]]] on ∂E, (17)

where τ denotes the stabilization penalty parameter that we describe precisely below.

Inserting (17) into (16) leads to the incomplete scheme of the hybridizable interior penalty
discontinuous Galerkin (H-IIP) method. Several variations of this methodology can then be
derived by controlling the introduction of additional consistent terms to the discrete formu-
lation (16) that we have summarized below.

4.2. Compact discrete formulation

Thus, the compact formulation of the H-IP method consists of seeking uh ∈ Vh such that

a
(ε)
h (uh,vh) = l(vh), ∀vh ∈ Vh, (18)

where l(vh) := (f, vh)0,Th and the bilinear form a
(ε)
h can be linearly decomposed following its

diffusive, advective-reactive, and stability contributions, respectively:

a
(ε)
h (uh,vh) := a

(ε)
κ,h(uh,vh) + aβ,µ,h(uh,vh) + sh(uh,vh). (19)

Here, a
(ε)
κ,h corresponds solely to the H-IP discretization of the diffusive part and is given by:

a
(ε)
κ,h(uh,vh) := (κ∇huh,∇hvh)0,Th − 〈κ∇huh, [[[vh]]]〉0,∂Th − ε〈κ∇hvh, [[[uh]]]〉0,∂Th , (20)

where the parameter ε ∈ {0,±1} controls the introduction of the (consistent) symmetry
term 〈κ∇hvh, [[[uh]]]〉0,∂Th . Similar to the standard IPDG methods, ε = 0 corresponds to the
Incomplete scheme denoted as the H-IIP method as described above, while ε = +1 (resp.
ε = −1) denotes the Symmetric (resp. Nonsymmetric) scheme denoted as the H-SIP (resp.
H-NIP) method. Thus, the advective-reactive part is discretized as follows:

aβ,µ,h(uh,vh) := −(βuh,∇hvh)0,Th + (µuh, vh)0,Th + 〈βuh, [[[vh]]]〉0,∂Th + 〈(β · n)ûh, v̂h〉0,Fb+
h
.

(21)
The last quantity sh in (19) is called the discrete stability form based on jump-penalty terms
and is given by:

sh(uh,vh) := 〈τ [[[uh]]], [[[vh]]]〉0,∂Th , (22)
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where τ denotes the total stabilization function accounting for both the diffusive and advective
normal effects denoted by τκ and τβ, respectively; i.e., τ := τ(τκ, τβ). Concretely, τκ (resp.
τβ) corresponds to an arbitrary given definition of the penalty parameter in the context of a
pure-diffusive (resp. -advective) regime. Let us also precisely state that τκ and τβ, and hence
τ can be distinctively evaluated on both sides of an interface of the mesh skeleton. Different
formulations have been proposed in the literature, and its definition is concretely prescribed
regarding the predominant normal effect. In what follows, we shall assume some properties
and minimal requirements concerning the function τ :

Proposition 4.1. The stabilization function τ : R× R→ R (22) is chosen such that:

1. For all s, t ∈ R, the following holds:

s := τ(s, 0) and t := τ(0, t). (23)

The first assumption (23) allows for an encompassed treatment of both (extremal) con-
figurations, i.e., the pure-diffusive and pure-advective regimes characterized by τβ := 0
and τκ := 0, respectively.

2. We shall assume the existence of a constant τ0 > 0 such that, for all s, t ∈ R, then

min(τ(s, t)− τ(s, 0) +
β · n

2
)|∂Th ≥ τ0 (24)

The second assumption ensures the coercivity and hence the well-posedness of the discrete
problem (18) (see Lemma 4.3.2).

Definition 4.1 (Diffusive penalty parameter). For all E ∈ Th and F ∈ FE, we assume that
the diffusive parameter τκ|E,F has the following form,

τκ|E,F := α0C
2
tr

κE,F
hE

on F ∈ ∂E, (25)

where κE,F := nE,FκEnE,F corresponds to the normal diffusivity, α0 > 0 is a user-dependent
parameter, and Ctr is the constant of the discrete trace inequality (11).

Remark 4.1 (Static condensation). As mentioned in [4] (see, e.g., [5]), the technique of
static condensation was introduced to reduce the size of the discrete matrix associated with the
global problem (18). Indeed, let Uh := [Uh, Ûh] denote the vector of DOFs of the composite
variable uh ∈ Vh, which is composed of interior- and interface-based DOFs denoted by Uh

and Ûh, respectively. The strategy consists of eliminating interior-based unknowns from the
above equations by successively projecting (18) on (vh, 0) and (0, v̂h). We thus obtain

a
(ε)
h (uh, (vh, 0)) : AuuUh + AuûÛh = F,

a
(ε)
h (uh, (0, v̂h)) : AûuUh + AûûÛh = 0.

(26)

Due to the discontinuous nature of Vh, all computations can be performed cellwise, leading to
a block-diagonal matrix Auu, which can be easily inverted and eliminated. Finally, we obtain
the linear system:

[Aûû −AûuA−1uuAuû]Ûh = G. (27)

The matrix on the left-hand-side of (27) is called the Shur complement of Auu. Let us pre-
cisely state that the original discrete problem (18) and its reduced version (27) are globally
nonsymmetric since the continuous problem (26) is itself nonsymmetric: this is due to the
advective term.
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4.3. Stability analysis

We now must check some favorable properties such as the consistency and stability of all
ε-variants of the H-IP method to ensure the existence and uniqueness of a discrete solution.

4.3.1. Consistency

Lemma 4.1 (Consistency). Let u be the exact solution of the problem (7) and û denote its
trace on the mesh skeleton. By setting u := (u, û), the following holds

a
(ε)
h (u,vh) = l(vh), ∀vh ∈ Vh, (28)

for any value of the parameter ε = {0,±1}.

Proof. The regularity of u implies that its jump (in the HDG sense) is null on ∂Th, i.e., for all
E ∈ Th and F ∈ FE , and then [[[u]]] := 0, since u is a single-valued field on F ∈ FE . Thus, by
setting vh := (vh, 0), integrating by parts on each element of the mesh, and finally observing
that [[−κ∇hu+ βu]] := 0 on internal interfaces, we immediately have

a
(ε)
h (u, (vh, 0)) :=

∑
E∈Th

(∇h · (−κ∇hu+ βu) + µu, vh) =
∑
E∈Th

(f, vh). (29)

Considering now that vh := (0, v̂h) ∈ Vh, we then obtain

a
(ε)
h (u, (0, v̂h)) := −

∑
E∈Th

〈(−κ∇hu+ βu) · n, v̂h〉0,∂A + 〈(β · n)u, v̂h〉Fb+
h

= 0, (30)

which corresponds to the (imposed) transmission conditions. The proof is then completed by
summing (29) and (30).

4.3.2. Coercivity

Let us now introduce the natural energy-norm ||| · ||| equipping Vh. For all vh ∈ Vh, it is
thus given by

|||vh|||2 := ‖κ1/2∇hvh‖20,Th + ‖µ1/2
0 vh‖20,Th + ‖β1/2v̂h‖20,Fb+

h

+ |vh|2τ0 , (31)

which clearly depends on constitutive coefficients κ, β := β ·n, and parameters µ0 and τ0 as
given in (4) and (24), respectively. Here, | · |γ corresponds to the HDG-jump seminorm, which
is defined as follows:

|vh|2γ :=
∑
E∈Th

|vh|2γ,∂E with |vh|2γ,∂E :=
∑
F∈FE

‖γ1/2
E,F [[[vh]]]‖20,F , (32)

where γE,F ≥ 0 is an arbitrary positive constant associated with F ∈ FE . The norm (31) is
well-defined owing to assumptions (4) and (24). To prove the coercivity, let us now introduce
the following intermediate result, which is a minor adaptation to the κ-tensor field of the
proof given by Wells in [28]:

Lemma 4.2 (A bound on consistency term). Assuming (25), for any ξ > 0, the following
holds, ∣∣∣〈κ∇hvh, [[[vh]]]〉0,∂Th

∣∣∣ ≤ ξη0
2α0
‖κ1/2∇hvh‖20,Th +

1

2ξ
|vh|2τκ , (33)

where η0 := max
∀E∈Th

(ηE).
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Proof. The decomposition of the consistency term yields∣∣∣〈κ∇hvh, [[[vh]]]〉0,∂Th
∣∣∣ ≤ ∑

E∈Th

∣∣∣〈κ1/2∇hvh,κ
1/2[[[vh]]]〉0,∂E

∣∣∣ . (34)

Successively applying the Cauchy–Schwarz inequality and the discrete trace inequality (11),
and using the definition of τκ given in (25), we infer that

∣∣∣〈κ1/2∇hvh,κ
1/2[[[vh]]]〉0,∂E

∣∣∣ ≤ [
hE
α0C2

tr

]1/2
‖κ1/2∇hvh‖0,∂E‖τ

1/2
κ [[[vh]]]‖0,∂E , (35)

≤
[
ηE
α0

]1/2
‖κ1/2∇hvh‖0,E |vh|τκ,∂E , (36)

The proof is then completed by applying Young’s inequality for any ξ > 0 and summing over
all mesh elements.

Lemma 4.3 (Coercivity). For any value of the parameter ε := {0,±1}, there exists a positive
constant C independent of h such that

a
(ε)
h (vh,vh) ≥ C|||vh|||2. (37)

Proof. Setting uh = vh in discrete bilinear forms a
(ε)
κ,h (20) and sh (22), we immediately obtain

that:

a
(ε)
κ,h(vh,vh)+sh(vh,vh) := ‖κ1/2∇hvh‖20,Th−(1+ε)〈κ∇hvh, [[[vh]]]〉0,∂Th ,+〈τ [[[vh]]], [[[vh]]]〉0,∂Th .

(38)
After integration by parts, the advective bilinear form (21) yields that

aβ,µ,h(vh,vh) := ‖µ1/2
∗ vh‖20,Th + ‖β1/2v̂h‖20,Fb+

h

+ 〈βvh, [[[vh]]]〉0,∂Th −
1

2
〈βvh, vh〉0,∂Th︸ ︷︷ ︸

=T1

, (39)

where µ∗ := µ + ∇·β
2 > 0 by virtue of (4), and β := β · n. Let us now focus on the (last)

quantity T1 in (39). Considering that v̂h and β are single-valued on interfaces of the mesh
skeleton, and after some tedious algebraic manipulations, we deduce that

T1 = 〈β[[[vh]]], [[[vh]]]〉0,∂Th + 〈βv̂h, vh − v̂h〉0,∂Th −
1

2
〈βvh, vh〉0,∂Th

= 〈β[[[vh]]], [[[vh]]]〉0,∂Th −
1

2
〈β(vh − v̂h), vh〉0,∂Th +

1

2
〈β(vh − v̂h), v̂h〉0,∂Th

=
1

2
〈β[[[vh]]], [[[vh]]]〉0,∂Th (40)

Inserting (40) in (39), and finally collecting (38), we immediately obtain

a
(ε)
h (vh,vh) := ‖κ1/2∇hvh‖20,Th + ‖µ1/2

∗ vh‖20,Th + ‖β1/2v̂h‖20,Fb+
h

+ 〈τ∗[[[vh]]], [[[vh]]]〉0,∂Th
− (1 + ε)〈κ∇hvh, [[[vh]]]〉0,∂Th , (41)
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where τ∗ := τ + β·n
2 . Following (4) and (24), we deduce that µ∗ ≥ µ0 and τ∗ ≥ τ0, and hence

a
(ε)
h (vh,vh) ≥ |||vh|||2 − (1 + ε)〈κ∇hvh, [[[vh]]]〉0,∂Th , (42)

proving immediately the coercivity of the H-NIP scheme (ε = −1) with C = 1. Else, by
considering Lemmata 4.2 and assuming 0 < ξ < 1, we easily infer that

a
(ε)
h (vh,vh) ≥ (1− ξη0

α0
)‖κ1/2∇hvh‖20,Th + ‖µ1/2

0 vh‖20,Th + ‖β1/2v̂h‖20,Fb+
h

+ |vh|2τ0 ,

≥ Cξ|||vh|||

where Cξ := min(1, 1− ξη0
α0

). The proof is ended by choosing α0 such that α0 > ξη0.

Remark 4.2. A straightforward consequence of the consistency and coercivity requirements
via the Lax–Milgram Theorem is the well-posedness of (18); i.e., the existence and uniqueness
of the discrete solution uh ∈ Vh are ensured.

4.4. Adaptive stabilization strategy

In practice, the choice of τ is quite delicate, as it strongly affects the accuracy of the HDG
method (18). Indeed, its definition directly impacts the numerical flux approximations on
interfaces F ∈ F+

h . To prove its relevance, let us apply a continuity argument, i.e., [[σ̂h(uh)]] =
0, on an interior interface F := ∂E1 ∩ ∂E2. We immediately deduce that (ûh, σ̂h) can be
expressed only in terms of the discrete variables (uh,σh) on both sides of F,{

ûh = {{uh}}ω + α[[σh]],

σ̂h = {{σh}}ω + η[[uh]],

(43a)

(43b)

where σh := −κ∇huh + βuh, and the parameters ω, α and η are given below by:

ω :=

(
τ1

τ1 + τ2
,

τ2
τ1 + τ2

)
, α :=

1

τ1 + τ2
, and η :=

τ1τ2
τ1 + τ2

, (44)

for any given finite value τi := τEi,F of the total penalty parameter. To derive a suitable
analytical expression of τ , we now treat both hyperbolic and elliptic regimes distinctively.

4.4.1. Hyperbolic regime

We assume here that τκ := 0, and hence τ := τβ by virtue of (23). To ensure the minimal
requirement (24) in the context of the hyperbolic regime, the advective penalty parameter
must be chosen such that τβ > |β · n| /2 on the mesh skeleton. Furthermore, it is well known
that an arbitrary choice of the stability parameter τβ can be detrimental in the context of
pure-advective problems: discontinuities in the boundary data may trigger large spurious
oscillations in the numerical solution. However, these drawbacks can be easily circumvented
by adopting an upwind-based strategy. To this aim, we now consider the following definition
of the advective penalty parameter:

Definition 4.2 (θ-upwind penalty). For all E ∈ T hyp
h and F ∈ ∂E, we assume the following

definition of the advective stabilization penalty parameter:

τ θβE,F := θ |β · nE,F | on F ∈ ∂E, (45)

where θ > 1/2 in order to ensure Proposition 4.1.
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Following from the regularity of the Darcy field β, i.e., [[β]] = 0, we infer that the advective
penalty parameter as defined in (45) is single-valued on interior interfaces of the hyperbolic
region. Let us now introduce the signum function, which is given as follows:

sgn(x) :=
x

|x|
=


−1 if x < 0,

0 if x = 0,

+1 if x > 0.

(46)

Proposition 4.2 (θ-upwind fluxes). Following Definition 4.2, for all E1, E2 ∈ T hyp
h and

F := ∂E1 ∩ ∂E2, the corresponding numerical fluxes (ûθh, σ̂
θ
h) on F are given by

ûθh := {{uh}} +
β

2τ θβ
[[uh]] = {{uh}}ωθ ,

σ̂θh := β{{uh}} +
τ θβ
2

[[uh]] = β{{uh}}ω
θ
,

(47a)

(47b)

where ωθ := (12 + sgn(β·n1)
2θ , 12 + sgn(β·n2)

2θ ) and ωθ := (12 + θ
2sgn(β·n1)

, 12 + θ
2sgn(β·n2)

).

Proof. The proof is evident by substituting the definition (45) in (43), and assuming that κ

is null in T hyp
h and that β is single-valued on the mesh skeleton.

Remark 4.3 (Traditional schemes). By appropriately selecting the value of θ in (45), we can
then establish bridges with some well-known stabilization schemes.

• Upwind-scheme: By setting θ = 1, we can observe that ω1 = ω1, and we recover the
standard definition of upwinding fluxes denoted by (ûuph , σ̂

up
h ),

ûuph :=

{
ui if β · ni > 0,

{{uh}} if β · ni = 0,
and σ̂up

h := βûuph . (48)

The corresponding upwind penalty parameter is denoted τupβ := |β · n|.

• Centered-scheme: Assuming now θ → +∞, we then obtain the centered fluxes (ûch, σ̂
c
h),

ûch := lim
θ→+∞

{{uh}}ωθ = {{uh}} and σ̂c
h := β{{uh}} +

τ∞β
2

[[uh]]. (49)

However, this situation will be precluded in the rest of the paper as it consists of assigning
an infinite value to the penalty parameter since τ∞β = limθ→+∞ τ

θ
β = +∞. This choice

significantly reduces the accuracy of the discrete solution since it converges to the discrete
solution produced by the standard conforming Galerkin method characterized by spurious
oscillations.

Remark 4.4 (Degenerate outflow boundaries). Let us finally precisely denote the transmis-
sion conditions at degenerative outflow boundaries that belong to the hyperbolic region. For
all F ∈ Fb+

h , we impose that σ̂h(uh) · n = (β · n)ûh, where σ̂h(uh) := βuh + τβ[[[uh]]]. By
combining these expressions, we observe that the role of τβ on outflow boundaries is clearly
insignificant, since for any finite value of τβ > 0, we then obtain ûh := uh.

Thereafter, we shall assume that the advective stabilization penalty parameter τβ is chosen
accordingly with the θ-upwind strategy described in Definition 4.2.
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4.4.2. Elliptic regime

We assume here that the diffusion is not degenerate, i.e., κ > 0. To ensure the minimal
requirement (24) in the context of the elliptic regime, the total penalty parameter is chosen
such that τ ≥ τκ + |β · n| /2. Let us now introduce the Péclet number to locally characterize
the regime of the physical process.

Definition 4.3. For all E ∈ T ell
h and F ∈ ∂E, we define the local (oriented) Péclet number

as follows:

PeθE,F := θ
β · nE,F
τκE,F

on F ∈ ∂E, (50)

where θ is a positive constant that we will precisely define below.

Concretely, the regime is considered as locally (i) diffusion-dominated if
∣∣PeθE,F

∣∣ ∼ θ, and

(ii) advection-dominated if
∣∣PeθE,F

∣∣ ∼ +∞. Following the definition (50), we emphasize here

that Peθ can be distinctively evaluated on both sides of an interface F ∈ F i
h. For all E ∈ T ell

h

and F ∈ ∂E, we now assume the following generic form of the (total) stabilization penalty
parameter i.e.,

τE,F := τκE,F |A| (PeθE,F), (51)

where |A| : R→ R is a given function respecting the following minimal requirements:

(R1) |A| must be an even convex function, i.e., ∀s ∈ R then |A| (−s) = |A| (s) respecting
|A| (0) = 1. The latter condition allows recovery of the definition of the penalty term
in the pure diffusive limit, i.e., if PeθE,F = 0, then τE,F := τκE,F . This is in accordance
with the first assumption (23) as described in Proposition 4.1.

(R2) The function |A| must respect the following asymptotic behaviors:

lim
|s|→∞

|A| (s)
s

= sgn(s), (52)

which is in accordance with the parity requirement (R1). It allows recovery of the
upwinding-based strategy for purely hyperbolic problems, and consequently the defini-
tion of the corresponding fluxes (48) for the advection-dominated regime:

τE,F := θβ · nE,F lim
|PeθE,F |→∞

|A| (PeθE,F)

PeθE,F
= θ |β · nE,F | . (53)

This is in accordance with the second assumption (23) as described in Proposition 4.1.

(R3) There exists θ0 ∈ R such that for all θ ≥ θ0 and s ∈ R, then the following holds:

|A| (θs) ≥ 1 +
|s|
2
, (54)

which is in accordance with the convexity requirement (R1). This argument is crucial

to ensure that a
(ε)
h is Vh-coercive.

Following the above hypotheses of |A|, we can recover some well-known stabilization strategies:
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I The Additive scheme: By setting |A|add (s) := 1 + |s|, we easily infer that

τE,F := τκE,F (1 +
∣∣∣PeθE,F

∣∣∣) = τκE,F + τ θβE,F , (55)

where τ θβE,F := θ |β · nE,F | corresponds to the advective stability parameter chosen in

accordance with the θ-upwind strategy. Here, we assume that the total stability param-
eter is simply equal to the sum of its distinctive diffusive and advective contributions,
respectively. It is evident that |A|add respects all above criteria (R1-R3) assuming
θ ≥ 1/2.

I The Scharfetter–Gummel scheme: By setting |A|sg (s) := B(− |s|) where

B(s) :=


s

es − 1
if s 6= 0,

1 else.
(56)

denotes the (well-known) Bernoulli function. Let us notice that the following holds

1 +
|s|
2
≤ B(− |s|) ≤ 1 + |s| , ∀s ∈ R. (57)

Thus, by using a scaling argument, we can easily infer that for all θ ∈ R,

|A|add (θs/2) ≤ |A|sg (θs) ≤ |A|add (θs), ∀s ∈ R, (58)

proving immediately the last condition (R3) for any given θ ≥ 1. In practice, the SG-
scheme is particularly interesting since it introduces less artificial diffusion than the
Add-scheme in the diffusion-dominated regime.

An illustration of both stabilization functions |A|add (θs) and |A|sg (θs) is given below in
Figure 1 using different admissible values of θ.

|A|add - (Continuous line)

|A|sg - (Dashed line)

Figure 1: An illustration of both stabilization functions |A|add (θs) (dashed-line) and |A|sg (θs) (continuous-
line) for the set of values θ := {1/2, 1, 3/2, 2} in black, red, blue and purple, respectively.
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5. Numerical results

To close this section, we provide some numerical experiments illustrating the robustness
and accuracy of the proposed H-IP method for solving degenerate advection-diffusion-reaction
model problems. For this aim, we next focus on three distinctive physical situations, namely,
nondegenerate, fully degenerate and locally degenerate problems, respectively. All of our nu-
merical experiments are performed using the high-performance finite element library called
NGSolve [26], and all developed source codes are available for free download from the fol-
lowing Github repository1.

5.1. Nondegenerate problem

We assume here that both κ and β are nonnull for the whole domain Ω := [0, 1]2. In
this first example, as proposed by Egger and Schöberl in [13], we illustrate the ability of
the proposed H-IP formalism to deal (efficiently and automatically) with physical processes
characterized by a large range of Péclet numbers. Both the velocity field β and the dispersion
matrix κ are supposed to be constant on Ω – i.e., β := (β1, β2) with β1,2 ∈ R and κ := κI2,
where Id denotes the identity matrix in Rd,d and κ > 0. The exact solution is given by

u(x, y) = [x+ (eβ1x/κ − 1)/(1− eβ1/κ)] · [y + (eβ2y/κ − 1)/(1− eβ2/κ)], (59)

and the right-hand-side f is chosen such that the exact solution u is verified. For our numerical
study, we then set β := (2, 1), and we select a large range of κ := {5e − 1, 5e − 2, 5e − 3}
to control the ratio between the diffusive and advective contributions. The exact solution u
displays sharper fronts on the top and right boundaries of Ω as κ becomes smaller. Since
the diffusive part is nonnull inside Ω, we can distinguish three variants of the H-IP method:
the H-IIP, H-NIP and H-SIP schemes, respectively. Here, we analyze the influence of the
stabilization strategy, namely, the Add- or SG-schemes as defined in Section 4.4.2, on the
behavior of discrete solutions. For clarity of our exposition, we set θ := 1. Standard h- and
k-refinement strategies are used to compute the discrete L2-errors and estimated convergence
rates (ECRs). A history of convergence of the three variants is presented in Table 1 for
different values of κ := {5e−1, 5e−2} and polynomial degrees k := {1, 2}, and for both Add-
and SG-schemes, respectively. First, a brief analysis indicates that the H-IIP and H-NIP
schemes behave differently from the H-SIP scheme regardless of the stabilization function.
Their convergence orders are (strongly) influenced by the polynomial parity of k. We observe
that the convergence rate is suboptimal (with order k) only for even k, and optimal (with
order k + 1) for odd k. The situation is somewhat different for the H-SIP method, since
it always converges optimally for all k. These statements agree with the theoretical results
established by Shin et al. in [27] (see e.g., [16] for the pure diffusive problem). To pursue our
comparative analysis, we then illustrate in Figures 2b and 2d the spatial distribution of the
computed L2-error on the whole domain for both Add- and SG-schemes. These illustrations
indicate that the SG-scheme produces much less artificial diffusion error than the Add-scheme
and hence captures sharp fronts much more effectively. Thus, we will favor the H-SIP variant
coupled with the Scharfetter-Gummel scheme in elliptic regions in all future experiments.

1https://github.com/GregoryETANGSALE/HDG-Degenerate-ADR-equation
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k h−1
Additive-Upwind Scharfetter-Gummel

κ = 5e−1 κ = 5e−2 κ = 5e−1 κ = 5e−2
‖u− uh‖0,Th ECR ‖u− uh‖0,Th ECR ‖u− uh‖0,Th ECR ‖u− uh‖0,Th ECR

H-NIP

1

4 2.2e− 03 – 9.7e− 02 – 2.1e− 03 – 8.3e− 02 –
8 5.4e− 04 2.05 4.1e− 02 1.24 5.3e− 04 2.02 3.7e− 02 1.18
16 1.3e− 04 2.03 1.3e− 02 1.72 1.3e− 04 2.01 1.2e− 02 1.67
32 3.3e− 05 2.02 3.1e− 03 2.01 3.2e− 05 2.01 3.0e− 03 1.97
64 8.1e− 06 2.01 7.4e− 04 2.06 8.1e− 06 2.00 7.2e− 04 2.03

2

4 4.0e− 04 – 5.1e− 02 – 4.0e− 04 – 5.0e− 02 –
8 8.8e− 05 2.16 1.7e− 02 1.61 8.9e− 05 2.17 1.7e− 02 1.56
16 2.1e− 05 2.05 4.2e− 03 1.99 2.1e− 05 2.06 4.3e− 03 1.98
32 5.3e− 06 2.01 9.4e− 04 2.15 5.3e− 06 2.01 9.6e− 04 2.16
64 1.3e− 06 2.00 2.2e− 04 2.09 1.3e− 06 2.00 2.2e− 04 2.10

H-IIP

1

4 2.2e− 03 – 9.7e− 02 – 2.1e− 03 – 8.3e− 02 –
8 5.4e− 04 2.05 4.1e− 02 1.24 5.3e− 04 2.02 3.7e− 02 1.18
16 1.3e− 04 2.03 1.2e− 02 1.72 1.3e− 04 2.01 1.2e− 02 1.67
32 3.3e− 05 2.02 3.1e− 03 2.01 3.2e− 05 2.01 3.0e− 03 1.97
64 8.1e− 06 2.01 7.4e− 04 2.06 8.1e− 06 2.00 7.2e− 04 2.03

2

4 2.7e− 04 – 4.6e− 02 – 2.7e− 04 – 4.3e− 02 –
8 5.2e− 05 2.37 1.4e− 02 1.75 5.3e− 05 2.36 1.3e− 02 1.70
16 1.2e− 05 2.14 3.0e− 03 2.18 1.2e− 05 2.14 3.0e− 03 2.15
32 2.9e− 06 2.04 5.9e− 04 2.35 2.9e− 06 2.04 5.9e− 04 2.34
64 7.2e− 07 2.01 1.3e− 04 2.23 7.2e− 07 2.01 1.3e− 04 2.23

H-SIP

1

4 2.1e− 03 – 6.9e− 02 – 2.1e− 03 – 8.3e− 02 –
8 5.2e− 04 2.02 3.3e− 02 1.06 5.3e− 04 2.03 3.7e− 02 1.17
16 1.3e− 04 2.01 1.1e− 02 1.59 1.3e− 04 2.02 1.2e− 02 1.66
32 3.2e− 05 2.01 2.9e− 03 1.93 3.2e− 05 2.01 3.0e− 03 1.97
64 8.1e− 06 2.00 7.2e− 04 2.01 8.1e− 06 2.00 7.2e− 04 2.03

2

4 1.6e− 04 – 3.5e− 02 – 1.7e− 04 – 3.8e− 02 –
8 2.1e− 05 2.95 1.0e− 02 1.78 2.1e− 05 2.95 1.1e− 02 1.85
16 2.7e− 06 2.99 1.9e− 03 2.40 2.7e− 06 2.99 2.0e− 03 2.44
32 3.4e− 07 3.00 2.8e− 04 2.77 3.4e− 07 3.00 2.9e− 04 2.79
64 4.2e− 08 3.00 3.7e− 05 2.93 4.2e− 08 3.00 3.7e− 05 2.94

Table 1: Test A - History of convergence of the H-NIP, H-IIP and H-SIP methods on uniform square meshes
using the Additive-Upwind and Scharfetter-Gummel scheme with κ = {5e−1, 5e−2}.

5.2. Fully degenerate problem

In the second example, we analyze the behavior of the H-IP method in the context of
hyperbolic problems. Let us notice that the discrete bilinear operator as defined in (18) is
reduced to its advective-reactive part since κ is null throughout the whole domain Ω = [0, 1]2.
Thus, we set β := (2, 1), γ := 1 and f := 0. The following exact solution is prescribed

u(x, y) = H(−x+ 2y − 1) for all (x, y) ∈ Ω, (60)

where H(·) denotes the Heaviside function. Dirichlet boundary conditions are imposed (only)
for the degenerate inflow part Γ− – i.e., the left and bottom boundaries of Ω. The exact
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(a) (b)

(c) (d)

Figure 2: (a) Representation of the linear discrete solution uh (k = 1) using the Add-scheme for κ = 5e−3 and
(b) its corresponding L2-error spatial distribution. (c) Representation of the linear discrete solution uh (k = 1)
using the SG-scheme for κ = 5e−3 and (d) its corresponding L2-error spatial distribution.

solution displays a discontinuity along the characteristic direction β due to the jump in
imposed boundary conditions at x = 0. We also assume that the actual location of internal
layers is unknown, and an adaptive mesh refinement strategy is investigated to capture them.
Let us precisely state that resulting meshes are (generally) not aligned with the characteristic
direction β. We analyze here the role of the upwind-parameter θ (see e.g., Definition 4.2)
with respect to the accuracy of discrete solutions for different polynomial degrees k := {1, 2}.
Since the exact solution (60) is only piecewise constant, increasing polynomial degrees can
only yield better discrete approximations near internal layers. Following Figure 3, let us
notice first that the θ-upwind scheme effectively handles outflow boundary conditions for
any selected value of θ: this observation agrees with Remark 4.4. However, the increase in θ
significantly deteriorates the discrete solution near the internal layer for all polynomial degrees
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since there is more erratic behavior and/or a more considerable artificial numerical diffusion:
this observation agrees with Remark 4.3. Thus, we will favor the traditional upwinding scheme
obtained by selecting θ = 1 in hyperbolic regions in all future experiments.

(a) k = 1 and θ = 1 (b) k = 1 and θ = 10 (c) k = 1 and θ = 100

(d) k = 2 and θ = 1 (e) k = 2 and θ = 10 (f) k = 2 and θ = 100

Figure 3: Representation of linear (a)-(b)-(c) and quadratic (d)-(e)-(f) discrete solutions obtained on adaptive
meshes for different values of the upwind-parameter θ = {1, 10, 100}, respectively.

5.3. Locally degenerate problem

In the last example, we validated the proposed H-IP formalism in the context of lo-
cally degenerate diffusion. To achieve this aim, we consider a slight modification to the
test case proposed by Di Pietro et al. in [6] (see e.g., [9]). The domain is now taken to be
Ω := [−1, 1]2\{x2 + y2 < 1

4}, which is divided into two disjoint subdomains Ωell and Ωhyp cor-
responding to the elliptic and hyperbolic parts, respectively (see e.g., Figure 4a). Denoting
by (r, θ) the polar coordinates (with azimuth θ measured in the anticlockwise sense starting
from the positive x-axis) and by eθ the (unit) azimuthal vector, the problem coefficients are

κ =

{
π if 0 < θ ≤ π,
0 if π < θ ≤ 2π,

β =
eθ
r
, γ = 1e− 6, (61)
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and κ := κI2. As illustrated in Figure 4b, the exact solution is given by,

u(r, θ) =

{
(θ − π)2 if 0 < θ ≤ π,
3π(θ − π) if π ≤ θ < 2π.

(62)

and is used to infer the forcing term f and the imposed Dirichlet boundary datum. Here,
we focus only on the H-SIP method using the Scharfetter–Gummel scheme in the elliptic
region, and the H-IP method using the θ-upwind stabilization strategy in the hyperbolic
one. For clarity of our exposition, we set θ := 1 in both regions, but it is quite possible to
fix distinctive values in each subdomain. Standard h- and k-refinement strategies are used
to compute the discrete L2-errors and estimated convergence rates (ECRs). A history of
convergence is illustrated in Figure 5a for different polynomial degrees k := {1, . . . , 5}. We
observe that the convergence rate is optimal with order k + 1 for all k.

Ωhyp

Ωell

I+

I−

Γ−

Γ+

(a) (b)

Figure 4: (a) Description of the locally degenerate test case: the continuous black line denotes the nondegener-
ate inflow boundary Γ− where Dirichlet conditions are imposed, the dashed black line indicates the degenerate
no-flow/outflow boundary Γ+, and the continuous red line represents the interior interface I− where the exact
solution is discontinuous. (b) Illustration of the exact solution (62).

6. Conclusion & Perspectives

We have derived a compact interior penalty HDG method for solving degenerate advection-
diffusion-reaction problems. The proposed H-IP method can efficiently handle pure diffusive
or advective regimes, along with intermediate regimes combining the above mechanisms for a
wide range of Péclet numbers, including the delicate situation of local evanescent diffusion. An
adaptive stabilization strategy is carried out, automatically accounting for the mathematical
nature of (7) and the predominance of the diffusion or advection mechanisms. An upwinding-
based scheme was favored for the hyperbolic region, and an inspired Scharfetter–Gummel
scheme was preferred for the elliptic region. One undeniable advantage of this strategy is the
possibility of tuning the amount of upwind. The stability analysis indicates that all considered
variants are consistent and coercive, ensuring the well-posedness of the discrete problem in
all regimes. The flexibility and accuracy of the proposed method are confirmed by numerical
lines of evidence.

19



10−1.5 10−1 10−0.5

10−10

10−8

10−6

10−4

10−2

100

2.00

4.10

6.20

log (1/h)

lo
g
( ‖u
−
u
h
‖ 0

,T
h

)

k = 1

k = 2

k = 3

k = 4

k = 5

(a) (b)

Figure 5: (a) History of convergence error in the L2-norm for different polynomial degrees k = {1, . . . , 5}. (b)
Representation of uh using piecewise linear approximations (k = 1) on a fine mesh (h = 1/64).
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