Cécile Mailler 
email: c.mailler@bath.ac.uk.
  
Jean-François Marckert 
  
Parametrised branching processes: a functional version of Kesten & Stigum theorem

Keywords: Galton-Watson trees, martingale limit, functional limit theorems

Let (Z n , n ≥ 0) be a supercritical Galton-Watson process whose offspring distribution µ has mean λ > 1 and is such that x log + (x)dµ(x) < +∞. According to the famous Kesten & Stigum theorem, (Z n /λ n ) converges almost surely, as n → +∞. The limiting random variable has mean 1, and its distribution is characterised as the solution of a fixed point equation.

In this paper, we consider a family of Galton-Watson processes (Z n (λ), n ≥ 0) defined for λ ranging in an interval I ⊂ (1, ∞), and where we interpret λ as the time (when n is the generation). The number of children of an individual at time λ is given by X(λ), where (X(λ)) λ∈I is a càdlàg integer-valued process which is assumed to be almost surely non-decreasing and such that E(X(λ)) = λ > 1 for all λ ∈ I. This allows us to define Z n (λ) the number of elements in the nth generation at time λ.

Set W n (λ) = Z n (λ)/λ n for all n ≥ 0 and λ ∈ I. We prove that, under some moment conditions on the process X, the sequence of processes (W n (λ), λ ∈ I) n≥0 converges in probability as n tends to infinity in the space of càdlàg processes equipped with the Skorokhod topology to a process, which we characterise as the solution of a fixed point equation.

Introduction

The aim of this paper is to discuss some natural models of parameterised branching processes and to introduce a functional version of the Kesten & Stigum theorem, which is one of the prominent results in branching processes theory.

Let ν = (ν j , j ≥ 0) be a probability distribution on N := {0, 1, 2, • • • }. The standard Galton-Watson (GW) process with offspring distribution ν is an integer-valued Markov chain (Z n , n ≥ 0) such that Z 0 = 1 and, for any n ≥ 0,

Z n+1 = Zn k=1 X (k,n) (1.1)
where the (X (k,n) , k ≥ 1, n ≥ 0) are i.i.d. random variables with distribution ν. It is standard to interpret a GW process as describing the evolution of a population structured in generations: for all n ≥ 0, Z n+1 is seen as the number of individuals in the (n + 1)-th generation of a population, and, for all k ≥ 1, X (k,n) is seen as the number of children of the k-th individual of the n-th generation. From this classical point of view, the GW process is the sequence of generation sizes of the genealogical tree (also called the family tree) of the population. Denote by λ := i≥0 iν({i}) the expectation of the offspring distribution ν, and set,

W n = Z n /λ n , for all n ≥ 0. (1.2)
It is well-known that, if λ < +∞, then (W n ) n≥1 is a non-negative martingale. Therefore, there exists an almost-surely finite random variable W such that W n → W almost surely as n → +∞.

A GW random field: definition of the model

We mainly aim at addressing the following question: the convergence of (W n ) to W is a onedimensional result since it concerns the limit of the one-dimensional sequence (W n , n ≥ 0). There are some natural models (a motivational example is given in Section 1.5) in which a family of GW processes parameterised by a second parameter appears. This second parameter can be interpreted as a "time" parameter.

Definition 1.1. Let I ⊂ [0, ∞), and (X(λ)) λ∈I an almost surely non-decreasing, integer-valued process taking its values in the set of càdlàg functions D(I, R + ), and such that EX(λ) < +∞ for all λ ∈ I. Let N = {0, 1, 2, • • • }. We define (Z n (λ), (λ, n) ∈ I × N) as the random field satisfying Z 0 (λ) = 1 for all λ ∈ I, and, for all n ≥ 0,

Z n+1 (λ) = Zn(λ) k=1 X (k,n) (λ) (1.3)
where (X (k,n) , k, n ≥ 1) is a sequence of i.i.d. copies of the process X.

In standard GW processes, n is called the generation: this is the index n in Z n (λ). We choose to call λ the time, and X the offspring process of Z.

For all λ ∈ I, for all n ≥ 0, we set

W n (λ) = Z n (λ)/E[X(λ)] n .
(1.4)

For all fixed λ ∈ I, (W n (λ)) n≥0 is a non-negative martingale and thus converges almost surely to an almost-surely finite random variable W (λ). In other words, as a sequence of random processes from I to R + , (W n (λ), λ ∈ I) n≥0 converges pointwise to (W (λ), λ ∈ I), almost surely.

In this paper, we are interested in answering the following question: does this convergence holds in a stronger sense than pointwise?

Of course, we are also interested describing the limiting process W , if it exists. However, note that very little is known about the martingale limit of a Galton-Watson process W (λ) even for simple examples of offspring distributions (the only case when the distribution is explicitly known is the case when the offspring distribution is linear fractional, see [START_REF] Athreya | Branching processes[END_REF]Section I4]). Therefore, we do not expect to get much information on the process (W (λ), λ ∈ I) even for simple offspring processes (X(λ), λ ∈ I).

NB: Since W (λ) = 0 almost surely for all λ ≤ 1, we focus on the case I ⊆ (1, +∞).

Assumptions

We sort our assumptions on the offspring process X into two groups (HReg) and (HMom); the former concerns "the regularity of X", and the latter "some moments properties".

(HReg) A.s., the process X is càdlàg on an interval I ⊂ (1, +∞); on this interval X is a.s. non decreasing, takes values in N = {0, 1, 2, • • • }, and, for any λ ∈ I,

EX(λ) = λ.
The following lemma is straightforward:

Lemma 1.2. Under Assumption (HReg), the process ((Z n (λ), λ ∈ I), n ≥ 0) is (a.s.) well defined and, for all n ≥ 0, λ → Z n (λ) is a.s. càdlàg and non-decreasing.

Under (HReg), (Z n (λ), (λ, n) ∈ I × N} is a random field, where for all λ > 1, (Z n (λ), n ≥ 0) is a supercritical GW process whose offspring distribution has mean λ. By (1.4), and because EX(λ) = λ, for all λ ∈ I and n ≥ 0,

W n (λ) = Z n (λ) / λ n .
(1.5) By Lemma 1.2, for all n ≥ 0, (W n (λ), λ ∈ I) is càdlàg. Our main aim is to prove convergence of (W n ) n≥0 to W on the space D(I, R + ) of càdlàg processes from I to R + equipped with the Skorokhod topology on all compact subsets of I.

To state our second assumption, we need the following notation: For all λ 1 < • • • < λ d ∈ I, set ∆X(λ j ) := X(λ j ) -X(λ j-1 ), where, by convention, λ 0 = 0, and X(λ 0 ) = X(0) = 0. Let Fac ∆ denote the factorial moments of the increments of X: for all

λ 1 < • • • < λ d ∈ I, for all β 1 , • • • , β d ∈ N, Fac ∆ β 1 ,••• ,β d = Fac ∆ β 1 ,••• ,β d (λ 1 , • • • , λ d ) = E d j=1
(∆X λ j ) (β j ) (1.6) where (x) (r) = x(x -1) • • • (x -r + 1) for all r ∈ N \ {0}, and (x) (0) = 1. As an example,

Fac ∆ 3,2,1 (λ 1 , λ 2 , λ 3 ) = E [(∆X(λ 1 ))(∆X(λ 1 ) -1)(∆X(λ 1 ) -2)(∆X(λ 2 ))(∆X(λ 2 ) -1)(∆X(λ 3 ))] .
(Note that, when (HReg) holds, Fac ∆ 1,0 = Fac ∆ 1,0 (λ 1 , λ 2 ) = λ 1 and Fac ∆ 0,1 = Fac ∆ 0,1 (λ 1 , λ 2 ) = λ 2 -λ 1 .) Our second assumption below gives good control on the increments of X. This is needed in our proof: to prove convergence of W n to W in D(I, R + ), we need to prove tightness, and our argument relies on having good control on the moments of the increments of W n .

(HMom) There exists κ ∈ ( 1 /2, 1) such that for any [a, b] ⊂ I, there exists a constant C such that, for all a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b, Fac ∆ x,y,z (λ 1 , λ 2 , λ 3 ) ≤ C(λ 3 -λ 1 ) κ , for (x, y, z), 1 ≤ x + y + z ≤ 4, y ≥ 1 or z ≥ 1, (1.7) Fac ∆ 0,y,z (λ 1 , λ 2 , λ 3 ) ≤ C(λ 3 -λ 1 ) 2κ , for (y, z), y = 1, 2 and z = 1, 2

The following lemma, which we prove in Section 4.1, gives necessary and sufficient conditions for (HMom) to hold; these conditions are easier to check than (1.7) and (1.8), and this lemma is thus very useful when applying our main result to particular examples.

Lemma 1.3. (HMom) is equivalent to the following condition:

There exists κ ∈ ( 1 /2, 1) such that for any [a, b] ⊂ I, there exists a constant C such that for any a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b, E (∆X(λ 2 )) 2 (∆X(λ 3 )) 2 ≤ C (λ 3 -λ 1 ) 2κ , and (1.9)

E (∆X(λ 3 ))X(λ 3 ) 3 ≤ C (λ 3 -λ 2 ) κ .
(1.10)

Main result

Theorem 1.4. If the offspring process X satisfies (HReg) and (HMom), then

(W n (λ), λ ∈ I)
proba.

-----→ n→+∞ (W (λ), λ ∈ I) in D(I, R + ) equipped with the Skorokhod topology on each compact subsets of I. Furthermore, the distribution of W is characterised by the following properties:

• for any λ ∈ I, EW (λ) = 1,

• for any d ≥ 1, any

λ 1 ≤ • • • ≤ λ d in I, W (λ 1 ), . . . , W (λ d ) (d) = 1 λ 1 X(λ 1 ) i=1 W (i) (λ 1 ), . . . , 1 λ d X(λ d ) i=1
W (i) (λ d ) , (1.11) where, on the right-hand side, W (i) (λ 1 ), . . . , W (i) (λ d ) i≥1 are i.i.d. copies of (W (λ 1 ), . . . , W (λ d )), independent of X.

We now comment on this main result:

Remark 1.5 (Discussion on (HReg)).

(i) If we remove the non-decreasing property for X then, disappearance of individuals could occur when λ grows; this leads to some complications since the identity of disappearing individuals in their generation matters. We prefer to avoid these complications, even if these models can be defined and investigated.

(ii) Any càdlàg, non decreasing and non negative process Y taking its values in N, defined on an interval I , and satisfying EY (λ) < +∞, and λ → E(Y (λ)) continuous increasing, is a timechange of a process X satisfying (HReg). It suffices to set X(λ) = Y (g(λ)) where g(λ) = y if E(Y (y)) = λ (that is g is the inverse of the map λ → EY (λ)).

Assume that an individual u at level appears at time t ∈ [λ, λ + h]. Then, the subtree rooted at u is a copy of the GW tree of parameter t, which implies that the contribution of the subtree rooted at u to W (t) is t -W (t), where W (t) is a copy of W (t), independent from (W (s), s < t). In particular, W (t) > 0 with positive probability (the survival probability of a GW tree of parameter t), independently from (W (s), s < t). If W (t) > 0, then W (t) > W (t-). This argument allows us to show that infinitely-many jumps occur in [λ, λ + h], and therefore, after the process W leaves zero, its set of jumps is dense in I.

Remark 1.9 (The (sub-)critical part of W ). We require I ⊂ (1, +∞) so that, for each λ ∈ I, the GW process (W n (λ), n ≥ 0) is supercritical. However, this assumption is not really needed: it just allows us to focus on the main difficulty, which is indeed the supercritical case. We now briefly discuss the extension of our results on [0, a] for a ≥ 1, assuming that X is a.s. càdlàg and satisfies E(X(λ)) = λ on this interval. Theorem 1.4 ensures the convergence of

(W n ) n≥0 to W in D([1 + ε, a]) for all ε > 0. The convergence in D([0, 1]
) can be proved as follows: We exclude the case where P(X(1) = 1) = 1, for which the argument needs to be slightly modified. Since X is a.s. non-decreasing, for all λ in [0, 1], Z n (λ) ≤ Z n [START_REF] Aldous | The continuum random tree. II. An overview[END_REF]. Let N be the random time at which (Z n (1)) n≥0 becomes extinct. Almost surely, N < +∞ and, for all n ≥ N , for all λ

∈ [0, 1], Z n (λ) = W n (λ) = 0.
This means that (W n ) n≥0 converges a.s. uniformly (and therefore also in D[0, 1]) to the null process.

It remains to treat the interval [1, 1 + ε].

To do so, we claim that for any δ > 0, if ε > 0 is small enough, then extinction occurs also at time 1 + ε with probability at least 1 -δ. And in this case, the argument given above for the convergence of (W n ) n≥0 to the null process in D([0, 1]) also gives this convergence in D([0, 1 + ε]). To prove the claim, we prove that, for all k ≥ 0, λ → P(X(λ) = k) is continuous on [0, a]. Recall that the probability of extinction of Z(λ) is the smallest solution of q = E[q X(λ) ] = k≥0 P(X(λ) = k)q k . From this, a routine argument using the dominated convergence theorem implies the claim. The continuity of λ → P(X(λ) = k) follows from the following argumentation: By assumption on X, EX(λ)

= k≥0 P(X(λ) ≥ k) = λ. Also, because X is almost surely non-decreasing, λ → P(X(λ) ≥ k) is a non-decreasing function of λ, for all k ≥ 0. This implies that λ → P(X(λ) ≥ k) is Lipschitz in λ. Finally, because P(X(λ) = k) = P(X(λ) ≥ k) -P(X(λ) ≥ k + 1)), λ → P(X(λ) = k) is
also Lipschitz in λ, and thus continuous, as claimed.

Comments on Kesten and Stigum's theorem

Kesten and Stigum's theorem, whose original framework includes multi-type GW processes (see Section 1.6 for references and more details), gives information on the random variable W (λ) in the supercritical case (λ > 1): Theorem 1.10 (Kesten & Stigum [START_REF] Kesten | A limit theorem for multidimensional Galton-Watson processes[END_REF]). Consider (Z n , n ≥ 0) a GW process with offspring distribution ν, whose mean λ is finite. If the process is supercritical, i.e. λ > 1, then P(W > 0) > 0 if and only if E(X log + (X)) < +∞ (where X ∼ ν). Moreover, in this case, EW = 1 and P(W = 0) = q, where q = P(∃k : Z k = 0) is the extinction probability of the branching process Z. The value of q is characterised as the smallest non-negative root of q = f(q) where f is the probability generating function of X ∼ ν: f(y) = E(y X ).

The conclusion that EW (λ) = 1 for all λ ∈ I in Theorem 1.4 is a straightforward consequence of Kesten and Stigum's theorem. For all λ ∈ I, we let q λ denote the extinction probability of the process (Z n (λ), n ≥ 0). Note that λ → q λ is non-increasing.

Characterisation of the marginals of the limiting process: It is well known that, for fixed λ > 1, W (λ) is solution of (1.11) for d = 1. By Seneta [START_REF] Seneta | On recent theorems concerning the supercritical Galton-Watson process[END_REF]Th. 3.1], the solution of (1.11) for d = 1 is unique up to constant factors. Therefore, by Kesten and Stigum's theorem, E(X log + X) < ∞ ⇔ EW = 1, which implies that, in that case, W is the unique solution of (1.11) for d = 1 with mean 1.

A motivational example

More examples are discussed in Section 3.3. Arguably the simplest offspring process X is when the number of children of a node at time λ ≥ 0 is X(λ), where X is a standard Poisson process on [0, ∞) with intensity 1. At any given time λ ≥ 0, the branching process (Z n (λ), n ≥ 0) is a simple Galton-Watson process whose offspring distribution is Poisson(λ). For each n ≥ 0, λ → Z n (λ) is almost surely non-decreasing, since the number of children of each individual in the tree is non-decreasing as a function of λ. In fact, as λ increases, the process of family trees forms a growing family of trees for the inclusion order. Consider a node of the tree u which, say, is created at time t. At time t, its number of children is distributed as X(t), so that the subtree T t u rooted at u (at time t) has the same distribution as a global family tree T t of a Galton-Watson process with offspring distribution Poisson(t). This model arises for example when one studies the Erdős-Rényi graph G(N, p) for p = λ/N and N large. A vertex u has a Binomial(N -1, p) random number of neighbors in the graph, approximately Poisson(λ) distributed when N is large. For any fixed r > 0, the subgraph of G(N, p) induced by the vertices at graph distance smaller than r to u is well approximated by a Galton-Watson process with offspring distribution Poisson(λ) (restricted to its r first generations). In many applications (starting from the study of coalescence processes, or as the study of the cluster sizes of G(N, p)), p is seen as a varying parameter: to each of the N (N -1)/2 edges e of the complete graph K N , assign a weight w e , where the w e are i.i.d. uniform on [0, 1]. The graph G(N, p) obtained by keeping only the edges e of K N such that w e ≤ p has same distribution as G(N, p), and p → G(N, p) is a graph process which is non-decreasing for the inclusion order. Now, if one wants to study the evolution of G(N, λ/N ) in the ball of radius r around a given node, when N → +∞, for λ ∈ [a, b], then one has to deal with our model: the offspring distribution of the involved nodes, asymptotically, are Poisson process X = (X(λ), λ ∈ [a, b]).

To apply Theorem 1.4 to this example, we need to check (HReg) and (HMom). (HReg) follows from the definition of X. To check (HMom), it is enough to show that (1.9) and (1.10) hold. To do so, note that, by definition, for all a < b ∈ I, for all a < λ 1 < λ 2 < λ 3 < b, ∆X(λ 3 ) is Poisson-distributed of parameter λ 3 -λ 2 , ∆X(λ 2 ) is Poisson-distributed of parameter λ 2 -λ 1 , and they are independent. Thus,

E (∆X(λ 2 )) 2 (∆X(λ 3 )) 2 = E (∆X(λ 2 )) 2 (∆X(λ 3 )) 2 = (λ 3 -λ 2 )(λ 3 -λ 2 + 1)(λ 2 -λ 1 )(λ 2 -λ 1 + 1) ≤ b 2 (λ 3 -λ 1 ) 2 .
Similarly, using the fact that X(λ 3 ) = ∆X(λ 3 ) + X(λ 2 ), and known formulas for the moments of a Poisson distribution, one can show that

E ∆X(λ 3 )X(λ 3 ) 3 ≤ 20b 3 (λ 3 -λ 2 ).
Therefore, (1.9) and (1.10) hold for κ = 1. And our main result applies to this example.

Discussion of the related literature

Branching processes have been widely studied in probability theory. They were originally introduced as models for the evolution of populations (see, e.g., Haccou & al. [9], and Kimmel & Axelrod [START_REF] Kimmel | Branching processes in biology[END_REF]). They appear also as combinatorial structures called trees, which are one of the simplest models for complex networks. Simple families of trees such as uniform planar rooted binary trees with n internal nodes, uniform rooted planar trees with n nodes, and uniform rooted labeled trees with n are equal in distribution to Galton-Watson trees conditioned on having size n. Their asymptotic behaviour is thus well-known (Aldous [START_REF] Aldous | The continuum random tree. II. An overview[END_REF], see also [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF][START_REF] Gall | Scaling limits of random trees and planar maps[END_REF]). We refer also to Devroye [START_REF] Devroye | Branching processes and their applications in the analysis of tree structures and tree algorithms[END_REF] where the theory of branching processes is applied to the analysis of models of random trees such as the binary search tree, Cayley trees, and Catalan trees. Branching processes are also a useful tool to study random graphs such as the Erdős-Rényi random graph and scale-free random graphs such as the configuration model and the Barábasi & Albert model (see Bollobás & Riordan [START_REF] Bollobás | Random graphs and branching processes[END_REF] for a survey on using branching processes to analyse random graphs). For a mathematical exposition of some of the existing results on branching processes, we refer the reader to, e.g., the books of Athreya and Ney [START_REF] Athreya | Branching processes[END_REF], Asmussen and Hering [START_REF] Asmussen | Branching processes, volume 3 of Progress in Probability and Statistics[END_REF], and Lyons and Peres [START_REF] Lyons | Probability on trees and networks[END_REF], in chronological order.

Discussion on Bellman-Harris and Crump-Mode-Jagers processes: In this paper, we focus on discrete-time GW processes, meaning that for each λ, (Z n (λ), n ≥ 0) is a discrete-time Markov chain. We do not cover the case of continuous-time GW processes (in which each individual has an exponentially-distributed life-time and creates offspring at its death) or their age-dependent generalisations called Bellman-Harris processes (in which the life-time has a non-exponential distributions -see, e.g. [START_REF] Athreya | Branching processes[END_REF]Chapter IV]). Another generalisation of continuous-time GW processes are the Crump-Mode-Jagers (CMJ) processes (see, e.g., Jagers [START_REF] Jagers | Branching processes with biological applications[END_REF], Nerman [START_REF] Nerman | On the convergence of supercritical general (cmj) branching processes[END_REF], or Jagers and Nerman [START_REF] Jagers | The growth and composition of branching populations[END_REF]) in which individuals can create offspring during their whole life-time, for example according to a Poisson process. Most of these processes exhibit a martingale limit (in the CMJ case, only if the so-called Malthusian parameter exists, see [START_REF] Nerman | On the convergence of supercritical general (cmj) branching processes[END_REF]); as far as we know, none of these continuous-time branching processes and their martingale limits have been studied as processes indexed by a parameter as we do here.

Our model seen as a pruned multi-type Galton-Watson tree: It is possible to represent the family trees of our Galton-Watson processes at time λ 1 ≤ λ 2 ≤ • • • ≤ λ k as pruned multi-type Galton-Watson trees (see, e.g., Athreya & Ney [5, Chapter V] for a survey, and Janson [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized Pólya urns[END_REF] for recent limiting theorems). Indeed, sample the GW tree (Z n (λ k ), n ≥ 0), and, for each node u with offspring process X u , for all 1 ≤ i ≤ k, colour in colour i the children of u that appeared when the time parameter belongs to (λ i-1 , λ i ] (set λ 0 = 0). The number of the children of u of colour i is given by X u (λ i ) -X u (λ i-1 ). To get the family tree at time λ i from this multi-type tree, we remove all the nodes of color ≥ i + 1. However, it is unclear whether the theory of multi-type GW processes could be used to analyse the process (Z n (t), n ≥ 0) t∈I .

Discussion on smoothing (or fixed point) equations: Fixed point equations analogous to (1.11) are standard in the theory of branching processes (see, e.g., Liu [START_REF] Liu | Fixed points of a generalized smoothing transformation and applications to the branching random walk[END_REF], Alsmeyer, Biggins & Meiners [START_REF] Alsmeyer | The functional equation of the smoothing transform[END_REF], and Alsmeyer & Mallein [START_REF] Alsmeyer | A simple method to find all solutions to the functional equation of the smoothing transform[END_REF], and the references therein). They are called fixed point or smoothing equations. To prove that (1.11) characterises the distribution of W (under the crucial constraint that EW (λ) = 1 for all λ ∈ I), we use the so-called contraction method (see, e.g., Rösler & Rüschendorf [START_REF] Roesler | The contraction method for recursive algorithms[END_REF] for a survey, and Neininger & Sulzbach [START_REF] Neininger | On a functional contraction method[END_REF] where the contraction method is used on functional spaces) to show uniqueness of the solution with fixed mean and finite variance: it is quite straightforward in this case because almost sure convergence of (W n (λ)) n≥1 as n tends to infinity is known a priori. The type of functional fix point equations (1.11) is discussed in Neininger & Sulzbach [START_REF] Neininger | On a functional contraction method[END_REF],

particularly in relation with recurrence relations of the form Y n

(d) = K r=1 A (n) r Y (r) I (n) r
, where for (Y n ) n≥1 is a sequence of càdlàg processes on [0, 1], and (A

(n) 1 , . . . , A (n) K ) and (I (n) 1 , . . . , I (n) 
K ) are random objects, converging in some sense to some (A 1 , . . . , A K ) and (I 1 , . . . , I K ). Neininger and Sulzbach obtain powerful criteria for the convergence of (Y n ) n≥1 in distribution, in D[0, 1] equipped with the Skrorokhod metric to the solution of

Y (d) = K r=1 A r Y (r)
Ir (see [START_REF] Neininger | On a functional contraction method[END_REF]Theorem 22]). As a consequence of (1.3), our sequence of processes (W n ) n≥0 indeed satisfies a recursion of the form of [START_REF] Neininger | On a functional contraction method[END_REF]. However, we do not believe that this recursive formula satisfies the conditions of [START_REF] Neininger | On a functional contraction method[END_REF]: in particular, the number of summands in our recursion is a process itself (the offspring process), whereas Neininger and Sulzbach assume that K is a deterministic integer. As suggested by a referee, it would be interesting to see if the method of [START_REF] Neininger | On a functional contraction method[END_REF] can be adapted to the case when K is a stochastic process such as our offspring process. Also, it is natural to ask if the following mapping (on a space of probability measures of the Skorokhod space D(I)),

L(Y ) → L   λ → 1 λ X(λ) k=1 Y (k) (λ)  
is a contraction for an appropriate metric. We have no satisfying answers to that question.

If this is indeed a contraction, then the distribution of W would be the unique fixed point such that EW is the constant process equal to 1, and any other fixed point would be the distribution of a process of the form λ → g(λ)W (λ), for a càdlàg function g : I → R.

Plan of the paper

In Section 2, we prove Theorem 1.4. In Section 3.3, we discuss three examples of offspring processes to which our main result, Theorem 1.4, applies. In Section 3.4, we show how one can use a recursion formula to compute exactly the moments of W n and W . Section 4 contains all remaining proofs.

Proof of Theorem 1.4 2.1 Characterisation of the limiting process

As in the 1-dimensional case, we use the branching property to prove that (1.11) 

holds: fix [a, b] ⊂ I, d ≥ 1 and (λ 1 , • • • , λ d ) such that a ≤ λ 1 ≤ • • • ≤ λ d ≤ b. For all n, jointly for 1 ≤ i ≤ d, Z n+1 (λ i ) = X(λ i ) i=1 Z (i) n (λ i ),
where (Z

(i) n : n ≥ 0) i≥1 is a sequence of i.i.d
. copies of (Z n : n ≥ 0), independent of the offspring process X. This implies that, jointly for 1

≤ i ≤ d, W n+1 (λ i ) = 1 λ i X(λ i ) i=1 W (i) n (λ i ), (2.1) 
where (W (i) n : n ≥ 0) i≥1 is a sequence of i.i.d. copies of (W n : n ≥ 0), independent of the offspring process X. Taking the limit as n → +∞, we get that W satisfies (1.11) as claimed.

As in the 1-dimensional case, and for the same reason, Equation (1.11) does not characterise the law of (W (λ 1 ), • • • , W (λ d )). The law of (W (λ 1 ), • • • , W (λ d )) is characterised as the unique solution of (1.11) having constant mean 1 and finite second moments thanks to the following lemma (proved in Section 4). Note that, under the assumptions of Theorem 1.4, W indeed has constant mean 1, and finite second moment since, by [START_REF] Liu | The growth of an entire characteristic fonction and the tail probabilities of the limit of a tree martingale[END_REF]Theorem 2.0], EX(λ) 2 < +∞ implies EW (λ) 2 < +∞. We let M 2 (1, . . . , 1) denotes the set of probability distributions on [0, ∞) d having mean (1, . . . , 1) and whose marginals all have finite second moments. Lemma 2.1. Assume (HReg) and EX(λ

) 2 < +∞ for all λ ∈ I. Let d ≥ 1 and 1 < λ 1 < • • • < λ d in I. We define Ψ = Ψ λ 1 ,...,λ d : M 2 (1, . . . , 1) → M 2 (1, . . . , 1) as Ψ(µ) = Law   1 λ 1 X(λ 1 ) i=1 U (i) 1 , . . . , 1 λ d X(λ d ) i=1 U (i) d   ,
where the ((U

(i) 1 , . . . , U (i) d 
)) i≥1 's are i.i.d. copies of (U 1 , . . . , U d ) ∼ µ, independent of the offspring process X. Then Ψ is a contraction for the L 2 Wasserstein metric, and in particular, Ψ admits a unique fixed point in M 2 (1, . . . , 1).

Proof. Recall that the L 2 Wasserstein metric is defined as follows: for any two probability distributions µ and ν in M 2 (1, . . . , 1),

d W (µ, ν) = inf E (U 1 , . . . , U m ) -( Û1 , . . . , Ûm ) 2 2 1 /2 : (U 1 , . . . , U m ) ∼ µ, ( Û1 , . . . , Ûm ) ∼ ν . Note that if E[(U 1 , . . . , U m )] = E[( Û1 , . . . , Ûm )], then E (U 1 , . . . , U m ) -( Û1 , . . . , Ûm ) 2 2 = m k=1
Var(U k -Ûk ).

Thus, for all µ, ν ∈ M 2 (1, . . . , 1), we have

d W Ψ(µ), Ψ(ν) 2 ≤ m k=1 Var   1 λ k X(λ k ) i=1 (U (i) i - Û (i) i )   (2.2)
for all (U 1 , . . . , U m ) ∼ µ and ( Û1 , . . . , Ûm ) ∼ ν, where ((U

(i) 1 , . . . , U (i) m ), ( Û (i) 1 , . . . , Û (i) m
)) i≥1 are sequences of i.i.d. copies of ((U 1 , . . . , U m ), ( Û1 , . . . , Ûm )), independent of the offspring process X. Using the law of total variance, we get that, for all 1 ≤ k ≤ m,

Var   1 λ k X(λ k ) i=1 (U (i) k - Û (i) k )   = EVar   1 λ k X(λ k ) i=1 (U (i) k - Û (i) k ) X(λ k )   + VarE   1 λ k X(λ k ) i=1 (U (i) k - Û (i) k ) X(λ k )   = 1 λ 2 k E X(λ k )Var(U k -Ûk ) = Var(U k -Ûk ) λ k ,
where we have used again that

E[U k ] = E[ Ûk ],
and that EX(t) = t for all t > 1. Since the second term in Equation (2.2) can be treated similarly, we get

d W Ψ(µ), Ψ(ν) 2 ≤ m k=1 Var(U k -Ûk ) λ k ≤ E[ (U 1 , . . . , U m ) -( Û1 , . . . , Ûm ) 2 2 ] λ 1 .
Since this is true for all (U 1 , . . . , U m ) ∼ µ and ( Û1 , . . . , Ûm ) ∼ ν, taking the infimum gives

d W Ψ(µ), Ψ(ν) ≤ 1 λ 1 d W µ, ν , which concludes the proof since λ 1 > 1.
This concludes the proof of the "characterisation" part of Theorem 1.4. The "convergence" part is much more involved and the rest of this section is devoted to its proof.

Convergence in D(I, R + ): tightness under moments assumptions

In the following, we use the following convention:

λ 0 = X(0) = W (0) = W n (0) = Z 0 (0) = 0 (2.3)
even if we use, in general X(λ), W n (λ) and W (λ) for λ > 1 elsewhere (notice, for example that Z 0 (λ) = 1 for λ ∈ I, but we set Z 0 (0) = 0). These conventions are only used to work more easily with increments (for example, ∆W n

(λ i ) = W n (λ i ) -W n (λ i-1 ) = W n (λ 1 ) when i = 1).
We first give a characterisation of convergence in D(I, R) taken in Billingsley [6, Section 13.5]:

Proposition 2.2. Consider a compact interval [a, b] ⊂ R, and (Y n (λ), n ≥ 0) λ∈[a,b]
a sequence of processes such that:

(i) (Y n (λ i ), 1 ≤ i ≤ d) (d) --→ n (Y (λ i ), 1 ≤ i ≤ d) for all d ≥ 1 and λ 1 ≤ λ 2 ≤ • • • ≤ λ d in the set of continuity points of Y on [a, b]. (ii) Y (b -δ) (d)
→ Y (b) as δ → 0, and

(iii) For all a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b and η > 0, P min |∆Y n (λ i )|, i ∈ {2, 3} ≥ η ≤ (F (λ 3 ) -F (λ 1 )) 2α η 4β (2.4)
where β ≥ 0, α > 1/2, and F is non-decreasing and continuous on [a, b].

In this case, Y n (d) --→ n Y in D([a, b], R).
Remark 2.3. By [START_REF] Billingsley | Convergence of probability measures[END_REF]Eq. (13.14)], a sufficient condition for the process

Y n (λ) = W n (λ) (for all n ≥ 0, λ ∈ [a, b]) to satisfy (2.4) is E |∆W n (λ 2 )| 2 |∆W n (λ 3 )| 2 ≤ Const • (λ 3 -λ 1 ) 2α .
In fact, we prove that the limit W is in D(I, R + ) as a weak limit of elements of D(I, R + ) for the Skorokhod topology on each compact.

To prove Theorem 1.4, we start by a lemma that shows that, in Proposition 2.2, if the convergence in Assumption (i) holds almost surely, then Y n converges in probability in D(I) to Y . We prove this lemma in Section 4.3.

Lemma 2.4. Assume that a sequence of processes

(T n , n ≥ 0) is tight in D([a, b]), and that more- over, for any d ≥ 0 any a ≤ λ 1 , • • • , λ d ≤ b, the sequence (T n (λ 1 ), • • • , T n (λ d )) converges a.s toward some random variables (T (λ 1 ), • • • , T (λ d )) (that

are, by construction, consistent). Under these assumptions, (T n ) converges in probability in D([a, b]) (equipped with the Skorokhod topology) to a càdlàg process T which coincides with T almost everywhere (it is determined by T , but can be different on a countable number of points).

For more information on the convergence in D([a, b]), we refer to Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF]Section 13]. The convergence in D ([a, b]) does not implies the pointwise convergence: for example

f n = I [1/2+1/n] converges to f = I [1/2,1] in D[0, 1], but f n (1/2) = 0 → f (1/2) = 1.
Therefore, in Lemma 2.4, we cannot deduce that the pointwise limit of (T n ) n≥0 is the limiting process: this occurs however, almost everywhere (the number of points of discontinuity of a process taking its values in D(I) is countable; in general, the position of these points is random). By Theorem 1.4, the limiting process in probability of (W n ) n≥0 , which we call W * for the purpose of this remark, is a càdlàg process (as the limit of càdlàg processes in D(I)). From this convergence it can only be deduced that the finite-dimensional distributions of W are given by (W (λ i ), 1 ≤ i ≤ d) almost everywhere, in fact at the a.s. continuity point of W * . To prove that a given point y ∈ [a, b] is an almost sure point of continuity of W * needs some additional work (the control of the modulus of continuity of W * in a neighbourhood of y, for example).

To prove Theorem 1.4, it only remains to check that Assumptions (i), (ii), and (iii) of Proposition 2.2 are satisfied under the assumptions of Theorem 1.4. The a.s. convergence of (W n

(λ i ), 1 ≤ i ≤ d) for all fixed λ 1 < • • • < λ d ∈ I, follows directly from the fact that, for all λ ∈ I, W n (λ) → W (λ).
This means that (i) holds. We prove (ii) in Section 2.3, and (iii) in Section 2.4. In the whole section, we assume that the assumptions of Theorem 1.4 hold.

The limiting process satisfies Condition (ii) of Proposition 2.2

For all integers k 1 , k 2 ≥ 0, set

M k 1 ,k 2 := E W (λ 1 ) k 1 W (λ 2 ) k 2 ,
and recall that, by assumption, M 0,0 = M 1,0 = M 0,1 = 1. To prove that Assumption (ii) of Proposition 2.2 holds, it is enough to show that

E (W (λ 2 ) -W (λ 1 )) 2 = M 2,0 + M 0,2 -2M 1,1 -→ λ 1 →λ 2 0.
(2.5)

By (1.11), we have

M 2,0 = E 1 λ 1 X(λ 1 ) i=1 W (i) (λ 1 ) 2 = 1 λ 2 1 E[X(λ 1 )]M 2,0 + E[X(λ 1 )(X(λ 1 ) -1)] . which implies M 2,0 = (Fac ∆ 2,0 +λ 1 M 2,0 )/λ 2 1 (see (1.6
) for the definition of Fac ∆ 2,0 , recall that ∆X(λ 1 ) = X(λ 1 ), by convention). By symmetry for M 0,2 , and by a similar calculation for M 1,1 , we get

M 2,0 = Fac ∆ 2,0 λ 1 (λ 1 -1) , M 0,2 = Fac ∆ 0,2 + 2 Fac ∆ 1,1 + Fac ∆ 2,0 λ 2 (λ 2 -1) , M 1,1 = Fac ∆ 1,1 + Fac ∆ 2,0 λ 1 (λ 2 -1) . (2.6)
Thus, by (2.5), as

λ 2 → λ 1 , E (W (λ 2 ) -W (λ 1 )) 2 ∼ Fac ∆ 0,2 λ 1 (λ 1 -1) .
Therefore, the right-hand side of (2.5) tends to zero as λ 2 → λ 1 if and only if Fac ∆ 0,2 → 0, which is implied by (HMom), Equation (1.7).

The sequence (W n ) satisfies Condition (iii) of Proposition 2.2

In this section, we prove the following theorem, which, by Remark 2.3, implies that (W n ) n≥0 satisfies Condition (iii) of Proposition 2.2. The proof of this theorem is quite long: it will last until the end of Section 2. 

C W > 0 such that, for all λ 1 ≤ λ 2 ≤ λ 3 ∈ [a, b], sup n≥0 E (∆W n (λ 2 )) 2 (∆W n (λ 3 )) 2 ≤ C W (λ 3 -λ 1 ) 2κ .
We start by explaining the main idea behind the proof and introduce some notation:

The important "S" notation: Fix an interval [a, b] ∈ I and some

λ 1 ≤ λ 2 ≤ λ 3 ∈ [a, b]. For r ∈ {1, 2, 3} and j ∈ {1, 2, 3}, set S r (W n (λ j )) := X(λr) i=1+X(λ r-1 ) W (i) n (λ j ), (2.7) 
where (W

(i)
n (λ j ) : n ≥ 0) i≥1 is a sequence of i.i.d. copies of (W n (λ j ) : n ≥ 0). Also recall that we set λ 0 = 0. For example, we can write

W n+1 (λ j ) = 1 λ j X(λ j ) i=1 W (i) n (λ j ) = j =1 S (W n (λ j )) λ j . (2.8)
We use the fact that, for all i = j, W

(i) n is independent of W (j)
n , to get the following lemma:

Lemma 2.6. For any λ j , λ ∈ {λ 1 , λ 2 , λ 3 }, S r (W n (λ j )) and S s (W n (λ )) are independent iff r = s.
Moreover, S r is linear in the following sense: for all constants c 1 , c 2 , c 3 ,

S r 3 j=1 c j W n (λ j ) = 3 j=1 c j S r (W n (λ j )) .
Using this notation in (2.8), we get

∆W n+1 (λ 2 ) = S 1 (W n (λ 2 )) λ 2 + S 2 (W n (λ 2 )) λ 2 - S 1 (W n (λ 1 )) λ 1 , (2.9) ∆W n+1 (λ 3 ) = S 1 (W n (λ 3 )) λ 3 + S 2 (W (λ 3 )) λ 3 + S 3 (W (λ 3 )) λ 3 - S 1 (W n (λ 2 )) λ 2 - S 2 (W n (λ 2 )) λ 2 . (2.10)
Using (2.8) and the linearity of S r , we can write

∆W n+1 (λ 2 ) = 1 λ 2 [T 1 + T 2 + T 3 ] , (2.11) ∆W n+1 (λ 3 ) = 1 λ 3 T 1 + T 2 + T 3 + T 4 + T 5 , (2.12) 
where we have set

         T 1 = S 1 (∆W n (λ 2 )) , T 2 = S 1 -∆λ 2 λ 1 W n (λ 1 ) , T 3 = S 2 (W n (λ 2 )) , T 1 = S 1 (∆W n (λ 3 )) , T 2 = S 1 -∆λ 3 λ 2 W n (λ 2 ) , T 3 = S 2 (∆W n (λ 3 )) , T 4 = S 2 -∆λ 3 λ 2 W n (λ 2 ) , T 5 = S 3 (W n (λ 3 )) .
(2.13)

The reason why we decompose ∆W n+1 (λ 2 ) and ∆W n+1 (λ 3 ) this way is because it maximises the number of ∆'s; this is important because, intuitively, ∆'s give terms that are small when |λ 3 -λ 1 | goes to zero.

Proof strategy: To prove Theorem 2.5, we start by writing

E ∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 = 1 (λ 2 λ 3 ) 2 1≤i 1 ,i 2 ≤3 1≤j 1 ,j 2 ≤5 E T i 1 T i 2 T j 1 T j 2 .
(2.14)

Note that there are 9 × 25 = 225 terms in this sum, which we call "T -moments" from now on. Our strategy is to analyse the contribution of each of these T -moments. To do so, we will first expand each of the 225 T -moments using Lemma 2.8 below. This will give

E ∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 = λ 1 (λ 2 λ 3 ) 2 E ∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 + m Term m (2.15)
where the index m ranges over several hundreds of values (there are more terms in this sum than the 225 initial terms of (2.14)). From now one, we call the Term m the "multinomials". Importantly, the sum in (2.15) is finite, and each of the multinomials satisfies

Terms m ≤ c m (λ 3 -λ 1 ) 2κ (2.16)
for a finite constant c m (which depends on m). To show (2.16), we do not treat the several hundred multinomials one by one. Instead, we partition them in several families, and show that all multinomials in each of these families satisfy (2.16). Using (2.16) in (2.15), we get (2.17) which implies that for [a, b] fixed, there exist some universal constants A ∈ (0, 1) and C > 0 such that, for all

E ∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 ≤ λ 1 (λ 2 λ 3 ) 2 E ∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 + m c m (λ 3 -λ 1 ) 2κ ,
λ 1 < λ 2 < λ 3 ∈ [a, b], E(∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 ) ≤ AE(∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 ) + C(λ 3 -λ 1 ) 2κ .
Iterating this formula (see Lemma 2.7 below, which can be applied since ∆W 0 (λ 2 )∆W 0 (λ 3 ) = 0 a.s.) allows us to conclude that

sup n≥0 E ∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 ≤ C W (λ 3 -λ 1 ) 2κ
for a finite constant C W > 0, as claimed.

Lemma 2.7. Let (U n ) n≥0 be a sequence of non-negative real numbers such that, for all n ≥ 0,

U n+1 ≤ AU n + B, (2.18)
for some constants A ∈ [0, 1) and B ≥ 0. In this case, for all n ≥ 0,

U n ≤ A n U 0 + B 1-A .
Proof. Iterating (2.18), we get

U n ≤ AU n-1 + B ≤ A(AU n-2 + B) + B ≤ A n U 0 + B n-1 i=0 A i .
Thus, to conclude the proof, it only remains to prove (2.15) and (2.16). To do this, we first describe the multinomials that appear in (2.15); this is done in Section 2.5 by expanding each of the T -moments. We then show why each of these multinomials can be bounded by c m (λ 3 -λ 1 ) 2κ (and thus why (2.16) holds); this is done in Section 2.5.2 by classifying the 225 of T -terms into four different classes.

Algebraic expansion of E(∆W

n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 )
As already said, we write

Fac ∆ d 1 ,d 2 ,d 3 instead of Fac ∆ d 1 ,d 2 ,d 3 (λ 1 , λ 2 , λ 3
). For a finite set B, we let Part(B, k) be the set of partitions of B into k non empty parts (the parts must be disjoint, and their union must be B). For example,

Part({1, 2, 3, 4}, 3) = [{1}, {2}, {3, 4}], [{1}, {2, 3}, {4}], [{1}, {2, 4}, {3}], [{1, 2}, {3}, {4}], [{1, 3}, {2}, {4}], [{1, 4}, {2}, {3}] .
A partition is formally a set of sets. We consider the canonical representation of a partition as a sequence of sets, where the sequence is obtained by sorting the sets according to their smallest element, as done in the example above.

In the next lemma, we show how one can express each T -moment

E(T i 1 T i 2 T j 1 T j 2 ) as a linear combination of moments of (W n (λ 1 ), W n (λ 2 ), W n (λ 3 )). Lemma 2.8. Let n ≥ 1 and (V n,j ) j≥1 such that, for j ≥ 1, V n,j ∈ W n (λ ), ∆W n (λ ) : 1 ≤ ≤ 3 .
The next formula hold if the moments involved are well defined. Assume that B 1 , B 2 and B 3 are disjoint set of indices. We have

E   j∈B 1 S 1 (V n,j ) k∈B 2 S 2 (V n,k ) ∈B 3 S 3 (V n, )   = d 1 ≥0 d 2 ≥0 d 3 ≥0 Fac ∆ d 1 ,d 2 ,d 3 3 =1 [A 1 ,...,A d ] ∈Part(B ,d ) d k=1 E   s∈A k V n,s   (2.19)
We show on three particular examples how this formula can be applied to each of the T -moments:

Example 1. We use Lemma 2.8 to expand

Q 1 := E S 1 (W n (λ 1 )) 2 S 1 (∆W n (λ 2 )) S 3 (W n (λ 3 )) . We set V n,1 = V n,2 = W n (λ 1 ), V n,3 = ∆W n (λ 2 )
, and V n,4 = W n (λ 3 ). We also set B 1 = {1, 2, 3}, B 2 = ∅, and B 3 = {4}. With this notation, Q 1 is indeed equal to the left-hand side of (2.19).

We now look at the right-hand side of (2.19). First note that B 1 can be partitioned into 1, 2, or 3 parts, i.e. d 1 ranges from 1 to 3 in the right-hand side of (2.19). We have [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF]), we thus get

Part(B 1 , 1) = {[{1, 2, 3}]}, Part(B 1 , 2) = {[{1, 2}, {3}], [{1}, {2, 3}], [{1, 3}, {2}]}, and Part(B 1 , 3) = {[{1}, {2}, {3}]}. Similarly, d 2 = 0 and (by convention) Part(B 2 , 0) = {[∅]}. Finally, d 3 = 1, and Part(B 3 , 1) = {[{4}]}. Applying (2.
Q 1 = Fac ∆ 1,0,1 [E(V n,1 V n,2 V n,3 )] [E(V n,4 )] + Fac ∆ 2,0,1 [E(V n,1 V n,2 )E(V n,3 ) + E(V n,1 )E(V n,2 V n,3 ) + E(V n,1 V n,3 )E(V n,2 )] [E(V n,4 )] + Fac ∆ 3,0,1 [E(V n,1 )E(V n,2 )E(V n,3 )] [E(V n,4 )]
In the second term of the sum, since

d 1 = 2 in Fac ∆ d 1 ,d 2 ,d 3
we separate the product j∈B 1 V n,j into two independent non-empty products. There are three possible ways to do that, and they give the following sum of three terms:

E(V n,1 V n,2 )E(V n,3 ) + E(V n,1 )E(V n,2 V n,3 ) + E(V n,1 V n,3 )E(V n,2 ).
Example 2. We now show how to apply Lemma 2.8 to expand

Q 2 := E (S 2 (W n (λ 3 )) S 3 (∆W n (λ 1 ))) .
To do so, we set V n,1 = W n (λ 3 ), V n,2 = ∆W n (λ 1 ), B 1 = ∅, B 2 = {1}, and B 3 = {2}. With these definitions, Q 2 equals the left-hand side of (2.19). We now look at the right-hand side of (2.19): Since B 1 is empty, and since both B 2 and B 3 have one element, the only possibility is d 1 = 0 and

d 2 = d 3 = 1. We thus get E (S 2 (W n (λ 3 )) S 3 (∆W n (λ 1 ))) = Fac ∆ 0,1,1 E(W n (λ 3 ))E(∆W n (λ 1 )) = 0, since E(∆W n (λ 1
)) = 0. This is not surprising; indeed, we have

Q 2 = E   X(λ 2 ) i=X(λ 1 )+1 W (i) n (λ 3 ) X(λ 3 ) j=X(λ 2 )+1 ∆W (j) n (λ 1 )   .
Because the sequence (W

(i) n (λ) : n ≥ 0, λ > 1) i≥1 is a sequence of i.i.d. copies of (W n (λ) : n ≥ 0, λ > 1), we indeed get Q 2 = E (∆X(λ 2 ))(∆X(λ 1 )) E(W n (λ 3 ))E(∆W n (λ 1 )) = 0.
Example 3. We show how to use Lemma 2.8 to expand

Q 3 := E (S 3 (W n (λ 3 )) S 3 (∆W n (λ 1 ))) . We set V n,1 = W n (λ 3 ), V n,2 = ∆W n (λ 1 ), B 1 = B 2 = ∅ and B 3 = {1, 2}, so that Q 3 is indeed of the form of the left-hand side of (2.19). We have Part(B 3 , 1) = {[{1, 2}]} and Part(B 3 , 2) = {[{1}, {2}]}, so that d 1 = 0, d 2 = 0, 1 ≤ d 3 ≤ 2. We thus get E (S 3 (W n (λ 3 )) S 3 (∆W n (λ 1 ))) = Fac ∆ 0,0,1 E (W n (λ 3 )∆W n (λ 1 )) + Fac ∆ 0,0,2 E (W n (λ 3 )) E (∆W n (λ 1 )) = Fac ∆ 0,0,1 E (W n (λ 3 )∆W n (λ 1 ))
Again, this can be checked directly by computing

E   X(λ 3 ) i=X(λ 2 )+1 W (i) n (λ 3 ) X(λ 3 ) i=X(λ 2 )+1 ∆W (i) n (λ 1 )  
and by regrouping the terms involving the same (i) and the others. The advantage of Lemma 2.8 is to give a general formula that applies to all of the E(T

i 1 T i 2 T j 1 T j 2 ).
Proof of Lemma 2.8. Because of Lemma 2.6, conditionally on {∆X λ j = x j , 1 ≤ j ≤ 3}, the three products inside the expectation on the left-hand side are independent. We thus need to calculate

E j∈B S (V n,j ) | ∆X(λ ) . Now recall that, by definition of S (see (2.7)), we have j∈B S (V n,j ) = j∈B X(λ ) i=X(λ -1 )+1 V (i) n,j = X(λ ) i 1 =X(λ -1 )+1 • • • X(λ ) im=X(λ -1 )+1 V (i 1 ) n,j 1 • • • V (im) n,jm ,
where m = m( ) is the cardinal of B = {j 1 , . . . , j m }. Shifting the indices from the range [X(λ -1 )+ 1, X(λ )] to [1, ∆X(λ )] does not affect the distribution of the right-hand side, implying that

E j∈B S (V n,j ) | ∆X(λ ) = x = x i 1 =1 • • • x im=1 E V (i 1 ) n,j 1 • • • V (im)
n,jm .

We now re-write this sum by grouping the indices i 1 , . . . , i m that are equal and using independence when the indices differ. For all k ∈ {1, . . . , x}, group all j 's such that i = k into one (possibly empty) part. This forms a partition of B . We decompose the sum above depending on the number of non-empty parts in this partition of m, which we call d: this gives

E   j∈B S (V n,j ) | ∆X(λ ) = x   = d≥1 x(x -1) • • • (x -d + 1) [A 1 ,••• ,A d ]∈Part(B ,d) d k=1 E   ∈A k V n,   .
The factor x(x -1)

• • • (x -d + 1
) is the number of different choices for the common index i for the first, second, etc parts of the partition: there are x choices for the first part, x -1 choices for the second part, and so on.

Expansion of E(∆W

n+1 (λ 2 ) 2 ∆W n+1 (λ 2 ) 3 ): classification of the contributions
The aim of this section is to show how to apply Lemma 2.8 to each of the T -moments that appear in (2.14). This allows us to eventually write E(∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 ) as in (2.15), where each of the multinomials is a coefficient Fac ∆ d 1 ,d 2 ,d 3 times a product of "monomials" E( r∈A k V n,r ). Since we see E( r∈A k V n,r ) as a monomial, we will call |A k | its "degree". If the degree is 1, then, because all the involved V n,j belongs to ∪ 3 i=1 {W n (λ i ), ∆W n (λ i )} (see (2.11) and (2.12)), E(V n,j ) is either 1 or 0 (because E(W n (λ i )) = 1 and E(∆W n (λ i )) = 0). Monomials of degrees 2 correspond to correlations, and degree 3 and 4 are the most difficult monomials to handle in our analysis.

Graphical representation of the complete computation

First, represent in an array, as in Fig. 1, the T i and the T i as defined in (2.13). With this graphical representation, each element

∆W n (λ 2 ) -∆λ 2 λ 1 W n (λ 1 ) W n (λ 2 ) ∆W n (λ 3 ) -∆λ 3 λ 2 W n (λ 2 ) ∆W n (λ 3 ) -∆λ 3 λ 2 W n (λ 2 ) W n (λ 3 ) S 1 S 2 S 3 T T ′ Figure 1 -On the top line T 1 , T 2 , T 3 in this order (for example T 1 = S 1 (∆W n (λ 2 )
)); on the second line, the T 1 , T 2 , T 3 , T 4 , T 5 in this order, for example, T 3 = S 2 (∆W n (λ 3 )).

(T i 1 , T i 2 , T j 1 , T j 2 ) of the sum in (2.14) can be obtained by multiplying an ordered pair of elements (with repetition allowed) above the line and an ordered pair of elements below the line. Two examples are given below: Each of the T -moments can be represented using this graphical tool,

∆W n (λ 2 ) ∆W n (λ 2 ) -∆λ 2 λ 1 W n (λ 1 ) W n (λ 2 ) -∆λ 3 λ 2 W n (λ 2 ) -∆λ 3 λ 2 W n (λ 2 ) -∆λ 3 λ 2 W n (λ 2 ) W n (λ 3 ) S 1 S 1 S 2 S 2 S 3 S 3 T T T ′ T ′ Figure 2 -Two examples of choices for (i 1 , i 2 , j 1 , j 2 )
: in the first case on the top, we have selected (T 1 , T 3 , T 4 , T 5 ) and, in the second case on the bottom we have selected (T 1 , T 2 , T 2 , T 2 ) (repetitions are allowed: here, we have chosen j 1 = j 2 = 2). and this becomes useful when applying Lemma 2.8. Indeed, in this graphical representation, we can see that the four terms T i 1 , T i 2 , T j 1 , T j 2 are partitioned into three (possibly empty) groups: the S 1 -group, the S 2 -group and the S 3 -group, represented graphically by the three rounded rectangles. In the right-hand side of (2.19), we consider all possible ways to refine this partition, meaning that each part of the chosen partition must be included in one of the three rounded rectangles, as for example in Fig. 3.

∆W n (λ 2 ) ∆W n (λ 2 ) -∆λ 2 λ 1 W n (λ 1 )
W n (λ 2 ) If, in a refined partition, S 1 is split in d 1 parts, S 2 in d 2 parts, and S 3 in d 3 parts, then the contribution of this partition Π to the right-hand side of (2.19) is the multinomial

-∆λ 3 λ 2 W n (λ 2 ) -∆λ 3 λ 2 W n (λ 2 ) -∆λ 3 λ 2 W n (λ 2 ) W n (λ 3 ) S 1 S 1 S 2 S 2 S 3 S 3 T T T ′ T ′
Fac ∆ d 1 ,d 2 ,d 3 P ∈Π E e∈P e ,
where we sum on all the parts of the refined partition Π, and then multiply on all elements of this part P . Note that d 1 , d 2 ≤ 4, and d 3 ≤ 2, since there are maximum 4 terms in the rounded rectangle associated to S 1 , resp. S 2 , and maximum 2 terms in the rounded rectangle associated to S 3 . Furthermore, d 1 + d 2 + d 3 = 4 since there are four terms in total: T i 1 , T i 2 , T j 1 , and T j 2 .

For example, the contribution of the refined partition on the top of Fig. 3 is the multinomial

Fac ∆ 1,1,1 E [∆W n (λ 2 )] E ∆W n (λ 2 ) - ∆λ 3 λ 2 W n (λ 2 ) E [W n (λ 3 )] ,
and the contribution of the refined partition on the bottom of Fig. 3 is the multinomial

Fac ∆ 2,0,0 E ∆W n (λ 2 ) - ∆λ 2 λ 1 W n (λ 1 ) - ∆λ 3 λ 2 W n (λ 2 ) E - ∆λ 3 λ 2 W n (λ 2 ) .
From this graphical representation, one can see that the only way to get a term that contains 

E ∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 is
E ∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 = Fac ∆ 1,0,0 (λ 2 λ 3 ) 2 E ∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 + m Term m ,
and the multinomial E ∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 does not appear in any of the multinomials in the sum. Because Fac ∆ 1,0,0 = λ 1 , this gives (2.15).

Conclusion

To conclude the proof, it only remains to bound all of the multinomials by c m (λ 3 -λ 1 ) 2κ , as announced in (2.16). To do so, we need the following lemma:

Lemma 2.9. Fix a compact subinterval [a, b] of I. If (HReg) and (HMom) hold, then

(i) For any a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b, ∆λ 2 ≤ (λ 3 -λ 1 ), ∆λ 3 ≤ (λ 3 -λ 1 ). (ii) For any k 1 , k 2 , k 3 ∈ {0, 1, 2, • • • } such that k 1 + k 2 + k 3 ≤ 4, M k 1 ,k 2 ,k 3 := sup n sup a≤λ 1 ≤λ 2 ≤λ 3 ≤b E W n (λ 1 ) k 1 W n (λ 2 ) k 2 W n (λ 3 ) k 3 < +∞ (iii) If 1 ≤ k 1 + k 2 ≤ 3 and k 1 + k 2 + j 1 + j 2 + j 3 ≤ 4 then, there exists a constant C ≥ 0, such that for all a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b, sup n≥0 E (∆W n (λ 2 )) k 1 (∆W n (λ 3 )) k 2 W n (λ 1 ) j 1 W n (λ 2 ) j 2 W j 3 n (λ 3 ) ≤ C(λ 3 -λ 1 ) κ .
Proof. (i) is straightforward. We prove (ii) in Section 2.5.3, and (iii) in Section 2.5.4.

To prove the bounds of (2.16), we use the graphical representation of Section 2.5.1. Each of the multinomials comes from the expansion of a T -moment. We divide the T -moments into three groups: the T -moments that involve at least one element from the rounded rectangle associated to S 3 (i.e. j 1 = 5 or j 2 = 5), the T -moments that involve no element from S 3 but at least one element from S 2 , and finally, the T -moments that involve no element from S 2 or S 3 .

T -moments that involve elements from S 3 . Note that the only term from S 3 is T 5 , and it can appear once or twice in a T -moment E(T i 1 T i 2 T j 1 T j 2 ). Apart from T 5 , only T 3 , which is an element from S 2 , does not contain the symbol ∆.

Recall that, intuitively, the terms containing a ∆ go to zero when λ 3 tends to λ 1 . Therefore, intuitively, the worst possible case is E(T 2 3 (T 5 ) 2 ). We expand this using Lemma 2.8: we get a sum of multinomials, which are the product of a prefactors Fac ∆ 0,y,z with 1 ≤ y, z ≤ 2 times a product of monomials of degree at most 4 in W n (λ 2 ) and W n (λ 3 ). By (1.8) and Lemma 2.9(ii) these multinomials are indeed all bounded by C(λ 3 -λ 1 ) 2κ as claimed in (2.16). Now assume that j 1 = 5 or j 2 = 5, and

T i 1 T i 2 T j 1 T j 2 = T 2 3 (T 5 ) 2 .
In view of Fig. 1 this means that one of T i 1 , T i 2 , T j 1 , and T j 2 is either:

• a term of the form ∆W n (λ ); this term can be a S 1 or a S 2 -term: in any case by Lemma 2.9(iii), any monomial containing such a term is bounded by C(λ 3 -λ 1 ) κ .

• a term that contains a ∆λ j ; using Lemma 2.9(ii), any monomial containing at least one of these terms is bounded in absolute value by C(λ 3 -λ 1 ) for a universal constant C.

In both cases, the prefactor Fac ∆ x,y,z with z ∈ {1, 2} brings the extra term C(λ 3 -λ 1 ) κ needed by (1.7) or (1.8).

Terms that involve no S 3 terms but at least one S 2 -term. The only term in the S 1 or S 2 group that comes without any ∆ is T 3 ; thus, the "worst case" for a T -moment in this group is to have i 1 = i 2 = 3. All multinomials obtained when expanding such a T -moment come with a prefactor Fac ∆ d 1 ,d 2 ,0 with 0 ≤ d 1 , d 2 ≤ 4 and d 1 + d 2 ≤ 4. Also note that since the T -factor contains at least one term from S 2 , it contains at most three terms from S 1 . This implies d 2 ≥ 1 and d 1 ≤ 3 (also, d 3 = 0 because this T -moment contains no S 3 -term). We distinguish cases according to the value of d 1 . First note that, by (HMom), since d 2 = 0, we have

Fac ∆ d 1 ,d 2 ,0 ≤ C(λ 3 -λ 1 ) κ .
• If d 1 = 3, then the corresponding multinomial (without its prefactor) is a product of three expectations, each of one S 1 -term, times the expectation of an S 2 -term. All of the first three expectations contain a ∆ and are thus bounded by C(λ 3 -λ 1 ) κ , by Lemma 2.9(i) and (iii). The fourth expectation is bounded by a constant by Lemma 2.9(ii) (and the triangular inequality if the term from S 2 contains a ∆). In total, with its prefactor, the multinomial is thus bounded by C(λ 3 -λ 1 ) 2κ , as claimed.

• If d 1 = 2, then the corresponding multinomial is a product of three (if d 2 = 1) or four (if d 2 = 2) expectations: two of these are expectations of S 1 -terms, the other one or two are expectations of S 2 -terms. We bound the expectations of S 2 -terms by constants using Lemma 2.9(ii) (and the triangular inequality if they contain ∆'s). Among the two expectations of S 1 -terms, one is the expectation of one term from S 1 , and the other is the expectation of the product of either one or two terms from S 1 . The first of these two expectations is bounded by C(λ 2 -λ 1 ) κ by Lemma 2.9(i) and (iii). The second can be bounded by a constant using the triangular inequality and Lemma 2.9(ii). Thus in total, with its prefactor, such a multinomial is bounded by C(λ 2 -λ 1 ) 2κ , as claimed.

• If d 1 = 1, then the corresponding multinomial is the product of the expectation of a product of one, two or three S 1 -terms times the product of at least one expectation of the product of at most two S 2 -terms. The expectations of S 2 -terms can be bounded by constants using Lemma 2.9(ii) (and the triangular inequality to remove the ∆'s). By Lemma 2.9(i) and (ii), the expectation of a product of one, two or three S 1 -terms is bounded by C(λ 2 -λ 1 ) κ . Together with the prefactor, this bounds the multinomial by C(λ 2 -λ 1 ) 2κ , as claimed.

• Finally, if d 1 = 0, then the corresponding multinomial is a product of one, two, three or four expectations of S 2 -terms.

-If d 2 = 1, then the multinomial is one expectation of the product of four S 2 -terms; among those four terms, two are from {∆W n (λ 3 ), -∆t 3 t 2 W n (λ 2 )}. In other words, the only possible multinomials are E(W n (λ 2 ) 2 ∆W n (λ 3 ) 2 ), -∆λ 3 λ 2 E(W n (λ 2 ) 3 ∆W n (λ 3 )), and

(∆λ 3 ) 2 λ 2 E(W n (λ 2 ) 4
), all of which are bounded by C(λ 2 -λ 1 ) κ , by Lemma 2.9. -If d 2 = 2, then the multinomial is the product of two expectations of products of S 2terms: these two products are either both products of two S 2 -terms, or one of them has one term and the other three terms. In both cases, one can check that this multinomial with its prefactor can be bounded by C(λ 2 -λ 1 ) 2κ .

-If d 2 = 3, then the multinomial is the product of the expectation of the product of two S 2 -terms times the product of two expectations of one S 2 -term each. At least one these expectations contains a ∆, and thus, by Lemma 2.9, it can be bounded by C(λ 3 -λ 1 ) κ , which, together with the prefactor, allows us to bound the monomial by C(λ 2 -λ 1 ) 2κ .

-If d 2 = 4, then the multinomial is the product of four expectations of one S 2 -term each. Two of these S 2 -terms contain a ∆ (because they are from a T ), and are thus bounded by C(λ 3 -λ 1 ) κ (by Lemma 2.9(i) and (iii)). The other two expectations are bounded by constants by Lemma 2.9(ii). With the prefactor, we get C(λ 2 -λ 1 ) 2κ , as claimed.

T -moments that involve no S 3 term and no S 2 -terms. These T -moments only contain S 1terms. These cases are a bit different from the previous ones because the prefactor Fac ∆ x,0,0 is not small; however, by (HReg) , it is bounded by a constant C (since λ 1 ∈ [a, b]). Since we want to bound every contribution (in absolute value) up to a constant, we can ignore the factorial moments here. We look at the multinomials that come from the right-hand side of (2.19), and distinguish according to the value of 1 ≤ d 1 ≤ 4 (note that d 2 = d 3 = 0 since the T -moment has no S 2 or S 3 -terms).

• If d 1 = 1, then the corresponding multinomial is the expectation of the product of four S 1terms.

-If, among these four terms, at least two are from {T 2 , T 2 } (which contain ∆t 2 and ∆t 3 as factors, respectively), then, using Lemma 2.8(ii) to bound the rest of the expectation by a constant, we get that this monomial is bounded by C(λ 3 -λ 1 ) 2 and thus by C(λ 3 -λ 1 ) 2κ as claimed.

-If exactly one of the four S 1 -terms in the T -moment is from {T 2 , T 2 }, then the multinomial is a constant times ∆t 3 or ∆t 2 times an expectation of the form

E(∆W n (λ 2 ) k 1 ∆W n (λ 2 ) k 2 ), with k 1 + k 2 = 3
. By Lemma 2.8(iii) this last expectation is bounded by C(λ 3 -λ 1 ) κ , which, together with the ∆t 3 or ∆t 2 term gives C(λ 3 -λ 1 ) 2κ as claimed.

-Finally, if none of the four terms in the T -moment are T 2 or T 2 , then the multinomial is Fac ∆ 1,0,0 E(∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 ), which gives the first term in (2.15).

• If d 1 ≥ 2, then the corresponding multinomial equals its prefactor times a product of at least two expectations of a product of one, two or three S 1 -terms. By Lemma 2.8(i) and (iii), each of these two expectations is bounded by C(λ 3 -λ 1 ) κ and thus their product is bounded by C(λ 3 -λ 1 ) 2κ , as claimed.

This concludes the proof.

Proof of Lemma 2.9(ii)

The result is immediate when

k 1 + k 2 + k 3 = 1 or k 1 + k 2 + k 3 = 0 since in this case M k 1 ,k 2 ,k 3 = 1.
We reason by induction and assume that M k 1 ,k 2 ,k 3 < +∞ for all non-negative k 1 , k 2 and k 3 such that

k 1 + k 2 + k 3 ≤ m, where m is some fixed integer in {1, 2, 3}. Take a triplet (k 1 , k 2 , k 3 ) such that k 1 + k 2 + k 3 = m + 1; we only need to prove that M k 1 ,k 2 ,k 3 < +∞. We set M (n) k 1 ,k 2 ,k 3 := E W n (λ 1 ) k 1 W n (λ 2 ) k 2 W n (λ 3 ) k 3 ; by (2.8), for all n ≥ 0, M (n+1) k 1 ,k 2 ,k 3 = E    3 =1   j=1 S j (W n (λ )) λ   k    = 1 3 =1 λ k k 1,2 +k 2,2 =k 2 k 1,3 +k 2,3 +k 3,3 =k 3 k 1 k 1 k 2 k 1,2 , k 2,2 k 3 k 1,3 , k 2,3 , k 3,3 × E S 1 (W n (λ 1 )) k 1 S 1 (W n (λ 2 )) k 1,2 S 2 (W n (λ 2 )) k 2,2 S 1 (W n (λ 3 )) k 1,3 S 2 (W n (λ 3 )) k 2,3 S 3 (W n (λ 3 )) k 3,3 .
We use Lemma 2.8 to expand this expectation into a sum of multinomials. Note that there are k 1 + k 1,2 + k 1,3 S 1 -terms, k 2,2 + k 2,3 S 2 -terms and k 3,3 S 3 -terms. Thus, the monomials appearing in the right-hand side of (2.19) are at most of degree m + 1. The monomials with degree at most m are uniformly bounded by the recurrence hypothesis. After expansion, we have a sum of multinomials (products of monomials) with total degree m + 1. Bounding the monomials with degree at most m by a constant leaves us with a constant c 0 plus the contribution of monomials with degree m + 1.

Since 1/ 3 =1 λ k is also bounded on [a, b] we have for c = max{c 0 / 3 =1 λ k , λ[3] ∈ [a, b]}, M (n+1) k 1 ,k 2 ,k 3 ≤ c + Fac ∆ 1,0,0 E 3 j=1 W n (λ j ) k j + I k 1 =0 Fac ∆ 0,1,0 E 3 j=2 W n (λ j ) k j + I k 1 =k 2 =0 Fac ∆ 0,0,1 E W n (λ 3 ) k 3 3 =1 λ k
and the reason for this is that the only terms with maximal degree comes from the cases where there are only terms of type S 1 or S 2 or S 3 (and for the second and third case, this can happen only if k 1 = 0 and

k 1 = k 2 = 0 respectively). Since Fac ∆ 1,0,0 = λ 1 , Fac ∆ 0,1,0 = ∆λ 2 , Fac ∆ 0,0,1 = ∆λ 3 , this gives M (n+1) k 1 ,k 2 ,k 3 ≤ c + M (n) k 1 ,k 2 ,k 3 λ 1 + I k 1 =0 ∆λ 2 + I k 1 =k 2 =0 ∆λ 3 3 =1 λ k Since k 1 + k 2 + k 3 ≥ 2, the factor of M (n) k 1 ,k 2 ,
k 3 is uniformly bounded by ≤ 1/a. Now, to conclude, we use Lemma 2.7 with U 0 = 1, A = 1/a, B = c.

Proof of Lemma 2.9(iii)

First note that it is enough to prove the claim when k 1 + k 2 = 1. Indeed, the case k 1 + k 2 ≥ 2 can be reduced to the k 1 + k 2 = 1 case by expanding k 1 + k 2 -1 factor of the type ∆W n (λ j ) using the triangular inequality. For example

|E((∆W n (λ 2 ))W n (λ 3 ) 2 ∆W n (λ 3 ))| ≤ |E(W n (λ 1 )W n (λ 3 ) 2 ∆W n (λ 3 ))| + |E(W n (λ 2 )W n (λ 3 ) 2 ∆W n (λ 3 ))| is bounded from above by 2C(λ 3 -λ 1 ) κ if each term in the right-hand side is bounded by C(λ 3 -λ 1 ) κ . If k 1 + k 2 = 1, then either k 1 = 1 or k 2 = 1,
and we need to treat these two cases separately. We set

A n = E ∆W n (λ 2 ) D i=1 W n (λ m i ) B n = E ∆W n (λ 3 ) D i=1 W n (λ m i )
where 1 ≤ D ≤ 3 (even if the method that follows work for larger D when the corresponding moments exist), and the m i are, as usual, elements of {1, 2, 3}.

Control of A n+1 . We want to prove that for any choice of 0 ≤ D ≤ 3, any choices of (m i ), there exists a constant C = C D,(m i ) such that the corresponding sequence (A n ) satisfies

sup n≥0 |A n | ≤ C(λ 3 -λ 1 ) κ for all a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b.
(2.20)

We give a proof by recurrence on the value of D: if D = 0 then A n = 0 so that (2.20) holds for C = 0. Let us assume that we showed that sup n |A n | ≤ C D ,(m i ) (λ 3 -λ 1 ) κ for all choices of (D , (m i )) with D ≤ D -1 for some D ∈ {1, 2, 3}, and aim at proving the result for any (D, (m i )). Fix such a pair (D, (m i )).

We have by (2.13) and (2.8)

A n+1 = 1 λ 2 E S 1 ∆W n (λ 2 ) - ∆λ 2 λ 1 W n (λ 1 ) + S 2 (W n (λ 2 )) D i=1 m i =1 S (W n (λ m i )) λ m i .
We now use the linearity of S 1 and of the expectation and see A n+1 as the sum of three expectations A

(1)

n+1 , A (2)
n+1 and A

(3) n+1 that can be written as in the left-hand side of (2.19). We thus apply Lemma 2.8 to each of these three expectations, and get, from the right-hand side of (2.19), a sum of multinomials. Recall that a multinomial is a prefactor Fac ∆ times a product of monomials. The maximum degree of a monomial in the expansion of A n+1 is D + 1; such monomials form a multinomial with their prefactor (i.e. they are not multiplied by another monomial). In the expansion of A [START_REF] Aldous | The continuum random tree. II. An overview[END_REF] n+1 , the only monomial of degree D + 1 comes from the partition that leaves all S 1 -terms in one part. The same is true for A

(2) n+1 . In A (3)
n+1 , we only get a multinomial of degree D + 1 if m i ≥ 2 for all 1 ≤ i ≤ D, and it comes from the partition that leaves all S 2 -terms in the same part. Thus, the only multinomials involving a monomial of degree D + 1 are

M 1 = Fac ∆ 1,0,0 λ 2 D i=1 λ m i E ∆W n (λ 2 ) D i=1 W n (λ m i ) = Fac ∆ 1,0,0 λ 2 D i=1 λ m i A n , M 2 = - Fac ∆ 1,0,0 λ 2 D i=1 λ m i E ∆λ 2 λ 1 W n (λ 1 ) D i=1 W n (λ m i ) , M 3 = Fac ∆ 0,1,0 λ 2 D i=1 λ m i E ∆W n (λ 2 ) - ∆λ 2 λ 1 W n (λ 1 ) D i=1 W n (λ m i ) I m i ≥2,∀1≤i≤D = Fac ∆ 0,1,0 A n λ 2 D i=1 λ m i I m i ≥2,∀1≤i≤D - Fac ∆ 0,1,0 λ 2 D i=1 λ m i E ∆λ 2 λ 1 W n (λ 1 ) D i=1 W n (λ m i ) I m i ≥2,∀1≤i≤D . Note that |M 2 | ≤ C∆λ 2 ≤ C(λ 3 -λ 1
) κ because of Lemma 2.9(ii). Hence, the total contribution of the monomial A n in M 1 and M 3 (and thus in the expansion of A n+1 ) is

Fac ∆ 1,0,0 + Fac ∆ 0,1,0 I m i ≥2,∀1≤i≤D λ 2 D i=1 λ m i × A n
All the other multinomials appearing in the expansion of A n+1 (included the second term of M 3 ) satisfy one of the following alternatives:

• Its prefactor is Fac ∆

x,y,z with y ≥ 1 or z ≥ 1 (meaning that, in the right-hand side of (2.19), it comes from a triplet (d 1 , d 2 , d 3 ) such that d 2 ≥ 1 or d 3 ≥ 1). By (1.7) for these values of (x, y, z),Fac ∆

x,y,z ≤ C(λ 3 -λ 1 ) κ . Furthermore, all the monomials appearing in this multinomial can be bounded by constants by Lemma 2.9(ii).

• Its prefactor is Fac ∆

x,0,0 (and x = 1 since this gives M 1 ): in this case, either ∆W n (λ 2 ) appears in a monomial of degree at most D -1, or (∆λ 2 ) λ 1 W n (λ 1 ) appears in a monomial of degree at least one 1. Applying the induction hypothesis in the first case, and Lemma 2.9(i) in the second case (and Lemma 2.9(ii) in both case to bound the other monomials involved in the multinomial), we get that, in absolute value, this multinomial is bounded by C(λ 3 -λ 1 ) κ .

We thus get that

A n+1 = Fac ∆ 1,0,0 + Fac ∆ 0,1,0 I m i ≥2,∀1≤i≤D λ 2 D i=1 λ m i A n + multinomials (2.21)
which gives by the triangular inequality

|A n+1 | ≤ |A n |/a + |multinomials| (2.22)
and all multinomials in the sum are bounded in absolute value by C(λ 3 -λ 1 ) κ for some C > 0 (which can depend on the multinomial, but since there are finitely many of them, we can take the maximum constant for C). The bound by |A n |/a comes from |D| ≥ 1 and

Fac ∆ 1,0,0 = λ 1 , Fac ∆ 0,1,0 = λ 2 -λ 1 , and a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b. Since A 0 = 0, we conclude by Lemma 2.7 that |A n | ≤ C (λ 3 -λ 1 ) κ for all a ≤ λ 1 ≤ λ 2 ≤ λ 3 ≤ b.
Control of B n+1 . We apply the same strategy as for A n+1 : we reason by recurrence over D. Again the case D = 0 is trivial since B n = 0 in this case. After that the formula are a bit more involved; let us have a glimpse on the differences with the A n case. We group a bit the T i defined in (2.13) and write

B n+1 = 1 λ 3 E S 1 ∆W n (λ 3 ) - ∆λ 3 λ 2 W n (λ 2 ) + S 2 ∆W n (λ 3 ) - ∆λ 3 λ 2 W n (λ 2 ) + S 3 (W n (λ 3 )) × D i=1 m i =1 S (W n (λ m i )) λ m i .
Again, notice the occurrence of ∆W n (t 3 ) in a S 1 and a S 2 terms, while the S 3 terms concerns W n (λ 3 ). When one expands everything, and pack together the only terms -those of maximum degree-that contain B n as a factor, we observe that they can be produced only by S 1 -terms, and possibly S 2 -terms if all the m i ≥ 2. We then get, for M 1 , the contribution of these B n terms

M 1 = Fac ∆ 1,0,0 λ 3 D i=1 λ m i + Fac ∆ 0,1,0 λ 3 D i=1 λ m i I m i ≥2,1≤i≤D E (∆W n (λ 3 )) D i=1 W n (λ m i ) = λ 1 λ 3 D i=1 λ m i + ∆λ 2 λ 3 D i=1 λ m i I m i ≥2,1≤i≤D B n .
The rest of the terms coming from the expansion of B n+1 involves either ∆W n (λ 3 ), or ∆λ 3 , and the possible terms avoiding this contains a S 3 terms so that it comes with a prefactor Fac ∆ x,y,z with z ≥ 1). This allows to write some equations similar to (2.21) and (2.22):

B n+1 = Fac ∆ 1,0,0 + Fac ∆ 0,1,0 I m i ≥2,∀1≤i≤D λ 3 D i=1 λ m i B n + multinomials (2.23)
from which we conclude for the same reasons as in the A n case.

Explicit calculations using Fourier transforms

In Section 3.1, we re-write the fixed-point equation (1.11) in terms of Fourier transforms. In Section 3.2, we show how this can be used to calculate explicitely some characteristics of the process W (distribution of the first time away from 0 and joint moments of the marginals). In Section 3.3, we go through three examples of offspring processes (including the motivational example of Section 1.5); using Fourier transforms, we show that these examples satisfy the assumptions of 1.4, and attempt at describing the distribution of W using Fourier transforms.

The fixed-point equation in terms of Fourier transforms

For all sequences (y i , i ∈ a, b ) indexed by any interval of integers a, b = [a, b] ∩ Z, the corresponding increment sequence is denoted

∆y i := y i -y i-1 , for i ∈ a + 1, b .
We often write y a, b instead of (y a , y a+1 , • • • , y b ). For all integers d ≥ 1 and real numbers λ 1 < λ 2 < • • • < λ d in I, consider the following generating function of the FDD of X and of its increments:

f λ 1,d (z 1, d ) := E   d j=1 z X(λ j ) j   , f ∆ λ 1,d (z 1, d ) := E   d j=1 z ∆X(λ j ) j   .
These generating functions are at least defined on B C (0, 1) d (and of course, each of them can be expressed with the other). Define the Fourier transform of (W n (λ i ), 1

≤ i ≤ d) by Φ (n) λ 1,d (x 1, d ) := E exp i d j=1 x j W n (λ j ) . ( 3.1) 
For any integers r and d such that 1 ≤ r ≤ d, and any sequence (x 1 , . . . , x d ) define

Υ d r (x, λ) = 0, • • • , 0 r-1 terms , x r /λ r , • • • , x d /λ d . ( 3.2) 
The following proposition provides a recursive way to compute Φ (n) .

Proposition 3.1. For any

λ 1 < λ 2 < • • • < λ d in I, any x 1, d ∈ R d , Φ (0) λ 1,d (x 1, d ) = exp [i(x 1 + • • • + x d )]
.

and for n ≥ 1, Φ (n) λ 1,d (x 1, d ) = f ∆ λ 1,d Φ (n-1) λ 1,d (Υ d 1 (x, λ)), • • • , Φ (n-1) λ 1,d (Υ d d (x, λ)) . (3.3) Moreover, Φ (n) λ 1,d converges pointwise on R d to a function Φ λ 1,d fixed point equation of Φ λ 1,d (x 1, d ) = f ∆ λ 1,d Φ λ 1,d (Υ d 1 (x, λ)), • • • , Φ λ 1,d (Υ d d (x, λ)) . ( 3.4) 
Note that Φ λ 1,d is the Fourier transform of (W (λ 1 ), . . . , W (λ d )). Thus, by 2.1, Φ λ 1,d is the unique solution of (3.4) with mean (1, • • • , 1) as long as X has a finite variance.

Explicit computations using Fourier transforms

There are two characteristics of the limiting process W that are simple to compute:

• The law of T (0,+∞) (W ) := inf{λ : W (λ) > 0} the entrance time of W in (0, +∞) satisfies

P T (0,+∞) (W ) > x = q x , (∀x ∈ I),
where we recall that q x is the extinction probability of the process (Z n (x)) n≥0 (the smallest non-negative root of q = E[X(x) q ]).

• The joint moments E m j=1 W (λ j ) k j can be computed for some fixed m, some fixed positive integers (k 1 , . . . , k j ), fixed times λ 1 < • • • < λ m for which this quantity exists. This computation detailed in Section 3.4: it relies mainly on Lemma 2.8 which allows to see that there are some polynomial relations between the E m j=1 W (λ j ) d j for d j ≤ k j , which can be linearised in all generality. Another method consists in extracting the moments using (3.4) (we present some of these computations in (2.6)).

The computation of the finite-dimensional distributions of the process W proves to be quite technical. This comes from the fact that our main tools for this computation are Formulae (3.4), which are implicit. In dimensions 1, 2, and 3,

Φ λ 1 (x 1 ) = f ∆ λ 1 Φ λ 1 x 1 λ 1 Φ λ 1 ,λ 2 (x 1 , x 2 ) = f ∆ λ 1 ,λ 2 Φ λ 1 ,λ 2 x 1 λ 1 , x 2 λ 2 , Φ λ 1 ,λ 2 0, x 2 λ 2 (3.5) Φ λ[3] (x 1 , x 2 , x 3 ) = f ∆ λ[3] Φ λ[3] x 1 λ 1 , x 2 λ 2 , x 3 λ 3 , Φ λ[3] 0, x 2 λ 2 , x 3 λ 3 , Φ λ[3] 0, 0, x 3 λ 3 .
These equations are related by consistence; the last equation can be re-written as

Φ λ[3] (x 1 , x 2 , x 3 ) = f ∆ λ[3] Φ λ[3] x 1 λ 1 , x 2 λ 2 , x 3 λ 3 , Φ λ 2 ,λ 3 x 2 λ 2 , x 3 λ 3 , Φ λ 3 x 3 λ 3 .
For the 1-dimensional marginals, we write

Φ λ = q λ + (1 -q λ )Θ λ (3.6)
where Θ λ is the Fourier transform of L(W (λ) | W (λ) > 0). Since q λ is known (implicitly, in general), computing Θ λ is the only real issue: it is solution with mean 1/(1 -q λ ) of

q λ + (1 -q λ )Θ λ (x) = f λ [q λ + (1 -q λ )Θ λ (x/λ)] , (3.7) 
so that

Θ λ (x) = f λ (q λ + (1 -q λ )Θ λ (x/λ)) -q λ 1 -q λ ,
where f λ is the generating function of X(λ). Because f λ (y) = m≥0 P(X(λ) = m)y m , we get

Θ λ (x) = g λ (Θ λ (x/λ)) (3.8)
where g λ is the probability generating function of p(λ) = (p m (λ), m ≥ 0) with p 0 (λ) = 0, and, for j ≥ 1,

p j (λ) = (1 -q λ ) j-1 m≥j P(X λ = m) m j q m-j λ . ( 3.9) 
In words, Θ λ is the Fourier transform of the limiting martingale of a Galton-Watson process with offspring distribution p(λ), which almost surely never gets extinct since p 0 (λ) = 0.

In Section 3.3, we show how to apply these computation to three examples of offspring processes.

Remark 3.2. An alternative equation satisfied by Θ λ can be written using the spinal decomposition of the GW process (Z n (λ), n ≥ 0) conditioned on non extinction, which

( Z n (λ), n ≥ 0) denotes. Indeed, Θ λ the solution of Φ Sp λ (x)/(1 -q λ ) = 1 i d dx Θ λ (x) with Θ λ (0) = 1,
where Φ Sp λ is the Fourier transform of the limiting distribution of Z n (λ)/λ n . Furthermore, by decomposition at the root,

Φ Sp λ is characterised as the solution of Φ sp λ (x) = Φ sp λ (x/λ) fλ (Φ(x/λ))
where f is the probability generating function of X -1, where P( X λ = k) = kP(X λ = k)/λ (∀k ≥ 0). Using these two equations together, we get another fixed point equation that characterises Θ λ . Except possibly in some particular cases, the formula obtained this way is not more convenient than (3.7).

More examples of processes of GW processes

In this section, we give three examples of offspring processes X. In all three cases, we show that checking Assumptions (HReg) and (HMom) is straightforward. We also attempt to give information about the limiting process. The limiting processes are completely characterised by the implicit fixed point Equations (1.11) and (3.4). However, as discussed before, very little is known about the martingale limit W (λ) of a Galton-Watson process (except when the offspring distribution is a fractional geometric distribution -see Section 3.3.2), since extracting information from these implicit characterisations is not that easy (except for the extraction of joint moments, which can be done by induction). Therefore, it should not be surprising that we are only able to get little information about our limiting process (W (λ), λ ∈ I).

The binary coupling

We call this the "binary" coupling because, for each time parameter λ, the GW family tree associated to (Z n (λ), n ≥ 0) is binary. Let U ∼ Uniform[0, 1] and consider the càdlàg process (Bin(λ), λ ∈ I Bin ), where

Bin(λ) := 2 I U ≤λ/2 , for any λ ∈ I Bin := (1, 2].
The process Bin is a non-decreasing process which is constant in I Bin , except at the random time λ = 2U at which it jumps from 0 to 2. Moreover, since I U ≤λ/2 ∼ Bernoulli(λ/2), we have

EBin(λ) = λ.
The interval I Bin is the range of time parameters λ for which E(Bin(λ)) > 1. Thus, (Bin(λ)) λ∈I Bin can be used as the offspring process in Definition 1.1.

To describe the distribution of (Bin(λ 1 ),

• • • , Bin(λ d )) for 1 < λ 1 < • • < λ d ≤ 2, set FI = inf{k : Bin(λ k ) = 2}
, the first index where Bin(λ k ) is equal to 2; we have

P(FI = k) = (λ k -λ k-1 )/2, for k ∈ 1, d (3.10) 
and

P(FI = +∞) = P(Bin(λ d ) = 0) = 1 -λ d /2. For λ 1 ≤ • • • ≤ λ m elements of I m Bin , f Bin λ 1 ,••• ,λm (x 1 , • • • , x m ) = (1 -λ m /2) + m k=1 λ k -λ k-1 2 m i=k x 2 i .
Proposition 3.3. The process Bin satisfies (HReg) and (HMom), so that Theorem 1.4 applies when the offspring process X = Bin, on

I Bin = (1/2, 1].
Proof. It is straightforward to check that (HReg) holds. Now, we check (HMom) using Lemma 1.3: we have Fac ∆ 0,2,2 = 0 (since either ∆X(λ 2 ) = 0 or ∆X(λ 3 ) = 0), which implies (1.9). To prove that (1.10) holds, write E Bin ((∆X(λ 3 ))X(λ 3 ) 3 ) = 16 P Bin (X(λ 3 ) = 1, X(λ 2 ) = 0) = 8∆λ 3 .

We now comment on the properties of the limiting process (W (λ), λ ∈ I Bin ). We first look at the one-dimensional marginal distributions. From Equation (3.5), we get that, for all x ∈ R, λ ∈ (1, 2],

Φ λ (x) = 1 - λ 2 + λ 2 Φ λ (x/λ) 2 .
In this case q λ = (2 -λ)/λ, and using (3.8) and (3.9) (or (3.7)), Θ λ is solution to

Θ λ (x) = (λ -1)Θ λ (x/λ) 2 + (2 -λ)Θ λ (x/λ) , so that the distribution p(λ) is given by (λ -1)δ 2 + (2 -λ)δ 1 .
Moreover, Θ λ is the generating function of the distribution of the variable R, solution of the fix point equation

R (d) = B λ-1 (R + R ) λ + (1 -B λ-1 ) R λ = B λ-1 R λ + R λ (d) = j≥1 B (j) λ-1 R (j) λ j (3.11)
where R, R , R (1) , R (2) , • • • are i.i.d. and the B (j)

λ-1 are i.i.d. Bernoulli random variable with time parameter λ -1, all these random variables are independent (and the R j have mean 1/(1 -q λ )). We were not able to find an explicit formula for Θ λ , but the fix point equation (3.11) is sufficient to sample R and compute empirically its density: The first few moments of W (λ) conditioned to be positive are

1, λ/2 λ -1 , λ/2 (λ -1) 2 , 3λ/2 (λ + 1) (λ -1) 3 , 3λ (λ + 5) /2 (λ + 1) (λ -1) 4 (λ 2 + λ + 1) , 15λ 2 
λ 2 + 3 λ + 7 /2 (λ 2 + 1) (λ 2 + λ + 1) (λ + 1) 2 (λ -1) 5 .
In particular, E(W (λ)|W (λ) > 0) = λ 2(λ-1) , and the variance of W (λ) conditioned to be positive is

λ(2-λ)
4(λ-1) 2 which goes to ∞ at 1, and is 0 at 2 (since W 2 = 2 a.s.).

We were not able to say something interesting on the 2-dimensional marginal distributions.

Figure 5 -Three simulations of the process W , when X is the process Bin.

The geometric coupling

Geometric random variables (with support {0, 1, 2, • • • }) are important in GW theory because, conditionally on the total number of nodes n, the family tree of a GW process with this offspring distribution is uniform among the set of (unlabelled) trees with n nodes (and this holds for any parameter / ∈ {0, 1} of the geometric distribution). Also, this offspring distribution is a particular case of the linear fractional case, which is essentially the only offspring distribution for which the 1-dimensional marginal distributions of W are explicitly known (see [START_REF] Athreya | Branching processes[END_REF]Section 1.4] and the calculations below).

Let Ber = (Ber(λ), 0 ≤ λ ≤ 1), where Ber(λ) = I U ≤λ and U ∼ Uniform[0, 1]. Let (Ber (i) , i ≥ 0) be a sequence of independent copies of Ber. Define

Geo(λ) = inf i ∈ {0, 1, 2, • • • } : Ber (i) 1 1 + λ = 1 , for λ ∈ I Geo := (1, +∞),
the first success in this sequence of Bernoulli trials; we have P(Geo(λ) = k) = λ k /(1 + λ) k+1 , and

EGeo(λ) = λ.
The inversion λ → 1/(1 + λ) allows to get a non-decreasing process, while the corresponding processes

Ber (i) (1/(1 + λ)) are non-increasing. If the sequence (λ 1 , • • • , λ d ) is non decreasing, then the sequence Geo(λ 1 ), • • • , Geo(λ d
) is a Markov chain. Indeed, given Geo(λ j-1 ),

Geo(λ j ) (d) = Geo(λ j-1 ) + Ber λ j -λ j-1 1 + λ j (1 + G j ),
where the three random variables on the right-hand side are independent, and G j is a copy of Geo(λ j ). More generally

(Geo(λ 1 ), • • • , Geo(λ d )) (d) = G 1 + j i=2 Ber (i) λ j -λ j-1 1 + λ j (1 + G i ), 1 ≤ j ≤ d (3.12)
where for each j, G j is distributed as Geo(λ j ), and all the random variables on the right-hand side are independent. For

λ 1 ≤ • • • ≤ λ m elements of I m Geo f Geo λ 1 ,••• ,λm (x 1 , • • • , x m ) = G λ 1 m i=1 x i m j=2   1 + λ j-1 1 + λ j + λ j -λ j-1 1 + λ j G λ j   m i=j x j   m i=j x j   ,
where G λ (x) = 1/(1 + (1 -x)λ) is the generating function of Geo(λ).

Proposition 3.4. The process Geo satisfies (HReg) and (HMom), so that Theorem 1.4 applies when the offspring process X = Geo, on I Geo = (1, +∞).

Proof. It is straightforward to check that (HReg) holds. We check (HMom) using Lemma 1.3: first note that Fac ∆ 0,2,2 = 4λ 2 λ 3 (∆λ 2 )(∆λ 3 ), which implies (1.9). For (1.10), we write E Geo ((∆X(λ 3 ))X(λ 3 ) 3 ) = (∆λ 3 )Q, where

Q = 24 λ 3 3 + 18 (λ 2 + 2) λ 3 2 + 2 6 λ 2 2 + 12 λ 2 + 7 λ 3 + 6 λ 2 3 + 12 λ 2 2 + 7 λ 2 + 1
is a polynomial which is bounded on any compact [a, b] ⊂ I. These moments are computed by some differentiations of f Geo λ 1,3 .

We now comment on the properties of the limiting process. In particular, we look at its 1-and 2-dimensional marginals. By Equation (3.5), we get that, for all λ > 1, for all x ∈ R,

Φ λ (x) = 1 + λ -λΦ λ (x/λ) -1 (3.13)
and the only solution with mean 1 is

Φ λ (x) = (1 -λ + ix)/(1 -λ + ixλ),
which we identify as the Fourier transform of the distribution of the random variable

Ber(p λ ) Expo(p λ ) for p λ = λ -1 λ = 1 -q λ
where Expo(a) stands for an exponential random variable with parameter a (and mean 1/a), independent of the Bernoulli random variable (this is also a direct consequence of the calculation of Athreya & Ney [5, Section I.4], because our offspring distribution is a particular case of the linear fractional case).

Hence, the probability of extinction is 1/λ, and

L(W (λ) | W (λ) > 0) is the law of Expo(p λ ).
The Fourier transform of the two-dimensional distribution is a bit involved: To calculate it, first note that

f ∆,Geom λ 1 ,λ 2 (x 1 , x 2 ) = 1 + λ 1 -λ 1 x 2 (1 + λ 2 -λ 2 x 2 ) (1 + λ 1 -λ 1 x 1 ) . ( 3.14) 
A solution of (3.5) can be found: if we set

Φ λ 1 ,λ 2 (x 1 , x 2 ) = a + bΦ λ 1 (x 1 ) + cΦ λ 2 (x 2 ) + dΦ λ 1 (x 1 )Φ λ 2 (x 2 ), (3.15) 
then Φ λ 1 ,λ 2 is solution of (3.5) as soon as (a, b, c, d) satisfies

c = 1 -d, b = 1 -d, a = d -1,
and d is a root of the following quadratic polynomial

-x 1 x 2 (λ 2 -1) (λ 1 -1) d 2 + id λ 1 2 λ 2 x 2 + λ 1 λ 2 2 x 1 -λ 1 2 x 2 -λ 1 λ 2 x 1 -iλ 2 2 -λ 2 x 1 -λ 2 x 2 + 2 iλ 2 + 2 iλ 1 x 1 x 2 + iλ 2 x 1 x 2 + x 1 + x 2 -2 iλ 1 λ 2 + iλ 1 -3 iλ 1 λ 2 x 1 x 2 + iλ 1 λ 2 2 -i -iλ 1 2 λ 2 x 2 -iλ 1 λ 2 2 x 1 -2 λ 1 λ 2 x 1 x 2 + iλ 1 x 1 + iλ 2 x 2 + λ 1 2 λ 2 + λ 1 λ 2 2 -λ 1 2 -2 λ 1 λ 2 -λ 2 2 + λ 1 + λ 2
This is not really informative, and we hope that some reader will succeed in finding a more classical representation of this distribution 1 .

1 To get this formula, we guess the form (3.15), so that finding (a, b, c, d)

such that Φ λ 1 ,λ 2 (x1, x2) = f ∆,Poi λ 1 ,λ 2 Φ λ 1 ,λ 2 x 1 λ 1 , x 2 λ 2 , Φ λ 1 ,λ 2 0, x 2 λ 2
, and Φ λ 1 ,λ 2 (x1, x2) has the right marginal, is a matter to solve some polynomial equations in (a, b, c, d) and coefficients in the set of rational fractions Q [[x1, x2, λ1, λ2]]. This can be done by hand or using a computer algebra system, and the computation of a Gröbner basis.

Figure 6 -Three simulations of the process W , when X is the process Geom. The first one is indeed constant equals to 0: on [START_REF] Aldous | The continuum random tree. II. An overview[END_REF][START_REF] Athreya | Branching processes[END_REF], the process is 0 if the extinction occurs for the distribution Geom( 5) (which has mean 5). Even if it is unlikely to happen, it does on our first simulation.

The Poisson coupling

Take a standard Poisson process Poi := (Poi(λ), λ ∈ I Poi ) with intensity 1. We have Proof. Although we checked (HReg) and (HMom) is this case in Section 1.5, we show how this can also be done using Fourier transforms. It is straightforward to check that (HReg) holds. We now check (HMom) using Lemma 1.3: we have Fac ∆ 0,2,2 = (∆λ 2 ) 2 (∆λ 3 ) 2 , which implies (1.9). For (1.10), we write E Poi ((∆X(λ 3 ))X(λ 3 ) 3 ) = (λ 3 3 + 6 λ 3 2 + 7 λ 3 + 1)∆λ 3 . Since the polynomial in front of ∆λ 3 is bounded on any compact [a, b] ⊂ I, this implies (1.10). These moments can be computed by some differentiations of f Poi λ 1,3 .

EPoi(λ) = λ, for λ ∈ I Poi := (1, +∞). For any λ 1 ≤ • • • ≤ λ m elements of I Poi , f Poi λ 1 ,••• ,λm (x 1 , • • • , x m ) = m k=1 exp (λ k -λ k-1 ) -1 + m j=k x j , since (Poi(λ k ) -Poi(λ k-1 ), 1 ≤ k ≤ m)
The extinction probability is solution of e λ(q λ -1) = q λ , which implies that q λ can be expressed in terms of λ using the LambertW function, or reciprocally, given q = q λ ∈ (0, 1), the corresponding λ is λ = ln(q) q-1 . The Fourier transform Φ λ of W (λ) satisfies Φ λ (x) = exp [λ(Φ λ (x/λ) -1)]. Let us turn our attention toward L(W (λ) | W (λ) > 0); using (3.9) and plugging P(X λ = m) = λ m e -λ /m!, we get p 0 (λ) = 0 and for j ≥ 1

p j (λ) = (1 -q λ ) j-1 j! λ j e -λ m≥j λ m-j q m-j λ (m -j)! = λ[λ(1 -q λ )] j-1 j! e λ(q λ -1) . Hence Θ λ is solution to Θ λ (x) = -1 + q Θ λ (x/λ) (-1 + q)q Θ λ (x/λ)-1 = q(1 -q -Θ λ (x/λ) ) -1 + q .
From here (or using (3.6)) it is possible to extract the moments of Θ λ :

1

, 1 1 -q , λ (1 -q) (λ -1) , λ 2 (λ + 2) (λ + 1) (λ -1) 2 (1 -q) , λ 3 λ 3 + 5 λ 2 + 6 λ + 6 (λ + 1) (λ -1) 3 (λ 2 + λ + 1) (1 -q) , • • •
as well as drawing the empirical density of the law L(W (λ) | W (λ) > 0): We were not able to go further in the description of this distribution. Open question 1. Find a simple description of each of the limit processes (W (λ), λ ∈ I) in the binary, geometric, and Poisson cases.

Other cases can be interesting too, but we can expect that these three ones are likely to be the simplest, since they are the simplest models of GW trees.

Exact computations of the moments of W n and of W

In this short section, we would like to discuss the fact that the moments of W n and of W can be computed (when they exist), and a closed formula for them can be derived. However, the formulae Taking into account that E(W n (λ )) = 1 simplifies a bit the formulas: some products of monomials of total degree 4 can be simplified. For example, E(W n (λ 1 ) 3 )E(W n (λ 1 )) = E(W n (λ 1 ) 3 ).

Applying (I-III) when calculating M n+1 (0, 2, 2) = E((∆W n (λ 2 )) 2 (∆W n (λ 3 )) 2 ), we can write this monomial as a linear combination of products of monomials of total degree 4. Because of the simplifications due to E(W n (λ )) = 1, we sometimes see products of smaller total degree. For example, some of the products appearing when writing M n+1 (0, 2, 2) in term of M n (0, 2, 2) are, among others M n (1, 3, 0), M n (0, 3, 0), M n (1, 1, 0), M n (0, 1, 1), and M n (0, 2, 0) 2 . We give a name P (i) n to each of the product of monomials that arises in this sum: for example, set P (1) 2 , etc (we ignore the algebraic relation that can link these products of moments). In the end, one can construct a basis of 41 of these products of monomials that allows to linearise the recursion of M n (0, 2, 2) as in (III). If one defines V n as the vector whose coordinates are the P (j) n , we eventually get that

n = M n (1, 2, 1), P (2) n = M n (0, 2, 0), P (3) n = M n (0, 2, 0)
V n = AV n-1 + U,
for an explicit matrix A (whose coefficients are functions of the Fac ∆ d 1 ,d 2 ,d 3 's) and a vector U whose coordinates are the P (j) 0 . The 41 × 41 matrix A can be diagonalised (in fact, up to relabelling the P (i) n 's, it is triangular). This provides some explicit formulae for all P (i) n 's by the standard mean of linear algebra. These formulae are explicit but giant! several pages in standard A4 format are needed to write down their expression: at the end, of course, all moments of interests can be expressed in terms of the moments of (X(λ 1 ), X(λ 2 ), X(λ 3 )).

The limiting moments P can also be computed: they are solution of

P = AP + U,
and since A is diagonalisable, they can be exactly computed, although again, the formula obtained doing this is huge and hard to manipulate.

Remaining proofs 4.1 Proof of Lemma 1.3

Since X is almost surely non-decreasing and integer-valued, one has

X(λ 1 ) ≤ X(λ 2 ) ≤ X(λ 3 ). ( 4.1) 
• We start by proving ((1.7) and (1.8)) ⇒ ((1.9) and (1.10)). If (1.8) holds, then

E (∆X(λ 2 )) 2 (∆X(λ 3 )) 2 = 2 y=1 2 z=1 Fac ∆ 0,y,z (λ 1 , λ 2 , λ 3 ) ≤ 4(λ 3 -λ 1 ) 2κ .
So that (1.9) holds for C = 4C. Now, to prove that (1.10) holds, it suffices to express E((∆X(λ 3 ))(1+ X 3 3 )) in terms of the factorial moments appearing in (1.7) and (1.8), which is possible:

E((∆X(λ 3 ))X(λ 3 ) 3 ) = Fac ∆ 0,0,4 + Fac ∆ 0,0,1 + Fac ∆ 3,0,1 + Fac ∆ 0,3,1 + 7(Fac ∆ 1,0,1 + Fac ∆ 0,0,2 + Fac ∆ 0,1,1 ) +12(Fac ∆ 1,1,1 + Fac ∆ 0,1,2 + Fac ∆ 1,0,2 ) + 6(Fac ∆ 1,1,2 + Fac ∆ 0,0,3 + Fac ∆ 0,2,1 + Fac ∆ 2,0,1 ) +3(Fac ∆ 0,1,3 + Fac ∆ 2,1,1 + Fac ∆ 1,2,1 + Fac ∆ 2,0,2 + Fac ∆ 0,2,2 + Fac ∆ 1,0,3 ) (4.2) 
(This formula can be checked by hand; it follows from the fact that one can write x 3 3 (x 3 -x 2 ) on the basis formed by ( 3

i=1 n i j=0 (x i -j), -1 ≤ n 1 , n 2 , n 3 ≤ 2)
, and it can be computed automatically, using a computer algebra system).

• We now prove that ((1.9) and (1.10)) ⇒ ((1.7) and (1.8)). First, if Y is a random variable taking non-negative integer values, then E(Y 2 ) ≥ E(Y ) and E(Y 2 ) ≥ E(Y (Y -1)), and thus (1.9) implies (1.8) straightforwardly. Moreover, by (4.1),

C (λ 3 -λ 2 ) κ ≥ E ∆X(λ 3 )X(λ 3 ) 3 ≥ E (X(λ 1 ) j 1 X(λ 2 ) j 2 X(λ 3 ) j 3 )∆X(λ 3 ) (4.3)
for all non-negative j 1 , j 2 , j 3 such that 0 ≤ j 1 +j 2 +j 3 ≤ 3 (note that when j 1 +j 2 +j 3 = 0, the righthand side is zero). Each element Fac ∆ x,y,z (λ 1 , λ 2 , λ 3 ) with z ≥ 1 appearing in (1.7) can be expanded as a sum of terms of the form E[X(λ 1 ) j 1 X(λ 2 ) j 2 X(λ 3 ) j 3 ∆X(λ 3 )] (we write each ∆X(λ 3 ) and ∆X(λ 2 ) except one ∆X(λ 3 ) as a difference and then use distributivity to expand). Therefore, (4.3) implies that Fac ∆

x,y,z (λ 1 , λ 2 , λ 3 ) ≤ C(λ 3 -λ 2 ) κ for all z ≥ 1. It only remains to treat the case z = 0; in this case, we apply (1.10) to (λ 1 , λ 2 ) instead of (λ 2 , λ 3 ) (this is allowed because λ 3 and λ 2 in (1.10) are just any numbers satisfying a ≤ λ 2 ≤ λ 3 ≤ b). This gives E((∆X(λ 2 ))X(λ 2 ) 3 ) ≤ C (λ 2 -λ 1 ) κ . From here, one can use the same arguments as in the case z ≥ 1, to prove that (1.7) holds when z = 0 and y ≥ 1.

Proof of Proposition 3.1

As already mentioned, the subtrees of the root are themselves independent GW trees, and this leads us, notably to (2.1), which says that W n+1 (λ

i ) = 1 λ i X(λ i ) i=1 W (i) n (λ i ), jointly for 1 ≤ i ≤ d. Hence, W n (λ m ) = m k=1 ∆X(λ k ) j=1 W (j,k) n-1 (λ m ) λ m , =⇒ d m=1 x m W n (λ m ) = d k=1 ∆X(λ k ) j=1 d m=k x m W (j,k) n-1 (λ m ) λ m
The (W

(j,k) n (λ m ), 1 ≤ m ≤ d)
are independent and this is true also, conditionally on the ∆X(λ ). Hence taking in this last formula the operator E(exp(i •)), the conclusion follows, as usual, by conditioning first by the values of (∆X(λ i ), 1 ≤ i ≤ d).

For the second statement, recall that, for all λ ∈ I, W n (λ) → W (λ) almost surely as n → +∞. This implies that Φ 

Proof of Lemma 2.4

The following proof is original even if we suspect it may exist elsewhere in the literature.

First, for Ξ a D[a, b] process, denote by DP(Ξ) the set of discontinuity points of Ξ, that is t ∈ DP(Ξ) if Ξ(t) = Ξ(t -). According to Billingsley [6, p138], P(t ∈ DP(Ξ)) > 0 is possible for at most countably many t.

As a consequence there exists a deterministic countable dense set S, such that the set of continuity point of Ξ contains S almost surely.

Under the hypothesis of the lemma, the statement holds in distribution (by Billingsley [6, Section 12]): the sequence of processes (T n ) converges in distribution in D ([a, b]), and the FDD of the limit process T at its continuity points are determined, on a dense subset of it, by taking the limit of the FDD of T n . To prove convergence in probability, we need more.

From the hypothesis, T n converges to T on a dense subset of [a, b]. We want to prove that P(d(T n , T ) ≥ ε) -→ n→+∞ 0 for any fixed ε > 0, where T is the càdlàg modification of T ,

d(f, g) = inf max{ -Id ∞ , f -g • ∞ }
where the infimum is taken on the set of strictly increasing and continuous functions such that The intervals [λ i-1 , λ i ) defined by the (λ i ) will be called (λ i )-intervals. Choose a small ε > 0 and then, a δ > 0 small enough, and N 1 large enough such that for any n ≥ N 1 P(w (δ, T n ) ≥ ε) < ε and P(w (δ, T ) ≥ ε) < ε. Consider ( x i , 0 ≤ i ≤ K) the list obtained by sorting increasingly the sequence (x i , 0 ≤ i ≤ K).

Since consecutive elements of ( x i , 0 ≤ i ≤ K) are at most at distance δ, when consecutive elements of the list (λ i ) (resp. (t i )) are at least at distance δ, between two consecutive x i and x i+1 can lie at most one element of (λ j ), and at most one of (t j ).

The main idea now is that T n (resp. T ) may have big jumps of size > ε at some of the elements of (λ j ) (resp. (t j )) but since T n and T are close at the (x j ) and have small variations between the (λ j ) (resp. (t j )), we can find a function close to the identity to synchronize the big jumps. The details are as follows.

We define a suitable function by working successively in each of the intervals [ x i , x i+1 ]. Since the argument is the same in each interval, we choose an index i ∈ {0, • • • , K -1}, we write (x, x ) instead of ( x i , x i+1 ), and work in [x, x ]. Three cases are possible: (a) there is no element of (λ j ) or of (t j ) in [x, x ], (b) there is a single element of (λ j ) and a single element of (t j ) in [x, x ], (c) there is a single element of (λ j ) in [x, x ] but none of (t j ), or vice-versa. Case (b): Let λ denote the element of the list (λ j ) lying in [x, x ], and by t the element of (t j ) lying in [x, x ]. Also let λ p and λ f denote the elements of (λ j ) preceding and following λ, and t p and t f denote the element preceding and following t in (t j ).

The jump of T n at λ and the one of T at t can be huge compared to ε, but they are almost equal. Indeed, since |T n (x)-T (x)| ≤ ε and |T n (x )-T (x )| ≤ ε, before both jumps and after both jumps, the two processes T n and T are close to each other. More precisely, w([λ, x ], T n ) ≤ w([λ, λ f ), T n ) ≤ ε, w([t, x ], T ) ≤ ε, w([x, λ), T n ) ≤ ε, and w([x, t), T ) ≤ ε. This implies that |T n (y) -T ( (y))| ≤ 10ε. (4.9)

Case (c): we take again (y) = y on [x, x ]. By symmetry assume that there is an element λ of (λ j ) in [x, x ] but none of (t j ). In this case, by a similar argument to Case (b), one can see that the jump of T n at λ must be smaller than 4ε, and the conclusion follows. We thus have max y∈[x,x ] |T (y) -T (x)| ≤ 6ε.

In total, we showed that on [x, x ] max{| (u) -u|, u ∈ [x, x ]} ∨ max{|T n (y) -T ( (y))|, y ∈ [x, x ]} ≤ δ + 10ε so that by (4.7), this is smaller than 11ε. This implies that d(T n , T ) ≤ 10ε with probability at least 1 -2ε. 

Theorem 2 . 5 .

 25 If (HReg) and (HMom) hold, then for all [a, b] ⊆ I, there exists a constant

Figure 3 -

 3 Figure 3 -Two refined partitions of, respectively, the top and bottom examples in Fig. 2.

  to have 4 terms of type S 1 in the same part of the refined partition. This only occurs in the development of the T -moment E(T 1 , T 1 , T 1 , T 1 ), and only for d 1 = 1, d 2 = d 3 = 0. Thus, from (2.14), we get

Figure 4 -

 4 Figure 4 -Empirical derivation of the density of R, for λ = 1.2, λ = 1.5, and λ = 1.8.

Proposition 3 . 5 .

 35 are independent Poisson random variables with respective parameters λ k -λ k-1 . The process Poi satisfies (HReg) and (HMom), so that Theorem 1.4 applies when the offspring process X = Poi, on I Poi = (1, +∞).

Figure 7 -

 7 Figure 7 -Empirical derivation of the density of L(W (λ) | W (λ) > 0) for λ = 1.2, λ = 1.8, and λ = 2.5.

Figure 8 -

 8 Figure 8 -Three simulations of the process W , when X is the process Poi.

  d converges simply, as n → +∞ to the Fourier transform Φ λ 1,d of a d dimensional distribution (the distribution of (W (λ 1 ), . . . , W (λ d ))). To conclude, it suffices to observe that x 1, d → f ∆ λ 1,d (x 1, d ) is continuous on B(0, 1) n which contains the image set of the Φ (n) λ 1,d .

  (a) = a and (b) = b, and Id(y) = y on [a, b]. Since the sequence (T n , n ≥ 0) is tight in D([a, b]), for each ε > 0, lim δ→0 + lim sup nP(w (δ, T n ) ≥ ε) = 0 (4.4)where for a function f :[a, b] → R, w (δ, f ) = inf (λ i ) max i w([λ i-1 , λ i ), f ) (4.5) and w([c, d), f ) = sup{|f (x) -f (y)|, c ≤ x, y < d}. The infimum in (4.5) is taken on the set of lists (λ 0 , • • • , λ v )where v is an integer, and the list satisfies: λ 0 = a, λ v = b, and for each i ∈ {0, • • • , v -1}, λ i+1 -λ i > δ (this is called a δ-sparse sequence).

(4. 6 )

 6 This is possible by(4.4), and since T is in D[a, b]. We may and will assume thatδ ≤ ε. (4.7)Now, take (x k , k ≥ 0) a sequence in [a, b] such that {x k , k ≥ 0} is dense, and such that, the points of {x k , k ≥ 0} are a.s. continuity points of T . Take a K large enough, such that the connected components of[a, b] \ {x 0 , • • • , x K } have length < δ; this is possible since {x k , k ≥ 0} is dense. Since (T n (x 1 ), • • • , T n (x K )) x 1 ), • • • , T (x K )), there exists N 2 such that for any n ≥ N 2 , max 1≤i≤K |T n (x i ) -T (x i )| ≤ ε. (4.8)Take any (fixed) n ≥ max{N 1 , N 2 }; the eventE ε,n = {w (δ, T n ) ≤ ε} ∩ {w (δ, T ) ≤ε} has probability at least 1 -2ε by (4.6). When this event arises, there exists two δ-sparse sequences (λ i ) and (t i ) such that max i w([λ i-1 , λ i ), T n ) ≤ 2ε and max i w([t i-1 , t i ), T ) ≤ 2ε.

  Case (a): Both x and x are in the same (λ j )-interval [λ k , λ k+1 ) and in the same (t j ) interval [t , t +1 ) (for some k and ). Hence, w([x, x ], T n ) ≤ w([λ k , λ k+1 ), T n ) ≤ ε. Similarly, w([x, x ], T ) ≤ ε. Since |T n (x) -T (x)| ≤ ε by (4.8), we get sup y∈[x,x ] |T n (y) -T (λ(y))| = sup |T n (y) -T (λ(y))| ≤ 3ε.

  |T n (λ) -T (t)| ≤ 4ε, |T n (λ -) -T (t -)| ≤ 4εwhere left limit is denoted by the "minus exponent", which implies that|(T n (λ) -T n (λ -)) -(T (t) -T (t -)| ≤ 8ε.We need to use to synchronize the jump: take as the linear function by part that sends -[x, t] linearly onto [x, λ], and-[t, x ] linearly onto [λ, x]. Globally, since |x -x | ≤ δ, | (y) -y| ≤ δ.We have on [x, x ], max y∈[x,x ] 

1 A 1 . 3 1 . 6 1 . 7 10 23

 113161710 GW random field: definition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Comments on Kesten and Stigum's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 A motivational example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Discussion of the related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Plan of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proof of Theorem 1.4 10 2.1 Characterisation of the limiting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Convergence in D(I, R + ): tightness under moments assumptions . . . . . . . . . . . . . . . . 12 2.3 The limiting process satisfies Condition (ii) of Proposition 2.2 . . . . . . . . . . . . . . . . . . 13 2.4 The sequence (W n ) satisfies Condition (iii) of Proposition 2.2 . . . . . . . . . . . . . . . . . . 14 2.5 Algebraic expansion of E(∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 3 ) 2 ) . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Expansion of E(∆W n+1 (λ 2 ) 2 ∆W n+1 (λ 2 ) 3 ): classification of the contributions . . . . . 19 2.5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.3 Proof of Lemma 2.9(ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.4 Proof of Lemma 2.9(iii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Explicit calculations using Fourier transforms 27 3.1 The fixed-point equation in terms of Fourier transforms . . . . . . . . . . . . . . . . . . . . . 28 3.2 Explicit computations using Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 More examples of processes of GW processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 The binary coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 The geometric coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.3 The Poisson coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Exact computations of the moments of W n and of W . . . . . . . . . . . . . . . . . . . . . . . 36 4 Remaining proofs 38 4.1 Proof of Lemma 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Acknowledgements

We are grateful to the anonymous reviewers for their careful reading of our manuscript and their suggestions and remarks.

CM is grateful to EPSRC for support through the fellowship EP/R022186/1.

we obtain are so complicated that, despite important efforts, we were not able to find a way to present them in the paper: some matrices with large size and with involved coefficients enter into play in the formula expressing the moments E(∆W n (λ 2 ) 2 ∆W n (λ 3 ) 2 ) in terms of the moments of (X(λ 1 ), X(λ 2 ), X(λ 3 )). The obtained formulas are exact but we were unable to extract from them a simple criterion for the tightness.

We sketch the method allowing to get these close formulae: in principle, they can be used to treat some cases that are not covered by our Theorem 1.4 ((HMom) was derived working with inequalities, and it probably does not cover all the cases for which E((∆W n (λ 2 )) 2 (∆W n (λ 3 )) 2 ) ≤ C(λ 3 -λ 1 ) 2κ ). We focus on the 3-dimensional moments, but the same method applies for any higher-dimensional moments.

We just sketch the ideas: (I) A non-linear recursion formula: Using (2.8), we write

) can thus be written as

(the inequality between vectors means non-strict inequality coordinate by coordinate and strictly smaller on at least one entry).

We thus get a recursive equation that gives

) and of lower order moments M n (d 1 , d 2 , d 3 ). This means that, in principle, one can calculate M n (k 1 , k 2 , k 3 ) recursively, for arbitrary n and (k 1 , k 2 , k 3 ). Unfortunately, the recursion formula is not linear in the lower order moments, which makes this computation more complex.

(II) Conservation of degrees: When one uses Lemma 2.8 to expand M n+1 (k 1 , k 2 , k 3 ), the total degree in each multinomial on the right-hand side is k 1 + k 2 + k 3 . Similarly, if one uses Lemma 2.8 to expand, e.g., M n+1 (d 1 , d 2 , d 3 )×M n+1 (d 1 , d 2 , d 3 ) (applying Lemma 2.8 to both terms), then, after expansion, the total degree of each multinomial appearing in the expansion is

In other words, the total degree of a multinomial is left unchanged by applying Lemma 2.8 to all its monomials. (This is true in all generality, even when multiplying more than two monomials.) (III) Linearising the recursion formula: A consequence of (I) and (II) is that it is possible to linearise the induction formula of (I). The idea is that, although the formula for M n+1 (d 1 , d 2 , d 3 ) does not belong to the set of linear combinations of the

, it belongs to the set of linear combinations of their products. Furthermore, for a fixed value of d 1 + d 2 + d 3 , there are finitely many of these products. We thus take all these possible products (i.e. all monomial or product of monomials with total degree d 1 + d 2 + d 3 ) as a basis for this linear representation. (In fact, we can just sequentially add the products into the basis while running the computation to construct the smallest vector space that contains all necessary moments, and that is, somehow, stable by our rewriting rules.)