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Volume properties of high-dimensional Orlicz balls

We prove asymptotic estimates for the volume of families of Orlicz balls in high dimensions. As an application, we describe a large family of Orlicz balls which verify a famous conjecture of Kannan, Lovász and Simonovits about spectral gaps. We also study the asymptotic independence of coordinates on uniform random vectors on Orlicz balls, as well as integrability properties of their linear functionals.

Let ε > 0. As above, since Ψ ≥ 0, Ψe -λΨ e -λΨ ≤ ε + Ψ>ε Ψe -λΨ e -λΨ .

Next, using x ≤ e x and for λ > 2,

and e -λΨ ≥ Ψ≤ε/2 e -λΨ ≥ e -λε/2 Vol({x; Ψ(x) ≤ ε/2}).

Since Ψ(0) = 0 and Ψ is continuous, the latter quantity is positive. Combining the above three estimates, we get

Letting λ → ∞ yields lim sup λ→∞ R(λ) ≤ ε, for all ε > 0.

Lebesgue spaces play a central role in functional analysis, and enjoy remarkable structural properties. A natural extension of this family is given by the class of Orlicz spaces, which also enjoy a wealth of remarkable properties, see e.g. [START_REF] Rao | Theory of Orlicz spaces[END_REF]. Similarly, for p ≥ 1, the unit balls of R n equipped with the ℓ p -norm, often denoted by B n p = {x ∈ R n ; i |x i | p ≤ 1}, are well studied convex bodies, and usually the first family of test cases for new conjectures. Their simple analytic description allows for many explicit calculations, for instance of their volume. A simple probabilistic representation of uniform random vectors on B n p , given in terms of i.i.d. random variables of law exp(-|t| p ) dt/K p is available, see [START_REF] Barthe | A probabilistic approach to the geometry of the l n p -ball[END_REF]. It allows to investigate various fine properties of the volume distribution on B n p . The study of general Orlicz balls is more difficult, due to the lack of explicit formulas, in particular for the volume of the set itself.

In this note, we show that probabilistic methods allow to derive precise asymptotic estimates of the volume of Orlicz balls when the dimension tends to infinity, and rough estimates which are valid in every dimension. This allows us to complement a result of Kolesnikov and Milman [START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF] on the spectral gap of uniform measures on Orlicz balls, by giving an explicit description of the range of parameters where their result applies, see Section 5. In Section 6, we show, among other results, the asymptotic independence of a fixed set of coordinates of uniform random vectors on some families of Orlicz balls of increasing dimensions. This is a natural extension of a classical observation (going back to Maxwell) about uniform vectors on Euclidean spheres and balls. The last section deals with properties of linear functionals of random vectors on Orlicz balls.

After this research work was completed, we learned by J. Prochno of his independent work [START_REF] Kabluchko | The maximum entropy principle and volumetric properties of Orlicz balls[END_REF] with Z. Kabluchko about similar volume asymptotics for Orlicz balls. Their paper uses sophisticated methods from the theory of large deviations, which have the potential to give more precise results for a given sequence of balls in increasing dimensions. Our approach is more elementary and focuses on uniform convergence over some wide range of parameters, as required by our applications to the spectral gap conjecture.

Notation and statement

Throughout this paper, a Young function is a non-negative convex function on R which vanishes only at 0. Note that we do not assume symmetry at this stage. For a given Young function Ψ : R → R + , denote

B n Ψ = x ∈ R n : n i=1 Ψ(x i ) ≤ 1 the corresponding n-dimensional Orlicz ball. Our aim is to estimate the asymptotic volume of B n Ψ/En = {x ∈ R n : n i=1 Ψ(x i ) ≤ E n } for relevant sequences E n of linear order in the dimension.
Let λ > 0. Consider the following probability measure on R,

µ λ (dt) = e -λΨ(t) dt Z λ ,
with Z λ being a normalization constant. Let X be a random variable with the distribution

µ λ . Set m = m λ = EΨ(X), σ 2 = σ 2 λ = Var Ψ(X) . Our aim is to prove Theorem 1.1. Consider a Young function Ψ and λ > 0. Let n ≥ 1 be an integer and α ∈ R. Set E := m λ n + ασ λ √ n, then Vol B n Ψ/E = (Z λ e λm λ ) n 1 λσ λ √ 2πn e -α 2 /2 e λσ λ √ nα (1 + O(n -1/2 )) = Z n λ e λE λσ λ √ 2πn e -α 2 /2 (1 + O(n -1/2 )),
where the term O(n -1/2 ) depends on λ, Ψ and, non-decreasingly in |α|.

Corollary 1.2. Consider a Young function Ψ and λ > 0. Let (a n ) n≥1 be a bounded sequence, and

E n := m λ n + a n √ n, Then when the dimension n tends to ∞, Vol B n Ψ/En ∼ Z n λ e λEn λσ λ √ 2πn e -a 2 n /(2σ 2 λ ) .
Let us mention that the above results can be applied to B n Ψ/En when E n = mn + a n √ n where m > 0 is fixed and (a n ) n is a bounded sequence. Indeed the next lemma ensures the existence of a λ > 0 such that m = m λ . Lemma 1.3. Let Ψ as above. Then the map defined (0, +∞) to (0, +∞) by

λ → R(λ) := Ψ(t)e -λΨ(t) dt e -λΨ(t) dt is onto.
Proof. By hypothesis, exp(-λΨ) < ∞ for all λ > 0. This fact allows us to apply the dominated convergence theorem, and to show that the ratio R(λ) is a continuous function of λ > 0. Let us show that lim λ→0 + R(λ) = ∞ and lim λ→∞ R(λ) = 0. The claim will then follow by continuity. Consider an arbitrary K > 0. Since Ψ ≥ 0,

Ψe -λΨ e -λΨ ≥ K Ψ≥K e -λΨ e -λΨ = K 1 -Ψ<K e -λΨ e -λΨ ≥ K 1 - Vol({x; Ψ(x) < K}) e -λΨ .
By monotone convergence, lim λ→0 + e -λΨ = ∞. Hence, lim inf λ→0 + R(λ) ≥ K. Since this holds for every K > 0, we conclude that lim λ→0 + R(λ) = ∞.

Probabilistic formulation

We start with a formula relating the volume with an expectation expressed in terms of independent random variables. Let λ > 0. Let (X i ) i∈N * be i.i.d. r.v.'s with the distribution µ λ (dt) = e -λΨ(t) dt/Z λ . Recall that m λ = EΨ(X i ) and σ 2 λ = Var Ψ(X i ) . We denote by S n the normalized central limit sums:

S n = 1 σ λ √ n n i=1 (Ψ(X i ) -m λ ).
With this notation, we get the following representation for any λ > 0

Vol B n Ψ/E = 1 { n i=1 Ψ(x i )≤E} dx = 1 { n i=1 Ψ(x i )≤E} Z n λ e λ n i=1 Ψ(x i ) n i=1 µ λ (dx i ) = Z n λ E e λ n i=1 Ψ(X i ) 1 { n i=1 Ψ(X i )≤E} = (Z λ e λm λ ) n E e λσ λ √ nSn 1 {Sn≤ E-m λ n σ λ √ n } . (2.1)
By the Central Limit Theorem, S n converges in distribution to a standard Gaussian random variable when n tends to infinity. Such Gaussian approximation results allow to estimate the asymptotic behaviour of the above expectations. Nevertheless, a direct application of the CLT or the Berry-Esseen bounds does not seem to be sufficient for our purposes. A more refined analysis is required, built on classical results and techniques on the distribution of sums of independent random variables which go back to Cramér [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] (see also [START_REF] Bahadur | On deviations of the sample mean[END_REF]). Theorem 1.1 is a direct consequence of the following one, applied to Y i = (Ψ(X i )m λ )/σ λ . For a random variable V , let P V and ϕ V denote the distribution and the characteristic function.

Theorem 2.1. Let (Y i ) i≥1 be a sequence of i.i.d. real random variables such that E|Y i | 3 < ∞, EY i = 0 and Var(Y i ) = 1. Suppose ε, δ > 0 are such that so-called Cramér's condition is satisfied for Y i :

|ϕ Y i (t)| ≤ 1 -ε for |t| > δ.
(2.2)

For n ≥ 1, let S n = (Y 1 + • • • + Y n )/ √ n. Then for ℓ > 0 and α ∈ R, E e ℓ √ n Sn 1 Sn≤α = 1 ℓ √ 2πn e ℓ √ nα-α 2 /2 1 + O(n -1/2 ) .
Remark 2.2. The term O(n -1/2 ) involves an implicit dependence in ℓ, α and the law of Y 1 .

For n ≥ 16ℓ 2 + (2|α| + 1) 2 ℓ -2 , our argument provides a term O(n -1/2 ) which depends only on (ℓ, δ, 1/ε, ν 3 := E|Y i | 3 , |α|). Moreover the dependence is continuous in the parameters, and non-decreasing in all the parameters but ℓ. This allows for uniform bounds when the parameters are in compact subsets of their domain.

Remark 2.3. Note that non-trivial ε and δ exist by the Riemann-Lebesgue lemma as soon has the law of Y i is absolutely continuous.

Probabilistic preliminaries

We start with some useful lemmas. The first one is a key estimate for quantitative central limit theorems, quoted from Petrov's book [START_REF] Petrov | Sums of independent random variables[END_REF].

Lemma 3.1 ([18], Lemma V.2.1, p. 109). Let X 1 , . . . , X n be independent random variables,

EX j = 0, E|X j | 3 < ∞ (j = 1, . . . , n). Denote B n = n j=1 EX 2 j , L n = B -3/2 n n j=1 E|X j | 3 and S n = B -1/2 n n j=1 X j . Then |ϕ Sn (t) -e -t 2 /2 | ≤ 16L n |t| 3 e -t 2 /3
for |t| ≤ 1 4Ln . Lemma 3.2 ([18], Lemma I.2.1, p. 10). For any characteristic function ϕ,

1 -|ϕ(2t)| 2 ≤ 4(1 -|ϕ(t)| 2 )
holds for all t ∈ R. Lemma 3.3. Let (S n ) be as in Theorem 2.1. Let T be independent of (S n ) and assume that its characteristic function ϕ T is Lebesgue integrable. Then for all n ≥ 1, the density of S n + T n is bounded by a number

C = C(1/ε, δ, ν 3 , ϕ T 1 ), which is non-decreasing in each of its parameters. Proof of Lemma 3.3. Since ϕ Sn+T /n = ϕ Sn ϕ T (•/n) is Lebesgue integrable, the inversion formula ensures that the density of S n + 1 n T at x equals g Sn+ 1 n T (x) = 1 2π ∞ -∞ e -itx ϕ Sn (t)ϕ T t/n dt = 1 2π ∞ -∞ e -itx e -t 2 /2 ϕ T t/n dt + 1 2π ∞ -∞ e -itx (ϕ Sn (t) -e -t 2 /2 )ϕ T t/n dt ≤ 1 √ 2π + 1 2π ∞ -∞ |ϕ Sn (t) -e -t 2 /2 | |ϕ T t/n | dt.
To bound the last integral, we apply Lemma 3.1 with B n = n and L n = ν 3 n -1/2 . We get

g Sn+T /n (x) ≤ 1 √ 2π + 1 2π |t|≤ √ n 4ν 3 16ν 3 √ n |t| 3 e -t 2 /3 dt + 1 2π |t|> √ n 4ν 3 (|ϕ Sn (t)| + e -t 2 /2 )|ϕ T t/n | dt ≤ 1 √ 2π + 72ν 3 π √ n + 1 2π |t|> √ n 4ν 3 |ϕ Sn (t)| |ϕ T t/n | dt I + 1 2π |t|> √ n 4ν 3 e -t 2 /2 dt.
For integral (I) from the last line we use (2.2) which implies

|ϕ Sn (t)| = ϕ Y 1 t/ √ n n ≤ (1 -ε) n for |t| ≥ δ √ n.
However, δ might be larger than 1 4ν 3 , i.e. 4ν 3 δ ≥ 1. If this is so, we use Lemma 3.2 on characteristic functions: since (2.2) implies

1 -|ϕ Y i (t)| 2 ≥ ε for |t| ≥ δ, Lemma 3.2 implies that for any non-negative integer k, 1 -|ϕ Y i (t)| 2 ≥ 4 -k ε for |t| ≥ 2 -k δ. Taking k = ⌈log 2 (4ν 3 δ)⌉) implies 2 -k δ ≤ 1 4ν 3 and 4 -k ≥ 1 (8ν 3 δ) 2 and hence |ϕ Y i (t)| 2 ≤ 1 - ε (8ν 3 δ) 2 for |t| ≥ 1 4ν 3 .
In any case, we obtain that

|ϕ Sn (t)| ≤ 1 - ε max(1, (8ν 3 δ) 2 ) n/2 for |t| ≥ √ n 4ν 3 . (3.1)
Using the above we estimate the integral (I) as follows. Using the rough estimate

(1 -x) m = e m log(1-x) ≤ e -mx = 1 e mx ≤ 1 mx ,
valid for any m > 0 and x ∈ (0, 1), we get

I ≤ 1 - ε max(1, (8ν 3 δ) 2 ) n/2 n ∞ 0 |ϕ T (u)| du ≤ n 2 max(1, (8ν 3 δ) 2 ) nε ϕ T 1 ≤ 2 ϕ T 1 1 + (8ν 3 δ) 2 ε .
Finally we obtain that the density of

S n + 1 n T is bounded by C 1 + C 2 ν 3 + C 3 ϕ T 1 1+(ν 3 δ) 2 ε for some constants C 1 , C 2 , C 3 > 0.
Denote by φ the density of the standard normal distribution on R and let Φ be its cumulative distribution function. Our last two preliminary statements are easy consequences of the equality e γt φ(t) = e γ 2 /2 φ(tγ) satisfied by the Gaussian density Lemma 3.4. Let Z be a standard normal random variable. For any Borel set A ⊂ R,

Ee γZ 1 Z∈A = e γ 2 /2 P(Z ∈ A -γ).
(3.2) Lemma 3.5. For any s > 0 and α ∈ R, and λ such λs

-α s > 1, it holds ∞ 0 λe -λx 1 √ 2πs e -(x-α) 2 2s 2 dx = 1 √ 2πs e -α 2 2s 2 1 + O 1 + |α| s λs -α s .
In particular if s and α stay bounded in the sense that s ∈ [1/S, S], |α| ≤ A holds for some A, S > 0, then for λ > 2AS -2 + S -1 , the last factor simplifies to

1 + O A,S 1 λ .
Proof. Using a standard Gaussian random variable Z, we rewrite the left-hand side as

T := ∞ 0 λe -λx 1 √ 2πs e -(x-α) 2 2s 2 dx = λEe -λ(sZ+α) 1 Z>-α s = λe -λα e λ 2 s 2 /2 P Z > λs - α s = λe -α 2 2s 2 e (λs-α s ) 2 /2 1 -Φ λs - α s
where the second equality follows from (3.2). Next we use the classical bound, for t > 0,

1 t ≥ √ 2π e t 2 /2 1 -Φ(t) ≥ 1 √ t 2 + 2 , which implies that for t > 1, √ 2π te t 2 /2 1 -Φ(t) = 1 + O(1/t 2 ). When λs -α s > 1 we obtain that √ 2πs e α 2 2s 2 T = λs λs -α s 1 + O 1 (λs -α s ) 2 = 1 + α s λs -α s • 1 + O 1 (λs -α s ) 2 = 1 + O 1 + |α| s λs -α s .
The case when α and s are bounded readily follows.

4 Proof of Theorem 2.1

Our aim is to show that for any α ∈ R,

I = J × (1 + O(n -1/2
)) where

I = Ee ℓ √ nSn 1 {Sn≤α} and J = 1 ℓ √ 2πn e ℓ √ nα e -α 2 /2 .
Let Z be a standard Gaussian random variable, independent of the Y i 's. The first step is to introduce the modified quantity

I 2 = Ee ℓ √ n(Sn+n -1 Z) 1 {Sn+n -1 Z≤α} ,
and to check that it is enough for our purpose to establish

I 2 = J × (1 + O(n -1/2
)). In order to do so we estimate the difference between I and I 2 . By the triangle inequality:

|I 2 -I| ≤ Ee ℓ √ nSn |e ℓn -1/2 Z -1|1 {Sn≤α} + Ee ℓ √ n(Sn+n -1 Z) 1 {Sn+n -1 Z≤α} -1 {Sn≤α} = I 3 + I 4 + I 5 ,
where

I 3 = Ee ℓ √ nSn |e ℓn -1/2 Z -1|1 {Sn≤α} I 4 = Ee ℓ √ n(Sn+n -1 Z) 1 {α<Sn≤α-n -1 Z} I 5 = Ee ℓ √ n(Sn+n -1 Z) 1 {α-n -1 Z<Sn≤α} .
By independence

I 3 = I • E|e ℓn -1/2 Z -1|. Next, we use that for t ∈ [0, 1], E|e tZ -1| ≤ E e 2tZ -2e tZ + 1 = e 2t 2 -2e t 2 /2 + 1 ≤ 3t.
Thus, under the hypothesis n ≥ 16ℓ 2 we obtain that

I 3 ≤ 3ℓ √ n I ≤ 3I/4.
For the term I 4 , we introduce T = U + U ′ where U and U ′ are independent random variables uniformly distributed in (-1, 1) and note that ϕ T (u) = (sin(u)/u) 2 is Lebesgue integrable. Since |T | ≤ 2 a.s.,

I 4 ≤ e ℓ √ nα ∞ 0 P(α < S n ≤ α + n -1 x)φ(x) dx ≤ e ℓ √ nα ∞ 0 P(α -2/n < S n + T /n ≤ α + (x + 2)/n)φ(x) dx.
By Lemma 3.3, S n + T /n has a density which is bounded by a constant, say C > 0. Then

I 4 ≤ e ℓ √ nα ∞ 0 C x + 4 n φ(x) dx = C n e ℓ √ nα (π -1/2 + 2) = C √ n • ℓ √ 2π e α 2 /2 J • (π -1/2 + 2) = J • O(n -1/2 ).
The term I 5 is estimated in a similar way:

I 5 ≤ e ℓ √ nα ∞ 0 e ℓxn -1/2 P(α -x/n < S n ≤ α)φ(x) dx ≤ e ℓ √ nα ∞ 0 e ℓxn -1/2 P(α -(x + 2)/n < S n + T /n ≤ α + 2/n)φ(x) dx ≤ e ℓ √ nα ∞ 0 e ℓx C x + 4 n φ(x) dx = J • O(n -1/2 ).
This concludes the first step of the proof, which guarantees that for n ≥ 16ℓ 2

|I 2 -I| ≤ 3ℓ √ n I + O 1 √ n J . (4.1)
Our next task is to prove that I 2 = J × (1 + O(n -1/2 )). We use the Fourier transform approach. It relies on the Parseval formula, which ensures that whenever random variables V and W have square integrable densities g V and g W , their characteristic functions are also square integrable and the following relation holds:

∞ -∞ g V (x)g W (x) dx = 1 2π ∞ -∞ ϕ V (t)ϕ W (t) dt. (4.2) 
Given n, set W = α -(S n + 1 n Z). Then

I 2 = Ee ℓ √ n(Sn+n -1 Z) 1 {Sn+n -1 Z≤α} = e ℓ √ nα Ee -ℓ √ nW 1 W ≥0 = e ℓ √ nα ℓ √ n ∞ 0 ℓ √ ne -ℓ √ nx dP W (x).
Let V a random variable having exponential distribution with parameter ℓ √ n. We have proved that

I 2 := ℓ √ ne -ℓ √ nα I 2 = g V (x) dP W (x).
Observe that our goal is to establish that

I 2 = 1 √ 2π e -α 2 /2 (1 + O(n -1/2
)). Since P W is given by the convolution of a probability measure and of the bounded density of Z/n, it is absolutely continuous with bounded (and thus square-integrable) density. Hence, we may apply the Parseval formula (4.2) to V and W . Since ϕ W (t) = e iαt ϕ Sn (t)e -t 2 /(2n 2 ) , we obtain

I 2 = 1 2π ∞ -∞ 1 1 -it ℓ √ n e -iαt ϕ Sn (t)e -t 2 /(2n 2 ) dt = M + E 2π ,
where

M = ∞ -∞ e -iαt 1 -it ℓ √ n e -t 2 /2 e -t 2 /(2n 2 ) dt E = ∞ -∞ e -iαt 1 -it ℓ √ n (ϕ Sn (t) -e -t 2 /
2 )e -t 2 /(2n 2 ) dt.

Applying Parseval's formula as before, but replacing S n with and independent standard Gaussian variable

G yields M/(2π) = g V dP W where W = α -(G + Z/n) has N (α, 1 + n -2 ) distribution. Therefore M 2π = ∞ -∞ ℓ √ ne -ℓ √ n e -(x-α) 2 2(1+n -2 ) 2π(1 + n -2 ) dx.
Lemma 3.5 with λ := ℓ √ n and

s 2 := 1 + n -2 yields, provided ℓ √ n ≥ 2|α| + 1, M 2π = 1 2π(1 + n -2 ) e - α 2 
2(1+n -2 ) (1 + O(n -1/2 )) = 1 √ 2π e -α 2 2 (1 + O(n -1/2 )).
It remains to bound the error term:

|E| = ∞ -∞ e -iαt 1 -it ℓ √ n (ϕ Sn (t) -e -t 2 /2 )e -t 2 /(2n 2 ) dt ≤ ∞ -∞ ϕ Sn (t) -e -t 2 /2 e -t 2 /(2n 2 ) dt ≤ |t|≤ √ n/(4ν 3 ) 16ν 3 n -1/2 |t| 3 e -t 2 /3 dt + |t|> √ n/(4ν 3 ) ϕ Sn (t) e -t 2 /(2n 2 ) dt + |t|> √ n/(4ν 3 ) e -t 2 /2 dt ≤ Cν 3 n -1/2 + I + II,
where the second inequality follows from Lemma 3.1. The estimate of the term II is immediate:

II ≤ 2e -n/(32ν 2 
3 ) .

In order to estimate I, we use (3.1) and a variant of its previous application using the bound (1x) m ≤ 1/e mx ≤ 2/(mx) 2 for x ∈ (0, 1):

I ≤ 1 - ε max(1, (8ν 3 δ) 2 ) n/2 n √ 2π = O ν 3 , 1 ε ,δ (n -1/2 ). Hence E = O(n -1/2 ) = e -α 2 /2 O(e α 2 /2 n -1/2 ) = e -α 2 /2 O |α| (n -1/2
). This ends the proof of the second step, asserting I 2 = J × (1 + O(n -1/2 )). Combining the latter with (4.1) yields the claim of the theorem.

Application to spectral gaps

Our volume asymptotics for Orlicz balls allow to complement a result of Kolesnikov and Milman [START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF] about a famous conjecture by Kannan, Lovász and Simonovits, which predicts the approximate value of the Poincaré constants of convex bodies (a.k.a. inverse spectral gap of the Neumann Laplacian). More precisely if µ is a probability measure on some Euclidean space, one denotes by C P (µ) (resp. C Lin P (µ)) the smallest constant C such that for all locally Lipschitz (resp. linear) functions f , it holds

Var µ (f ) ≤ C |∇f | 2 dµ.
Obviously C Lin P (µ) ≤ C P (µ), and the KLS conjecture predicts the existence of a universal constant c such that for any dimension n and any convex body K ⊂ R n , C P (λ K ) ≤ c C Lin P (λ K ), where λ K stands for the uniform probability measure on K. The conjecture turned out to be central in the understanding in high-dimension volume distributions of convex sets. We refer to e.g. [START_REF] Alonso | Approaching the Kannan-Lovász-Simonovits and variance conjectures[END_REF][START_REF] Brazitikos | Geometry of isotropic convex bodies[END_REF][START_REF] Kolesnikov | The KLS isoperimetric conjecture for generalized Orlicz balls[END_REF][START_REF] Yin | The Kannan-Lovász-Simonovits conjecture[END_REF][START_REF] Chen | An Almost Constant Lower Bound of the Isoperimetric Coefficient in the KLS Conjecture[END_REF] for more background and references, and to [START_REF] Klartag | Bourgain's slicing problem and KLS isoperimetry up to polylog[END_REF] for a recent breakthrough. Kolesnikov and Milman have verified the conjecture for some Orlicz balls. We state next a simplified version of their full result on generalized Orlicz balls. Part of the simplification is unessential, as it amounts to reduce by dilation and translations to a convenient setting. A more significant simplification, compared to their work, is that we consider balls where all coordinates play the same role.

Theorem 5.1 ([13]

). Let V : R → R + be a convex function with V (0) = 0 and such that dµ(x) = e -V (x) dx is a probability measure. We also assume that the function x → xV ′ (x), defined almost everywhere, belongs to the space L 2 (µ). For each dimension n ≥ 1, let

Level n (V ) := E ≥ 0; e -E Vol n B n V /E ≥ 1 e
n n e -n n! .

Then there exists a constant c, which depends only on V (through xV ′ (X) L 2 (µ) ) such that for all E ∈ Level n (V ),

C P (λ B n V /E ) ≤ c C Lin P (λ B n V /E ).
Moreover, Level n (V ) is an interval of length at most e n!e n n n = e √ 2πn(1 + o(1)) as n → ∞, and

1 + n R V (x)e -V (x) dx ∈ Level n (V ).
We can prove more about the set Level n (V ) and in particular we show that its length is of order √ n:

Proposition 5.2. Let V : R → R + be a Young function such that dµ(x) = e -V (x) dx is a probability measure. Let m 1 = V e -V be the average of V with respect to µ, and σ 2 1 its variance. For every ε ∈ (0, 1) there exists an integer n 0 = n 0 (V, ε) depending on V such that for all n ≥ n 0 ,

m 1 n -σ 1 (1 -ε) √ 2n ; m 1 n + σ 1 (1 -ε) √ 2n ⊂ Level n (V ).
Proof. We apply Theorem 1.1, with Ψ = V and λ = 1. With the notation of the theorem µ = µ 1 and Z 1 = e -V = 1. We choose E of the following form:

E = m 1 n + ασ 1 √ n with |α| ≤ (1 -ε) √ 2. The theorem ensures that Vol B n V /E = e E σ 1 √ 2πn e -α 2 /2 1 + O 1 √ n , where the O(n -1/2 ) is uniform in α ∈ [-(1 -ε) √ 2, (1 -ε) √ 2]
. A sharp inequality due to Nguyen and Wang ensures that σ 2 1 = Var e -V (V ) ≤ 1 (see [START_REF] Nguyen | Inégalités fonctionnelles et convexité[END_REF][START_REF] Wang | Heat capacity bound, energy fluctuations and convexity[END_REF], [START_REF] Van Hoang Nguyen | Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional Prékopa's theorem[END_REF] and for a short proof [START_REF] Fradelizi | Optimal concentration of information content for log-concave densities[END_REF]). Therefore

e -E Vol B n V /E ≥ 1 √ 2πn e -(1-ε) 2 1 + O 1 √ n , whereas 1 e n n e -n n! = e -1 √ 2πn (1 + o(1)).
Hence for n large enough and for all α in the above interval e -E Vol B n V /E ≥ 1 e n n e -n n! .

Corollary 5.3. Let V : R → R + be a Young function such that dµ(x) = e -V (x) dx is a probability measure. Let m 1 and σ 2 1 denote the average and the variance of V with respect to µ. We also assume that the function x → xV ′ (x) belongs to the space L 2 (µ). Let ε ∈ (0, 1). Then there exists c = c(V, ε) such that for all n ≥ 1 and all E ∈

m 1 n -σ 1 (1 -ε) √ 2n ; m 1 n + σ 1 (1 -ε) √ 2n , C P (λ B n V /E ) ≤ c C Lin P (λ B n V /E ).
Proof. Combining the later proposition and theorem yields the result for n ≥ n 0 (V, ε).

In order to deal with smaller dimensions, we simply apply known dimension dependent bounds: e.g. Kannan, Lovász and Simonovits [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF] proved that C P (λ K ) ≤ κnC Lin P (λ K ) for all convex bodies K in R n , with κ a universal constant.

Asymptotic independence of coordinates

A classical observation, going back to Maxwell, but also attributed to Borel and to Poincaré, states that for a fixed k, the law of the first k coordinates of a uniform random vector on the Euclidean sphere of R n , centered at the origin and of radius √ n, tends to the law of k independent standard Gaussian random variables as n tends to infinity. Quantitative versions of this asymptotic independence property where given by Diaconis and Freedman [START_REF] Diaconis | A dozen de Finetti-style results in search of a theory[END_REF], as well as a similar result for the unit sphere of the ℓ 1 -norm, involving exponential variables in the limit. Extensions to random vectors distributed according to the cone measure on the surface of the unit ball B n p were given by Rachev and Rüschendorf [START_REF] Rachev | Approximate independence of distributions on spheres and their stability properties[END_REF], while Mogul'skiȋ [START_REF] Mogul | skiȋ. De Finetti-type results for l p[END_REF] dealt with the case of the normalized surface measure. Explicit calculations, or the probabilistic representation put forward in [START_REF] Barthe | A probabilistic approach to the geometry of the l n p -ball[END_REF], easily yield asymptotic independence results for the first k coordinates of a uniform vector on the set B n p itself, when k is fixed and n tend to infinity.

In this section we study marginals of a random vector ξ (n) uniformly distributed on B n Ψ/En , where E n and n tend to ∞.

Let us start with the simple case when E n = mn for some m > 0, which can be written as m = m λ for some λ > 0. Let k ≥ 1 be a fixed integer, then the density at (x 1 , . . . , x k ) ∈ R k of the first k coordinates (ξ

(n) 1 , . . . , ξ (n) k ) is equal to Vol n-k B n Φ/En ∩ {y ∈ R n ; y i = x i , ∀i ≤ k} Vol B n Φ/En = Vol B n-k Ψ/(En-k i=1 Ψ(x i )) Vol B n Ψ/En
We apply Corollary 1.2 twice: once for the denominator, and once for the numerator after writing

m λ n - i≤k Ψ(x i ) = m λ (n -k) + m λ k -i≤k Ψ(x i ) √ n -k √ n -k.
We obtain that the above ratio is equivalent to

Z n-k λ e λ(En-i≤k Ψ(x i )) λσ λ 2π(n -k) • λσ λ √ 2πn Z n λ e λEn ∼ e -λ k i=1 Ψ(x i ) Z k λ •
Thus we have proved the convergence in distribution of (ξ

(n) 1 , . . . , ξ (n) 
k ) to µ ⊗k λ as n tends to infinity. In other words the first k coordinates of ξ (n) are asymptotically i.i.d. of law µ λ . This is true for more general balls and for a number of coordinates going also to infinity:

Theorem 6.1. Let E n = m λ n + α n σ λ √ n, where (α n ) n≥1 is bounded. Let the random vector ξ (n) be uniformly distributed on B n Ψ/En . For any k n = o( √ n), lim n→∞ d T V (ξ (n) 1 , . . . , ξ (n) kn ), µ ⊗kn λ = 0.
Proof. Below, we simply write ξ i for ξ

(n)

i . Recall that (X i ) are i.i.d. r.v.'s with the distribution µ λ . Set

t n := n 1/4 k 1/2 n so that t n = o( √ n) and k n = o(t n ).
The total variation distance between the law of (ξ

(n) 1 , . . . , ξ (n) 
kn ) and

µ ⊗kn λ is R kn 1 Vol(B n Ψ/En ) R n-kn 1 {(x,y)∈B n Ψ/En } dy - 1 Z kn λ e -λ(Ψ(x 1 )+•••+Ψ(x kn )) dx ≤ B kn Ψ/tn Vol B n-kn Ψ/(En-kn i=1 Ψ(x i ))
Vol(B n Ψ/En ) -1

Z kn λ e -λ(Ψ(x 1 )+ 

Ψ(X i ) > t n ≤ E kn i=1 Ψ(X i ) t n = k n m λ t n = o(1)
Similarly, and since by definition n i=1 Ψ(ξ i ) ≤ E n and the ξ i 's are exchangeable

P kn i=1 Ψ(ξ i ) > t n ≤ E kn i=1 Ψ(ξ i ) t n ≤ k n E n nt n = k n m λ t n = o(1).
In order to estimate (6.1), we use Theorem 1.1. Since

k n = o( √ n) and t n = o( √ n), we know that E n -t = m λ (n -k n ) + β n σ λ √ n -k n ,
where Taking the quotient gives lim n P(S n ≥ t) = e -λt .

β n := α n n n -k n + m λ k n -t σ λ √ n -k n is a bounded sequence such that β n -α n = o(
λ • E n - n i=1 Φ ξ (n) i -→ Exp(1). Proof. Let S n := E n -n i=1 Φ ξ (n) i ≥ 0. For t ≥ 0, P(S n ≥ t) = P n i=1 Φ ξ (n) i ≤ E n -t = Vol B n Ψ/(En-t) Vol B n Ψ/En

Integrability of linear functionals

Linear functionals of uniform random vectors on convex bodies are well studied quantities. Their density function, known as the parallel section function, measures the volume of hyperplane sections in a given direction. We refer e.g. to the book [START_REF] Brazitikos | Geometry of isotropic convex bodies[END_REF], and in particular to its sections 2.4 and 8.2 about the ψ 1 and ψ 2 properties, which describe uniform integrability features (exponential integrability for ψ 1 , Gaussian type integrability for ψ 2 ). They can be expressed by upper bounds on the Laplace transform.

In this section, we deal with even Young functions Ψ, so that the corresponding sets B n Ψ are origin-symmetric, and actually unconditional. The forthcoming study is valid for any dimension, without taking limits, so we consider the dimension n fixed, and write ξ = (ξ 1 , . . . , ξ n ) for a uniform random vector on B n Ψ . We show that the arguments of [3] for ℓ n p unit balls extend to Orlicz balls. Ee a i ξ 1 .

Proof. Let ε 1 , . . . , ε n be i.i.d. random variables with P(ε i = 1) = P(ε i = -1) = 1 2 , and independent of ξ. Then by symmetry of Ψ, (ε 1 ξ 1 , . . . , ε n ξ n ) has the same distribution as ξ. Hence,

Ee a,ξ = E n i=1 e a i ε i ξ i = E E n i=1 e a i ε i ξ i ξ = E n i=1 cosh(a i ξ i ).
Next by the subindependence property of coordinates, due Pilipczuk and Wojtaszczyk [START_REF] Pilipczuk | The negative association property for the absolute values of random variables equidistributed on a generalized Orlicz ball[END_REF], and using the symmetry again as well as exchangeability:

Ee a,ξ ≤ n i=1 E cosh(a i ξ i ) = n i=1 Ee a i ξ i = n i=1 Ee a i ξ 1 .
The above lemma shows that the Laplace transform of any linear functional a, ξ can be upper estimated using the Laplace transform of the first coordinate ξ 1 . Therefore it is natural to study the law of ξ 1 . For t ∈ R consider the section of B n Ψ :

S(t) := {y ∈ R n-1 ; (t, y) ∈ B n Ψ }. and f (t) := Vol n-1 (S(t)). Then P ξ 1 (dt) = f (t)dt/Vol n (B n Ψ )
. By the Brunn principle, f is a log-concave function. It is also even by symmetry of the ball, therefore it is non-increasing on R + . We observe that a slightly stronger property holds: Averaging these two inequalities and using the convexity of Ψ, we get for any θ ∈ (0, 1):

(1θ)Ψ(t) + θΨ(u)

+ n-1 i=1 Ψ ((1 -θ)a i + θb i ) ≤ 1. (7.1)
This can be rewritten as (1θ)a + θb ∈ S Ψ -1 ((1θ)Ψ(t) + θΨ(u)) .

Hence we have shown that (1θ)S(t) + θS(u) ⊂ S Ψ -1 ((1θ)Ψ(t) + θΨ(u)) ,

and by the Brunn-Minkowski inequality, in multiplicative form f (t) 1-θ f (u) θ ≤ f Ψ -1 ((1θ)Ψ(t) + θΨ(u)) .

Note that if in (7.1) we had used convexity in the form Ψ((1-θ)t+θu) ≤ (1-θ)Ψ(t)+θΨ(u), then we would have derived the Brunn principle from the Brunn-Minkowski inequality.

The next result shows that Ψ is more convex than the square function, the corresponding Orlicz balls enjoy the ψ 2 property. This applies in particular to B n p for p ≥ 2, a case which was treated in [START_REF] Barthe | Extremal slabs in the cube and the Laplace transform[END_REF] .

Lemma 7.2 ensures that there exists a concave function c such that for all u ≥ 0, log f (u) = c(Ψ(u)). Note that c is also non-increasing on R + since the section function f is. Hence

u ≥ 0 → log f ( √ u) = c(Ψ( √ u))
is concave. Theorem 12 of [START_REF] Barthe | Extremal slabs in the cube and the Laplace transform[END_REF] ensures that t ≥ 0 → R e u √ t f (u) du is log-concave. In other words,

t ≥ 0 → log L ξ 1 ( √ t)
is concave. From Lemma 7.1, using symmetry and the above concavity property

Ee a,ξ ≤ n i=1 L ξ 1 (a i ) = n i=1 L ξ 1 a 2 i ≤ L ξ 1 1 n i a 2 i n = L ξ 1 |a| √ n n .
To conclude we need the bound L ξ 1 (t) ≤ e t 2 E(ξ 2 1 )/2 (it follows from the fact that t ≥ 0 → log L ξ 1 ( √ t) is concave, hence upper bounded by its tangent application at 0, which is easily seen to be tE(ξ 2 1 )/2). We obtain Ee a,ξ ≤ e 

Lemma 7 . 1 .

 71 Let a ∈ R n , and ξ be uniform on B n Ψ , then Ee a,ξ ≤ n i=1

Lemma 7 . 2 .

 72 Let Ψ be an even Young function and f (t) = Vol n {y ∈ R n-1 ; (t, y) ∈ B n Ψ } . Then the function log f • Ψ -1 is concave and non-increasing on R + . Here Ψ -1 is the reciprocal function of the restriction of Ψ to R + . Proof. Let t, u ≥ 0. Let a ∈ S(t) and b ∈ S(u). Then by definition Ψ(t) + n-1 i=1 Ψ(a i ) ≤ 1 and Ψ(u) + n-1 i=1 Ψ(b i ) ≤ 1.

1 2 |a| 2 E(ξ 2 1 )

 121 , and we conclude using the symmetries of ξ sinceE a, ξ 2 = i a 2 i E(ξ 2 i ) + i =j a i a j E(ξ i ξ j ) = |a| 2 E(ξ 2 1).

  ••+Ψ(x kn )) dx + P (ξ 1 , . . . , ξ kn ) ∈ B kn Ψ/tn + P (X 1 , . . . , X kn ) ∈ B kn

								Ψ/tn	
	=	0	tn	Vol B n-kn Ψ/(En-t) Vol(B n Ψ/En )	-	e -λt Z kn λ	d dt	Vol(B kn Ψ/t ) dt	(6.1)
				kn			kn		
		+ P	Ψ(ξ i ) > t n + P	Ψ(X i ) > t n .	
				i=1			i=1		
	By Markov's inequality,					
				kn					
				P					
				i=1					

  1), both properties holding uniformly in t ∈ [0, t n ]. Therefore, Theorem 1.1 applied to B n-kn Ψ/(En-t) gives The next result gives the asymptotic distribution of a sort of distance to the boundary for high-dimensional Orlicz balls. Theorem 6.2. Let E n = m λ n+α n σ λ √ n, where (α n ) n≥1 is bounded. Let the random vector ξ (n) be uniformly distributed on B n Ψ/En . Then the following convergence in distribution occurs as n goes to infinity:

	uniformly in t ∈ [0, t n ]. On the other hand, Theorem 1.1 applied to B n Ψ/En yields
				Vol B n Ψ/En =	Z n λ e λEn λσ λ √ 2πn	e -α 2 n /2 (1 + o(1)).
	Combining the above two asymptotic expansions, we obtain
						Vol B n-kn Ψ/(En-t) Vol(B n Ψ/En )	=	e -λt λ Z kn	(1 + o(1))
	uniformly in t ∈ [0, t n ]. Therefore the term (6.1) equals
	o(1)	0	tn	e -λt Z kn λ	d dt	Vol(B kn Ψ/t ) dt = o(1) • P	kn i=1	Ψ(X i ) ≤ t n = o(1).
			Vol B n-kn Ψ/(En-t) =	Z n-kn λ λσ λ 2π(n -k n ) e λ(En-t)	e -β 2 n /2 (1 + o(1))

.

  Theorem 7.3. Let Ψ be an even Young function, such that t > 0 → Ψ( √ t) is convex. Let ξ be a uniform random vector on B n Ψ . Then for all a ∈ R n , Proof. Let L X (t) = Ee tX denote the Laplace transform of a real valued random variable. Then with the notation of Lemma 7.2, L ξ 1 (t) = e tu f (u) du Vol(B n Ψ )

	Ee a,ξ ≤ Ee	|a| √ n ξ 1	n	≤ e	1 2 E a,ξ 2 .
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