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A REMARK ON ONE-HARMONIC MAPS FROM A HADAMARD SURFACE OF

PINCHED NEGATIVE CURVATURE TO THE HYPERBOLIC PLANE

FRANÇOIS FILLASTRE AND ANDREA SEPPI

Abstract. We show that every one-harmonic map, in the sense of Trapani and Valli,

from a Hadamard surface of pinched negative curvature to H2 has image the interior

of the convex hull of a subset of ∂∞H2. The proof relies on Minkowski geometry, by

interpreting one-harmonic maps as the Gauss maps of convex surfaces.

1. Introduction

Energy-minimizing maps have played an important role in Teichmüller theory, and more

generally in the study of negatively curved Riemannian surfaces. The classical L2 energy

between closed hyperbolic surfaces has been largely studied, see for instance [9, 18, 25, 26, 27,

16], leading to important new descriptions of Teichmüller space. In the setting of universal

Teichmüller space, the Schoen conjecture, formulated in [19] and proved independently in [14]

and [2], states that every quasisymmetric homeomorphism of ∂∞H2 admits a quasiconformal

harmonic extension to H2. The result has been generalized in [3] for Hadamard manifolds,

which we recall are complete simply connected Riemannian manifold with everywhere non-

positive sectional curvature, under the assumption of pinched negative curvature (i.e. the

curvature is bounded above and below by negative constants). Harmonic maps with image

in subsets of H2 have also been studied, see for instance [10, 1, 13].

In [23], Trapani and Valli introduced the notion of one-harmonic maps between closed sur-

faces of negative curvature, defined as the critical points of a holomorphic energy functional.

See also [22]. We give Definition 1.1 in the more general non-compact setting.

Definition 1.1. Let (Σ, g) and (Σ′, h) be oriented Riemannian surfaces, and let F : Σ → Σ′

be an orientation-preserving local diffeomorphism. Then F is a one-harmonic map if for

every open set Ω ⊂ Σ with compact closure on which F is a diffeomorphism onto its image,

F is a critical point of the functional

F 7→
∫

Ω

‖∂F‖dAreag

among diffeomorphisms from Ω to F (Ω) that coincide with F in the complement of a compact

subset of Ω.

In Definition 1.1, ∂F denotes the (1, 0)-part of the differential of F , computed with respect

to the complex structures underlying g and h, and ‖∂F‖ is its norm, computed with respect

to g and h.

The second author is member of the national research group GNSAGA..
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Trapani and Valli proved the existence and uniqueness of a one-harmonic map between

two closed diffeomorphic Riemannian surfaces (Σ, g) and (Σ, h) of negative curvature, in a

prescribed isotopy class. When g and h are hyperbolic metrics, the one-harmonic maps are

minimal Lagrangian, meaning that their graph is a minimal Lagrangian submanifold in the

product. The existence of a minimal Lagrangian diffeomorphism between closed hyperbolic

surfaces in a given isotopy class is due to Labourie [12] and Schoen [19] independently.

This has been later generalized to the context of universal Teichmüller theory by Bonsante

and Schlenker, showing that any quasisymmetric homeomorphism of ∂∞H2 admits a unique

quasiconformal minimal Lagrangian extension to H2. See also [5, 20, 21, 6] for related results.

In [8, Corollary G] it was proved that the image of any minimal Lagrangian map from

H2 to itself is a straight convex domain, as in the following definition (see also Figure 1).

Definition 1.2. A straight convex domain in H2 is the interior of the (hyperbolic) convex hull

of a subset of ∂∞H2 containing at least three points.

Figure 1. A straight convex domain, in the Poincaré model of H2.

We remark that H2 itself is a straight convex domain. The purpose of this paper is to

extend this result to one-harmonic maps defined on a Hadamard surface of pinched negative

curvature, with target H2.

Theorem 1.3. Let (Σ, g) be a complete, simply connected Riemannian surface whose curva-

ture satisfies −c1 ≤ Kg ≤ −c2 for some constants c1, c2 > 0, and let F : Σ → H2 be a

one-harmonic map. Then the image of F is a straight convex domain in H2 and F is a

diffeomorphism onto its image.

When the source has constant curvature −1, we recover the aforementioned result of [8].

The main idea of the proof comes from interpreting one-harmonic maps from a negatively

curved surface to H2 as the Gauss maps of (convex) surfaces in Minkowski space. The idea

of realizing energy-minimizing maps as Gauss maps in Minkowski space has been largely

used before, for instance for harmonic maps (which correspond to surfaces of constant mean

curvature) in [15, 24] and many others, and for minimal Lagrangian maps (which correspond

to surfaces of constant Gaussian curvature), see for instance [7].
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2. One-harmonic maps as Gauss maps in R2,1

Recall that the three-dimensional Minkowski space is the vector space R3 endowed with

the Minkowski (Lorentzian) metric:

〈x, y〉 = x1y1 + x2y2 − x3y3 . (1)

We will consider the hyperbolic plane in the hyperboloid model, namely:

H2 = {x ∈ R2,1 | 〈x, x〉 = −1, x3 > 0} .

Let σ : Σ → R2,1 be a smooth immersion, for Σ a surface (without boundary). In this

paper, we will always assume that σ is spacelike, i.e. the first fundamental form σ∗〈·, ·〉 is a

Riemannian metric on Σ. An example is given by H2 itself, whose first fundamental form is

a complete Riemannian metric of constant curvature −1.

The Gauss map of a spacelike immersion σ : Σ → R2,1 is the map Gσ : Σ → H2 that

maps p ∈ Σ to the future unit normal vector of σ at p, which is an element of H2. The first

essential step in the proof is the following statement.

Lemma 2.1. Let (Σ, g) be a simply connected Riemannian surface of negative curvature

and let F : Σ → H2 be a one-harmonic map. Then there exists a spacelike immersion

σ : Σ→ R2,1 such that:

• The first fundamental form of σ is g.

• The Gauss map of σ is F .

The proof of Lemma 2.1 relies on the following characterization of one-harmonic maps.

Recall that, given a connection ∇ on a surface Σ and a (1, 1)-tensor B on Σ, the exterior

derivative of B is defined as:

d∇B(v, w) = ∇v(B(w))−∇w(B(v))−B[v, w] .

Proposition 2.2 ([22, Corollary 3.3]). Let (Σ, g) and (Σ′, h) be oriented Riemannian surfaces.

An orientation-preserving local diffeomorphism F : Σ → Σ′ is one-harmonic if and only if

the unique g-self-adjoint, positive definite (1, 1)-tensor B such that F ∗h = g(B·, B·) satisfies

the Codazzi equation

d∇
g

B = 0 .

Before proving Lemma 2.1, let us make an additional remark.

Remark 2.3. The converse of Lemma 2.1 holds true, namely the following statement: given

any spacelike immersion σ : Σ→ R2,1, for Σ a simply connected surface, such that the first

fundamental form g of σ is negatively curved, then the Gauss map Gσ : Σ → H2 of σ is

one-harmonic with respect to g.

Indeed, let B denote the shape operator of σ, which is a (1, 1) symmetric tensor on Σ

defined by B = dGσ. By the Gauss equation, detB = −Kg > 0, hence B is either positive
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or negative definite. Up to changing the sign of B, which will not affect what follows, we

can assume that B is positive definite. The pull-back of the metric h of H2 is:

G∗σh = h(dGσ·, dGσ·) = g(B·, B·) , (2)

where we implicitly identified dσ(TpΣ) and dGσ(TpΣ) as linear subspaces of R2,1, and used

that both g and h are the restriction of 〈·, ·〉 to this subspace. Finally, by the Codazzi

equation, d∇
g

B = 0. Hence B satisfies the conditions of Proposition 2.2, which implies that

Gσ is one-harmonic.

Having established this remark, we shall now prove Lemma 2.1.

Proof of Lemma 2.1. Let F : Σ → H2 be a one-harmonic map and let B be the positive

definite, g-self-adjoint (1, 1) tensor provided by Proposition 2.2. The pair (g,B) satisfies

the Codazzi equation d∇
g

B = 0; we claim that it also satisfies the Gauss equation in R2,1,

namely Kg = − detB. By [11, Proposition 3.12], the curvature of the metric g(B·, B·) is

Kg(B·,B·) =
Kg

detB
,

since B is g-Codazzi and invertible. But g(B·, B·) = F ∗h, hence its curvature is identically

−1. Therefore Kg = −detB as claimed.

We have showed that the pair (g,B) satisfies the Gauss-Codazzi equations in R2,1. Since

Σ is simply-connected, by the fundamental theorem of surfaces, there exists an immersion

σ : Σ→ R2,1 whose first fundamental form is g and whose shape operator is B. The Gauss

map of σ does not necessarily coincide with F , but it does up to post-composing σ with an

isometry of R2,1. We now formalize this, which is the last step of the proof.

Observe that both F and Gσ are orientation-preserving local diffeomorphisms to H2: F

by hypothesis, while Gσ because its differential is identified with B and satisfies detB =

−Kg > 0. Moreover by Equation (2), if h denotes the hyperbolic metric of H2, we have

G∗σh = g(B·, B·) = F ∗h . (3)

We claim that there exists an orientation-preserving isometry of H2, say A ∈ SO0(2, 1), such

that F = A ◦ Gσ. This will permit us to conclude, by defining σ′ = A ◦ σ (where we now

think at A as acting on R2,1) and observing that the first fundamental form of σ′ equals

that of σ, namely g, and that the Gauss map of σ′ is Gσ′ = A ◦Gσ = F .

The argument to prove the claim is quite standard. Since the pull-back metrics G∗σh

and F ∗h coincide, for every point p ∈ Σ there exists a unique orientation-preserving linear

isometry A = A(p) : TGσ(p)H2 → TF (p)H2 such that dFp = A ◦ (dGσ)p. Since every linear

isometry between the tangent spaces at two points of H2 uniquely extends to the whole H2

(in fact, to R2,1), this defines a map from Σ to SO0(2, 1). But this map is locally constant,

because every p ∈ Σ has a neighbourhood Up on which both F and Gσ are diffeomorphisms

onto their images, hence from (3) we see that F |Up = A(p) ◦ Gσ|Up . Since Σ is connected,

the map is constant, which means that A ∈ SO0(2, 1) does not depend on the point p. �



A REMARK ON ONE-HARMONIC MAPS TO THE HYPERBOLIC PLANE 5

3. Conclusion of the proof

We are now ready to conclude the proof of Theorem 1.3. Recall that, by hypothesis, the

metric g on Σ is complete and F : Σ→ H2 is a one-harmonic map; by Lemma 2.1 we realize

g as the first fundamental form of an immersion σ whose Gauss map is F . First, we will

apply the following statement (which actually holds in any dimension).

Lemma 3.1 ([4, Lemma 3.1]). Let σ : Σ → R2,1 be an immersion whose first fundamental

form is a complete Riemannian metric. Then σ is an embedding and its image is the graph

of a function f : R2 → R.

A surface in R2,1 which is the graph of a function f : R2 → R is also called entire. Under

the hypothesis of Theorem 1.3, the curvature of g is negative (in fact, is bounded above and

below by negative constants). Since by the Gauss equation Kg = −detB, this implies that

B is either positive definite or negative definite; up to applying a reflection is a horizontal

plane, we can assume that B is positive definite. This means that im(σ) is locally strictly

convex; since it is also entire, namely im(σ) is the graph of f : R2 → R, it follows that f is

a strictly convex function. Moreover f is 1-Lipschitz, because σ is spacelike.

We are now going to apply a result from [8], which we will need to interpret in terms of

the Gauss map. For this purpose, we first need to recall the Legendre transformation. We

provide the definition only in the special setting of our interest. Given a smooth convex

function f : R2 → R, its Legendre transformation f∗ is defined on R2 as

f∗(y) = sup
x∈R2

x · y − f(x) ,

where x · y denotes the standard scalar product of R2. It is well-known that f∗ is a lower

semicontinuous convex function with values in R∪ {+∞}. Observe that f∗(y) < +∞ if and

only if there exists some constant C such that f(x) > x · y + C for every x ∈ R2. Using

the expression (1) of the Minkowski metric, this is equivalent to saying that im(σ) has a

support plane orthogonal to the vector (y, 1). For instance, if y = Df(x), then f∗(y) < +∞,

because from the metric (1) one sees that the tangent plane to im(σ) at the point (x, f(x))

is orthogonal to the vector (Df(x), 1).

Now, since σ is spacelike, or equivalently f is smooth and 1-Lipschitz, it is not hard to

see that the essential domain of f∗, namely the set

ess(f∗) := {y | f∗(y) < +∞} ,

is contained in the closed unit disc in R2, and moreover its interior is the image Df(R2)

of the gradient mapping of f . The essential domain ess(f∗) is described in the following

theorem (see also [17, Theorem A’] for a related statement).

Theorem 3.2 ([8, Theorem 4.4]). Let σ : Σ → R2,1 be a spacelike convex entire embedding

whose first fundamental form g has pinched negative curvature, that is there exist constants

c1, c2 > 0 such that −c1 ≤ Kg ≤ −c2. Let f : R2 → R be the function whose graph is im(σ).

Then ess(f∗) is the convex hull in R2 of the set of points of S1 on which f∗ is finite.

From the discussion preceding Theorem 3.2, the unit normal vector of the immersion σ at

a point p is proportional to the vector (Df(x), 1), where x is the vertical projection to R2 of
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σ(p). This shows that, if π : H2 → D2 denotes the radial projection from the hyperboloid to

the open unit disc at height 1 in R2,1 (namely the Klein model of the hyperbolic plane), then

Df(R2) = π ◦ Gσ(Σ), where Gσ : Σ → H2 is the Gauss map of σ as usual. In conclusion,

we summarize the proof as follows:

Proof of Theorem 1.3. Let F : Σ → H2 be a one-harmonic map from a simply connected

surface and suppose that the metric g on Σ is complete and has pinched negative curvature.

By Lemma 2.1 there exists an immersion σ : Σ→ R2,1 having first fundamental form g and

Gauss map F .

The Gauss map F is a local diffeomorphism because the determinant of its differential,

which equals the opposite of the curvature of g, does not vanish. By Lemma 3.1, im(σ) is

entire, and (up to applying a reflection in the horizontal plane) is the graph of a strictly

convex smooth function f : R2 → R. This implies also that F is injective, by a standard

argument: if σ had the same unit normal vector at two different points, by convexity its

image would contain the segment connecting the two points, but this would contradict strict

convexity of f . Hence by the invariance of domain, F is a diffeomorphism onto its image.

By the discussion in this section, the image of the Gauss map of σ equals Df(R2), which

is the interior of ess(f∗). By the assumption of pinched negative curvature and Theorem 3.2,

ess(f∗) is the convex hull of a subset of S1 = ∂∞H2. Hence the image of F is the interior of

such convex hull (and the subset of S1 necessarily contains at least three points, because the

Gauss map F is a diffeomorphism onto its image, hence its image has non-empty interior).

This concludes the proof. �
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