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Abstract: Controlling the motion of macroscopic oscillators in the quantum regime has been the
subject of intense research in recent decades. In this direction, opto-mechanical systems, where the
motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous
success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks
to their very high isolation from the environment under ultra-low vacuum conditions. To enter
the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of
nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have
been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’
inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum
sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’
toolbox would enable access to a very rich playground at the crossroads between condensed matter
and atomic physics. We review recent experimental work in the field of spin-mechanics that employ
the interaction between trapped particles and electronic spins in the solid state and discuss the
challenges ahead. Our focus is on the theoretical background close to the current experiments, as
well as on the experimental limits, that, once overcome, will enable these systems to unleash their
full potential.

Keywords: nitrogen-vacancy centers; micro-mechanical oscillators; electronic spin resonance

1. Introduction

The unique control offered by single quantum systems, such as atoms or ions, has
enabled an immense boost in the development of quantum technologies. Extending these
technologies to larger masses is important both for fundamental questions on the nature of
quantum physics at larger scales, and for the development of innovative devices such as
ultra-high precision force sensors and accelerometers [1].

Electro-, magneto- or opto- mechanically controlled levitating objects in vacuum are
fascinating in this regard and have been at the focus of intense recent research activity [2]. This
attention is supported by the exquisite control that one can exert over the levitated objects.
These platforms indeed allow addressing of numerous degrees of freedom, easy tuning of
the trapping potential, as well as enabling free-fall experiments [3], as in atomic physics.

Initial work proposed to coupling levitated silica nano-spheres, and even viruses, to
the optical modes of a high finesse cavities [4–6]. The promises of this schemes have been
supported by recent experiments that reported trapped particles cooled to the quantum
regime [7–10]. Active development of force sensors are in progress and tests of various models
of fundamental physics have also been proposed using various platforms [11–13]. To push
these developments further and to enable operate the mechanical oscillator in the quantum
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regime, coupling the dynamics of the levitated system to a single intrinsically quantum
system, such as ions, atoms, or artificial atoms, has been envisioned [14,15]. Towards this
goal, amongst all condensed matter system, the negatively charged nitrogen-vacancy center
(NV− center for short) in diamond centers stands out because of the ease with which one
can optically polarize and read-out its electronic spin under ambient conditions. Most of the
proposals initially designed for clamped oscillators coupled with NV− centers [14,16,17]
can then be carried over to trapped diamonds [18] which are, in all current experiments,
operating close to room temperature. Ensembles of NV− centers coupled identically to
mechanical oscillators can also exhibit magnetic phase transitions, paving the way towards
nano-scale magnetism with long-lived and controllable spins in a trapped particle [19,20].

This growing research field will drive advances in quantum metrology via quantum
enhanced gyroscopy and matter-wave interferometry [19,21,22]. The spin–mechanical
coupling also brings important advantages for quantum sensing and metrology by provid-
ing enhanced measurement sensitivity. At the single spin level it also features additional
non-linearity and/or control that could be helpful to build non classical states of mo-
tion [18]. Finally, they could also serve as transducers between optical and RF signals via
the mechanical mode [23].

In this review, we describe the state-of-the-art levitation systems that involve NV−

centers and describe their specificities and limitations. The goal is not to draw a comparison
between the performance of existing systems. Instead, we focus on the important results
that have been accomplished and the remaining hurdles on the way towards operating in
the quantum regime with these platforms.

In Section 2, we briefly present the existing levitation platform and the equations of motion
describing the different mechanical modes. In Section 3, we present a rapid overview of the
ancillary quantum system used to interact with the mechanical modes, namely the nitrogen-
vacancy center in diamond. The Hamiltonian of the total coupled spin–mechanical system is
derived in Section 4. Section 5 reviews experiments that demonstrate read-out of the mechanical
motion of levitated particles using the NV spin. Sections 6 and 7 provide a classical analytical
treatment of spin-bistability, spin-spring and spin-cooling in the adiabatic limit. Finally,
Section 8 presents the current challenges in spin-mechanics with trapped particles.

2. Trapping Crystals

The basic idea behind particle levitation is to hold a particle under atmospheric
conditions or in vacuum against gravity. Here, after presenting the classical theoretical
framework for harmonic motion analysis, we discuss current methods for trapping crystals
in vacuum.

2.1. Center of Mass Harmonic Motion

The center of mass dynamics of a levitated particle along a direction parametrized by
the coordinate q, can be described by a Langevin equation. For a stably trapped particle, one
can linearize the trapping force so that the particle dynamics can, to a good approximation,
be described by the equation of a harmonic oscillator

m
d2q
dt2 + mγq

dq
dt

+ mω2
qq = FL(t) , (1)

where γq is the translational damping rate due to collisions with gas molecules and FL is
the Langevin fluctuating force induced by the interaction between the particle and the gas
molecules, m is the particle mass, and ωq is the trapping frequency. Rarefied gas can be
described as a Markovian thermal bath with a white noise spectrum so that the fluctuating
force satisfies 〈FL〉 = 0 and 〈FL(t)FL(t′)〉 = 2mγqkTδ(t − t′) at temperatures such that
kT � h̄ωq.

γq depends on the exact shape of the particle [24] and is proportional to the residual
gas pressure at low pressures. This property makes levitating platforms attractive, since the
thermal noise can be made arbitrary small by reducing the gas pressure inside the vacuum
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chamber. Note that in practice, the dynamics of the particle may appear more complex
than a simple harmonic oscillator at high temperatures because of instabilities induced by
the non-linearity of the potential [25].

2.2. Angular Confinement: The Librational Mode

When considering the angular degree of freedom, two characteristic motional behaviours
can be observed: pure rotation and libration, namely oscillation of the particle angle about
a mean angular position. We will see that confining the angle so that the libration can be
described by a harmonic oscillator is also of crucial importance when dealing with NV−

centers. The condition for librational confinement is that the total energy in the angular
mode must not be larger than the angular potential depth. Typically, angular potentials are
π or π/2-periodic so that when the standard deviation of the angle is in that range, the
particle angle may jump from one angular well to another. This can be due to collisions
with gas molecules for instance.

Once confined close to an angle θ = 0, the angle follows this equation of motion

I
d2θ

dt2 + Iγθ
dθ

dt
+ Iωθ

2θ = τL(t). (2)

τL(t) are Langevin fluctuation torques satisfying 〈τL〉 = 0 and 〈τL(t)τL(t′)〉 = 2γθ IkTδ(t−
t′). γθ is the damping rate for the angular degree of freedom due to collisions with gas
molecules and I the particle moment of inertia. As for translational modes, the damping
rate for libration is proportional to the gas pressure at low pressures and strongly depends
on the particle shape. According to the fluctuation dissipation theorem, the standard

deviation of the angle θ is
√
〈θ2〉 =

√
kT/(Iω2

θ). One can thus obtain an approximate

criterion for stable angular confinement requiring that
√
〈θ2〉 is bounded by ≈π/10 in

order to ensure small angular deviations. We then obtain a condition on the angular rigidity
Kt = Iω2

θ such that Kt & 10× kT. Below this value, libration is not guaranteed, and angular
deviations may be too large for efficient control of the NV electronic spin.

2.3. Trapping Platforms

The original proposals for trapping particles suggested use of optical forces. Under
laser illumination, small dielectric particles can indeed become polarized. The induced
dipole is then attracted to the highest intensity region where particles are stably trapped in
three dimensions [26], with typical trapping frequencies in the 100 kHz to 1 MHz range.
Reference [27] presents a broad overview of optical tweezers. Particles can be trapped
and cooled either at the focus of a laser beam as in [28] (Figure 1a), at the node of a cavity
field [29] or in the near-field of a photonic crystal [30]. Recent results in opto-mechanics
with optical tweezers and cavities are described in a recent review [2].

Another means to trap particles, described in Figure 1b, is to use a Paul trap [31].
The radio-frequency modulation of a high voltage electric field applied to the trap electrode
ensures three-dimensional confinement of charged particles with typical frequencies rang-
ing from 100 Hz to 10 kHz. The center of mass motion of silica nano-particles [32], graphene
flakes [33] and nanodiamonds [34] in Paul traps have been cooled to low temperatures
under ultra-high vacuum levels using parametric feedback cooling.

Another way to trap micro-particles is to use magnetic fields. In magnetic traps, a mag-
netic object is levitating above a diamagnetic/superconductor material [35]. Alternatively, a
diamagnetic particle—such as diamond—is levitating above magnets (see Figure 1c). Trap-
ping frequencies in the hundreds of hertz range are typically observed. The latter trapping
approach was efficiently employed to demonstrate cooling of the center of mass motion of
trapped diamonds using feedback cooling [36,37].
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RF

Figure 1. Different approaches to particle levitation. (a) Optical tweezers. Picture of an infrared laser focused through a high
numerical aperture (NA) objective (shown on the left) allowing trapping a nanodiamond at its focus. The efficient scattering
of the green laser used for NV excitation enables one to see the nanodiamond with the naked eye. (b) Paul trap: a charged
diamond particle is held in vacuum by electric field gradients. (c) A magnetic particle is levitated above a superconductor.
NV− centers implanted in a diamond slab above the levitated particle can be coupled with its motion through the magnetic
field gradient. Adapted from ref. [35]. (d) A diamond particle is trapped by large magnetic field gradients thanks to its
diamagnetism.

As already discussed, the other important degree of freedom for NV spin-mechanics is
the particle angle. Trailblazing experiments with particles in optical tweezers have shown
controlled rotation of silica spheres [38–41]. Very fast rotation frequencies up to a few GHz
have also recently been observed using dumbbell-shaped silica nanoparticles under ultra-
high vacuum [39,41]. When using nanodiamonds, such rotational dynamics could open
the door to observations of the Barnett effect on long-lived electronic spins [42] and to
coupling spins to the gyroscopically stabilized angular motion. Importantly, stable angular
confinement and the resulting librational motion of micro-particles was observed recently by
several groups [43–45]. Angular confinement can be the result of the shape anisotropy and
birefringence of the particles [43], or asymmetries of both charged particles and traps [46].
For micro-crystals in Paul traps, typical librational frequencies are in the kHz range. As
discussed in Section 2.3, the moment of inertia must thus be larger than ≈10−27 N·m for
Brownian motion not to make trapping unstable at 300 K. Assuming a 1:2 ellipsoidal particle
aspect ratio implies operation with particles with a greater axis diameter d & 1 µm. In optical
traps, trapping frequencies can be as large as 1 MHz, implying that particles must have a
moment of inertia larger than 10−33 N·m. Particles with d & 50 nm must thus be employed
to harmonically confine the angle at room temperature. The upper bound to the particle
size will ultimately be limited by gravity, and by the specificities of the employed trapping
mechanism. Observing such libration on small particles is an important step forward, because
it will facilitate torque sensing with individual spins (see Section 6).

3. Coupling to an Ancillary Quantum System: The Special Case of the NV− Center

As discussed in the introduction, coupling a levitated particle to an ancillary quantum
system is an exiting way to extend its capabilities. Coupling the internal electronic state
of atoms or ions to trapped mechanical oscillators is intensively studied [47,48] and was
successfully demonstrated with clamped oscillators [15,49,50]. Colloidal quantum dots [51],
rare-earth ions in a solid matrix [52], or color centres in semi-conductor particles [53–55]
have all been levitated in optical tweezers. These objects feature defects that behave as
atoms which are hosted in a solid-state matrix, so these experiments are important steps
forward. One important extra criterium is the coupling strength between the ancillary
systems’ quantum state and the levitated particle dynamics. The coupling strength quanti-
fies how much the motion of the object affects the atomic state, as well as how much the
change in the quantum system impacts the motion. We will describe this coupling more
quantitatively in Section 4 using the NV− center.
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3.1. The NV− Center

The NV− color centers in diamond are of particular interest for spin-mechanics. First,
thanks to the intense research activities around these color centers, triggered by their
potentials in quantum information processing and the development of innovative sensors,
their internal electronic and nuclear spin properties are very well understood. For the same
reason, the control of diamond materials has progressed significantly over the past decade.
Lastly, the electronic spin of the NV− center can easily be coupled with the diamond host
matrix’s motion using a magnetic field [14,19,46,56–59].

The physics and applications of the NV− centers have already been discussed in recent
reviews [60,61]. We simply recall here the basics of NV− physics required for understanding
the coupling to trapped particles.

The NV color center is a point defect inside the diamond matrix consisting of a substi-
tutional nitrogen atom (N) combined with a vacancy (V) in one of the nearest neighboring
sites of the diamond crystal lattice as depicted in Figure 2a. This defect behaves as an ar-
tificial atom hosted by the diamond matrix. It combines unique luminescence and spin
properties. Indeed, because its energy levels are well within the large band gap of diamond,
the NV center has an extremely stable luminescence in the near-infrared. It can be found in
two different charge states: the NV− and NV0. The NV− zero-phonon line is at around
λZPL = 637 nm. It is associated with broad phonon sidebands that extend up to ≈750 nm.
The NV− is the most interesting for spin–mechanical interactions as we will see.

The NV− luminescence can readily be accessed using standard confocal microscopy,
and can straightforwardly be adapted for levitation platforms. The photoluminescence
from NV− centers in trapped diamonds under atmospheric conditions or in vacuum was
observed by several groups [53,54,62–65]. Figure 2b shows the photoluminescence from
NV− centers in optical tweezers observed in [65]. Different pulsing sequences were used
in order to mitigate PL quenching from the 1064 nm trapping laser. Note that, alternatively,
photoluminescence (PL) quenching can be greatly reduced using other trapping laser
wavelengths [55]. Further studies demonstrated trapping of nanodiamonds containing
single NV− centers [34,53,63]. Figure 2c shows the autocorrelation function of the PL from
a single NV− center inside a nanodiamond trapped in a Paul trap [34]. The antibunching
dip at zero delay, below 0.5 is a proof for the presence of a single NV− center inside the
trapped diamond, which opens a path towards non-gaussian spin-mechanics using the
NV− spin.

a) b) c)

Figure 2. (a) Schematic of the crystalline structure of NV defect in diamond. The axis N −V is the quantization axis. (b) Pho-
toluminescence from NV− centers in an optical tweezer using three different excitation conditions. Adapted with permission
from [65]. © The Optical Society. (c) Autocorrelation function of photon emission from a single NV− center in a nanodiamond
levitated in a Paul trap. Adapted with permission from [34]. Copyright 2020 American Chemical Society.

3.2. The NV− Center Electronic Spin

In addition to the possibility of observing stable PL at ambient conditions, the NV−

center also carries a spin that can be manipulated at room temperature. The electronic spin
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of the NV− center in the ground state is a spin triplet S = 1, with a quantization axis uNV
enforced by the crystalline field around the defect. The spin projections along this axis
are labelled with the quantum number ms. Due to a spin–spin interaction between the
two electrons in the ground state the |ms = ±1〉 states are split from the |ms = 0〉 by the
zero-field splitting D ≈ 2.88 GHz (see Figure 3a). These states are purely magnetic states,
implying a very long longitudinal decay time T1, on the order of milliseconds in typical
diamond samples [66]. Note that in strained diamond, or in the presence of local electric
fields [67], the states |ms = ±1〉 can also be split, by a parameter often denoted 2E. This
splitting is typically a few MHz in nanodiamonds. In practice, a magnetic field bias larger
than E is employed in order to reach large spin–mechanical couplings, so we neglect this
zero-field splitting in the following.
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Figure 3. NV− center level structure. (a) Simplified electronic structure of the NV− center. (b) Example
of optically detected magnetic resonance on a single NV− center in a bulk diamond. The magnetic field
is applied with an angle θ = 74◦ with respect to the NV axis. (c) ESR frequencies from (b) (gray dots)
compared with the full theory (red lines) obtained by computing the NV Hamiltonian eigenvalues
(Equation (3)). Figure (b,c) are adapted from [68].

One interesting aspect of the NV− center resides in the possibility to optically initialize
and read-out its electronic spin state. Indeed, under green laser irradiation the NV−

center is polarized in the |ms = 0〉 state, while the photoluminescence level depends on
the populated spin state. The |ms = 0〉 state can be up to 30 % brighter than the |ms = ±1〉
states [61]. When a microwave tone is resonant with one of the transitions from |ms = 0〉
to |ms = ±1〉, a drop of luminescence can then observed. This forms the basis of Optically
Detected Magnetic Resonance (ODMR). The energy of these transitions can be found from
the Hamiltonian of the electronic spin of the NV− center in the ground state, which reads

Ĥ/h̄ = DŜ2
z + γeŜ · B, (3)

where γe is the gyromagnetic factor of the electron. Because of the zero-field splitting D
and the spin 1 character of the NV− center, the eigenstates of the Hamiltonian depend
upon the angle between the magnetic field and the NV− center when γeB < D.

Typical single NV− ODMR spectra with fixed diamonds are presented in Figure 3b
showing the transitions from the |0〉 to | ± 1〉 states as a drop of the PL. For this experiment,
the NV− is at an angle of 74◦ with respect to the magnetic field. Figure 3c shows the change
in the frequency of the two transitions as a fonction of magnetic field as well as a numerical
calculation using Equation (3).

The width of the observed electron spin resonance (ESR) dip is here limited by the
dipolar coupling between the spin of NV− centers to other paramagnetic impurities in the
diamond. The most dominant impurity is the substitutional nitrogen (P1 centers), with
concentrations ranging from 100 to 500 ppm in high-pressure-high-temperature grown
diamonds (see Section 8.1). Dipolar coupling between the NV− center and P1 centers
typically lead to an inhomogeneous dephasing time Γ∗2 on the order of 5 to 10 MHz [69].
Ultimately, the linewidth of the ESR is of crucial importance, since it limits the measurement
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sensitivity as well as impacting the spin coupling strength to the mechanics. Nevertheless,
as discussed in the Section 7, diamond growth allows fine control over impurities.

The frequency shifts of the spin resonances with magnetic field and their dependence
with the magnetic field angle are important ingredients for coupling the center of mass and
the angle of levitated particles to the NV− spin states, as we now discuss.

4. Hamiltonian of the Spin–Mechanical System

In the following, we consider a diamond containing a single NV− center in the presence
of a homogeneous magnetic field as well as in a magnetic field gradient. We will consider the
case of an NV− center in a trapped diamond but this analysis can be carried over to studies
where an NV− center is coupled with a distant trapped magnet [35,70].

When the genuine quantum nature of single spins is not of interest, the following
treatment can also straightforwardly be adapted to N spins. If correlations between the NV
spins inside the diamond from direct dipolar interactions [71–74], or resonator mediated
interactions [19,20,75] are neglected, the coupling strength can simply be multiplied by the
number of spins. To be able to directly carry a single-spin analysis over to the ensemble case,
one must also assume that the NV centers all have the same orientation in the diamond.
In practice this is not the case since the NV− centers will typically be found with the
same probability along the four [111] diamond directions. However, in the presence of a
magnetic field that does not broaden the ESR width, the microwave can select only one of
the eight resulting ESR transitions so that one can treat this problem using N effectively spin
1/2 systems in a single orientation with ESR frequencies that are within the inhomogeneous
broadening Γ∗2 .

We will study the coupling between the spin and the two main degrees of freedom
of a levitating mechanical oscillator: the center of mass motion (CoM) and the libration.
We will assume that there is no coupling between these two degrees of freedom so that
we can treat them separately. Note that this may not be true generally. For instance, in
Paul traps, if the charge distribution has a non-zero dipole component, the center of mass
and the angle may become coupled [76]. Similarly, shape anisotropy or birefringence of
optically trapped particles can also induce a mode coupling [77,78]. These mechanisms are
neglected here, but can be of interest for transferring the quantum state of one spin-coupled
mode to another one.

4.1. Coupling to the Center of Mass

The center of mass motion (CoM) of the trapped particle can be coupled with the
NV− spin using a magnetic field gradient [14]. Let us reduce the study of the spin-CoM
coupling to a 1D problem. We assume that the NV axis is along the magnetic field. This
greatly simplifies the problem by leaving aside mixing between the NV eigenstates and
coupling between the CoM and the libration. When the magnetic field gradient is in the
z direction: B = B0ez +

∂Bz
∂z zez to first order in the position. Under those assumptions,

the Hamiltonian of the spin–mechanical system reads Ĥcom = Ĥmecha + ĤNV, where

Ĥmecha = p2
z

2m + 1
2 mω2

z z2 and ĤNV = h̄DŜ2
z + h̄γe(B0 +

∂Bz
∂z z)Ŝz.

Due to the Zeeman term in ĤNV, the magnetic energy is linearly proportional to the
particle position. A magnetic force directly related to the magnetic field gradient and the
chosen spin polarisation can thus be applied to the particle (see Section 6).

In the presence of an oscillating magnetic field BµW that is linearly polarized along
the x direction, the spin part of the Hamiltonian reads

ĤNV+µw = h̄DŜ2
z + h̄γe(B0 +

∂Bz

∂z
z)Ŝz + h̄Ω cos(ωt)Ŝx. (4)
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where Ω = γeBµW . Moving to the rotating frame at the microwave frequency ω through

the unitary transform Û = eiωtŜ2
z and making a rotating wave approximation, we get

Ĥ′NV+µw = h̄(D−ω)Ŝ2
z + h̄γe(B0 +

∂Bz

∂z
z)Ŝz + h̄

Ω
2

Ŝx. (5)

If γeB0 is greater than both 2E and Γ∗2 and if the optical pumping process is stronger
than the relaxation rate T1 (see Section 3), resonantly tuning the microwave frequency
to the |0〉 ↔ |+1〉(resp.|−1〉) transition enables the |−1〉 (resp. |+1〉) state to be safely
neglected. Choosing a microwave signal tuned to the transition |0〉 ↔ |+1〉, we finally
obtain the Hamiltonian of a two-level system coupled with a mechanical oscillator:

Ĥtotal = Ĥmecha + ĤSpin + ĤSpin−mecha, (6)

where ĤSpin = −h̄∆|1〉〈1|+ h̄ Ω
2 (|0〉〈1|+ |1〉〈0|) with the microwave detuning ∆ = ω −

D− γeB0 and ĤSpin−mecha = h̄Gzz|1〉〈1| with the coupling constant Gz = γe
∂Bz
∂z . Note that

the latter has been redefined a Ω ≡ Ω√
2

to ensure normalisation of the Ŝx operator.
Before studying this Hamiltonian and the related experiments in more details, we will

discuss the spin-coupling to the librational degree of freedom.

4.2. Coupling to the Libration

The theory behind spin-coupling to the libration has been presented in several pa-
pers [19,46,57]. Here, we derive a simplified Hamiltonian in the γeB � D limit. Let us
use the vectors (0, ex, ey, ez) to specify the orientation of the laboratory frame and the
vectors (0, ex′ , ey′ , ez′) to specify the particle frame. We choose e′z as the anisotropy axis
of the NV− center in the crystalline structure of the diamond. The three Euler angles
operators (φ̂, θ̂, ψ̂) describing the angular position of the diamond are chosen in the (zy′z′′)
convention. The magnetic field is supposed to be homogeneous and its direction is fixed in
the laboratory frame. It is chosen along the z direction, so that B = Bez.

The Hamiltonian of the spin–mechanical system in the laboratory frame reads

Ĥlib =
L̂2

2I
+ U(φ̂, θ̂, ψ̂) + h̄DŜ2

z′ + h̄γeBŜz, (7)

where L̂ is the angular momentum operator of the diamond in the laboratory frame,
U(φ̂, θ̂, ψ̂) is the angular confining potential and Ŝz,Ŝz′ are NV− center spin operators.
Contrary to when studying the coupling of the NV center to the center of mass, the NV
direction is not necessarily fixed in the laboratory frame. This implies that the Ŝz′ operator
depends on angular operators (φ̂, θ̂, ψ̂) which do not commute with the diamond angular
momentum operator L̂. Consequently, the commutator

[
L̂2, Ŝ2

z′

]
6= 0 [79].

In the following, we will restrict the study to one librational mode that is assumed to
be in the (zz′) plane formed by the magnetic field and spin direction. The diamond angular
motion is parametrized by the nutation angle operator θ̂. θ′ represents the equilibrium
angular position of the diamond.

The Hamiltonian of the simplified system reads

Ĥlib =
p̂2

θ

2I
+

1
2

Iω2
θ(θ̂ − θ′)2 + h̄DŜ2

z′ + h̄γeBŜz, (8)

where p̂θ is the angular momentum operator along the y axis. Moving to the particle frame
through the unitary transformation Û = eiθ̂Ŝy changes the Hamiltonian to

Ĥ′lib =
( p̂θ − h̄Ŝy)2

2I
+

1
2

Iω2
θ(θ̂ − θ′)2 + h̄DŜ2

z + h̄γeB
(
cos θ̂Ŝz − sin θ̂Ŝx

)
. (9)
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In this frame, p̂θ is changed to p̂θ − h̄Ŝy, which is the total angular momentum of the
spin–mechanical system along the y axis. It is the sum of the particle and the NV-spin
angular momentum. This modified angular momentum could cause precession of the
particle. Such a precession is predicted to be observable in levitated hard ferromagnetic
nano-particles [80,81], with important applications in gyroscopy. For nano- or micro-
particles containing a smaller amount of spins, the total angular momenta correction h̄NŜy
is negligible. In order to estimate the relevance of this term in current experiments, one
can note that 〈 p̂θ〉 ≈

√
kTI is far above h̄N even when using a highly-doped (≈10 ppm)

micron-sized diamond at temperatures above µK. This condition will thus be verified
for all smaller particles, since the maximal density of NV centres scales with the particle
volume. In this considered temperature regime, we can thus treat the angle as a scalar
and neglect the contribution from the angular spin momentum, bearing in mind that this
approximation drops when using an ultra-cold oscillator.

The remaining step is to diagonalize the spin part of the Hamiltonian. Apart from
in ref. [82], experiments currently operate in the regime γeB � D. We thus assume this
condition to be fulfilled in the following. We also assume small mixing between the two
NV− excited states, which is satisfied under the condition sin2 θ′ � cos θ′. Lastly, we change
variable and shift the angle θ to the equilibrium position θ′. Under those assumptions, the
Hamiltonian reads (see Appendix A or the detailed calculation):

Ĥ′′′lib '
p2

θ

2I
+

1
2

Iω2
θ θ2 + h̄(ω+1(θ)

∣∣+1′
〉〈
+1′

∣∣+ ω0(θ)
∣∣0′〉〈0′∣∣+ ω−1(θ)

∣∣−1′
〉〈
−1′

∣∣). (10)

The expression of the new eigenstates |±1′〉 and |0′〉 is listed in Appendix A. The
frequencies ωi(θ) = ωi + βiθ of the spin resonance are plotted as a function of the angle θ
for two different magnetic field values in Figure 4a.
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Figure 4. (a) Electronic spin transition energies of the NV− center as a function of the angle θ for
magnetic fields of 50 G (brown lines) and 300 G (blue lines). The black dots indicate the optimum
angles for the largest spin-torques. (b) Optimum coupling strength Gθ on the |0〉 to |−1〉 transition
as a function of the external magnetic field. The shaded area corresponds to the magnetic field values
for which the optimized coupling strength is very close to γeB. In both plots, numerical calculations
without approximations are shown by dashed lines.

It was shown in [68] that the pumping process is not modified to first order in the
transverse magnetic field. We can thus neglect the mixing contribution from the optical
pumping process of the NV− center. This is also manifest in Figure 3b where the contrast
of the ODMR drops significantly only with magnetic field values above ≈10 mT.
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Similar to the calculation for the center of mass (CoM), we obtain the Hamiltonian
(see Appendix A):

Ĥ′NV+µw/h̄ ' −∆+1(θ)
∣∣+1′

〉〈
+1′

∣∣− ∆0(θ)
∣∣0′〉〈0′∣∣− ∆−1(θ)

∣∣−1′
〉〈
−1′

∣∣+ Ω
2

Ŝx, (11)

where ∆+1(θ) = ω − ω+1(θ), ∆−1(θ) = ω − ω−1(θ) and ∆0(θ) = −ω0(θ). We redefined
Ω ≡ Ω cos θ′. The eigenstates are listed in Appendix A. Choosing a microwave tuned
close to resonance with the |0′〉 to |+1′〉 transition allows us to restrict the study to the
Hamiltonian of a two-level system

Ĥ′′NV+µw/h̄ ' (−∆ + β1θ)
∣∣1′〉〈1′∣∣+ β0θ

∣∣0′〉〈0′∣∣+ Ω
2
(|0〉

〈
1′
∣∣+ ∣∣1′〉〈0|). (12)

Here ∆ = ∆+1 − ∆0 and Ω ≡ Ω√
2

to take into account the
√

2 factor in the Ŝx operator

of the spin-1 system. We have fixed the energy reference to be the energy of the |0′〉 state.
The second term β0θ|0′〉〈0′| operates as a small shift of the angular position when the

NV− ground state is populated and can be interpreted as a consequence of van Vleck para-
magnetism. The mixing between the ground and excited states induced by the transverse
magnetic field indeed generates a non-zero magnetic moment in the NV− center [82,83].
This term gives rise to a new equilibrium position in experiments because the |0′〉 is popu-
lated by the green laser.

At this point, a word of caution is in order if one wishes to translate the above de-
scription to ensembles of NV centers. We indeed need to check for the consistency of our
initial assumptions about independent NV directions in the presence of strong van Vleck
paramagnetism. This paramagnetism is present in the absence of microwave excitation, so
all NV orientations contribute to give a spin-torque in the ground state, the extent of which
depends upon the transverse magnetic field amplitude for each orientation. When including
the four orientations, the first-order effect is a slight reduction of the van Vleck paramagnetic
susceptibility that can be estimated for a single orientation. This is due to an overall spatial
averaging of the magnetizations from the four NV orientations, which should be recast in β0.
The reader can find more information in [83].

Let us redefine the center of the mechanical resonator to be around the equilibrium
angular position when the population is in the |0′〉 state by including the van Vleck shift
in ∆. Then, by defining Gθ = β1 − β0 to be the single-spin mechanical constant, the
Hamiltonian of the system can finally be written as the simple two-level atom Hamiltonian:

Ĥ′′NV+µw/h̄ =

(
−∆(θ) Ω/2
Ω/2 0

)
, (13)

where ∆(θ) = ∆− Gθθ is the frequency difference between the states |0′〉 and |1′〉. The
Hamiltonian for the librational mode is thus the same as for the center of mass (Equation (6)),
when replacing the coupling constant Gz by Gθ .

The optimum coupling strength Gθ on the |0〉 to |−1〉 transition is plotted in Figure 4b.
Ones finds that Gθ ≈ γeB when γeB < 200 MHz. There is a good match between analytical
numerical calculations in this range of magnetic fields. Slight deviations between analytical
treatment and numerical calculations are visible when γeB > 200 MHz due to stronger
state mixing as γeB approaches D.

5. Sensing the Motion of a Trapped Particle Using NV− Centers

As we just described, the ESR frequencies depend strongly on the angle of the homo-
geneous magnetic field with respect to the NV axis, and on the center of mass in a magnetic
field gradient. In the presence of a microwave drive on the diamond, the change in the
photoluminescence from the NV− centers can then be used as a marker of the center of
mass motion of diamonds or distant ferromagnetic particles, as pioneered in experiments
with tethered oscillators [16,17]. With trapped diamond particles, the angular dependence
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of the NV center energy levels also means that it is possible to detect their full rotation and
even their librational motion.

Figure 5a shows an ODMR obtained from optically trapped diamonds in water featur-
ing broad lines due to significant angular Brownian motion in the presence of a magnetic
field [84]. Similar ODMR shapes were observed in [54,63]. These results show that NV
centers are an efficient tool to measure the rotation of particles. Further, the fully rotating
regime may also shed new light on geometric phases acquired by NV centers as well as
offering perspectives for efficient sensing of magnetic fields in the rotating frame [85].

(a)
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.)
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2.92.852.82.752.70 2.95 3.00

Figure 5. (a) ODMR for small ensembles of nano-diamond trapped in water, under increasing
magnetic fields. Adapted form [84]. (b) ODMR spectrum for a small ensemble of NV− centers in a
levitated micro-diamond in a magnetic field of about 50 G. Eight peaks corresponding to the four
orientations of the NV− centers, are observed. Reprinted figure with permission from [86]. Copyright
2018 by the American Physical Society.

Note that, additionally, control of the trapping laser polarisation allows tuning the
NV angles [87]. In [54,86], ODMR from diamond particles in Paul traps was also reported
on angularly stable micro-diamonds (with typical librational frequencies in the kHz range).
Figure 5b shows the PL of NV− centers from a diamond containing about 1000 NV− centers.
Eight ODMR lines were observed due to the four projections of the magnetic field onto
the four possible NV axes in the diamond cristalline structure and thanks to the efficient
particle angular confinement. Assuming thermalization with a gas at a temperature close
to T = 300 K, the angular standard deviation is ∆θ ≈ 1 mrad (see Section 2). The expected
extra broadening of the ODMR lines in a magnetic field B ≈ 50 G is on the order of
Gθ∆θ ≈ γB∆θ = 150 kHz. This value is smaller than the width given by the dipolar
coupling between the NV and P1 centers (see Section 3).

Two recent experiments have even shown read out of the harmonic motion of a trapped
particle using NV centers [35,70]. In the first experiment [70], a hybrid diamond-nickel
particle was levitated in a Paul trap. The NV− centers in the diamond were employed to
read-out the librational motion. In the second experiment [35], a magnet was levitating on
top of superconducting sheet and a diamond containing a single NV− center was brought
in the vicinity of the magnet to read-out its center of mass motion.

In order for NV centers to efficiently detect the center of mass motion, Gieseler et al. [35]
used broadband magnetic noise to excite the motion of the trapped micro-magnet (diameter
≈ 15 µm). The magnetic field thermal noise at the NV location, generated by the 100 µm
distant driven trapped magnet, was then observed in the power spectral density (PSD) of
the NV PL evolution. Thanks to the high quality factor of the oscillator (Q ≈ 106), tuning a
microwave to the blue side of the ODMR signal, as shown in the top of Figure 6a, resulted
in a sharp peak at the mechanical oscillator frequency.

Similarly, Huillery et al. [70] reported NV-based detection of the motion of a 10 µm
hybrid ferromagnet/diamond particle. The latter was levitated in a Paul trap and the
libration was detected in the time domain after parametric excitation of the magnetically
confined librational mode. Figure 6b shows the ODMR (top trace) and the ring down of
the librational mode (below) detected both using scattered light and the NV PL. Notably,
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the PL change was delayed with respect to the instantaneous particle motion due to a time
lag between the motion and the magnetization.

These studies open a path towards the NV read-out of the Brownian motion of trapped
harmonic oscillators. To reach this limit, more involved dynamical decoupling (DDC) tech-
niques [17] could be used, with perspectives for attaining the zero-point motion sensitivity
of the oscillator. Rabi oscillations, Ramsey and spin echoes from NV centers in a trapped
diamond have in fact been observed already without significant deterioration of the T2 from
either the charge noise or the angular Brownian motion [86]. Rabi oscillations were also
observed in [53] using an optically trapped nanodiamond under weak magnetic fields. DDC
would, however, require to enter the regime where the trapping frequency of the trapped
mechanical oscillator exceeds the decoherence rate Γ∗2 of the NV spins. We discuss ways to
achieve this in Section 8.1.
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Figure 6. NV− sensing of the motion of trapped particles. (a) Top trace: ODMR on a |ms = 0〉 to
|ms = +1〉 transition from a fixed single NV− center, located 100 µm away from the levitating
magnet. Below: PSD of the NV fluorescence signal when a microwave is tuned to the blue side of the
ODMR peak. The right narrow peak shows the magnet motion when the microwave is modulated at
175 Hz. Adapted from [35]. (b) Top trace: ODMR on a |ms = 0〉 to |ms = −1〉 transition from several
NV− centers inside a hybrid ferro-diamond particle. Bottom trace: Time trace showing the librational
ring-down from the hybrid structure. The detection was realized using both the laser scattered
light and the PL. Reprinted figure with permission from [70]. Copyright 2020 by the American
Physical Society.

6. Magnetic Forces and Torques on a Trapped Particle from the Spin of NV− Centers

We have discussed experiments where the trapped particle motion was read-out by
NV spin states. In order to strongly couple a mechanical oscillator to spins, however, not
only should the mechanical motion affect the spin state, but the spin should also alter
the motion.

In this section, we review work on the reverse process where NV centers act on the
motion. We start by a discussion on optimum sensing of the force and the torque induced by
NV centers.

6.1. Force and Torque Sensitivity

Presently, direct optical read-out of the motion of trapped particles using scattered
light is more efficient than using embedded NV centers. Most experiments that use optical
read-out are currently in the regime where the influence of collisions with the background
gas dominates. The detection noise is thus determined by the resulting Brownian motion
of the levitating object. Note that the ultimate sensitivity should be given by the quantum
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back-action of the measurement under low vacuum. This limited was recently reached in
experiments with trapped nano-spheres [88,89].

The most sensitive way to detect an external torque, with current technology, is to use
optical interferometric detection and to modulate the torque at the mechanical frequency
of the oscillator. Modulation of the amplitude of the NV induced spin-torque can be done
straightforwardly by modulating the microwave tone that excites them. The minimum
torque τmin

s that can be detected in a time δT is then obtained by balancing the resulting
signal amplitude and the standard deviation of the Brownian motion noise. One finds

τmin
s
√

δT =
√

4kTγθ I =

√
4kTKt

Qωθ
, (14)

where Q = ωθ/γθ is the quality factor of the mechanical oscillator libration, and Kt is the
trap rigidity, namely Iω2

θ .
Tethered torque sensors with sensitivities in the 10−23 N·m/

√
Hz range are real-

ized nowadays with state-of-the-art nano-fabricated oscillators [90]. The largest sensi-
tivities with levitating systems have been achieved using levitating silica nanospheres
that are attached to form a dumbbell [91]. The authors reached a record sensitivity of
10−28 N·m/

√
Hz. Trapped cristalline particles currently feature a lower torque sensitivity

than trapped amorphous particles, partly because of their currently lower quality factor.
A sensitivity of 10−23 N·m/

√
Hz was attained in [70] using soft ferromagnetic particles

at room temperature and at pressure levels in the 10−2 mbar range, very close to the
state-of-the-art torque sensing obtained at dilution fridge temperatures [90].

A similar formula can be obtained for the smallest detectable force acting on the center
of mass mode, by replacing Q with ωz/γz, Kt by mω2

z and I by m. Sensitivities in the
zeptonewton/

√
Hz range were reported experimentally [28,92,93]. Very large sensitivities

are also predicted for a magnet levitating on top of a punctured superconductor sheet in
the Meissner state [94]. Amongst all spin–mechanical systems, trapped magnets currently
feature record sensitivities in the 10−18N/

√
Hz range [35,44]. Note that at the low pres-

sure levels employed in these experiments (≈10−5 mbar), damping is not determined by
collisions with the background gas so the above model may not apply directly.

These last achievements not only show the capabilities of levitating systems, close to
the sensing capabilities of MEMS, but also offer immediate perspectives for entering the
quantum regime by coupling magnets to distant NV centers.

6.2. Observing NV Static Spin-Dependent Torque and Force

In this section, we discuss the parameters required for observing spin-dependent forces
and torques on a trapped particle. We focus on the expected static shifts, assuming that the
NV− centers have a lifetime that is greater than the typical time required to shift the angle or
the center of mass. The latter is typically on the order of the period of the potential.

6.2.1. Angular Displacement Using NV− Centers

Using Equation (10), one finds that the torque applied to the diamond in the magnetic
state | − 1′〉 reads

τs = −
〈

∂Ĥ′′′lib
∂θ

〉
= −h̄Nβ−1. (15)

The optimum shift will be found for θ = π/2, where τs = −h̄NγeB so the largest
single spin torque can be ≈10−25 N·m.

Let us consider a particle with a diameter of 15 µm undergoing Brownian motion in a
harmonic trap under 0.1 mbar. Stable harmonic confinement is readily attainted at 300 K in
a Paul trap with these parameters [45], enabling a sensitivity of ≈10−21 N·m/

√
Hz. This

sensitivity is far from enabling single spin torque detection in a reasonable amount of time.
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Reference [45] reported the observation of spin-torque in this parameter regime, albeit
using 109 spins that were all identically coupled with the libration. Figure 7b demonstrates
mechanical detection of the ≈10−19 N·m spin torque averaged over a few minutes with
a large signal to noise ratio (taken from [45]), revealing a novel efficient method to probe
ESR from NV centers.

In order to approach the single spin torque level, particles with much smaller moment
of inertia must be used. A levitating particle with a diameter of 100 nm and a modest Q factor
of 104 would be sufficient to reach sensitivities in the 10−25 N·m/

√
Hz range. Single-spin

torque could then be discerned within one second in this experimentally achievable regime.
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Figure 7. (a) Sketch showing a NV-doped diamond in a Paul trap where the probe laser reflection
angle from the diamond surface depends on the spin state. (b) Mechanically detected magnetic
resonance observed by scanning the microwave tone about the NV transitions. (c) ODMR in similar
experimental conditions. Adapted from [45].

6.2.2. Center of Mass Displacement Using NV− Centers

A similar discussion can be made to estimate the magnitude of the magnetic force on
the CoM of a trapped diamond subjected to a magnetic field gradient

Fs = −
〈

∂Ĥcom

∂z

〉
= −h̄Nγe

∂Bz

∂z
. (16)

Under a gradient of 105 T/m, one finds a single-spin force of 10−19 N. These large
gradients typically require trapped micron-size magnets a few hundreds of nanometers
from the NV center. Although less attractive for quantum applications, ensembles of spins
could be used to bypass this technical difficulty.

The spin-dependent force has not been observed thus far using NV− centers to the
best of our knowledge, even with large ensembles of spins. Even if strong magnetic
field gradients can be achieved, it may induce a large inhomogeneous broadening when
using ensembles, which will forbid efficient microwave excitation of the whole ensemble
of NV− centers in the selected orientation. The magnetic field gradient will thus be
bounded by the microwave excitation Fourier width δν in a pulsed excitation scheme, so
that ∂Bz/∂z|max = ∆ν/γed, where d is the diameter of the probed spin-ensemble. Note
that ∆ν can reach more than 100 MHz using high power amplifiers and dedicated fast
electronics [95].

One further difficulty with NV centers coupled with trapped particles is to distinguish
the center of mass motion from spin-induced torques. Indeed, a magnetic field offset is
required in order to magnetize the NV− centers with a microwave which will rotate the
trapped particle. The spin-induced angular displacements may thus contribute at the same
level as the center of mass shifts, which complicates measurement analyses. One solution
is to align the magnetic field along the [111] direction of the diamond, where no torque
should be applied to the particle. This is a notoriously difficult task when using levitating
particles where the angle between the diamond crystalline axes and the main trap axes
cannot not always be controlled.
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Let us conclude by adding that single-spin forces were measured using Magnetic
Resonance Force Microscopy (MRFM) in [96]. Acquisition times of many hours and carefully
engineered modulation techniques were employed. It is likely that significant progress can
be made by applying these techniques to spin-mechanics with NV centers, with fascinating
prospects for controlling the motion of micro-objects using single long-lived qubits.

7. Dynamical Resonant Spin–Mechanical Interaction

Spin–mechanical systems can show richer physics than just static torques and forces.
When calculating the torque and force in Sections 5 and 6, it was implicitly assumed that
the spin population does not change after applying the microwave excitation. This is
not the case in the strong spin–mechanical coupling regime. Indeed, after the microwave
excites the spin and gives rise to a torque (or to a force), the particle angle (or position)
changes, which in turn changes the microwave detuning with respect to the ESR, hence the
magnetization. We discuss the resulting bistable and spin-spring effects below.

Further, when the spin-torque resulting from the combined laser and microwave induced
magnetization is lagging behind the motion, exchange of heat between the spin and the
mechanical oscillator can take place. Experiments have recently entered this regime [45].

We provide a simplified analytical theory of such spin dynamical back-action. We fo-
cus on the angular degree of freedom, but the calculation can be straightforwardly carried
out for the center of mass by making the replacement (θ, Gθ)→ (z, Gz).

7.1. Bistability and Spin-Spring Effect

As in opto-mechanics, bistability and modified spring constants can occur. We first
describe these two effects, in the limit where the microwave magnetization and the laser
polarisation rates are faster than the mechanical oscillator frequency. This means that no
energy exchange between the motion and the spin can take place.

7.1.1. Spin-Bistability

The torque τs exerted on the particle due to the spin–mechanical coupling can be
evaluated using Equation (13). We obtain

τ̂s = −
∂Ĥ′′NV+µw

∂θ
= −h̄NGθ

∣∣1′〉〈1′∣∣. (17)

In the dispersive limit where Ω � ∆(θ), the spins are mostly in the lowest energy
eigenstate |−〉 of Ĥ′′NV+µw where the torque reads:

τs = 〈−|τ̂s|−〉 = −h̄NGθ |
〈
−
∣∣1′〉|2 ≈ −h̄NGθ

(
Ω

∆(θ)

)2
. (18)

This spin torque can be added to the restoring torque of the levitating system. The new
angular stable position can be found by solving the equation τs + τtrapping = 0. It gives rise
to a third degree polynomial equation for θ

h̄NGθΩ2 + Iω2
θ θ(∆ + Gθθ)2 = 0. (19)

In the very same way as in opto-mechanics, two stable solutions for θ can be found
when ∆ < 0. Angular bistability can then occur when the microwave is swept across the
ESR transition.

7.1.2. Dynamical Backaction: Spin-Spring Effect

Linearizing about an equilibrium position θ0, and introducing the detuning ∆̄ = ∆− Gθθ0,
we get

〈−|τ̂s|−〉 ≈ τs,0 + Ks(θ − θ0), (20)
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where

τs,0 = h̄NGθ

(
Ω
∆̄

)2
and Ks = −2h̄NG2

θ

Ω2

∆̄3 , (21)

in the limit of small angle shifts. This expression predicts a restoring torque in the limit
where ∆̄ > 0 (blue detuned with respect to the spin transition).

In the presence of the green laser light, transitions from the dressed spin states will
alter this predicted shift. We will estimate it together with the spin-cooling effect using a
density matrix formulation in the following.

7.2. Spin-Cooling

In the above estimation, we assumed that the spins react immediately to a change in the
motion. When the spin torque lags behind the motion, friction forces can alter the motional
temperature and lead to spin-cooling, as calculated in [57] and observed in [45]. In order to
evaluate the dynamical back-action from the spins to the mechanical oscillator with retarda-
tion, one will include the dissipation of the electronic spin. Lastly, since most experiments
are operating in the so-called adiabatic limit where the frequency of the mechanical oscillator
is much smaller than the spin dephasing rate, we will consider this regime for simplicity and
discuss the corresponding limits to spin-cooling.

7.2.1. Equations of Motion

We will again assume that the microwave is tuned to the |0′〉 to |1′〉 transition. When
the longitudinal decay time T1 ≈ ms is longer than the time 1/γlas � 100 µs it takes for
laser polarizing the NV spin, the magnetic state |−1′〉 is not populated. This can be ensured
quite straightforwardly experimentally, using laser powers in the hundreds of µW range
with standard microscope objectives. We will assume that this is the case here. We can thus
reduce the study to the two level system described in Equation (13).

The von Neumann equation for the reduced two-by-two spin density matrix ρ̂ reads

∂ρ10

∂t
= (−Γ∗2 + i∆(θ))ρ10 + i

Ω
2
(2ρ11 − 1) (22)

∂ρ11

∂t
= −γlasρ11 + i

Ω
2
(ρ10 − ρ∗10), (23)

where Γ∗2 is the inhomogeneous broadening of the NV− center and γlas is the optical
pumping rate to the |0′〉 state. We also assumed γlas/2� Γ∗2 , which is largely satisfied in
practice. Note that these equations are valid when the broadening is purely homogeneous
and of a Markovian nature. In general, the NV− centers couple to slowly fluctuating spin
baths that generally implies Gaussian ESR lineshapes.

The above equations are coupled with the equation of motion of the particle via

I
∂2θ

∂t2 + Iγ
∂θ

∂t
+ Iωθ

2θ = 〈τ̂s〉B + τL, (24)

where 〈τ̂s〉B = −h̄NGθρ11 and B accounts for incoherent laser excitation to the ground
state, as well as pure dephasing due to dipolar coupling to the P1 centers. Because of
the θ dependency in ∆, this system of equations is nonlinear. Here, we study the system
dynamics around a steady-state, which will linearize the set of equations.
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7.2.2. Stationary Solutions

We introduce the steady-state quantities ρ0
11 = 〈ρ11〉, ρ0

10 = 〈ρ10〉, and θ0 = 〈θ〉, where
〈.〉 denotes time averaging. Writing the incoherent pumping rate to the magnetic state at

the angle θ0 as Γ0 =
Ω2Γ∗2

Γ∗2
2+∆̄2 , we get:

ρ0
11 =

1
2

Γ0

γlas + Γ0
. (25)

Using Equation (24), one finds the steady state solution for the angle to be

Iωθ
2θ0 = 〈τ̂s〉0B = −h̄NGθρ0

11. (26)

This last equation gives a third degree polynomial equation for θ0. Depending on the
microwave detuning, there can either be one or two stable solutions for θ0.

7.2.3. Effective Susceptibility

Writing each spin and angle parameters in Equations (22)–(24) as f (t) = f 0 + δ f (t)
and transforming them to the Fourier domain, these equations can be recast into the
compact expression δθ(ω) = χeff(ω)δτL(ω), where the susceptibility χeff(ω) reads

χeff(ω) =
1

I(ω2
θ −ω2 − iωγ)− Ks(ω)

. (27)

The quantity Ks(ω) is a dynamical spin-rigidity which quantifies the response of the
particle angle to a change in the spin-torque. The real part of Ks(ω) gives rise to a shift of
the mechanical oscillator frequency while the imaginary part gives rise to a damping of the
mechanical motion. We can rewrite the susceptibility in the more condensed form

χeff(ω) =
1

I(ω̃2
θ −ω2 − iωγ̃)

, (28)

with

ω̃θ = ωθ

[
1− Re(Ks(ωθ))

2Kt

]
and γ̃ = γ

[
1 + Q

Im(Ks(ωθ))

Kt

]
. (29)

The modified damping and frequency of the mechanical oscillator have been estimated
in the limit Kt � Re(Ks(ωθ)), where Kt = Iω2

θ is the trap rigidity. Q = ωθ/γ is the quality
factor of the trapped particle.

7.2.4. Dynamical Spin-Rigidity in the Adiabatic Limit

In the adiabatic limit |∂ρ10/∂t| � |(−Γ∗2 + i∆(θ))ρ10|, we have

∂ρ11

∂t
= −γlasρ11 −

Ω2

2Γ∗2
L(θ)(2ρ11 − 1), where L(θ) = 1

1 + (∆(θ)/Γ∗2)
2 . (30)

We now linearize this equation around the steady states and move to the Fourier
space. We find:

Ks(ω) = h̄N∆̄
(ατ)2

1 + iωτ
, where α = Gθ

√
γlasΓ2

0
Γ∗2Ω2 and τ = (γlas + Γ0)

−1. (31)

Finally, using Equation (29), we obtain

ω̃θ = ωθ

[
1 +

h̄N
2Kt

(ατ)2

1 + (ωθτ)2 ∆̄
]

and γ̃ = γ
[
1−Q

h̄N(ατ)2(ωθτ)

Kt(1 + (ωθτ)2)
∆̄
]
. (32)
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As manifest in Equation (32), when ωθτ is close to 1 and ∆ < 0, the oscillator motion
can be damped, and thus cooled down. As in cavity opto-mechanics, the cooling is due
to the retarded nature of the torque/force. Here, the delay comes from the finite time τ
it takes to re-polarize the spins in the magnetic state after the oscillator is displaced from
equilibrium, as depicted in Figure 8a.

The change in damping induces a change in the oscillator temperature. Using
δθ(ω) = χeff(ω)δτL(ω), one finds that the variance of the angle is

Sθ(ω) = |χeff(ω)|2ST , (33)

where ST = 2kTIγ is the two-frequency correlation of the Langevin torques. It is estimated
at the temperature T of the gas molecules surrounding the particle, in the regime where
h̄ωθ � kT. Using the fluctuation dissipation theorem, one obtains a simple relation
between the temperature Tf in the presence of the NV− spins and the temperature T of the
gas. One indeed has Tf =

γ
γ̃ T.

For large quality factors and negative detunings, that is with a microwave tuned to
the red, a pronounced cooling can take place. This effect is strongly analogous to Raman
cooling or cavity cooling and was observed in [45] using diamonds levitated in a Paul
trap. Figure 8b shows the power-spectral density of two libration modes of a trapped
diamond undergoing spin-cooling and spin-heating. The limit to the cooling efficiency
will ultimately be given by back-action noise from either the radiation pressure from the
laser beam that is used to polarise the spins or by the atomic spin noise. As in cavity
opto-mechanics, the latter can be mitigated in the sideband resolved regime (SRR), where
the trapping frequency is larger than the spin dephasing rate Γ∗2 .

The SRR regime has not been attained so far using trapped particles coupled with NV−

centers in any platform, to the best of our knowledge. Several solutions are envisioned to
increase the trapping frequency and/or reduce the spin linewidth. One of them consists
of coupling the NV electronic spins to the nuclear spins of the nitrogen atoms [97] to make
use of the very long nuclear spin lifetime. Another solution is to employ distant coupling
schemes between NV centers in ultra-pure diamonds and strongly confined ferromagnetic
particles [70]. If all other heat sources occur at a rate smaller than the spin-cooling in
the SRR, ground state spin-cooling of the libration or the center of mass motion can then
become a reality, offering great perspectives for controlling the quantum state of the motion
with the NV spin.
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Figure 8. (a) Spin-cooling mechanism described in the adiabatic limit. The two angular potential
wells in the spin states |0〉 and |1〉 are offset from one another by δθ due to the spin-torque. They are
coupled via the laser and microwave tone at the rates γlas and Γ, respectively, see text for explanations.
Here the microwave is tuned to the red, enabling cooling. (b) PSD of two librational modes when
the microwave is tuned to the blue (trace i) to resonance (trace ii) and to the red (trace iii) of the
spin-resonance, respectively. Adapted from [45].
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8. Challenges Ahead for Levitated Spin-Mechanics

Levitated spin-mechanics offers prospects for a wide range of applications in quantum
science. The negatively charge NV− center in diamond is a system of choice because of
its robustness, which partly explains its increasing use in present quantum technologies.
Nevertheless, recent experimental implementations have raised some technical difficulties.
First and foremost, there is poor levitation stability when decreasing the gas pressure. To
date, optical trapping of diamond has been reported only above mbar pressures [98], while
electrodynamics and diamagnetic traps operate in the 10−3 to 10−4 mbar range [34,36].
To go further and operate close to the standard quantum limit for instance, the collisions
with the background gas must be suppressed. Furthermore, the control of diamond in
terms of shape, size, and properties is not as straightforward as for silica, for example,
where chemical processes allow the production of mono-disperse spherical particles. In the
present section, we highlight some of the issues that can be tackled in the next generation
of levitated spin–mechanical systems.

8.1. Production of Diamond

The diamonds that are employed for research purposes are almost always of artifi-
cial origin. They are produced mainly using three methods, detailed in the Appendix B.
The most promising technique for achieving flawless diamonds is chemical vapour depo-
sition (CVD). In the different growth methods, the NV concentration is controlled using
different strategies that depend on the initial nitrogen content in the diamond. When the
sample contains large nitrogen concentrations, it can be irradiated by electrons or alpha
particles to create vacancies. Diamond annealing then allows vacancy migration until being
stably associated with a nitrogen atom to form a NV− center. The irradiation dose dictates
the concentration of NV− centers per nano-diamond. Typically, with this technique, a
100 nm diamond can be doped to contain one, up to thousands of NV− centers. It has been
shown that a similar result can also be obtained using laser irradiation, with the benefit of
controlling the position (and the number) of the produced NV− centers [99]. When starting
with pure CVD diamonds, nitrogen is first implanted and converted to NV− centers, with
a few percent yield, during an annealing process.

8.2. Control of Diamond Shape and Properties

As discussed previously, thanks to the development of CVD grown diamonds and
implantation techniques, it is possible to finely control the purity, and the number of hosted
NV− centers in the diamond. Over the last decades, nano and micro-fabrication of diamond
has enabled the realization of increasingly complex diamond structures [100]. Pillars of
a controlled aspect-ratio can be nano-fabricated, and even more advanced structures are
achievable using reactive ion etching technics. This is of particular interest for trapping
diamonds with large librational frequencies [46].

The development of coated diamond initially intended for biology applications may
also increase the achievable control of the properties of trapped diamond. A typical
example is silica embedded diamonds, which allows obtaining spherical particles, and that
have been shown to favor the NV− centers luminescence stability in optically levitated
nano-diamonds [63].

Spin-mechanics with trapped objects will thus benefit from the tremendous progress
in diamond material science and continuously improved knowledge about diamond and
NV− centers. A potential drawback is that the production quantity of diamonds may be
limited. Besides, one could be interested in levitating a specific diamond particle with
physical properties that have been well-characterized beforehand. In both cases, statistical
trapping procedures that start from a sprayed colloidal particle solution, and rely on random
trapping events are not ideal. The different recent approaches proposed for in situ trapping,
using a piezo shacking, a laser impulsion [48,101], or trapping particles embedded in a
polymer thin film [36], are very encouraging for the developments of on-demand trapping.



Micromachines 2021, 12, 651 20 of 30

Coupling these technics with an in situ characterization using a confocal microscope could
solve these issues.

8.3. Increasing the NV− Concentration

We have seen that increasing the number of NV− centers that couple to the oscil-
lator motion is a viable route towards observing strong spin–mechanical effects. While
the optimal density of NV− centers is generally a compromise between sensitivity and
coherence time T∗2 , other more exotic effects start to appear when the spin density reaches
a critical point.

For concentrations that are larger than ∼1 ppm (corresponding to a mean distance
between spins of ≈15 nm or a dipolar coupling strength of ≈15 kHz), the dipolar coupling
amongst NV spins plays an important role. One important effect is the modification of the
spin lifetime T1 through dipolar coupling with other short lived NV− centers [66,102,103].
This particular effect has been used with a levitating diamond in a Paul trap to observe a
resonant change in the spins’ magnetic susceptibility [83].

Other collective effects between NV− centers include the cooperative enhancement
of the NV− centers’ dipole interaction, a phenomenon similar to that of super-radiance
described in [71–73], and observed with a levitating diamond in an optical tweezer by
Juan et al. [74].

8.4. Internal Temperature of Levitated Diamonds

Numerous studies have reported an increase in levitated diamond internal temper-
ature under vacuum conditions [53,55,104,105]. This heating is detrimental for practical
reasons since it may lead to the burning or melting of the levitated particle. Internal
temperature also induces extra quantum decoherence channels, which may prevent the
observation of macroscopic quantum effects and impact the contrast of the spin resonance.

This heating was shown to be induced by laser absorption by the particle. The final
temperature is the result of a competition between absorption, heat conduction to the
surrounding residual gas, and black-body radiative exchange. Figure 9a shows the ex-
pected internal temperature for different diamond materials using the model detailed in
references [4,98]. It can be seen that the expected final temperature can vary by one order
of magnitude depending on the purity of the diamond material.
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Figure 9. Internal heating of levitated diamonds. (a) Expected internal temperature of optically levitated nano-diamonds of
different purity as a function of background gas pressure. The temperature dependence is shown for standard commercial
diamond (–·–) up to the best expected grade (dotted line). The red-line corresponds to silica. Adapted from [98]. (b) Electron
spin resonance from optically levitated nano-diamonds at different pressures. A clear shift of the central ESR frequency
demonstrates diamond heating. Adapted from [55]. (c) Internal temperature of an optically levitated nano-diamond hosting
a single NV− center as a function of trapping laser power. Adapted with permission from [53]. © The Optical Society.
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Studies conducted on high purity CVD bulk diamonds have shown that a very low
laser absorbance is achievable [106], even below the silica absorption levels. Currently
however, most experiments with levitated diamonds observe orders of magnitude higher
heating rates. Any defects from the diamond matrix may indeed worsen the absorption
First, NV− color centers may contribute to the absorption due to non-radiative pathways
of the electron population (dashed lines in Figure 9a). Most importantly, other diamond
matrix defects will also play their role, from isolated nitrogen atoms to graphite on the
diamond surface, through grain boundary or other atomic impurities [107].

The spin of the NV− centers is actually an invaluable tool to estimate the diamond
temperature [55,104,108] because the zero-field splitting D, between ms = 0 and ms = ±1
states is temperature dependent, and well characterized [109]. One can measure the
internal temperature of a levitated diamond by measuring the ESR of the NV− centers it
hosts [55,104], see Figure 9b,c which shows heating measurements from trapped diamonds
under vacuum.

Note that instead of improving the properties of trapped diamonds that are destined
to be trapped under a magnetic field produced by a fixed magnet, the roles of the diamond
and the magnet can be reversed. Schemes already discussed in this review [35,70] involving
trapped magnets were recently proposed. In these proposals, the diamond containing NV−

centers is attached to a large heat sink, so it does not heat up significantly and can readily
be made from CVD for improved spin-properties. Furthermore, no strong laser needs to be
shone onto the trapped magnet.

8.5. Beyond NV− Centers and Diamond

The present review focused on NV− centers in diamond, which is by far the most
studied system for levitated spin-mechanics. However, our discussions may be applied to
other color centers with similar behavior, and also solve some of the issues discussed in
this section. Typically, over recent decades, color centers in SiC have been shown to own
an optically addressable spin resonance [110]. SiC can benefit from silicon-like technologies,
which offer a good level of control over the material and its nano fabrication. Ultimately,
with the recent isolation of single color centers [111], even silicon may become an excellent
platform for spin-mechanics.

9. Conclusions

In this review, we presented recent levitated spin-mechanics experiments, focusing
specifically on NV− centers in diamonds. We introduced a formalism describing the
spin–mechanical interactions in these experiments and highlighted the advantages and
limitations of this interaction scheme. We discussed the technical challenges that remain to-
wards taking the full benefit of levitated spin-mechanics. The common goals and emulation
from atomic and solid-state physic, material science, and the levitation scientific communi-
ties is a cornerstone for success in this field. This will undoubtedly lead to innovative and
exciting experiments and applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ESR Electron spin resonance
ODMR Optically detected magnetic resonance
CVD Chemical Vapor Deposition
PSD Power spectral density

Appendix A. Derivation of a Simplified Hamiltonian

In this section, we detail the calculation of the simplified spin-libration Hamiltonian
Equation (13). Several unitary transformations will be performed on the Hamiltonian.
For the sake of clarity, we will divide our Hamiltonian into three different parts to do the
calculation and see the effect of each transformation on the different parts. We write

Ĥ = Ĥmecha + ĤNV + Ĥµw, (A1)

where

Ĥmecha =
p̂2

θ

2I
+

1
2

Iω2
θ(θ̂ − θ′)2, (A2)

ĤNV = h̄DŜ2
z′ + h̄γeBŜz, (A3)

and

Ĥµw = h̄Ω cos(ωt)Ŝx. (A4)

A few approximations have been made to derive this Hamiltonian. We suppose that
γeB is smaller than the zero-field splitting D of the NV− center. We suppose the transverse
magnetic field B⊥ and the longitudinal magnetic field B‖ to be of the same order of magnitude.
We also suppose that the angular momentum of the particle, given by the mean value 〈 p̂θ〉,
is a few order of magnitude larger than the typical spin momenta h̄N

〈
Ŝy
〉
. This assumption

is valid for micron-sized particles. Finally, we consider that Ω� γeB.

Appendix A.1. Moving to the Particle Frame

We move to the particle frame by performing the unitary transformation Û = eiθ̂Ŝy .
This frame is relevant because the eigenstates of the new spin operator Ŝz are now the ones
where the optical pumping process of the green laser takes place. In this frame, the NV−

Hamiltonian reads:

Ĥ′NV = h̄DŜ2
z + h̄γeB

(
cos θ̂Ŝz − sin θ̂Ŝx

)
. (A5)

The mechanical part of the Hamiltonian becomes

Ĥ′mecha =
( p̂θ − h̄Ŝy)2

2I
+

1
2

Iω2
θ(θ̂ − θ′)2. (A6)

One of the assumption that we have made is to neglect the spin contribution to the
total angular momenta of the system, which means h̄N

〈
Ŝy
〉
� 〈 p̂θ〉. Thus, we have:

Ĥ′mecha '
p̂2

θ

2I
+

1
2

Iω2
θ(θ̂ − θ′)2. (A7)

The microwave part of the Hamiltonian simply becomes

Ĥ′µw = h̄Ω cos(ωt)
(
cos θ̂Ŝx + sin θ̂Ŝz

)
. (A8)
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Appendix A.2. Diagonalization of the NV− Hamiltonian

The NV− part of the Hamiltonian is diagonalized in the perturbative limit γeB
D � 1.

We introduce the operators û⊥ = γeB
D sin θ̂ and û‖ =

γeB
D cos θ̂. Thus, we have 〈û⊥〉 � 1

and
〈

û‖
〉
� 1. Using these operators, the Hamiltonian of the NV reads:

Ĥ′NV = h̄DŜ2
z + h̄D(û‖Ŝz − û⊥Ŝx). (A9)

We can treat the second part of this Hamiltonian as a perturbation and move to the
basis where this Hamiltonian is diagonal to second order in γeB

D . We consider the unitary
transformation:

Û′′ =


1− û2

⊥
4

û⊥√
2
(1− û‖) − û2

⊥
4

− û⊥√
2
(1− û‖) 1− û2

⊥
2 − û⊥√

2
(1 + û‖)

− û2
⊥
4

û⊥√
2
(1 + û‖) 1− û2

⊥
4

. (A10)

The new states we are considering by applying this transformation are defined by

∣∣+1′
〉
=

(
1−

û2
⊥
4

)
|+1〉 − û⊥√

2
(1− û‖)|0〉 −

û2
⊥
4
|−1〉 (A11)

∣∣0′〉 = û⊥√
2
(1− û‖)|+1〉+

(
1−

û2
⊥
2

)
|0〉+ û⊥√

2
(1 + û‖)|−1〉 (A12)

∣∣−1′
〉
= −

û2
⊥
4
|+1〉 − û⊥√

2
(1 + û‖)|0〉+

(
1−

û2
⊥
4

)
|−1〉. (A13)

We have Û′′†Û′′ = Îd + o(||(û⊥, û‖)||2) which means that Û′′ is unitary up to second
order in ||(û⊥, û‖)||. Under this transformation, the NV Hamiltonian reads

Ĥ′′NV ' h̄D

1 + û‖ +
û2
⊥
2 0 û2

⊥
2

0 −û2
⊥ 0

û2
⊥
2 0 1− û‖ +

û2
⊥
2

, (A14)

which can be written as:

Ĥ′′NV ' h̄D


1 + γe B

D cos θ̂ +
(

γe B
D

)2
sin θ̂2

2 0
(

γe B
D

)2
sin θ̂2

2

0 −
(

γe B
D

)2
sin θ̂2 0(

γe B
D

)2
sin θ̂2

2 0 1− γe B
D cos θ̂ +

(
γe B
D

)2
sin θ̂2

2

. (A15)

Furthermore, we suppose that the angle satisfies 〈û⊥〉 '
〈

û‖
〉

which implies that(
γeB
D

)2 〈sin θ̂〉2
2 � γeB

D
〈
cos θ̂

〉
. We can then neglect non diagonal terms in this regime and

we obtain a diagonal Hamiltonian:

Ĥ′′NV ' h̄D


1 + γe B

D cos θ̂ +
(

γe B
D

)2
sin θ̂2

2 0 0

0 −
(

γe B
D

)2
sin θ̂2 0

0 0 1− γe B
D cos θ̂ +

(
γe B
D

)2
sin θ̂2

2

. (A16)

Let us apply this transformation to the mechanical part of the Hamiltonian. The uni-
tary transformation Û′′ only depends on θ̂ so it commutes with it. This transforma-
tion can be written Û′′ = Îd + uV̂(θ̂) + o(|u|) with u = γeB

D and V̂(θ̂) = Â sin θ̂ where
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Â = 1√
2
(|+1〉〈0| − |0〉〈+1|+ |−1〉〈0| − |0〉〈−1|). Furthermore, we have V̂(θ̂)† = −V̂(θ̂).

We have:

Û′′† p̂θÛ′′ =
(

Îd− uV̂(θ̂) + o(|u|)
)

p̂θ

(
Îd + uV̂(θ̂) + o(|u|)

)
(A17)

Û′′† p̂θÛ′′ = p̂θ + u
[
p̂θ , V̂(θ̂)

]
+ o(|u|) (A18)

Û′′† p̂θÛ′′ = p̂θ + uÂ
[
p̂θ , sin θ̂

]
+ o(|u|) (A19)

Û′′† p̂θÛ′′ = p̂θ − ih̄uÂ cos θ̂ + o(|u|). (A20)

We can safely neglect the second term under the initial assumption 〈 p̂θ〉 � h̄Nu. Thus,
we get:

Ĥ′′mecha '
p̂2

θ

2I
+

1
2

Iω2
θ(θ̂ − θ′)2. (A21)

Furthermore, this transformation does not affect the microwave Hamiltonian to first
order in γeB

D so we get:

Ĥ′′µw ' h̄Ω cos(ωt)
(
cos θ̂Ŝx + sin θ̂Ŝz

)
. (A22)

Appendix A.3. Equilibrium Position of the Paul Trap

We apply the unitary transformation Û′′′ = eiθ′ p̂θ /h̄ which redefines θ̂ as θ̂ − θ′. This
transformation does not affect the eigenstates of the spin and we obtain to first order in θ̂:

Ĥ′′′NV ' h̄(ω+1 + β+1 θ̂)
∣∣+1′

〉〈
+1′

∣∣+ h̄(ω0 + β0 θ̂)
∣∣0′〉〈0′∣∣+ h̄(ω−1 + β−1 θ̂)

∣∣−1′
〉〈
−1′

∣∣, (A23)

with

ω+1 = D + γeB cos
(
θ′
)
+

(γeB)2

D
sin (θ′)2

2
(A24)

ω0 = − (γeB)2

D
sin (θ′)

2 (A25)

ω−1 = D− γeB cos
(
θ′
)
+

(γeB)2

D
sin (θ′)2

2
(A26)

βi =
∂ωi
∂θ′

. (A27)

This transformation shifts the equilibrium position of the mechanical oscillator by θ′

and we get:

Ĥ′′′mecha '
p̂2

θ

2I
+

1
2

Iω2
θ θ̂2. (A28)

The microwave Hamiltonian reads

Ĥ′′′µw ' h̄Ω cos(ωt)
(
cos
(
θ′ + θ̂

)
Ŝx + sin

(
θ′ + θ̂

)
Ŝz
)
. (A29)

Appendix A.4. Rotating Frame of the Micro-Wave

The last unitary transformation is to move to the microwave frame by performing the
unitary transformation Û′′′′ = eiωtŜ2

z . This transformation is diagonal so it commutes with
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the NV− center Hamiltonian which is also diagonal. As it is a time-dependent transformation,
this will add a shift in energy to both the |+1′〉 and |−1′〉 states which gives the Hamiltonian:

Ĥ′′′′NV ' h̄(−∆+1 + β+1θ̂)
∣∣+1′

〉〈
+1′

∣∣+ h̄(−∆0 + β0θ̂)
∣∣0′〉〈0′∣∣ (A30)

+ h̄(−∆−1 + β−1θ̂)
∣∣−1′

〉〈
−1′

∣∣, (A31)

by defining ∆+1 = ω−ω+1, ∆−1 = ω−ω−1 and ∆0 = −ω0.
The mechanical Hamiltonian is not affected by this transformation as it commutes

with it. Finally, under the rotating wave approximation and by neglecting first order terms
in θ̂ which are negligible since Ω� γeB, we obtain:

Ĥ′′′′µw ' h̄
Ω
2

cos
(
θ′
)
Ŝx. (A32)

Redefining Ω = Ω cos(θ′), we get:

Ĥ′′′′µw ' h̄
Ω
2

Ŝx. (A33)

Finally, the Hamiltonian can be simply written as:

Ĥ′′′′ = Ĥ′′′′mecha + Ĥ
′′′′
NV + Ĥ′′′′µw, (A34)

where

Ĥ′′′′mecha =
p̂2

θ

2I
+

1
2

Iω2
θ θ̂2. (A35)

Ĥ′′′′NV ' h̄(−∆+1 + β+1 θ̂)
∣∣+1′

〉〈
+1′

∣∣+ h̄(−∆0 + β0 θ̂)
∣∣0′〉〈0′∣∣+ h̄(−∆−1 + β−1 θ̂)

∣∣−1′
〉〈
−1′

∣∣ (A36)

and

Ĥ′′′′µw ' h̄
Ω
2

Ŝx. (A37)

Appendix B. Diamond Synthesis

There are three main diamond synthesis methods:

• The HPHT process (high pressure, high temperature): A carbon precursor is brought un-
der conditions of high pressure (typically > 5 GPa) and high temperature (T ≈ 2000 ◦C) in
order to create diamond. While this approach has been known since the 1950s, the control
of impurities in the diamond is not straigthforward. The diamonds produced are often
rich in nitrogen impurities, typically around 200 ppm. Most recent works on diamond
levitation used HPHT diamonds due to their ease of use and commercial availability.

• The CVD growth (chemical vapor deposition). A reactor is used to deposit carbon
atoms from a methane gas, layer by layer on a diamond substrate. It is then possible
to finely control the impurities present in the diamond. It is the method of choice to
create diamonds with very high purity. The concentration of paramagnetic species
such a nitrogen or silicon can indeed be reduced below the detection level, and the
concentration of 13C atoms below natural abundance. Importantly, CVD growth also
enables NV− center doping at any time during the growth [112].

• Detonation nanodiamonds are obtained by an explosive reaction from a carbon precur-
sor. This approach provides very small nanodiamonds, typically <10 nm, which are
often highly graphitized [113]. Such diamonds are thus not suited for the applications
discussed in the present review.
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Although recent efforts towards micro or nano-diamond creation have been made
towards direct CVD [114,115] and HPHT [116] synthesis, the general strategy is to mill bulk
diamonds in order to obtain nano (and even micro) diamonds. The size of the diamonds is
then selected by centrifugation.
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