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Abstract  

Quantitative and qualitative analysis of acoustic backscattered signals from the seabed bottom to 

the sea surface is used worldwide for fish stocks assessment and marine ecosystem monitoring. 

Huge amounts of raw data are collected yet require tedious expert labeling. This paper focuses 

on a case study where the ground truth labels are non-obvious: echograms labeling, which is 

time-consuming and critical for the quality of fisheries and ecological analysis. We investigate 

how these tasks can benefit from supervised learning algorithms and demonstrate that 

convolutional neural networks trained with non-stationary datasets can be used to stress parts of 

a new dataset needing human expert correction. Further development of this approach paves the 

way toward a standardization of the labeling process in fisheries acoustics and is a good case 

study for non-obvious data labeling processes.  

 

Keywords: fisheries acoustics; machine learning; neural network; active acoustics; labeling 

process; bottom correction. 
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1. INTRODUCTION 

1.1 Cost and reliability of the labeling processes in data driven applications: the case of 

fisheries acoustics 

Solving pattern recognition problems with machine learning algorithms strongly rely on the 

availability of reliable ground truth datasets. For obvious labeling tasks as naming pictures of 

everyday life objects, large reliable ground truth datasets can be acquired at relatively low cost, 

e.g. using crowd labeling methods (Griffin et al. 2007; Deng et al. 2009). In the case of more 

complex data, the labeling must be done by experts, which increases costs but also brings 

incertitude on finding ground truth labels. Indeed, for some complex data, different experts may 

find different labels. This issue is particularly experienced in medical computer-aid diagnosis 

(Raykar et al. 2010) but also in remote sensing applications, e.g: in object detection with radar 

(Smyth et al. 1995) or in fisheries acoustics (McClatchie et al. 2000).  

Fisheries acoustics is the main nondestructive method for estimating the abundance of 

pelagic and semi-pelagic fish (Simmonds and MacLennan 2005; Brehmer 2006). These 

estimations are critical for fisheries worldwide because they allow managers to provide 

recommendations on fishing effort level adjustment to avoid overexploitation, maintain 

ecosystem health, and ensure food security. Large datasets have been routinely collected 

worldwide to estimate fish abundance (MacLennan 1986) or, for example, used to study fish 

behavior (Guillard et al. 2010), and even in aquaculture (Brehmer et al. 2006). Labeling these 

datasets is a keypoint for any further quantitative or qualitative analysis. In this paper, we 

focused on the expert labeling process of these data.  

One of the first operations needed before any inference for assessing fish abundance can 

be drawn is to identify the bottom depth along the survey path (Korneliussen 2004; MacLennan 
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et al. 2004). Indeed, accurate correction of the bottom line is needed because fish abundance is 

estimated by integrating the acoustic signal from bottom to surface. Since the bottom acoustic 

signal is often strong, small errors in bottom depth estimation can lead to the overestimation of 

fish abundance in the water column. Indeed, if the bottom depth estimated is miscalculated and 

falls below the true bottom depth, the echo integration may contribute substantial errors because 

it will interpret the amount of energy backscattered by the bottom as biological resources (Ona 

and Mitson 1996; Villalobos et al. 2013).  

This paper investigates how supervised learning can help automate the labeling process 

of the bottom correction as a case study. Nowadays, bottom-detection algorithms with a single-

beam echo sounder rely on echo-amplitude measurements within a depths range specified by an 

onboard operator as the upper and lower depth limits most likely to be used during an acoustic 

sea survey (e.g., see “bottom detection” in Simrad EK60). However, this procedure can fail for a 

variety of reasons, e.g., either coming from onboard errors in manual setting of the instrument, or 

from noise in the reflected signal itself that can perturb the bottom-detection algorithm. For 

example, over soft and weakly reflecting grounds, the bottom may be detected below its true 

level. Also, a high density of fish present near the seabed can generate a false detection of the 

bottom echo (MacLennan et al. 2004). Thus, before producing fish stock assessments from these 

observations, the signal must be hand post-processed by an expert to find and correct these errors 

(Socha et al. 1996). This consists of visually scrutinizing the entire echogram for bad data 

sections and poor bottom detection and then removing questionable data and redefining the 

bottom as needed (Bartholomä 2006). This task is expensive because it requires an expert to go 

through all of the echograms, i.e.several millions of pings, depending on the cruise duration. This 
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is a typical case of a labeling process where the ground truth label is non-obvious and varies 

from one expert to another.  

Surprisingly, few studies in the fisheries acoustics field have focused on improving 

bottom detection or correction (Foote et al. 1991), and most have concentrated on the 

discrimination of sediment or seabed classification (e.g., Bartholomä 2006) and obviously 

biological targets identification (Simmonds and MacLennan 2005; Brehmer et al. 2019; 

Brautaset et al., 2020).  

 

1.2 Machine learning to automate the data labeling process? 

The problem at hand is typical of the challenges faced by the remote sensing (RS) community. 

Indeed RS data are expensive to collect, error-prone, and require expert interpretation. Ball et al. 

(2017) suggested machine learning (ML) and deep learning (DL) methods to automate the 

human-engineering process. Fisheries acoustics data (provided as an echogram matrix) are 

inherently highly dimensional. Furthermore, as underwater feature extraction methods gradually 

become less effective with the expansion of acoustic datasets, the need to find automated 

methods and procedures to extract meaningful features is sharper.  

Deep Neural Networks (DNN) are neural networks with multiple hidden layers. They can 

learn a representation of the data with multiple levels of abstraction (hidden layers) and are well 

suited to making inferences from large volumes of complex data in an end-to-end fashion (Lecun 

et al. 2015). The premise of DL is to partially automate the feature engineering made by humans 

as they often suffer from biases. Indeed, it is often the case that two experts might not agree on 

the correction of a given echogram. 
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However, only a few attempts to apply DL and ML were achieved in fisheries acoustics. 

We cite Williams (2016) and Denos et al. (2017) who first attempted to classify underwater-

detected objects with DL, but were facing the problem of insufficient availability of training 

data. Recently, Brautaset et al., (2020) used a convolutional autoencoder architecture for acoustic 

fish school detection and classification, and got promising results but still facing the problem of 

the training dataset quality. In the case of fish school identification, overpassing the problem of 

training dataset quality is complicated because of the difficulty to get a “field truth” of which 

species reflected the signal (Simmonds et al. 2008).  

Two approaches are possible using ML methods: (1) to directly predict the bottom value 

from the echogram and (2) to evaluate the quality of the pings by classifying them into two 

groups, depending on whether the bottom needs correction or not. The first approach could be to 

develop a system to fully automate human intervention, but errors would be harder to spot. 

Indeed, when the biological resource being targeted for echointegration require high precision, 

human intervention would still be needed, and the first automation procedure would not give any 

insight to the expert to spot them. So, we took a step back and decided to address the problem of 

reducing the expert’s time to perform the most basic, but also the most time-consuming dataset 

post-processing task needed for direct fish stock assessment, i.e. the bottom depth correction. We 

designed a system that would help the expert to gain time by highlighting pings with a higher 

likelihood of requiring correction. Another benefit of this method is that by automating the 

labeling process, it removes the inherent variability among different experts and makes the 

labeling process unified for different sea surveys.  Here the idea is to lay down a methodology 

that would leverage datasets collected in past campaigns to support the bottom correction process 

on a newly collected dataset. Hence, the ML task is to provide a “quality label” for each part of 
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the dataset so that the expert can focus only on the echogram sections that are likely to need 

correction, i.e., to avoid replaying the whole survey. 

 

1.3 Contributions  

We evaluated several ML procedures to leverage past labeled data for which an expert has 

already corrected the bottom line prediction, thus large training datasets are available. The 

specific task investigated was to identify the parts of the echogram requiring the expert to correct 

the bottom line. Our first contribution is to propose a comparison of different machine learning 

algorithms for this task. Four learning algorithms are compared: Random Forests, Convolutional 

Neural Networks, Support Vector Machines, and Feed-Forward Neural Networks. Their 

hyperparameters were found using Bayesian Optimisation. This led to the identification of CNN 

as the most adapted learning algorithm.  

In most applications when the best ML algorithm is discovered, it is used in production 

on new datasets. However, in our case, a new dataset may have different attributes such as a shift 

in the label distribution, or a different noise structure. For instance, the frequency of pings 

requiring an expert correction might be different from one sea campaign to another as discussed 

above. Also, the noise might not be distributed equally from one sea campaign to another. This 

has motivated our second contribution, we provide experimental evidence showing the beneficial 

effect of mixing training datasets from different sea surveys to improve performance at test time; 

we refer to this technique as cross-domain training in the following. 
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2. MATERIALS AND METHODS 

In section 2.1 we provide an exhaustive description of the crude dataset collection, formatting, 

labeling method, and the subdivision in training, validation, and test datasets. Computing means 

and associated limitations on the size of the processed dataset are also described here. In section 

2.2 we present the methodology for learning algorithms comparison, for training dataset 

optimization and the training settings. 

 

2.1 Data Processing 

2.1.1 Description of the crude dataset 

Acoustic data came from an international collaboration of northwest African fishery research 

centers, which gathered their data at the subregional level. The data consist of two datasets 

corresponding to two campaigns from the Nansen project (Fisheries Research Vessel Dr. Fridtjof 

Nansen) that took place in 2011 and 2015 off northwest Africa (Fig 1) (e.g., Sarré et al. 2018). 

Here, each acoustic pulse is called a ping, and we call the matrix obtained from gathering the 

backscattered signals of a sequence of pings the echogram. These echograms usually come from 

preprocessed acoustic surveys at sea (Fig 1). The data preprocessing was done using the Matecho 

software (Perrot et al. 2018). The backscattered signal from the upper 500 m of the water column 

was extracted, and the echo at each depth was interpolated on a regular grid with a vertical 

resolution of 20 cm. Still, during preprocessing, the ocean depth for each ping was estimated by 

an automatic algorithm that searched for the maximum gradient of the acoustic signal, usually 

corresponding to the acoustic signal at the bottom. Then in post-processing, the echogram and 
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the automatic bottom line detection were visualized by an expert who manually performed the 

correction of the bottom line. 

Data were acquired with an echosounder fixed to the hull of the vessel. The vessel sent 

out acoustic wave pulses of four distinct frequencies in the water at a pulse length of 1 ms. In this 

study, we used the 38 kHz frequency as it is a common frequency used in fisheries acoustics and 

is not limited over the continental shelf (500–600 m maximum depth). Table 1 gives a summary 

of the variables present in each dataset used. The crude echogram presents some irregularities 

due to the onboard recording settings. Typical errors of the automatic procedure for bottom line 

detection are shown in Fig. 2a., and it can be seen that the expert (red line) roughly cut this part 

to avoid including the bottom signal in the echo-integration.  

In particular, NaN (not a number) values were usually present between 500 m (the 

maximum recording depth in this case study) and ~20–30 m below the predicted bottom. This is 

because, during data collection at sea, the echo sounder operator(s) set the maximum depth to 

limit data acquisition to the water column. Nevertheless, in some cases, real values were still 

attributed to much greater depths under the actual bottom (Fig 2). Furthermore, these 

irregularities were distributed differently between the 2011 and 2015 datasets (Fig 2) as they 

were dependent on the survey configuration at sea vs. the local depth surveyed. These 

irregularities, common in fisheries acoustics sea surveys, typically challenge traditional ML 

approaches. Indeed, to deal with such differences in the dataset’s noise the modeler is often 

required to build complex pipelines for feature extraction. The rationale behind the use of DL is 

to learn in an end-to-end fashion, with as few preprocessing operations as possible.  
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2.1.2 Formatting the dataset 

Three transformations were applied to extract a standardized format and minimalist training 

dataset from the crude one. We reduced the size of the training dataset to reduce learning and 

upload times on remote calculation servers. 

The first transformation was carried out to get the same number of rows for our datasets, 

which initially varied slightly (Table 1). To do that, we removed the first 31 rows from the entire 

2011 echogram (~ 6 meters), as well as the first 17 rows of the 2015 echogram (~ 3.3 meters). 

This was required because frequently there were strong signals in the first rows that subsequently 

disturbed the learning process. Such a transformation was necessary to allow the same neural 

networks to be trained and applied to the two dataset subsamples. Finally, we were left with 2550 

rows in each of the preprocessed datasets. 

The second transformation was aimed at reducing the size of the dataset by removing 

pings for which no learning could be extracted, to distinguish between bottom qualities, i.e., 

when pings in the echogram did not hit the bottom. This occurred when the vessel was located in 

areas deeper than 500 m because only the first 500 m were recorded during the sea campaign. 

These pings were removed using a threshold-based filter. We discriminated between the 

echograms with and without a bottom, based on the presence or absence of strong backscattering 

(> −32 dB), considered as a bottom signature. Finally, as we needed every ping to have the same 

dimensions for further calculation, and numerical algorithms could not process NaN values, we 

replaced all of the NaN values by −200 dB, a value that corresponds to the weakest recorded 

values in the echograms (−199 dB for 2011 and −198 dB for 2015). This operation can be seen 

as replacing non-recorded values by noise. Indeed, values below ~−90 dB are never (or seldom) 

considered in fisheries acoustics analysis. Thus, NaN values were treated as area-located under 
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the bottom and not reached by the acoustic signal. The sizes of the 2011 and 2015 formatted 

datasets are summarized in Table 2. Finally, both datasets were standardized before training. 

2.1.3 Data labeling  

We followed a generic ML methodology (Goodfellow et al. 2016). The goal of the procedure is 

to classify the data (here, acoustic pings) into two classes before the intervention of the expert to 

rationalize their work when correcting the crude echogram. The first class gathers the pings on 

which the automatic procedure usually performed well, thus needing less attention from the 

expert. The second class regroups the pings for which the expert usually needed to correct the 

automatic bottom prediction. We labeled each remaining ping (after formatting; see the previous 

section) as belonging to one of these two classes according to the distance between the expert 

correction (variable “CleanBottom,” Table 1) and the initially predicted bottom depth (variable 

“Bottom,” Table 1). Thus, if |CleanBottom − Bottom| < 3.31, pings were labeled “weak 

correction,” i.e., no or weak expert correction needed, while if |CleanBottom − Bottom| >= 3.31, 

pings were labeled “strong correction,” i.e., major expert correction needed. Examples of these 

two classes are shown in Fig 2. The threshold value of 3.31 was chosen by comparing the 

accuracy obtained after one epoch of training for different threshold values ranging from 1.00 to 

5.00 with a step of 0.01, and we selected the threshold that gave us the best classification 

accuracy. 

The distribution of those classes varied significantly from 2011 to 2015. Indeed, the class 

of strong correction accounted for 13% of the pings in 2011, whereas it accounted for only 1% in 

2015. As can be seen in Fig 1, there is no clear pattern from the pings to correct. Hence, we 

expect to use ML methods to automate the finding of the ping, with a high likelihood of 

requiring a strong correction. 
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2.1.4 Sampling methodology 

Here we describe datasets that were used to (1) optimize hyperparameters, (2) compare learning 

algorithms performances, and (3) train the best-identified learning algorithm with a mixed 

dataset. To begin with, the first 2,000,000 pings of each campaign were selected to constitute the 

pool of data. 2,000,000 was the maximum we can fit into memory. In the following, to ease the 

notation every 1000 pings are going to be treated as 1K pings. 

For the Bayesian optimization, we used a dataset of 100K pings randomly extracted from 

the complete 2011 pool dataset (Fig 3a). For comparing learning algorithms performances, 

datasets with successive sizes of 200K, 400K, 600K, 800K, and 1000K pings were also extracted 

from the 2011 pool dataset (respectively 2.0, 4, 6.0, 8.0, and 10.0 Go). The largest dataset used 

for training was made of 1000K pings because it was tedious to upload large datasets on GPU 

clusters online. Furthermore, to compare different learning algorithms, each of these datasets was 

split into 90% of the pings for the training set and 10% for the test set (Fig 3b). To evaluate the 

effect of cross-domain training on the best-identified algorithm, 100K, 300K, 500K, and 550K 

pings were sampled from the 2011 pool dataset for training along with 100K pings following 

each other from the 2015 pool. Those 100K pings were further randomly divided into two 

datasets of 50K pings, one that would serve as a validation dataset and one that would serve for 

cross-training (Fig 3c).  

 

2.1.5 Computing Means and Limitations 

Formatting of the dataset and the labeling operations were performed on a personal computer. 

For training purposes, we uploaded the dataset on a cloud platform to perform further 
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calculations with graphical processing units (GPUs). However, the local Internet connection 

speed and stability limited the size of the dataset that could be uploaded. Also, the size of the 

unzipped 2011 preprocessed echogram was 22.81 Gigabytes, which scarcely fitted into random 

access memory (RAM). For training algorithms, a maximum of 1000K pings has been used to 

allow the dataset to be uploaded.  

 

2.2 Experimental set up 

2.2.1 Methods for Comparing learning algorithms performances 

The first experiment was to compare the ability of different algorithms to learn from 

echosounder datasets at different scales. The compared algorithms suggested in the literature, 

were Random Forests (RF), Support Vector Machines (SVM), Feed-Forward Neural Networks 

(FFNN) and Convolutional Neural Networks (CNN) (Niu et al. 2017 ; Ferguson et al. 2018).  

A principled approach to compare machine-learning algorithms is to find their respective 

hyperparameters following a single optimization method. Here we used Bayesian Optimization 

(BO) as opposed to grid search and random search, as it has been shown that Bayesian 

optimization finds better hyperparameters significantly faster than random search which is 

superior to grid search (Snoek et al. 2012). Moreover, BO surpasses a human expert at selecting 

hyperparameters on the competitive CIFAR-10 dataset frequently used to benchmark computer 

vision algorithms (Snoek et al. 2012). 

In this study, we used the open source python Library GyOpt for BO, with expected 

improvement as acquisition function and Gaussian Processes to model the surrogate function 

with the acquisition parameter equal to 0.1. For each algorithm, we fixed the range of variation 

for a set of hyperparameters. For RF the most sensitive hyperparameters according to (Niu et al. 
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2017) are the number of decision trees (range [10,1000]) and the minimum samples per leaf 

(range [20,50]). Concerning SVM we chose a linear kernel as the number of features is important 

(2500) (Hsu et al. 2003) and we optimize only the hyperparameter C (range [10, 1000]). The 

FFNN was chosen to have 3 hidden layers (ranging respectively [5,600], [5, 320] and [5,120] 

neurons) and with dropout for the last hidden layer (ranging [0,1]. Every hidden layer used 

SELU as an activation function. Finally, the CNN hyperparameters were three convolutional 

layers (ranging each [5, 60]), followed by three hidden layers (with the same range as the 

FFNN), and with only dropout applied at the last hidden layer (range [0,1]). For BO, each 

learning algorithm was trained with a subset of 100,000 pings from the 2001 dataset, (Fig 3). The 

procedure was repeated for 50 iterations. At each iteration, the hyperparameters are tuned and the 

best validation accuracy is recorded. The maximum number of iterations was set to 50, but BO 

can stop before if hyperparameters converge. 

Once the set of hyperparameters that maximize learning were found for each algorithm, 

we trained each algorithm on 5 datasets of sizes: 200K pings, 400K pings, 600K pings, 800K 

pings and 1,000K pings ( 2.0, 4, 6.0, 8.0 and 10.0 Go, respectively) to evaluate their respective 

ability to scale to big data. Also, the experiment was repeated 5 times to evaluate parameters‘ 

sensitivity to the learning process. Furthermore, SVM, FFNN, and CNN were trained for 100 

epochs each. The test accuracy of both the CNN and the FFNN were obtained using Monte Carlo 

Dropout (Gal et al. 2015). In other words, their performance was assessed on the test set 50 times 

and the mean value was recorded. Monte Carlo Dropout allows neural networks to express 

uncertainty for their prediction due to the dropout factor at the end of the network. It has been 

proven to yield better results than standard test evaluation (standalone test run) (Gal et al. 2015). 

The SVM and RF were trained with Scikit-learn (Pedregosa et al. 2011). The framework allowed 
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us to use multiprocessing, and the computation was distributed on 6 processors. SVM was 

trained with stochastic gradient descent. FFNN and CNN were trained with TensorFlow (Abadi 

et al. 2016). Parameters were updated after each epoch using the Adam optimization procedure 

with default parameters (Kingma et al. 2014) and binary cross-entropy as cost function. 

 

2.2.2 Comparing simple and cross domain training  

The requirement to explore the effect of learning on a cross-domain dataset was to display the 

normal learning curve when we scaled the size of the training set and compare it with a learning 

curve made with a cross-domain dataset. We compared the effect of mixing during training on 

the dataset coming from each pool of data (2011 and 2015). To this end, the subsample of 

100,000 pings from 2015 was randomly divided into two datasets of 50,000 pings; one for the 

validation set, and the other that would be used to mix with data from 2011 (see Fig 3 and § 

hereafter). 

Firstly, we successively trained on two datasets of sizes: 100,000 and 300,000 pings to 

get a baseline learning curve, denoted respectively as ST-100K and ST-300K (simple training 

100K pings and simple training 300K pings). Secondly, to evaluate the impact of mixing two 

datasets with different label distribution and different noise structure we trained on two datasets 

of size 550,000 pings described as follows: (1) 550,000 pings randomly sampled from the 2011 

pool dataset only (hereafter referred as ST-550) and (2) a mix of 500,000 pings randomly 

sampled from the 2011 pool dataset and 50,000 pings randomly selected from the 100,000 

subsample ping 2015 datasets (hereafter referred as CDT-550K). The rationale behind the second 

approach was to avoid overlearning from the irregularities and data distributions specific to the 

2011 dataset, and to assess the effect of mixing during training. Finally, the generalization 
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performance of each model was evaluated locally by testing the classification accuracy of the 

models trained in each setting (ST-100K, ST-300K, ST-550K, and CDT-550K) on two test sets: 

on one hand the remaining unseen part of the 2011 dataset, on the other hand, the unseen part of 

the 2015 dataset. 

 

3. RESULTS 

3.1 Comparing learning algorithms’ performances  

The best validation accuracy obtained for a set of hyperparameters were obtained in less than 10 

iterations for SVM and in about 22 iterations for RF. This is sound, indeed RF has two 

hyperparameters and SVM only one. On the other hand, FFNN and CNN improved but were not 

settled even after 50 iterations (Fig 4). The final set of hyperparameters for each learning 

algorithm is displayed in Table IV. 

Learning algorithms' performances were then compared when trained with increasing size 

of datasets. Support Vector Machines (SVM) did not increase its performance when augmenting 

dataset size; surprisingly it seems to even worsen (Fig 5a). Feed-Forward Neural Network 

(FFNN) exhibits the greater variability, for every size of the training set the worst value is almost 

approximately the same and is the result of sticking on a local minimum as the training loss did 

stagnate during training. Note that in the experiment on the 800K dataset the algorithm did not 

stick in any local minima (Fig 5a). As a result, the mean test accuracy suffered and explained the 

drop in performance for the last dataset. Random Forest (RF) displayed almost no variability and 

its performance benefited as a result of increasing dataset size.  
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Finally, Convolutional Neural Networks (CNN) got the highest mean test accuracy score 

right when training on 400K pings and more (Fig 5a). It is furthermore more stable to train as it 

displays less variability than FFNN while always having the best maximum test accuracy score.  

Except for Support Vector Machines (SVM), we observe that other learning algorithms scale 

well. With Feed-Forward Neural Network (FFNN) having the greatest variability in its gains. 

This is because FFNN is often stuck in local minima when learning starts. Random Forest (RF) 

also steadily increases its test accuracy when the dataset is scaled. The Convolutional Neural 

Networks (CNN), which never stuck in local minima, makes the highest gain. 

 

3.2 Improving generalization accuracy with a cross domain dataset  

3.2.1 Learning evaluation on the training set 

Training accuracies showed little difference when training on ST-100K and ST-300K; the latter 

displayed a slightly better evolution after epoch ~25 (after 50 epochs respectively, 92%, and 

92%; Fig 6a). With ST-550t, a net increase in training accuracy appeared after epoch 2 and 

reached 93% at the end of the training. When training on CDT-550K, the training accuracy 

increased slowly until epoch ~8, but overtook the other training experiments after ~15 epochs 

and finally reached 95% (Fig 6a). The training losses displayed similar (but symmetric) 

tendencies, reaching final losses of 0.17, 0.16, 0.15, and 0.12, respectively, for training with 

100,000, 300,000, and 550,000 pings from the 2011 dataset, and 550,000 cross-domain pings 

(Fig 6c).  
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3.2.2 Learning evaluation on the validation set 

In contrast to the continuous increase in training accuracy, in the case of simple training, the 

validation accuracy displayed a higher variance, with a flat tendency among epochs; the 

variability was smaller, however, for larger training datasets (Fig 6b). The average accuracy 

reached 87%, 91%, and 93%, respectively, for datasets ST-100K, ST-300K, and ST-550K at 

epoch 50. Note also that the validation accuracy obtained when training on ST-100K decreased 

over the epoch (Fig. 6b), which denoted a degree of over fitting. The effect of using a cross-

domain dataset for training was more evident from the validation performances. Indeed, the 

accuracy dropped to low values (0.1%) around epoch ~10, but then rapidly reached higher values 

than those of the simple training set experiments after epoch 18, and then displayed a steady 

upward tendency, reaching a value of 96% at the end of the training process. Validation losses 

displayed the same change in variability among training experiments. The validation losses for 

simple training were 0.25, 0.17, and 0.11, and the final value for cross-domain training was 0.08 

(Fig 6d). In summary, training on a cross-validation dataset yielded unstable performances 

during the first ~15 epochs, however, after epoch 30, it outperformed training being done with 

simple datasets.  

 

3.2.2. Generalization Performances 

The generalization performance was evaluated by applying the CNN to predict ping classes on 

an unseen test set extracted either from the 2011 dataset or from the 2015 dataset (Fig 7). On the 

2011 test set, the CNN trained with the ST-100K, ST-300K, ST-550K, and CDT-550K training 

sets correctly classified 90%, 92%, 93%, and 95% of the pings, respectively. On the 2015 test 

set, they correctly classified 87%, 92%, 93%, and 96% of the pings, respectively. The CNN 
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trained on only 100,000 pings from 2011 (ST-100K) over fitted, as its performance was better on 

the training data than on unseen data. The ST-300K training set led to a similar performance on 

all test sets. The ST-550K training set led to the same accuracy on the training set and on the 

2011 test set. Unexpectedly, better accuracy was obtained when evaluating the 2015 test set than 

on the training and 2011 test sets. Finally, training on CDT-550K led to a leap in performance 

both on the training set and the 2011 test set but yielded an even better performance on the 2015 

test set. 

 

4. DISCUSSION 

Machine learning algorithms have been widely used in passive acoustics. Indeed, Shamir et al. 

(2014) introduced an automated method for target classification in bioacoustics. Yue et al. 

(2017) used support vector machines (SVM) and convolutional neural networks (CNN) for 

underwater target classification. Chi et al. (2019) used feed-forward neural networks (FFNN) for 

source ranging. Hu et al. (2018) applied CNN for underwater acoustic signal extraction. Many 

machine learning methods were employed for underwater source localization: Niu et al. (2017) 

compared SVM, Random Forests (RF), and FFNN, then, Ferguson et al. (2018) applied CNN for 

the same task and Wang et al. (2018) compared traditional match field processing (MFP) with 

FFNN and generalized regression neural networks. Finally, deep learning methods were also 

applied for underwater source localization: for instance, Huang et. al (2018) used FFNN in a 

shallow water environment, moreover, Niu et al. (2019) used deep CNN in the context of big 

data. 

Yet, very few authors have applied deep learning algorithms on fisheries (active) 

acoustics data (see section 1.2; Williams 2016, Denos et al. 2017, Brautaset et al., 2020). A 
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recent literature review of ML in acoustics is provided by (Bianco et al. 2019). One premise of 

deep learning is that it could allow us to treat crude data in an end to end fashion (LeCun et al. 

2015).  

Here we investigate ML methods on pre-processed echograms (see section 2.1.1). Using 

Matecho (Perrot et al. 2018) allows a full chain of processing methods to extract information and 

perform echo-integration on echosounder data following an international standard. The present 

study contributes to filling this gap and shows the potential of learning algorithms to serve as a 

useful tool for fisheries acoustics expert processing tasks. Below we first discuss the pipeline 

experimented here for bottom correction in fisheries acoustic dataset. Then, we identify the 

remaining challenge for this approach. We conclude on the main contribution of the paper and 

provide perspectives one the potential benefit of using ML in fisheries acoustics.  

Two patterns emerge from our experiments of applying ML to active acoustics data, with 

one of them fairly unexpected. Firstly, as expected in DL, increasing the size of the training data 

almost always leads to better performance on the training set but also on each test set. Secondly, 

using a cross-domain dataset for training leads to a leap in accuracy during training, validation, 

and at test time. This emphasizes the sensitivity of the generalization performance to the 

diversity of the training dataset. 

 

4.1 Learning algorithm comparison: why CNN stand out 

SVM performed poorly, indeed this is because we used a linear kernel on a high dimensional 

problem, this was required to allow the SVM to learn on large datasets. Also as SVM do not 

allow to increase the number of parameters used to learn, it has a lower asymptote than the other 

models (Fig 5.a). While RF has the best accuracy when trained with a small dataset (200K), 
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CNN proved to have better performance as soon as the datasets got bigger. Yet, RF is the second 

best option and followed the CNN closely even though the accuracy obtained with 1000K pings 

seemed to led the CNN accuracy to take off. Another interesting property of RF is that they 

exhibit almost no variability when compared among different training versions on the same 

dataset. This property allows the modeler to be sure that he got the best possible achievable 

result with a RF when training is achieved. The main advantage of neural networks, whether 

FFNN or CNN, is the ability they gave to the modeler to increase the number of the parameters 

to the learning problem. As a result, they are modular and can adapt to many kinds of problems. 

The main downside of FFNN was its variability from training to training. Indeed the reader can 

observe that the worst result obtained for each dataset is closely the same around 87% (Fig 5.b). 

At least for one run over the 5 we did, the FFNN achieved almost no learning. This can happen 

when the network is stuck in a local minimum and cannot get outside of it during training. In 

contrast, during training, the CNN has never fallen in a local minimum (Fig 5.b). This is because 

the convolutional layers compressed the original data in a lower-dimensional representation that 

is further passed to a fully connected neural network. As a result, the important features are 

summarised by the convolutional layers (Goodfellow et al. 2016, Lecun et al. 2015). And the 

optimization is made in a lower-dimensional space. Convolution has shown great promise for 

image understanding. The above comparison suggests that 1-dimensional convolution is the 

more adapted class of learning algorithm to process active echosounder data. Finally, CNN 

exhibits the best performance with training datasets of sizes 400K, up to 1000K. Niu et al. 

(2017) found comparable performance for each model: SVM, RF, and FFNN in underwater 

source localization framed as a classification problem. Our results differed from those of Niu et 

al. (2017) as we found a clear advantage of using neural networks and more specifically 
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convolutional neural networks. This difference can be explained as they used a relatively small 

dataset for training (1,380 samples for training, 120 examples for testing), also their work was on 

simulated passive acoustic data. In contrast, our work was done on a real-world and bigger 

dataset (200,000 examples to 1,000,000 examples) of active acoustic data. Getting better results 

on bigger datasets with Deep Learning is discussed in Goodfellow et al. (2016) and Sun et al. 

(2017). Furthermore practical applications were found in underwater source localization by Niu 

et al. (2019) who used a 50 layers residual network to learn on tens of millions of training 

examples. 

 

4.2 Cross domain training as a way to tackle imbalances and irregularities in datasets 

The specific problem we tacked is the task of helping the expert to label a new dataset faster 

given past labeled data. An important assumption in ML is that the data we want to learn from as 

well as the future unseen data must come from the same distribution and be identically and 

independently distributed (Goodfellow et al. 2016). This is the first challenge that rose from the 

task at hand. This assumption does not hold in our case, as discussed in section 2.1.3 for the label 

distribution and as illustrated in Fig 2 for the noise distribution.  

Methods that deal with unbalanced datasets exist (Shimodaira 2000; Crammer et al. 

2008). However, these techniques need to know the distribution of the target dataset to correct 

imbalances during training. So, they do not apply in our case because the label distribution of a 

new dataset is unknown before the expert has labeled it. One could say that the expert could label 

a sample of the new dataset to get an estimation of the target label data distribution. There are 

approaches in the ML literature that deal exactly with this problem for instance semi-supervised 

learning (Chapelle et al. 2006) and active learning (Settles 2010). While these approaches could 
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be envisioned in future work, they need to take into account the specificity of fisheries acoustics 

data. Indeed the labeling needs to occur for several pings following each other because the expert 

needs to get context from the ping in the same area to accurately label the bottom line. In a sense, 

the labeling process is not based on the review of individual pings but on the review of chunks of 

pings. This contrasts with traditional computer vision tasks, where the labeling of each image is 

independent of each other. In that sense, traditional active learning methods could be useful if 

applied to a chunk of data, or to individual pings with the goal to review every ping in a given 

neighborhood. Similarly, semi-supervised learning methods require training a model on a 

representative sample of labeled data, augmented with unlabeled data. The rationale is to use the 

structure of unlabeled data to learn useful features of the model that can be refined on the labeled 

dataset during training. This condition could be met if the expert selects a representative subset 

of ping and labels their neighborhood. In this paper, we took the simplest possible setting: to 

label a randomly selected chunk of 100,000 pings from the new dataset. As this is relatively easy 

to do in practice. Indeed, this chunk of data represents ~5% of the total number of pings. 

Furthermore, we quantified if this chunk of pings could benefit the model at training time by 

monitoring its performance on a validation set made of this chunk of data (Fig 6). Finally, we 

evaluated the model trained in each setting, on two large test sets made of respectively all unseen 

ping from the 2011 and the 2015 pool. We observe that using a cross-domain dataset improves 

the performance on each test set (Fig 7), suggesting that novel features introduced by the new 

dataset add to the complexity of the cross-domain training set as opposed to the simple training 

set. Indeed, even the accuracy on the training set improved. The optimization procedure during 

training seems to be less stable in the first few epochs, this is probably due to a different path 

taken by the algorithm when updating its weights.  
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Also, note that while the current system got 96% accuracy (Table III) on the 2015 test set, 

its performance could be enhanced by training on a larger database composed of diverse sea 

surveys. Indeed, we have shown that training with an increasingly bigger training set size leads 

to better results with local test sets (Fig 3; Fig 5). In addition, we have shown the potential of 

mixing datasets (Fig 7). This is in line with the results of Sun et al. (2017), more data is always 

welcome for deep learning models. 

 

4.3 Challenges of Machine Learning methods with Fisheries Acoustics Data 

Although the 2011 and 2015 datasets were collected in the same area, i.e., the northwest African 

continental shelf, using the same vessel, there was a great divergence in the error distribution of 

the initial bottom line estimation, which was subsequently corrected by experts. There were also 

irregularities in the noise distribution of the data between the 2011 and 2015 echograms (Fig 2). 

Indeed, it is often the case that datasets collected from different sea surveys present different 

attributes even if they were collected in the same geographical area. This may be due, for 

example, to different weather conditions encountered during the two sea surveys (wind and sea 

agitation). Indeed, the bottom reflection signal can be altered by air bubbles (generated by wave 

breaking), as well as by the ship's roll and pitch. Bottom line correction also depends on the 

biological resources targeted. For example, the expert corrects the bottom line more carefully 

when the echointegration concerns resources close to the bottom line, as opposed to pelagic 

species occurring in the water column, since a precise bottom estimation is less crucial for the 

latter. As a result, even during post-processing by the expert for bottom correction, we can have 

part of the echogram being corrected with less accuracy. Errors can be caused by the detection of 

biological resources in contact with the bottom (e.g., planktonic layer or fish school) (Fig 8.a) or 
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a change in the transducer depth settings by an operator on board the vessel (Fig 8.b). Also, 

different settings of the echosounder during the data collection may yield a different noise 

distribution. These differences between different datasets may explain the surprising result of 

better performances on the 2011 test set than on the training set in the case CDT-550K (Fig 7). 

However, it does not clearly explain why the CNN trained with a CDT-550K performed better at 

classifying the 2015 test set than classifying the 2011 test set (Fig 5).  

One hypothesis that may explain this phenomenon is that the 2011 dataset benefited from 

a much greater degree of human correction than the 2015 dataset. Indeed, in proportion, more 

pings have been corrected in the 2011 dataset than in the 2015 dataset as discussed in section 

2.1.3. Consequently, we learned on a dataset with a higher likelihood of including bad labeling, 

in other words, we trained on a dataset harder to learn. Yet, as stated in his survey of DL 

methods in remote sensing (Ball et al. 2017), the question of how the DL algorithm ingests non-

heterogeneous data sources is still open. Our interpretation, though, is that since the loss function 

is not convex, the minimization problem admits multiple local minima, thus ingesting 

heterogeneous data may influence the weights update trajectory during training. And a more 

diverse training set leads to better minima.  

 

4.4 Limitations due to the labeling process 

The other obvious limitation is relative to the data labeling process. We discriminated our data 

based on a threshold that we found when computing the numerical difference between the 

bottom line calculated by the onboard procedure and the expert post-processing corrected bottom 

line (referred to as “clean bottom”). However, in some cases this difference was not due to 

echogram noise that could be detected by an algorithm (as shown in Fig 8.a). For example it 
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could occur if the transducer was moved up or down (on the onboard setting or concretely) 

during the sea campaign, as a result the bottom given by the procedure is under the real bottom, 

even if the bottom line appears from the echogram structure (Fig 8.b). The issue is that such 

echograms are labeled as needing expert correction while nothing should have generated an error 

in bottom localization, since the error comes from an external reason (here a change of the 

transducer depth settings during the sea campaign). Thus, this kind of labeling in the training 

dataset limits the quality of the learning process. 

Finally, we have reported several factors that could influence the quality of the training 

dataset and limit the classification performance that can be achieved with a trained algorithm on 

different dataset. Indeed, the occurrence of cases where the bottom correction errors do not come 

from the echogram structure alone might prevent an optimal classification by the trained CNN. 

 

4.5 Perspective and Future Works 

We see two main dimensions in which this work can be extended: (1) by improving the 

efficiency and the quality of the methodology, (2) by working toward an operational tool for the 

fisheries acoustics community. 

A more careful annotation of the data would yield better results in terms of accuracy and 

interpretability of how the model learns. In this respect, changing the data labeling procedure can 

bring significant improvements. For example, instead of using a criterion based on the difference 

in the distance between the bottom and the clean bottom, one could compare the amount of 

energy in the echogram (in mean volume backscattering strength (Sv in dB)) at the respective 

depths of the bottom and the clean bottom. In the same way, it might be interesting to use a depth 

offset for a given time interval, with the rationale that the bottom value cannot jump, given two 
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consecutive pings, except when there is a particular bottom relief. Also, a multi-criteria 

procedure for labeling each ping could be considered if the computing power available for 

training allows it. Future studies will need to experiment with more datasets from diverse 

geographic areas to further study the benefits of generalization from learning with multiple 

datasets. In particular, this would allow further study on the effects of data irregularities and 

distribution differences in the learning process. A good starting point toward that goal would be 

to use active learning or semi-supervised learning methodologies (Chapelle et al. 2006; Settles 

2010).  

We advocate that working upfront on a unified data collection procedure would certainly 

reduce errors due to data irregularities and also reduce the variability coming from different 

experts concerning the labeling process. Using machine learning to standardize the labeling 

process across geographical regions would be useful to enable more meaningful application for 

the downstream modeling task of fish density estimation. A step toward that direction would be 

to create a common pool of labeled fisheries acoustics data and to train a deep convolutional 

neural network on it. This would result in the best performance achievable because as we have 

shown, the quantity and the diversity of the dataset play a key role to improve the performance of 

DL models. The trained model could then be used to standardize the labeling of new sea surveys 

collected globally. One of the benefits of having a uniform labeling process across geographical 

regions is to allow for comparative studies of new computational methods in fisheries acoustics.  

 

5 CONCLUSIONS 

The goal of this work was to develop a system designed to help a human expert to correct the 

bottom line from echogram data. Our main contribution to the study of fisheries acoustics has 
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been to establish that CNN are able to extract useful features from different underwater active 

acoustic data sources. To address inherent imbalances in data distribution, as well as 

irregularities, a good practice is to learn with a cross-domain training set. The model trained can 

be used to help the fisheries acoustics expert to find pings that are likely to require correction on 

the bottom line with a high accuracy (>95%). However, our results suggest that much better 

classification accuracy can be reached using larger and more diverse datasets for training; such 

an approach could easily be implemented using dedicated GPUs. Finally, this work demonstrates 

the potential of CNN to learn features from fisheries acoustics data. This suggests that DL could 

be used furthermore to standardize the labeling process across regions and open the road to 

interesting areas of research based on large historical acoustic datasets in which other objects 

such as fish schools have been labeled (e.g., Scalabrin and Massé 1993; MacLennan et. al. 2004; 

Trygonis et al. 2016) to better discriminate between fish schools and sound scattering layers 

(Diogoul et al. 2020). Particularly demersal fish schools near the bottom as well as seabed 

echoes.  
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FIGURES 

 

 

 
Fig 1. (Color online) Survey design carried out off northwest Africa during acoustic annual 

assessment surveys at sea in 2011 and 2015 (Research Vessel Dr. Fridtjof Nansen). The classes 

appear in the following order: in green, the part of the echogram with no bottom; in blue, the part 

of the echogram requiring only a weak correction from the expert; in red, the pings requiring a 

strong correction from the fisheries acoustic experts.  
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Fig 2. (Color online) Echogram extracted from the acoustic sea survey used in the study. (a) An 

example in which the automatic procedure for bottom detection (green line) has failed around 

ping 2000. (b) Random samples from the 2011 and (c) 2015 echograms, with the same ping size 

and cell number; showing differences with respect to the settings for NaNs (“not a number”, 

strong blue color) below the bottom. Unit: see color bar in panel (a).  
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Fig 3. Sampling methodology. Subfigure (a) summarizes the data sampling strategy. Subfigure 

(b) shows the training and test set sizes as described in experiment 2.2.1. Subfigure (c) shows the 

setting proposed for experiment 2.2.3. The blue color corresponds to data from 2011 and the 

orange color corresponds to data from 2015. In b) and c), the longer boxes correspond to the 

training dataset. In b) the small boxes are used as a test set and in (c) as a validation set.  
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Fig 4. (Color online) Illustration of the hyperparameters selection with Bayesian optimization 

procedure for Random Forests (RF), Support Vector Machines (SVM), Feed-Forward Neural 

Networks (FFNN) and Convolutional Neural Networks (CNN).  
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Fig 5. (a) (Color online) Mean accuracy got for Random Forests (RF), Support Vector Machines 

(SVM), Feed-Forward Neural Networks (FFNN) and Convolutional Neural Networks (CNN) 

while varying the training dataset size from 200 000 to 1 000 000 pings from the 2011 sea survey 

dataset. (b) Test accuracy summary statistics of each learning algorithm after 5 repetitions of the 

training process.  
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Fig 6. (Color online) Performance at each iteration (epoch) of the model during training and 

validation on: simple training (ST) and cross-domain training (CDT) for 100,000, 300,000, and 

550,000 pings. a) training accuracy, b) validation accuracy, c) training losses and d) validation 

losses. Validation accuracy and losses were obtained during training on a single unseen 

validation set from the 2015 sea survey dataset.  
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Fig 7. (Color online) Evaluation of model accuracy on training dataset (solid line), 2011 test 

dataset (red circled line) and 2015 test dataset (green circled line) when increasing the training 

dataset size from 100,000 pings to 550,000 pings. See training datasets details in section 2.1.4 
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Fig 8. (Color online) (a) Example of echogram in which automatic bottom detection (red line) 

failed due to presence of a planktonic layer directly above the sea floor (soft yellow). The green 

line is the bottom line after correction by the expert. (b) Example of echogram in which 

automatic bottom correction (red line) failed due to the transducer depth being moved down 

during the sea campaign showing a constant offset shift. 
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TABLES 

 

 

 

Table I: summary of the variables present in each 2011 and 2015 sea survey datasets dimensions and 

associated labels. The main variables used to process the data and furthermore to set up the machine 

learning model are described. Sv mean volume backscattering strength (in dB). 

 Depth Echogram Bottom CleanBottom 

2015 dataset 

dimensions: 

[Nb. rows, Nb. 

columns] 

[2 567, 1] [2 567, 2 000 000] [1, 2 000 000] [1, 2 000 000] 

2011 dataset 

dimensions: 

[Nb rows, Nb 

columns] 

[2 581, 1] [2 581, 2 661 003] [1, 2 661003] [1, 2661003] 

Units Meter (m) Sv in dB Meter (m) Meter (m) 

Horizontal/ 

vertical vectors 

Vertical 

vector: every 

cell 

correspond to 

a value in 

meter 

Matrix: every column 

is a given ping, and 

every row a value in 

dB corresponding to a 

depth 

Horizontal Vector: 

every column gives 

the bottom depth 

found by the 

automatic procedure 

Horizontal Vector: 

every column 

gives the bottom 

depth corrected by 

the expert 
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Table II: 2011 and 2015 sea survey dataset after removing pings without bottom and after 

removing the first cells of each dataset so that they share the same number of rows. 

 Echogram Label 

2015 formatted dataset: 

[No rows, No columns] 

[2 550, 1 851 950] [1, 1 851 950] 

2011 formatted dataset: 

[No rows, No columns] 

[2 550, 2 321 967] [1, 232 196 7] 
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Table III: Accuracies evaluated by each model on the 2011 sea survey dataset and the 2015 

dataset. It seems that adding a subset of the 2015 data within the training set helps the model to 

get a better performance on both test set . In bold the upper and lower accuracies.  

Final Accuracies 

(in %) 

Training set Test set - 2011  Test set - 2015  

ST - 100K 92 91 87 

ST - 300K 92 92 92 

ST - 550K 93 93 93 

CDT - 550K 95 95 96 
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Table IV: Hyperparameters search space and value found using a Python Bayesian 

optimization library (GyOpt). 

Random Forest 

Hyperparameter Search space Value 

Number of tree range [10, 10000] 187 

Min. samples leaf  [20, 50] 24 

Support Vector Machines 

Alpha [0.0001, 0.1] 0.077 

Feed-Forward Neural Network 

Number of neuron: fully connected layer 1 [5, 600] 75 

Number of neuron: fully connected layer 2 [5, 320] 105 

Number of neuron: fully connected layer 3 [5, 120] 95 

Dropout rate: fully connected layer 3 [0, 1] 0.6 

Convolutional Neural Network 

Kernel 1 [5, 60] 5 

Kernel 2 [5, 60] 59 

Kernel 3 [5, 60] 19 

Number of neuron: fully connected layer 1 [5, 600] 260 

Number of neuron: fully connected layer 2 [5, 320] 319 

Number of neuron: fully connected layer 3 [5, 120] 101 

Dropout rate: fully connected layer 3 [0, 1] 0.9 

 




