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This study presents the first prediction results of a neural network model for the vertical total electron content of the topside iono-
sphere based on Swarm-A measurements. The model was trained on 5 years of Swarm-A data over the Euro-African sector spanning the
period 1 January 2014 to 31 December 2018. The Swarm-A data was combined with solar and geomagnetic indices to train the NN
model. The Swarm-A data of 1 January to 30 September 2019 was used to test the performance of the neural network. The data was
divided into two main categories: most quiet and most disturbed days of each month. Each category was subdivided into two sub-
categories according to the Swarm-A trajectory i.e. whether it was ascending or descending in order to accommodate the change in local
time when the satellite traverses the poles. Four pairs of neural network models were implemented, the first of each pair having one hid-
den layer, and the second of each pair having two hidden layers, for the following cases: 1) quiet day-ascending, 2) quiet day-descending,
3) disturbed day-ascending, and 4) disturbed day-descending. The topside vertical total electron content predicted by the neural network
models compared well with the measurements by Swarm-A. The model that performed best was the one hidden layer model in the case of
quiet days for descending trajectories, with RMSE = 1.20 TECU, R = 0.76. The worst performance occurred during the disturbed
descending trajectories where the one hidden layer model had the worst RMSE = 2.12 TECU, (R = 0.54), and the two hidden layer
model had the worst correlation coefficient R = 0.47 (RMSE = 1.57).In all cases, the neural network models performed better than
the IRI2016 model in predicting the topside total electron content. The NN models presented here is the first such attempt at comparing
NN models for the topside VTEC based on Swarm-A measurements.

Keywords: Neural network; Swarm satellite; Topside vertical electron content; IRI2016 model

1. Introduction

Observations of the topside ionosphere by the Swarm-A
satellite can complement the bottom-side ionospheric mea-
surements by ionosondes (Huang and Reinisch, 2001). The
largest part of the TEC comes from the topside ionosphere
(h > hmF2) with contribution estimated to be from 65%
(Belahaki and Tsuagori, 2002), to 80% (Bilitza, 2009).
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Therefore, it is important to establish a topside electron
content model which may be useful for telecommunication
purposes.

The ionosphere, being part of the upper atmosphere of
Earth, is a highly variable environment. The ionospheric
electron density varies spatially with altitude and latitude,
and temporally with a time of day, season, and solar activ-
ity (Wintoft and Cander, 2000). The TEC is an important
ionospheric feature that can be used for several purposes,
such as the studies of the ionosphere-plasmasphere system
and space weather applications, as well as for Global Nav-
igation Satellite Systems (GNSS) applications (Stankov
et al., 2010). The TEC, measured along the path of a GNSS
radio signal, represents the total number of electrons in a
cylinder of a 1 m2 cross-sectional area along the path of
the GNSS radio signal. In general, the slant TEC (STEC)
can be calculated by taking the line integral of the three-
dimensional electron density (ne) along the signal path (s)
from a GNSS receiver to the GNSS satellite (Bothmer
and Daglis, 2007). The vertical TEC (VTEC) at the iono-
spheric pierce point of the ray path is derived from the
STEC by using a geometric mapping function (Liu et al.,
2009).

The ionospheric variability as described by TEC varia-
tions has been analysed for magnetically the quiet and dis-
turbed days. Negative or positive ionospheric storms
during disturbed days can be characterized by either a
decrease or increase of TEC and electron density with
respect to quiet time behaviour (e.g., Prölss, 1993a, 1995;
Fuller-Rowell et al., 1994; Buonsanto, 1999; Tsagouri
et al., 2000; Matamba et al., 2015).

It is known that modelling ionospheric TEC during dis-
turbed days is a big challenge (Fuller-Rowell et al., 2000;
Habarulema, 2010, 2011; Uwamahoro, and Habarulema,
2015). Several other researchers have attempted to predict
and forecast the TEC during both quiet and disturbed con-
ditions (Mao et al., 2005, 2008; Habarulema, 2010; Ercha
et al., 2012; Watthanasangmechai et al., 2012).

We have utilized the neural network (NN) technique
that has been demonstrated by several authors (e.g.,
Habarulema and McKinnell, 2012; Habarulema, 2010;
Habarulema et al., 2009; Okoh, 2016) as a very efficient
tool for ionospheric modelling and forecasting. The
strengths and versatility of neural NNs are derived from
their ability to represent both linear and nonlinear relation-
ships between inputs and outputs directly from the input
data (Baboo and Shereef, 2010).

TEC prediction using the NN technique has been done
over many years with relative success. An artificial NN
has been used in ionospheric studies that applied large
amounts of solar-terrestrial and ionospheric data to predict
the temporal and spatial variations of the ionospheric crit-
ical frequency foF2 and TEC Cander, 1998). The Middle
East Technical University Neural Network (METU-NN)
model, a data-driven neural network model of one hidden
layer, was used for forecasting and nowcasting of TEC val-
ues of the ionosphere during space weather events

(Tulunay et al., 2006). The first NN Global Positioning
System (GPS) prediction model over South Africa based
on TEC measurements was developed by Habarulema
et al. (2009). The model comprised a feed forward neural
network (NN) trained with data from 10 GPS receiver sta-
tions over five years. TEC predictions over southern Africa
were produced by means of the regional southern Africa
Total Electron Content Prediction (SATECP) NN model
based on GPS data (Habarulema et al., 2011). The applica-
tion of NN modelling for forecasting the ionospheric TEC
over China was demonstrated by Song, et al. (2018), using
the genetic algorithm to optimize the initial weights of the
NN. The first regional total electron content (TEC) model
over the entire African region, the AfriTEC model, was
developed by Okoh et al. (2019) using observations for
years 2000 to 2017 from terrestrial GPS receivers and
GPS receivers on the COSMIC satellites.

The modelling of topside ionosphere has been attempted
by Coı̈sson et al., (2002) through a comparison of the top-
side electron concentration profiles of the IRI and NeQuick
models with measurements by the Intercosmos-19 satellite
for many different geophysical situations during a period
of high solar activity (March 1979 to December 1980).
They concluded that topside modelling of both the IRI
and NeQuick needed improvement. Improvements in the
Bent model for the topside electron density of the IRI were
proposed by Depuev and Pulinets (2004) using the data-
base of Intercosmos- 19 satellite topside soundings during
a period of high solar activity. Attempts were made to
accommodate longitudinal dependencies in the empirical
model they proposed. The modelling of the electron density
values topside ionosphere has been attempted by Pignalberi
et al. (2018) using electron density recorded by Swarm
satellites from December 2013 to June 2016 and foF2
and hmF2 values provided by IRI UP (International Ref-
erence Ionosphere UPdate). They assumed that the scaling
height in the topside region was constant and demonstrated
that the a-Chapman analytical function gave the best per-
formance. Topside total electron content (TEC) values
derived from the GOCE and TerraSAR-X low earth orbit
satellites were used by Ren et al., 2020) to validate the top-
side ionosphere predictions of the NeQuick2 and IRI-2016
models from 2008 to 2018. Their results showed that these
two models both underestimate the topside ionosphere.
The variation of the VTEC over Antarctica during 2011–
2017 was studied by Tariku (2020). The pattern of varia-
tion of the VTEC inferred from the IRI 2016, IRI-Plas
2017 and NeQuick 2 models was demonstrated to be gen-
erally smaller than the GPS-derived VTEC values. From
the literature, it is clear that there is a gap on modelling
of the topside VTEC.

In this work, we introduce the first regional Swarm-NN
model for VTEC in the topside ionosphere trained over the
Euro-African sector using data over the period from Jan-
uary 2014 to December 2018 and tested with Swarm-A
data from 1 January to 30 September 2019. Particularly,
we have utilised the NN technique to describe the quiet
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and disturbed periods of VTEC obtained from Swarm-A
satellite measurements through the ascending and descend-
ing trajectories. In Section 2, we describe the data and
methods used in the study. In Section 3, we present the
results and discussion and the comparison of the neural
network model with the IRI2016 model. In Section 4, we
present the conclusion of the study.

2. Data and methodology

Data used in this work include topside electron content
values at a temporal resolution of 1 sec that were derived
from Swarm-A data, as well as solar and geomagnetic
indices obtained from the OMNI database.

2.1. Data

2.1.1. Swarm satellite

Swarm is a recent mission of the European Space Agency
(ESA) that was launched in November 2013 with the aim of
studying the dynamics of the Earth’s magnetic field and its
interactions with the Earth system. It consists of a constella-
tion of three satellites (Swarm-A, -B and -C). The three
Swarm satellites fly in the topside ionosphere. Each satellite
has an on-board GPS receiver of which the data can be used
for deriving the topside ionospheric TEC along the ray path
between the SwarmandGPS satellites (Zakharenkova,Asta-
fyeva 2015). SwarmA and C fly at an altitude of 460 kmwith
a 1.5� longitudinal spacing and an inclination of 87.4�.
Swarm B flies at an altitude of 540 km with an inclination
86.8�. During a day, the Swarm satellites complete about
15 to 17 polar orbits in an average 90min per orbit. The orbi-
tal planes of Swarm-B and Swarm-A/C differ by 9 h of local
time (Fiori et al., 2013; 2014). Swarm satellites regress in lon-
gitude around 23� between orbital ascending nodes. Swarm-
A and -C need about 133 days to cover all 24 h of local time
andSwarm-Bneeds about 141days (Xiong et al., 2016b). The
local time remains almost the same across most of the lati-
tudes in each crossing on a particular day during the ascend-
ing or descending trajectories. Data sets measured by Swarm
can be downloaded from (http://earth.esa.int/Swarm). The
cadence of L2-TEC data is 1 Hz.

One Swarm satellite can communicate simultaneously
with multiple GNSS satellites; hence, there can be multiple
STEC values for a given universal time (UT) (Swarm,
2013). The Swarm VTEC is derived from the mean of the
Swarm STEC values (Zakharenkova and Astafyeva,
2015). The topside VTEC is here modelled and predicted
as a function of physical and geophysical parameters that
include season (day of year), time of day, as well as solar
and geomagnetic activities.

2.1.2. Solar and geomagnetic indices

The solar wind data and geomagnetic indices were
obtained from the OMNI database (http://omniweb.
gsfc.nasa.gov/) during the descending phase of the solar
cycle 24. Data from 2014 to 2018 were used for training

our model, whereas data of 2019 were used for testing
the performance of the model. The solar and geomagnetic
inputs for the NN included the solar radio flux density at
wavelength 10.7 cm (F10.7 index), and the disturbed storm
time (Dst) index. The Dst index is a scale of geomagnetic
activity used to express the acuteness of magnetic storms.
The ten most quiet days and the five most disturbed days
in each month were selected based on the Dst index by
using the sequence of the degree of quietness and distur-
bance numbered as follows 1q, 2q, 3q, 4q, 5q, 6q, 7q, 8q,
9q and 0q, and 1d, 2d, 3d, 4d and 5d, respectively
(http://wdc.kugi.kyoto-u.ac.jp/qddays/format.html).

The F10.7 index is a daily measurement indicator for
solar activity, given in solar flux units (s.f.u.), and varies
from (50 � F10.7 � 300) through a solar cycle. To repre-
sent influence of the solar wind on TEC, the proton fluxes
at the L1 point in three energy bands (i.e 10, 30, 60 MeV)
are also used as inputs to the NN.

2.2. Methodology

Pre-processing of Swarm-A data involved the extraction
of VTEC values from STEC between Swarm-A and GPS
altitudes. The Swarm-A STEC values are along the ray
paths from Swarm-A satellite to the GPS satellites. There
are typically five GPS satellites in view at each epoch.
The VTEC value at each 1 sec epoch is derived from the
mean of the STEC values by using a geometric mapping
function for each satellite.

After that, The VTEC values are selected for elevation
>50� as recommended in the Swarm Level 2 TEC product
description.

1- We separated the ascending and descending trajecto-
ries of the Swarm-A passes, because they occurred at
two different local times e.g. ascending and descend-
ing at 10:20 LT and 22:22 LT respectively on 2017–
09-06 over the African sector.

2- We filtered the data by geographic longitude and lat-
itude to cover the Euro-African region, defined by the
coordinate bounds �71.5 < latitude < 71.5 and
�20 < longitude < 50.

We inspected the correlation between potential input
variables and Swarm VTEC values and used a correlation
matrix to select only nine inputs. The 9 input parameters
were selected from the error matrix, which demonstrates
the performance of the model. The error matrix is often
used in the field of machine learning for classification prob-
lems (see Stehman, 1997; Powers, 2011). It shows how
much each predicted class is correlated with its correspond-
ing drivers. The 9 input parameters were taken as the day
of the year (DOY), the hours of the day rounded to the
nearest integer (HR), latitude, longitude, Dst index,
F10.7 index, and the proton fluxes at 10, 30, and
60 MeV. To convert the seasonal and diurnal variations
into numerically continuous parameters, the DOY and
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HR are split into two cyclical components defined by
(Habarulema, 2010)

DOY s ¼ sin
2p� DOY

365:25

� �

DOY c ¼ cos
2p� DOY

365:25

� �

HRs ¼ sin
2p� HR

24

� �

HRc ¼ cos
2p� HR

24

� �

ð1Þ

where DOYs, DOYc, HRs, and HRc are the sine and
cosine components of the DOY and HR, respectively.
Therefore, 11 input parameters were used in the final NN
model, namely DOYs, DOYc, HRs, HRc, latitude, longi-
tude, Dst, F10.7, PF 10 MeV, PF 30 MeV, and PF
60 MeV. Before the training of the NN model, the dataset
was divided into two categories for training and testing
purposes. Each category was spilt corresponding to the
ionospheric variability (e.g. quiet and storm conditions).
Furthermore, each category showed the latitude, longitude
and HR dependency through separating the ascending and
descending trajectories of Swarm-A.

The quietest and the most disturbed days of each month
were derived from the WDC database (http://wdc.kugi.ky-
oto-u.ac.jp/). The time resolution of the measured topside
VTEC is 1 s and the actual topside VTEC that obtained
from Swarm-A data were extracted for a period of five
years (2014, 2015, 2016, 2017 and 2018) from the dataset
and used in NN training process. Then data from the first
9 months of 2019 were used for testing the NN perfor-
mance. This procedure is to make sure that the NN was
not being over-trained but sufficiently generalized.

We tested two NN architectures for each relationship: a
NN with a single hidden layer and NN with double hidden
layers, with 20 hidden nodes each. The single hidden layer
(1HL) NN refers to a NN with only one hidden layer,
besides the input and output layers. The two hidden layer
(2HL) NN refers to a NN with two hidden layers, besides
the input and output layers.

After inspecting the correlation of the VTEC values with
different potential inputs we selected only 11 input param-
eters that had the highest correlations with the VTEC val-
ues. The numbers of daily data sets used for training and
testing for the quiet days ascending (QD Asc), quiet days
descending (QD Des), disturbed days ascending (DD
Asc), and disturbed days descending (DD Des) are shown
in Table 1.

In a few cases, there was no Swarm data available on the
disturbed days or quiet days of some months in the year.

2.3. The neural network model

The NN consists of a number of processing units called
neurons or perceptrons linked by weighted connections
between the layers (Hopfield, 1982). Each unit receives
inputs from other units in the previous layer and generates
a single output. The output is then forwarded as an input
to all the other neurons in the subsequent layers. NNs con-
sist of three main sections (Fig. 1); the input layer, which
interfaces with the input variables, the hidden layer(s),
where the learning process is performed, and the output
layer which includes the target variable. The layers in a
multilayer neural network are fully connected, that is,
every neuron in each layer is connected to every other neu-
ron in the subsequent layer. The NN is considered as an
iterative learning process in which it maps the embedded
relation between the inputs and the output when given
enough training examples.

The NN performance strongly depends on the NN
architecture and it is different from one application to
another. The number of hidden layers and hidden neu-
rons depends on the complexity of the problem under
study, but can lead to overfitting in which the model is

Table 1

Number of quiet days (QD) (on average 10 days per month) and disturbed days (DD) (on average 5 days per month) for ascending (Asc) and descending

(Des) passes per year for each year of Swarm-A data used.

Training Data Testing Data

2014 2015 2016 2017 2018 2019

Asc Des Asc Des Asc Des Asc Des Asc Des Asc Des

QD 119 119 120 120 120 120 120 120 119 119 86 86

DD 58 58 59 59 60 60 60 60 60 60 45 45

Fig. 1. Illustration of the NN architecture with labelled inputs and

output.
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closely fit to the training data but fails to fit the testing
data. So, an efficient NN model is characterized by the
ability to be generalized over a wide range of data it
has not encountered before. Yet, there is no simple rule
that can determine the optimum number of hidden layers
and hidden neurons for an application. The architecture/-
topology used is determined by trial and error, and the
best architecture/topology in the present case was chosen
as the one with the lowest RMSE over the period of inter-
est. The output of a single-hidden layer NN can be writ-
ten as

Gk ¼ f
X

M

j¼1

H jw
ð2Þ
j;k þ bk

!

ð2Þ

where Gk is the network output at the k-th output of K out-
put nodes, M the number of hidden nodes in the first hid-

den layer, w
ð2Þ
j;k the weights of the links between the j-th

hidden node and the k-th output node, bk the biases con-
nected to the output nodes, f the activation function, and
Hj the output of the j-th hidden node, which can be repre-
sented as

H j ¼ f
X

N

i¼1

xiw
ð1Þ
i;j þ bj

!

ð3Þ

where xi the input values, N the number of inputs nodes,

w
ð1Þ
i;j the weights of the links between the i-th input and

the j-th node of the first hidden layer, and bj the biases con-
nected to the first hidden layer. For a double-hidden layers
NN, the output can be written as

yl ¼ f
X

S

k¼1

Gkw
ð3Þ
k;l þ bl

!

ð4Þ

where yl is the output of the l-th output node, Gk represent
the outputs of the previous hidden layer, S the number of

hidden nodes in the second hidden layer, w
ð3Þ
k;l the weights

of the links between the k-th hidden node of the second
hidden layer and the l-th output node, and bl the bias con-
nected to the l-th output nodes.

We used a semi-automatic method to find the best archi-
tecture for any specific regression problem. This method
involves using two nested for-loops in which the number
of loops represents the number of hidden layers and each
loop represents the number of hidden neurons in this speci-

Fig. 2. The Dst index (nT) and the F10.7 index (sfu) and the solar proton fluxes at 3 energy channels (PF > 10 MeV, PF > 30 MeV, and PF > 60 MeV)

during the last 10 years. The time period spans from 1 January 2014 to 30 September 2019. All data are 1-hour-averaged data from the OMNIWeb Service.
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fic hidden layer. Each NN topology runs two consecutive
times to estimate the average response of this particular
NN architecture. The Root-Mean-Squared Error (RMSE)
and the percentage error are recorded for each NN topol-
ogy and we selected the NN topologies that gave the min-
imum errors.

We chose the feed-forward back-propagation NN as it is
one of the most popular approaches of machine learning
and it performs quite effectively for space weather applica-

tions (see Qahwaji and Colak, 2006; Ajabshirizadeh et al.,
2011; Bortnik et al., 2018). Besides, it can approximate any
input–output map with concurrent inputs and outputs effi-
ciently (see Haykin, 1999; Bakr and Negm, 2012). We used
the Levenberg-Marquardt optimization (Levenberg, 1944;
Marquardt, 1963) as a learning rule for our model because
it performed better than other training functions for our
application. The training process in the back-propagation
algorithm of a neural network involves two phases, namely

Fig. 3. (a,b). Comparison between the observed and predicted VTEC during ascending (a, QD Asc) and descending (b, QD Des) passes of Swarm-A on

geomagnetically quiet days. The observed VTEC was derived from Swarm-A and the predicted VTEC was derived from NN models with one hidden layer

(1HL) and two hidden layers (2HL) respectively.
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forward and backward. The back-propagation algorithm is
assumed to converge when the error per iteration (i.e.,
epoch) is satisfactorily small.

To assess the performance of the NN, RMSE was com-
puted. The RMSE is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

ðVTECmeas � VTECpredÞ
2

N

v

u

u

u

t

; ð5Þ

Fig. 4. The correlation coefficients and the RMSE values in TECU between measured VTEC, by means of Swarm-A, and NN VTEC for the single hidden

layer (1HL) and double hidden layer (2HL) models for each of the ascending (Asc) and descending (Des) passes of Swarm-A for quiet days (QD) and

disturbed days (DD) during 2019.

Fig. 5. Scatter plots of the observed VTEC values derived from Swarm-A data and the predicted VTEC from the NN (1HL) and NN (2HL) for the four

models (QD Asc, QD Des, DD Asc and DD Des). The correlation coefficients for each case are given in the top right-hand corner of the plots.
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where N is the number of data points, VTECpred is VTEC
predicted by the NN and VTECmeas is the VTEC derived
from Swarm-A measurements.

The Pearson correlation coefficient (R) between the
Swarm and NN (VTEC) as given by

R ¼
nðRxyÞ � ðRxÞðRyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½nRx2 � ðRxÞ2�½nRy2 � ðRyÞ2�

q ð6Þ

was used as additional measure of the performance of the
NN. Here the numerator is the covariance between the
variables x and y and the denominator is the product of
the standard deviation of x and y. The best NN architec-
ture was taken as the one with the minimum RMSE and
highest correlation coefficient over the whole period of
interest for the selected dataset.

3. Results and discussion

This section describes the results of the NN and predict-
ing topside VTEC values over the Euro-African region.
The dataset was derived from Swarm-A measurements dur-
ing the period 1 January 2014 to 30 September 2019. The
time series were divided into two periods for each of four
models. The data for the period 2014 – 2018 were used
for training the NN and from 1 January 2019 to 30 Septem-

ber 2019 were used for testing the predicted topside VTEC
values.

Fig. 2 shows the Dst index, the F10.7 index, and the
solar proton fluxes in three energy channels for the full
solar cycle from 2009 to 2019. The green parts show the
period preceding the launch of the Swarm satellites to pro-
vide the context of the data used for training the NN. The
periods used for training and testing of the NN are shown
in red and blue respectively. The highest levels of proton
flux in all 3 energy channels occurred during the storm of
7 September 2017 when the Dst index reached �124 nT
and F10.7 reached 185.5 sfu, namely Proton flux
(>10 MeV) = 1208 per cm2-sec-ster, Proton flux
(>30 MeV) = 404 per cm2-sec-ster and Proton flux
(>60 MeV) = 142 per cm2-sec-ster. The training data cov-
ered half of the solar cycle and started near the peak of the
solar cycle while the testing data was taken from the end of
the solar cycle. Note that while the training data included
several strong storms (Dst � - 150 nT), the testing data
had no strong storms (Dst � - 50 nT, Pf � 0.36 MeV),
Since Dst hardly went below �50 nT as well as very low
proton flux levels. This might have contributed to the fact
that the DD models had lower correlations and higher
RMSE values in general compared to QD models.

Fig. 3(a) and (b) show the time-series graphs of the com-
parison between the measured and estimated VTEC from

Fig 5. (continued)
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January to September 2019 for the single hidden layer NN
(1HL) and the double hidden layer NN (2HL).

The measured topside VTEC is obtained from Swarm-
A. The x-axis in Fig. 3 represents 9 months of year 2019,
which was used as the testing set. The x-axis is labelled
‘‘Index” because it is chronological but not sequential in
time. Hence, there is no direct link between the index and
the day of the month. The results are labelled by the
months which represent the solstices and equinoxes of the
year by the following periods: (‘‘Jan-Feb” represents the
solstice period 1 January to 28 February 2019), (‘‘Mar-
May” represents the equinox period 1 March to 31 May
2019), (‘‘Jun-Aug” represents the solstice period 1 June to
31 August 2019), (‘‘Sep” represents the equinox period 1
September to 30 September 2019). We have avoided the

word ‘‘season” since every pass of the Swarm satellite over
the Euro-African sector traverses both northern and south-
ern hemispheres, which have opposite seasons. In the top
panel, the LT is shown at the transitions between these
periods. This format of the results facilitates comparison
of the overall the variations of the range of VTEC values
during different part of the testing year.

The local time (LT) difference between the ascending
and descending passes is about 12 h. Note that, between
two successive ascending equatorial crossings of Swarm-
A, the LT decreases by 1.28 min and the longitude
decreases by about 23� (Xiong et al., 2016b).

Fig. 3 shows the strong dependency of the diurnal
VTEC variation on the LT. The largest variation of the
topside VTEC (16 TECU) occurs between noon and dusk

Fig. 6. Topside VTEC along the Swarm-A passes together with corresponding VTEC from the NN and IRI2016 models for Quiet Day Ascending passes

(QD Asc).
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and the least variations (5 TECU) occurs between midnight
and dawn.

For example, during the Sep equinox during 2019, the
largest VTEC variations occur during the ascending trajec-
tories with LT variations decreasing from 18:00 to 14:00
(afternoon). During the same period, the VTEC variations
along the descending trajectories are 6 TECU with LT vari-
ations decreasing from 06:00 to 02:00 (pre-dawn). During
the other periods of the year similar patterns, occur of large
and small VTEC variations during the daytime and night-
time passes respectively.

Throughout the testing period, the VTEC variations
predicted by the NN model are synchronized with the mea-
sured VTEC and follows the trend of the observations.

The performance of the four models is summarized in
Fig. 4. This figure shows that the model that performed
best was the one hidden layer model in the case of quiet

days for descending trajectories model (QD Des (1HL)),
with RMSE = 1.20 TECU, and correlation coefficient
R = 0.76. The worst performance as measured by RMSE
occurred during the disturbed descending trajectories for
one hidden layer model (DDDes (1HL)) with RMSE= 2.12
TECU and R = 0.54. The worst performance as measured
by correlation coefficient occurred during the disturbed
descending trajectories for the two hidden layer model
(DD Des (2HL) with R = 0.47 and RMSE = 1.57 TECU.

Fig. 5 shows scatter plots, linear regression lines and the
correlation coefficients between the observed VTEC values
derived from Swarm-A data and the predicted VTEC values
from theNN (1HL) andNN (2HL) for the fourmodels in the
following order QD Asc, QD Des, DD Asc and DD Des.

In each case, the correlation coefficient as well as the
equation for the linear regression line and the ideal pre-
diction line (y = x) are given. The NN models underesti-

Fig 6. (continued)
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mate the measurements. The model with the best correla-
tion coefficient is not the same as the model for which the
linear regression is closest to the ideal prediction line. The
best linear regression occurs with the DD Asc (1HL)
model (y ¼ 0:72X þ 1:55) and the worst linear regression
occurs with the DD Des (2HL) model
((y ¼ 0:38X þ 2:95).

Figs. 6–9 show typical comparisons of topside VTEC
from Swarm-A, NN and IRI2016 model for selected cases
and passes of Swarm-A during the four periods of the year
(March and September equinoxes , January and June
solstices).

Each of the 16 panels of Figs. 6–9 show colour coded
values of the measured VTEC along the tracks of

Swarm-A and the corresponding modelled VTEC derived
from NN(1HL),NN(2HL) and IRI2016 models. The 16
panels are arranged according to four periods (the two
equinoxes March and September, the two solstices January
and June) each with examples of VTEC from the three
models (NN(1HL),NN(2HL), and IRI2016) compared to
Swarm-A VTEC. In each case, the comparisons are orga-
nized by DOY.

The VTEC derived from IRI2016 model was calculated
along fixed longitudes namely the longitude where the
Swarm-A paths crossed the geographic equator. The devi-
ation of the Swarm path from this fixed longitude over the
Euro-African sector is at most 2.6� (due to the inclination
of the Swarm-A orbit being 87.4�).

Fig. 7. Topside VTEC along the Swarm-A passes together with corresponding VTEC from the NN and IRI2016 models for Quiet Day Descending passes

(QD Des).

11



The maps in Figs. 6–9 clearly display the dependence of
the VTEC distribution on longitude and LT.

In all the selected cases, the NN models performed bet-
ter than the IRI2016 model that frequently had an equato-
rial dip in the topside VTEC which was not matched by the
Swarm-A measurements. The predictions of the IRI2016
model, in most cases, underestimates the Swarm-A VTEC.

The largest differences between the NN models and
IRI2016 model occurred at midnight and during the early
morning, while the differences were smaller during the
daytime.

3.1. The QD Asc model

Fig. 6 illustrates the topside VTEC along the Swarm-A
passes together with corresponding VTEC from the NN
(QD Asc) and IRI2016 models.

Panel (i) of Fig. 6 shows the QD Asc daytime paths
(LT = 10:48) during the Jan-Feb solstice (represented by
DOY 47). Note that the best prediction of the VTEC for
this day is along the central path over Africa (10�) where
both models fit the Swarm-A measurements equally well.
The NN (1HL) model matches the Swarm-A better than
the NN (2HL) along the western longitude (�13�), while
the reverse occurs at the eastern longitude (34�) where
the NN (2HL) model predicts a better match with the mea-
sured VTEC than the NN (1HL). It is not clear why the
two NN models have different performances in the eastern
and western paths over Africa. The IRI2016 model is worse
than the NN model because it shows two VTEC peaks on
either side of the geomagnetic equator and underestimates
the VTEC values at mid latitudes.

Panels (ii) and (iii) of Fig. 6 show the QD Asc nighttime
paths (LT = 02:43 and LT = 21:04 respectively) during the

Fig 7. (continued)
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Mar-May equinox (represented by DOY 137) and the Jun-
Aug solstice (represented by DOY 199). The predictions of
the VTEC for these days by the NN (1HL) and NN (2HL)
models closely match the Swarm-A measurements over
Africa. Note the hemispheric asymmetry of VTEC; VTEC
above 6 TECU only occurred on northern hemisphere mid
latitudes on these days. The IRI2016 model predicts
VTEC < 2 TECU during all 3 paths during these days.
Thus significantly underestimating Swarm VTEC.

Panel (iv) of Fig. 6 shows the QD Asc daytime paths
(LT = 15:24) during the Sep equinox (represented by
DOY 262). Note that the best prediction of the VTEC
for this day is by the NN (1HL) model along the western
path over Africa (�15�).

The IRI2016 model predicted almost identical double-
peak VTEC distributions for all 3 paths over Africa and
underestimated the measured values by 3 TECU.

3.2. The QD Des model

Fig. 7 illustrates the topside VTEC along the Swarm-A
passes together with corresponding VTEC from the NN
(QD Des) and IRI2016 models.

Panel (i) of Fig. 7 shows the QD Des nighttime paths
(LT = 22:29) during the Jan-Feb solstice (represented by
DOY 50). Note that the both The NN (1HL) and the
NN (2HL) models give good predictions of the VTEC
for this day along the eastern path over Africa (41� E) as
the VTEC values closely match that of Swarm. On the

Fig. 8. Topside VTEC along the Swarm-A passes together with corresponding VTEC from the NN and IRI2016 models for Disturbed Day Ascending

passes (DD Asc).
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other two paths of Swarm-A the NN (2HL) model gives
slightly better estimates of VTEC values than the NN
(1HL) model. The IRI2016 model predicts VTEC values
lower than half of the measured values during all 3 paths
during this day. During all 3 Swarm-A paths the peaks
of VTEC seem to occur at the geomagnetic equator (10�
N geographic), whereas the 1HL and 2HL models predict
peak at around the geographic equator.

Panels (ii) of Fig. 7 shows the QD Des daytime paths
(LT = 14:13) during the Mar-May equinox (represented
by DOY 142). The predictions of the VTEC for this day
by the NN (1HL) and NN (2HL) models closely match
the Swarm-A measurements over Africa. At this LT the
longitudinal variations of the VTEC is minimal. The
IRI2016 predicts 2 VTEC peaks on all 3 paths over Africa,
one peak at the geomagnetic equator and the other peak in
the southern hemisphere at about 20� S (geographic),

while Swarm VTEC shows an extended peak covering lat-
itudes from about �10 to 30�.

Panels (iii) of Fig. 7 shows the QD Des daytime paths
(LT = 10:50) during the Jun-Aug solstice (represented by
DOY 180). The predictions of the VTEC for this day by
the NN (1HL) and NN (2HL) models are similar to the
Swarm-A measurements over Africa. The IRI2016 model
predicts the peaks of the VTEC to be in the southern hemi-
sphere during all 3 paths during this day that is inconsistent
with the Swarm-A measurements.

Panel (iv) of Fig. 7 shows the QD Des nighttime paths
(LT = 03:54) during the Sep equinox (represented by
DOY 257). Note that the predictions of the VTEC for this
day by the NN (1HL) and NN (2HL) models are similar to
the Swarm-A measurements over Africa and they have low
values (�5 TECU). The IRI2016 model underestimates the
measured values by 5 TECU.

Fig 8. (continued)
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3.3. The DD Asc model

Fig. 8 illustrates the topside VTEC along the Swarm-A
passes together with corresponding VTEC from the NN
(DD Asc) and IRI2016 models.

Panel (i) of Fig. 8 shows the DD Asc daytime paths
(LT = 14:34) during the Jan-Feb solstice (represented by
DOY 5). Note that the NN (2HL) model provides the best
prediction of the VTEC for this day. The NN (1HL) model
overestimates the VTEC values along the central and east-
ern longitudes (24� and 0� respectively). The IRI2016
model predicts VTEC values lower than the measured val-
ues during all 3 paths during this day. In addition, the
IRI2016 shows 2 VTEC peaks, the largest of which occurs
at 10� S geographic, whereas the Swarm only show one
VTEC peak.

Panels (ii) of Fig. 8 shows the DD Asc nighttime paths
(LT = 03:16) during the Mar-May equinox (represented
by DOY 131). Note that the best prediction of the VTEC
for this day is by the NN (2HL) model. The NN (1HL)
model overestimates the VTEC Swarm-A values along
the central and eastern longitudes (33� and 10� respec-
tively). The IRI2016 predicts VTEC below 1 TECU in all
paths, thus significantly underestimating Swarm VTEC.

Panels (iii) of Fig. 8 shows the DD Asc daytime paths
(LT = 19:22) during the Jun-Aug solstice (represented by
DOY 218). Note that the NN (2HL) model provides the
best prediction of the VTEC for this day. The NN (1HL)
model over estimates the VTEC Swarm-A values along
all 3 longitudes. The IRI2016 model predicts VTEC values
lower than half of the measured values during all 3 paths
during this day.

Fig. 9. Topside VTEC along the Swarm-A passes together with corresponding VTEC from the NN and IRI2016 models for Disturbed Day Descending

passes (DD Des).

15



Panel (iv) of Fig. 8 shows the DD Asc nighttime
paths (LT = 17:01) during the Sep equinox (represented
by DOY 244). The predictions of the VTEC for this
day by the NN (1HL) and NN (2HL) models closely
match the Swarm-A measurements over Africa. The
IRI2016 model underestimates the measured values by
4 TECU and erroneously predicts two VTEC peaks in
the northern hemisphere during all 3 paths during this
day.

3.4. The DD Des model

Fig. 9 illustrates the topside VTEC along the Swarm-A
passes together with corresponding VTEC from the NN
(DD Des) and IRI2016 models.

Panel (i) of Fig. 9 shows the DD Des nighttime paths
(LT = 00:20) during the Jan-Feb solstice (represented by
DOY 31). Note that the NN (2HL) model gives the best
prediction with RMSE = 1.99 TECU, while the NN
(1HL) model overestimates the VTEC values with
RMSE = 2.87 TECU. The IRI2016 model greatly underes-
timates Swarm VTEC as it over both paths.

Panel (ii) of Fig. 9 shows the DD Des at the dusk paths
(LT = 18:46) during the Mar-May equinox (represented by
DOY 95). The predictions of the VTEC for this day by the
NN (1HL) and NN (2HL) models closely match the
Swarm-A measurements over Africa. At this LT the longi-
tudinal variations of the VTEC is minimal. The IRI2016
predicts 2 VTEC peaks on all 3 paths over Africa, one peak
at the geographic equator and the other peak in the south-

Fig 9. (continued)
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ern hemisphere at about 20�S, while Swarm only observed
one VTEC peak.

Panels (iii) of Fig. 9 shows the DD Des daytime paths
(LT = 09:84) during the Jun-Aug solstice (represented by
DOY 191). The predictions of the VTEC for this day by
the NN (1HL) and NN (2HL) models are very different
from the Swarm-A measurements over Africa.

Panel (iv) of Fig. 9 shows the DD Des nighttime paths
(LT = 04:37) during the Sep equinox (represented by
DOY 252). Note that the predictions of the VTEC for this
day by the NN (2HL) model is much better than the NN
(1HL) model. The NN(2HL) model is generally better than
the NN(1HL) model for disturbed days (except for the
Mar-May equinox) probably because the extra layer in
the NN(2HL) model improves the ability of the model to
handle the complexity of the ionosphere during the dis-
turbed days. The peaks of the IRI2016 model matches
the measured VTEC at the geographic equator.

The best performance of the NN models occurred at dif-
ferent local times, but in all cases during the equinox
months: The QD Asc NN (2HL) model performed best
during the March equinox at LT = 02.43 (RMSE = 0.56
TECU), the QD Des NN (1HL) model performed best dur-
ing the September equinox at LT = 15.41 (RMSE = 0.76
TECU), the DD Asc NN (2HL) model gave the best per-
formance during the March equinox at LT = 3.26
(RMSE = 0.90 TECU), and the DD Des NN (1HL) model
also performed best during the March equinox, but at
LT = 10.95 (RMSE = 1.34 TECU). All local times were
covered by the Swarm-A satellite over the four years of
training data.

Table 2 shows a summary of the RMSE for all results in
Figs. 6–9 organized by period of observation and NN
models.

4. Conclusion

The NN models presented here is the first such attempt
at comparing NN models for the topside VTEC based on
Swarm-A measurements.

The NN trained on Swarm-A measurements of VTEC
and geophysical inputs provided useful predictions of the
topside VTEC. The single hidden layer NN performed bet-
ter in the case of quiet days for both ascending and
descending trajectories, while the double hidden layer
NN performed better in the case of disturbed days for both
trajectories. This is true when looking at both RMSE and

correlation. These results might imply that the relation
between the input parameters and the VTEC values during
the disturbed days is more complex and hence the NN may
need an additional hidden layer to be able to converge to a
smaller error than that which was obtained with the 1HL
and 2HL models.

The 11 input parameters (DOYs, DOYc, HRs, HRc, lat-
itude, longitude, Dst, F10.7, PF 10 MeV, PF 30 MeV, and
PF 60 MeV) proved to be adequate. We investigated the
Ap index as an additional input parameter, but it gave
worse results.

Comparisons of the NN models with the topside VTEC
calculated by means of the IRI2016 model, with measured
F10.7 as optional input, demonstrated that both the NN
models in all cases performed significantly better than the
IRI2016 model. The IRI model frequently had an equato-
rial dip in the topside VTEC that was not matched by the
Swarm–A measurements.

Future work will include testing the contribution of each
of the input parameters to the accuracy of the predictions.
The use of additional hidden layers to improve the NN
models for disturbed days (DD Asc and DD Des) will be
investigated. Validations will be performed with other
instruments including incoherent scattering radars.

The validation period corresponded to a low solar activ-
ity. In future, a more comprehensive validation may be per-
formed by selecting periods that represent both high and
low solar activity.
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