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Abstract. The paper carries on our previous investigations on the complementary version of Purcell’s
rotator (sPr3): a low-Reynolds-number swimmer composed of three balls of equal radii. In the asymptotic
regime of very long arms, the Stokes-induced governing dynamics is derived, and then experimented in the
context of energy-minimizing self-propulsion characterized in the first part of the paper.

1 Introduction

In his seminal paper [1], Purcell explains how at small
Reynolds numbers any organism trying to swim using the
reciprocal stroke of a scallop, which moves by opening and
closing its valves, is condemned to go back to its original
position at the end of one cycle. This observation leads to
the question of finding the simplest mechanisms capable
of self-propulsion at these scales; by this, we mean the
ability to move by performing a cyclic shape change, a
stroke, in the absence of external forces. Several proposals
have been put forward and analyzed (see, e.g., [1–6] and
the review paper [7]).

In this paper, we focus on a very specific microswim-
mer: the complementary version of Purcell’s three-sphere
rotator (sPr3) introduced in [4] and fully described in
sect. 2. This swimmer consists of three non-intersecting
balls (Bi)i∈N3 of R

3 centered at bi ∈ R
3 and of equal radii

a > 0 (for n ∈ N we set Nn := {1, . . . , n}). The three
balls can move along three coplanar axes that mutually
meet at a point c ∈ R

3, the center , with fixed angles of
2π/3 one to another; this reflects a situation where the
balls are linked together by very thin telescopic arms that
can elongate (see fig. 1). The swimmer can freely rotate
around c in the horizontal plane containing the arms, al-
though owing to the symmetries of the system, it is forced
to stay in this plane.

Applying tools from geometric control theory to the
study of low-Reynolds-number model swimmers was prob-
ably first introduced in [8,9]. In particular, full controlla-
bility of sPr3, as well as for a broader class of model swim-
mers, i.e., the ability of the swimmer to reach any point
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in the plane with any orientation, has been proved in [10].
This kind of controllability results express mathematically
ways to escape Purcell’s celebrated Scallop theorem (see,
e.g., [11] for a review of systems that possess such ca-
pabilities). Also, controllability results find applications
in contexts where one is interested in the optimality of
the swimming strategy with respect to different energy
sources (see, e.g., [12], where the connection between op-
timal swimming and optimal feeding is investigated).

Analytical investigations on the optimal control prob-
lem for sPr3 have been the object of [13]. By the opti-
mal control problem, we mean maximizing Lighthill’s ef-
ficiency, i.e., the ratio of the power needed to pull the
swimmer at a certain speed by an external force, to the
one needed for active swimming with the same average
speed. Compared to [10, 13], we propose here a quantita-
tive analysis and we want to stress that, by contrast to
the earlier works on the topic (cf. [1–3, 5, 14–20]), here
the presence of three control variables and three position
variables makes the analysis more involved and rich.

The main aim of this second part is to put the opti-
mality results proved in [13] into a concrete setting, specif-
ically: the Stokes-induced governing control system for
sPr3 in the asymptotic regime of very long arms. First, we
derive closed-form expressions for the dynamics and use
asymptotic analysis to simplify the results. Then, we focus
on the analysis of energy-minimizing strokes, and we iden-
tify the optimal parameters of the control system in terms
of the initial length of the arms and the radius of the three
balls. Finally, we present numerical simulations that show
the qualitative features of the optimal swimming style. We
stress on the fact that the theoretical study provided in
the present paper is self-contained and does not rely on
any previous result. We instead provide the reader with
quantitative results in the asymptotic regime of small dis-
placements and large arms of the model swimmer.
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Fig. 1. The swimmer sPr3 is composed of three non-intersecting balls (Bi)i∈N3 of R
3 of equal radii. The three balls are linked

together by thin arms that are able to elongate, independently of each other, along three coplanar axes that meet at the center
c ∈ R

3 and make fixed angles of 2π/3 from one to another.

Fig. 2. The swimmer sPr3 is fully described by the set of shape variables ζ := (ζ1, ζ2, ζ3) ∈ M and by the set of position variables
p = (c, θ) ∈ R

2 ×R. (From left to right) In (2.a), the reference configuration. The three spheres are located at the vertices of an
equilateral triangle having the origin as barycenter (c = 0). In (2.b), the set of shape variables ζ := (ξ0 +ξ1, ξ0 +ξ2, ξ0 +ξ3) ∈ M
represents a possible shape state of the swimmer characterized by three different lengths of the arms. In (2.c), a possible position
state (c, θ), with θ �= 0, is sketched.

2 Kinematics and dynamics of sPr3

As the three balls are not allowed to rotate around their
axes, the shape of the swimmer can be parametrized by
the lengths ζ1, ζ2, ζ3 of its three arms, measured from c to
the center of each of the balls. Therefore, the possible ge-
ometrical configurations of the swimmer can be described
by introducing two sets of variables (cf. fig. 2):

– The vector of shape variables ζ := (ζ1, ζ2, ζ3) ∈ M,
where M := (2a/

√
3,∞)3 ⊆ R

3
+, from which rela-

tive distances (bij)i,j∈N3 between the balls are obtained
(cf. (2) and (3)). The lower bound on M is imposed
to exclude any overlap of the spheres.

– Position and orientation of sPr3 in the plane are spec-
ified by the coordinates of the center c ∈ R

2×{0}, and
by the angle θ that one arm, e.g., the arm connected
to B1, makes with the fixed direction z1. We refer to
p = (c, θ) ∈ R

2 ×R as the vector of position variables.

Precisely, without loss of generality, we assume that in
its initial configuration, the three arms of the swimmer
sit in the plane R

2 × {0}. In order to compute the posi-
tion of the three balls, we take the vertices of the equilat-
eral triangle defined as the convex hull of the unit vectors
z1, z2, z3 ∈ R

3, with z1 := (1, 0, 0)T, z2 := RT(2π/3)z1,
z3 := R(2π/3)z1, and R(φ) the planar rotation through

an angle φ ∈ R around the vector ê3 = (0, 0, 1):

R(φ) :=

⎛
⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎠ . (1)

Then, the center bi of the i-th ball of the swimmer is at
position (cf. fig. 2)

bi := c + ζiR(θ)zi ∈ R
2, (2)

where, here and in the following, we identify R
2 with

R
2 ×{0} and, similarly, we identify the action of R in (1)

with its two-dimensional analog. Since the balls cannot in-
tersect, the matrix b := (b1, b2, b3) ∈ R

2×3 is constrained
to take values into the set

B :=
{

b ∈ R
2×3 : min

i<j
|bij | > 2a

}
, bij := bi − bj . (3)

The time evolution of the swimmer can be traced through
the state variables (ζ, p) ∈ M × R

3. For i ∈ N3, the in-
stantaneous velocity of the i-th sphere is obtained by dif-
ferentiating relation (2) with respect to time

ui(ζ, p) = ċ + ζ̇iR(θ)zi + θ̇ζiR(θ)z⊥i , (4)

with z⊥i := R(π/2)zi.
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The viscous resistance of the arms is deemed negligi-
ble and, therefore, we assume that the fluid fills up the
whole space outside the balls, that is, the exterior domain
Ω := R

3\ ∪3
i=1 B̄i. The geometry of Ω is uniquely deter-

mined by the common radius a of the three spheres, and
by the matrix b = (bi)i∈N3 having as columns the centers
of the balls. At low Reynolds numbers, the dynamics of
the swimmer is governed by the Stokes equations

{−μΔu + ∇p = 0 in Ω,

div u = 0 in Ω,
(5)

where u and p are, respectively, the velocity field and the
pressure of the fluid, and μ is its viscosity. As the struc-
ture of the swimmer is deformable but made of rigid balls,
the governing equations are subject to no-slip boundary
conditions on the balls. Because of the linearity of Stokes
equations, the vector u := (u1, u2, u3) collecting the three
velocities in (4) can be expressed in the algebraic form
(cf. [5, 21])

u = Hf , (6)

where H is the Oseen tensor (which depends on the vis-
cosity) and f := (f1, f2, f3) ∈ R

6 is the vector collecting
the forces acting on the balls. Symmetry arguments show
that in the long-arm asymptotic regime the hydrodynamic
relation (6) takes the form:

ui =
1
ν

fi +
∑

j �=i∈N3

S(bij)fj , (7)

where the stokeslet

S(x) :=
1

8πμ

(
I

|x| +
x ⊗ x

|x|3
)

(8)

represents a fundamental solution of the Stokes sys-
tem [22], and ν := 6πμa ∈ R

+ is the drag coefficient
linking, at small Reynolds numbers, the force to the ve-
locity of a spherical object of radius a ∈ R

+ immersed in
a fluid of viscosity μ. Notice that, in order to write (7),
the assumption that the three spheres stand at a distance
much greater than the radius a, i.e., that mini<j |bij | 	 a,
is essential.

It will be convenient to rewrite (7) in the form

u =
(

1
ν
I + L

)
f , (9)

where I := diag(I, I, I) is the 6 × 6 identity matrix, and
L the mutual interaction matrix defined by

L :=

⎛
⎝

0 S(b12) S(b13)
S(b12) 0 S(b23)
S(b13) S(b23) 0

⎞
⎠ . (10)

3 Dynamics of sPr3 in the limit of very long
arms

Due to the negligible inertia, the total viscous force and
torque exerted by the surrounding fluid on the swimmer

must vanish. In other words, the dynamics is subject to
the balance equations

∑
i∈N3

fi = 0 and
∑
i∈N3

bi × fi = 0. (11)

Here, the cross product stands for the determinant form on
R

2 and the bi’s are given by (2). Clearly, for every i ∈ N3,
there exist vectors b⊥,i(ζi, θ) ∈ R

2, such that b⊥,i(ζi, θ) ·
fi = bi×fi, and, therefore, the balance equations (11) can
be expressed in the concise form

W(ζ, θ)f = 0, (12)

where the matrix W is defined by

W(ζ, θ) :=

(
I2×2 I2×2 I2×2

bT
⊥,1(ζ1, θ) bT

⊥,2(ζ2, θ) bT
⊥,3(ζ3, θ)

)
. (13)

We assume that the three arms of the swimmer have the
same initial length ξ0 ∈ R

+ with ξ0 	 a, and we set
ζi := ξ0 + ξi with |ξi| 
 ξ0. We want to show that in
the limit of very long arms, and at the leading order, the
swimming problem for sPr3 reduces to a control problem
of the form

ṗ = F (ξ, θ)ξ̇, (14)

with ξ := (ξ1, ξ2, ξ3), whose structural symmetries have
been fully investigated in the first part of the paper
(cf. [13]).

First, since the vector of the velocities depends linearly
both on ξ̇ and ṗ, we can recast relations (4) in the form

u = X (θ)ξ̇ + Y(ξ, θ)ṗ, (15)

where X , Y are the shape matrices given by

X (θ) :=

⎛
⎝

R(θ)z1 02×1 02×1

02×1 R(θ)z2 02×1

02×1 02×1 R(θ)z3

⎞
⎠

6×3

,

Y(ξ, θ) :=

⎛
⎜⎝

I2×2 (ξ0 + ξ1)R(θ)z⊥1
I2×2 (ξ0 + ξ2)R(θ)z⊥2
I2×2 (ξ0 + ξ3)R(θ)z⊥3

⎞
⎟⎠

6×3

.

(16)

In the limit of large arms, the mutual interaction matrix
becomes a perturbation of the diagonal part (1/ν)I and
eq. (9) can be inverted to give (at the leading order)

f =
(
νI − ν2L

)
u =

(
νI − ν2L

) (
X (θ)ξ̇ + Y(ξ, θ)ṗ

)

(17)
by use of (15). Multiplying both members by W, and after
simplifying by ν, we infer that (cf. (12))

W(ξ, θ) (I − νL)
(
X (θ)ξ̇ + Y(ξ, θ)ṗ

)
= 0, (18)

with the convenient and not dangerous abuse of notation
W(ξ, θ) := W(ζ, θ). This is of the desired form (14) with

F = − (W (I − νL)Y)−1 W (I − νL)X , (19)
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where, to shorten notation, we left understood the param-
eters ξ0, ξ and θ. Moreover, because of the invariance of
Stokes equations under the group of rotations, according
to [13], (Prop. 1), we can factorize the control system F
in the form F (ξ, θ) = R(θ)F (ξ) with F (ξ) := F (ξ, 0), and
therefore

ṗ = R(θ)F (ξ)ξ̇. (20)

Also (cf. [13] (Prop. 4)), in the limit of small strokes, i.e.,
in the regime |ξ|/ξ0 < a/ξ0 
 1 (see also sect. 5), we can
expand F to leading order in ξ. This gives

F (ξ)ξ̇ = F0ξ̇ +
∑
k∈N3

(Ak ξ̇ · ξ)ek. (21)

Here, a straightforward computation shows that F0 :=
F (0) is given by

F0 = ϕ(a, ξ0)

⎛
⎜⎝

−2 1 1

0
√

3 −
√

3
0 0 0

⎞
⎟⎠ , (22)

with

ϕ(a, ξ0) :=
1
6
− 1

16
√

3
(a/ξ0) + O(a/ξ0)2. (23)

Instead, the first-order correctors (Ak)k∈N3 (cf. [13]
(Corollary 1)) have a special structure which can be fully
characterized in terms of four real parameters. Precisely,
there exist α := α(a, ξ0), β := β(a, ξ0), γ := γ(a, ξ0), and
λ := λ(a, ξ0), depending only on the radius a of the balls
and on the initial common length ξ0 of the arms of sPr3,
such that

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ α +
1
3
β α +

1
3
β

−α +
1
3
β

λ

2
−2

3
β

−α +
1
3
β −2

3
β

λ

2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A2 =
√

3

⎛
⎜⎜⎜⎜⎜⎜⎝

0
α − β

3
β − α

3
−β − α

3
λ

2
−2α

3
α + β

3
2α

3
−λ

2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(24)

and

A3 =

⎛
⎝

0 −γ γ

γ 0 −γ

−γ γ 0

⎞
⎠ . (25)

With the aid of a symbolic computation software and ex-
panding F in terms of ξ in (19) we can identify the entries
and get

α(a, ξ0) :=
1
ξ0

(
1

32
√

3
(a/ξ0) + O(a/ξ0)2

)
, (26)

β(a, ξ0) :=
1
ξ0

(
1

16
√

3
(a/ξ0) + O(a/ξ0)2

)
, (27)

λ(a, ξ0) :=
1
ξ0

(
5

48
√

3
(a/ξ0) + O(a/ξ0)2

)
, (28)

and

γ(a, ξ0) :=
1
ξ2
0

(
1

6
√

3
+ O(a/ξ0)2

)
. (29)

We remark that only the skew-symmetric parts (Mk)k∈N3

of the matrices (Ak)k∈N3 contribute to a net displacement
of the swimmer after one stroke (cf. [13]). For any ξ ∈ R

3

they can be expressed by the actions

M1ξ = αξ × τ1, M2ξ = αξ × τ2, M3ξ = γξ × τ3,
(30)

with

τ1 := (0,−1, 1), τ2 :=
1√
3
(−2, 1, 1), τ3 := (1, 1, 1)

(31)
forming an orthogonal basis of R

3.

4 Optimal swimming

Following the notion of swimming efficiency proposed by
Lighthill in [23] (cf. also [18, 19]), we adopt the following
notion of kinematic optimality: energy-minimizing strokes
are those minimizing the kinetic energy dissipated during
one stroke in order to reach a prescribed net displacement
δp ∈ R

3. In mathematical terms, the total energy dissipa-
tion due to a smooth stroke ζ : I → M, can be evaluated
by considering the instantaneous power dissipated at time
t ∈ I, defined by P(u) = f ·u. We note that ṗ is linear in
ξ̇ because of (14), and so are f and u due to (15) and (17).
Thus P(u) turns out to be a quadratic form in ξ̇ that we
write in the following form:

P(u) = G(ξ)ξ̇ · ξ̇ (32)

for a suitable matrix-valued function G that, by the rota-
tional invariance of the problem, does not depend on θ.

At the leading order in the limit of small strokes
(cf. [13] (§ 5)) the instantaneous power dissipated at time
t ∈ I reads as P(u(t)) = G0ξ̇(t) · ξ̇(t), with G0 := G(0),
and the total energy dissipation associated with a stroke
ζ : I → M is given by (recalling that ζi := ξ0 + ξi)

G(ζ) :=
∫

I

G0ξ̇(t) · ξ̇(t)dt. (33)

It can be readily checked that, as derived in [13] (§ 5),
the matrix G0 is symmetric, positive-definite, and has the
following special structure:

G0 =

⎛
⎝

κ h h

h κ h

h h κ

⎞
⎠ , (34)
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Fig. 3. The evolution of ξ and c during optimal strokes. Left: shape and position changes described by sPr3 to achieve a pure
x displacement. Center: shape and position changes to achieve a pure y displacement. Right: shape and position changes to
achieve a pure θ displacement.

with the two parameters h, κ depending only on the ra-
tio a/ξ0 between the radius of the balls of sPr3, and on
the common initial length of its arms. Again, a symbolic
computation shows that

κ :=
2
3

+
1√
3
(a/ξ0) + O(a/ξ0)2,

h :=
1
6

+
7

16
√

3
(a/ξ0) + O(a/ξ0)2.

(35)

It is convenient to denote by g1 := (κ− h) and g2 := (κ +
2h) the eigenvalues of G0. Note that g1 is of multiplicity
two. Their expanded expressions read as

g1 =
1
2

+
3
√

3
16

(a/ξ0) + O(a/ξ0)2, (36)

g2 = 1 +
5
√

3
8

(a/ξ0). (37)

In [13] (Theorem 5.1) we proved that the stroke ζ : I → M
that produces a prescribed change of position and orien-
tation δp ∈ R

3 of the swimmer at the minimal cost G(ζ)
is an ellipse of R

3. This optimal stroke is given by

ξ(t) := (cos t)u + (sin t)v, (38)

where the vectors u, v ∈ R
3 can be fully computed from

δp, the coefficients α, γ of the skew-symmetric matrices
(Mk)k∈N3 , and the eigenvalues of G0.

Namely, as shown in [13] (Theorem 5.1), any minimizer
is, in ξ, an ellipse of R

3 centered at the origin, and the
minimum value of G is equal to |ω|, where

ω := diag
(√

g1g2√
2α

,

√
g1g2√
2α

,
g1√
3γ

)
δp. (39)

More precisely, considering two orthogonal vectors ς1, ς2 ∈
R

3 in the plane orthogonal to ω and such that |ς1|2 =
|ς2|2 = |ω|, we can compute the vectors u and v in (38)
via the relations

u :=
UΛ−1/2

√
2π

ς1 , v :=
UΛ−1/2

√
2π

ς2, (40)

with U = (τi/|τi|)i∈N3 (cf. (31)) and Λ := diag(g1, g1, g2).
Summarizing, at the leading order in the range of small

strokes and very long arms, the governing dynamics of
sPr3 for energy-minimizing strokes is given by (cf. (21))

θ(t) = σt with σ := γ(u × v) · τ3 ∈ R, (41)

ċ(t) = R(σt)F0ξ̇(t) + R(σt)
∑
j∈N2

(Aj ξ̇(t) · ξ(t))ej , (42)

with (Aj)j∈N2 given by (24), and u, v ∈ R
3 given by (40).

In particular, the angular velocity of the swimmer is con-
stant in time and is zero when the prescribed net displace-
ment δp is purely translational (δp3 = 0).

It is easily seen that energy-minimizing net displace-
ments along the x-axis direction are achieved via elliptic
strokes contained in the plane orthogonal to the vector τ1.
Similarly pure along-y (respectively, along-θ) net displace-
ments are achieved via elliptic strokes contained in the
plane orthogonal to τ2 (respectively, to τ3).

The results of numerical simulations of (41), (42) when
the control ζ is the optimal swimming strategy for a pre-
scribed net displacement δp along the x, y and θ directions
are shown in fig. 3. Although we put some effort in draw-
ing pictures that give a good feeling of how the swimmer
performs, we are aware that the dynamics can be better
appreciated by watching a video rather than looking at
static frames; in that regard, in the electronic supplemen-
tary material, it is possible to find a video demonstrating
the motion traced by sPr3 during optimal swimming.

5 Concluding remarks

Note that, for j = 1, 2, we have that limξ0→∞ Aj(a, ξ0) =
0 and lima→0 Aj(a, ξ0) = 0. However, since γ(0, ξ0) =
1/(6

√
3ξ2

0) and A3 = M3,

lim
ξ0→∞

M3(a, ξ0) = 0, lim
a→0

M3(a, ξ0) �= 0. (43)

In other words, the asymptotic limit of very small balls
differs from one of very long arms. This is understood
by the presence of two fundamental geometric scales: the
common radius a of the three balls, and the initial length
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ξ0 of its arms. In this respect, the two following asymptotic
regimes are different:

a

ξ0

 |ξ|

ξ0

 1,

|ξ|
ξ0


 a

ξ0

 1, (44)

where we have denoted by |ξ| the “average” stroke inten-
sity:

– In the limit a/ξ0 
 |ξ|/ξ0 
 1 the swimmer offers
great resistance to a net displacement in the (x, y) co-
ordinates, but it is strikingly still able to produce net
angular displacements in the θ variable.

– The second condition in (44) represents the limit of
very long arms and is more interesting for the applica-
tions as it allows for both translations and rotations.
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