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OBJECTIVE RATES AS COVARIANT DERIVATIVES

ON THE MANIFOLD OF RIEMANNIAN METRICS

B. KOLEV AND R. DESMORAT

This work is dedicated to Professor Paul Rougée.

Abstract. The subject of so-called objective derivatives in Continuum Mechanics has a long
history and has generated varying views concerning their true mathematical interpretation. Sev-
eral attempts have been made to provide a mathematical definition that would at least partially
unify the existing notions. In this paper, we demonstrate that, under natural assumptions,
all objective derivatives correspond to covariant derivatives on the infinite-dimensional mani-
fold Met(B) of Riemannian metrics on the body. Furthermore, a natural Leibniz rule enables
canonical extensions from covariant to contravariant tensor fields and vice versa. This makes
the sometimes-used distinction between objective derivatives of “Lie type” and “co-rotational
type” unnecessary. For an exhaustive list of objective derivatives found in the literature, we
exhibit the corresponding covariant derivative on Met(B).
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1. Introduction

The re-foundation and geometrization of Continuum Mechanics was initiated by C. Truesdell
and W. Noll at the beginning of the second half of the 20th century [92, 93]. These authors
have formulated a frame independent theory, using in a systematic way, intrinsic notations
and defining general axioms – among them the principle of objectivity – from which soundly
derives the finite strain theory. The starting point of this formulation is an abstract manifold
of dimension 3 (with boundary) B, called the body, and equipped with a volume form (the mass
measure). The usual reference configuration Ω0 is thus just the choice of a particular embedding
of B into the Euclidean space E (which usually represents the unloaded system), while the
deformed/actual configuration is an embedding of B into E (which represents the configuration
of the system, in equilibrium, after a certain loading has been applied). The geometrization of
Continuum Mechanics was continued afterwards, under the impulse of Marsden and Hughes [57],
and is still alive today [20, 84, 80, 90, 89, 31, 88, 45, 68, 15, 24, 7, 87, 82]. The possibility to
make mechanical calculations (and numerical discretizations in [25, 26]) directly on the body B

emerges with the formulation, by Noll [65] and later by Rougée [74], of so-called intrinsic stresses,
and by the possibility to recast boundary conditions on the abstract manifold B (see Noll’s
formulation in [67]). In line with Eringen [21], Green and Zerna [34], Benzecri [5], Noll [65, 67],
and then Epstein and Segev [20, 81], Rougée [74, 76, 77, 78] has furthermore rightly understood
the fundamental role played in Continuum Mechanics by the manifold of Riemannian metrics
on the body B. This infinite dimensional manifold, noted Met(B), can itself be endowed with
a Riemannian structure, in fact an L2-metric. This is well-known in the framework of general
relativity, where such a metric (on the manifold of Lorentzian metrics) called the Ebin metric [18]
has been introduced. The geometry of the manifold of Riemannian metrics has been extensively
studied for its own sake by many authors [17, 28, 32, 14, 11, 12, 13, 3]. The subject is connected
to General Relativity but also to the theory of the Ricci flow [36, 37] which has become famous
following the work of Grigori Perelman [71, 73, 72]. It is perhaps less popular in Continuum
Mechanics, and we must recognize Paul Rougée [74, 75, 76, 77, 78] as a pioneer for having
introduced such a concept in this field.

The objectivity principle (i.e. material frame indifference [69, 64, 92]) is nowadays a corner-
stone for the formulation of rate-form constitutive equations for solids and fluids. So called
objective time-derivatives (rates) of objective mechanical quantities have been proposed in the
literature [98, 44, 69, 91, 33], in order to introduce some kind of elasticity for viscous fluids or to
derive computationally efficient formulations of finite strain elasto-(visco-)plasticity [51, 52, 55].
Some extensions to four-dimensional formalism can be found in [79, 70]. Since a lot of objec-
tive derivatives are available in the literature, the natural question arose of how to unify them
all [40], as well as of better understanding their intrinsic nature [57]. In other words, to clarify
the mathematical concept underlined. A fuzzy classification into co-rotational types (general-
izing the Green–Naghdi objective rate), and non co-rotational types (of Lie–Olroyd–Truesdell
type) was sometimes made but is still unclear. Xiao and coworkers [94] have then proposed a
quite general expression which includes all known co-rotational objective derivatives, but did
not explain what kind of mathematical object they were. The remaining question was thus to
find the underlying rigorous mathematical formulation of the concept that allows to unify them
all (and eventually formulate new ones).

Marsden and Hughes did write that “All so-called objective rates of second-order tensors are in
fact Lie derivatives” [57, Box 6.1 p. 99], or more precisely, linear combinations of Lie derivatives
of the (contravariant) stress tensor and of its different covariant and mixed forms (obtained by
lowering subscripts thanks to the Euclidean metric). However, these “Lie derivatives” do not
include Fiala’s objective rate [23], derived a few years later, and their statement is thus not a
satisfying answer to the question.

Therefore, if objective rates are not Lie derivative, what are they ? The aim of this paper is to
demonstrate that all of them are in fact covariant derivatives on Met(B). This is how the role of
the manifold of Riemannian metrics Met(B) becomes important here. Rougée [75, 76, 78] was
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the first to understand that the Jaumann objective rate was in fact a covariant derivative on
Met(B). Following this idea, Fiala proposed in [23] a new objective rate, which was formulated
as the Riemannian covariant derivative on Met(B) corresponding to Ebin’s metric. However, in
a recent paper [27], he seems to differentiate two kinds of objective derivatives: one for strains
of covariant derivative type, and one for stresses of Lie type. We don’t follow this point of
view. We first formulate objective derivatives for strains as covariant derivatives on the tangent
bundle TMet(B). Formally, such a covariant derivative induces a covariant derivative on the
cotangent bundle T ⋆Met(B), which is a space of tensor-distributions. If this covariant derivative
preserves tensor-distributions with density, then it induces an objective derivative for stresses.
This observation seems to be new. In practice, this happens to be the case for all known objective
derivatives.

The aim of the present work is twofold. First, it is to introduce in Continuum Mechanics
the manifold Met(B) of Riemannian metrics on the body B and to show that each covariant
derivative on Met(B) induces an objective derivative on symmetric second-order covariant tensor
fields (strains). Then, using Leibniz rule, we prove that, under certain conditions, this covariant
derivative induces also an objective derivative on symmetric second-order contravariant tensor
fields (stresses). These conditions are always satisfied when the objective derivative is local
(meaning that it depends only on the first jet of the involved variables). Moreover, in that case,
we also prove the converse: each local objective derivative derives from a covariant derivative
on Met(B).

Finally, we illustrate our general statement by showing how the objective rates of the liter-
ature, including Green–Naghdi’s rate, Hill’s, Marsden–Hughes’ and Xiao–Bruhns-Meyers’ fam-
ilies, as well as Fiala’s rate, interpret this way. Meanwhile, it was necessary to reconsider the
very definition of objectivity and precise this concept from the mathematical point of view.
Our discourse is focused on Continuum Mechanics but uses rather sophisticated notions from
differential geometry (in infinite dimension). For the sake of self-completeness, the essential con-
cepts are recalled in the appendices. We emphasise that, following Arnold [1, 2], our goal is to
concentrate on an intuitive geometric approach, mimicking what is known in finite dimensional
differential geometry: by not getting into functional analysis too much but rather by working
with smooth functions and formal calculations, which have to be verified on a case-by-case basis.
Our goal is not to start by constructing a consistent theory of infinite-dimensional differential
geometry, which encounters serious analytical difficulties. For a discussion of these questions, we
redirect the readers to the following works [19, 59, 35, 62, 28, 48, 43, 82]. Furthermore, we have
chosen to work in the smooth category. It might however be possible to work in the category
Cp, where p ≥ 1, as in [81, 82] for instance.

The outline of the paper is as follows. In section 2, we recall the formalism introduced by
Noll to model a continuum medium. In this framework, a configuration is represented by an
embedding of the body B into the Euclidean space E . In section 3, we recall basic materials
and formulas concerning strains and stresses. The manifold of Riemannian metrics Met(B) is
introduced in section 4, where all the mathematical concepts associated with it are introduced:
the Riemannian structure, covariant derivatives, and the Riemannian exponential mapping.
In section 5, we formulate a rigorous mathematical definition of objectivity and illustrate it by
examples. Then, in section 6, we extend this formulation to time derivatives and prove that
every covariant derivative on Met(B) defines an objective derivative. The converse is proved
in section 7, under local hypothesis. Finally in section 8, we show that all objective derivatives
from the literature are special occurrences of this geometric formalism. Besides, for convenience
of the reader, we have added four appendices to summarize the main mathematical concepts and
formulas used in this paper, in order to fix the notations and to be as self-contained as possible.

2. The configuration space in Continuum Mechanics

In Continuum Mechanics, the ambient space E is represented by a three-dimensional Eu-
clidean affine space. Designating by q the Euclidean metric on E , it is better to consider this
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space as a Riemannian manifold (E ,q) and forget, at first, this affine structure of space. In a
pictorial way, we can consider (E ,q)1 such as an observer’s three-dimensional “laboratory note-
book” (or reference system) in which he records his observations, after choosing a unit length
(the metric). The material medium is parameterized by a three-dimensional compact and ori-
entable manifold with boundary, noted B, and called the body. This manifold B is equipped
with a volume form µ, the mass measure [92].

A configuration of a material medium is represented by an orientation-preserving embed-
ding [63, 65] (particles cannot occupy the same point in space) of class C∞

p : B → E , X 7→ x,

sometimes referred to as a placement in mechanics. The sub-manifold Ωp = p(B) of E corre-
sponds to a configuration system. The linear tangent map Tp : TB → TE will be denoted by
F.

To each embedding p corresponds a volume form p∗µ on the configuration Ωp = p(B), which is
necessarily proportional to the Riemannian volume form volq on Ωp. We have thus the equality

p∗µ = ρ volq,

which allows to define the mass density ρ as a scalar function on the space domain Ωp.

Remark 2.1. It is common to fix a reference configuration

Ω0 = p0(B),

and thus to substitute the body B by a sub-manifold Ω0 of E . In that case, one uses

ϕ := p ◦ p−1
0 , Ω0 → Ωp,

called the deformation [21, 34, 92, 93, 55, 8, 38], rather than p. Its linear tangent map Tϕ :
TΩ0 → TΩ is traditionally referred to as the deformation gradient and will be denoted by Fϕ.
The mass density ρ0 on Ω0, defined by (p0)∗µ = ρ0 volq, is then related to ρ by ρ0 = (ρ◦ϕ) detFϕ.

The configuration space in Continuum Mechanics is thus the set, noted Emb∞(B,E ), of
smooth embeddings of B into E . This set can be endowed with a differential manifold structure
of infinite dimension, indeed, an open set of the Fréchet vector space C∞(B,E ) [62].

The tangent space to Emb∞(B,E ) at a point p ∈ Emb∞(B,E ) is described as follows. Let
p(t) be a curve in Emb∞(B,E ) such that p(0) = p, then (∂tp)(0) = V is defined as a tangent
vector at p. The tangent space at p ∈ Emb∞(B,E ) is thus the vector space

TpEmb∞(B,E ) = {V ∈ C∞(B, TE ); π ◦ V = p} ,

where V is described by the following diagram:

TB
Tp //

π
��

TE

π
��

B

V

<<
②
②
②
②
②
②
②
②
② p // E

We recognize V as a the Lagrangian velocity or a virtual displacement. TEmb∞(B,E ) is thus
the set of virtual displacements [20].

Remark 2.2. Since Emb∞(B,E ) is an open set of a vector space (it is described by only one
chart), its tangent bundle is trivial. Indeed, we have

TEmb∞(B,E ) = Emb∞(B,E )× C∞(B,E ).

When we specify a path of embeddings p(t), then the Lagrangian velocity at time t, V (t) =
∂tp(t) = pt(t) belongs to the tangent space Tp(t)Emb∞(B,E ). Be careful, V (t) is not, strictly
speaking, a vector field, neither on B, nor on Ωp = p(B)! However, vector fields can be con-
structed from a curve p(t,X) and its Lagrangian velocity pt(t,X).

1To be more accurate, the manifold E is not “the space” but the typical fiber, of dimension 3, of a fibered
manifold of dimension 4 with a Galilean structure [49, 50, 16].



OBJECTIVE RATES AS COVARIANT DERIVATIVES 5

• On B, by setting U(t,X) := (Tp−1.V )(t,X);
• On Ωp(t) = p(t)(B), by setting u(t,x) := (V ◦ p−1)(t,x).

These vector fields, respectively called left Eulerian velocity and right Eulerian velocity play
fundamental roles in mechanics. The left Eulerian velocity (defined on the body) is involved in
the Eulerian equations of the dynamics of the rigid body [22], while the right Eulerian velocity
(defined on space) is involved in fluid mechanics (and also in mechanics of deformable solids).
A unified view of these concepts has been proposed by Arnold in an article dedicated to the
bicentennial of the Euler equations of the rigid body [1].

To each embedding p ∈ Emb∞(B,E ) corresponds a Riemannian metric

γ = p∗q ∈ Met(B),

where Met(B) designates the set of all the Riemannian metrics defined on B. This mapping is
however not injective, indeed, p̄ = g ◦ p, where g ∈ Isom(E ,q) induces the same metric γ = p̄∗q
on B. Note that the Riemannian curvature of γ vanishes when B is of dimension 3 (this is
obviously no longer true in shell theory where B is a manifold of dimension 2).

3. Strains and stresses

A motion in Continuum Mechanics corresponds to a curve p(t) in Emb∞(B,E ) [63, 65] (a
path of embeddings). To this motion is associated a Lagrangian velocity

∂tp(t,X) = V (t,X),

together with right and left Eulerian velocities

u(t,x) = V (t, p−1(t,x)), U(t,X) = (TXp)
−1.V (t,X),

and a strain rate, a second-order symmetric covariant tensor field on Ωp

(3.1) d :=
1

2
Lu q,

where Lu is the Lie derivative with respect to the (right) Eulerian velocity u.

Remark 3.1. Traditionally, the strain rate is introduced using its mixed form d̂ := q−1d, which
writes as

d̂ =
1

2

(
∇u+ (∇u)t

)
,

where ∇u is the covariant derivative of the Eulerian velocity u and (∇u)t is the transpose
(relative to the metric q, see Appendix A) of the linear operator w 7→ ∇wu. The connection
between these two expressions results from the formula

2d = Lu q = q∇u+ q(∇u)t = 2qd̂,

which can be deduced from proposition D.7. We have furthermore

d = Du♭, u♭ = qu,

where the operator

(3.2) Dα(X,Y ) =
1

2
((∇Xα(Y ) + (∇Y α)(X))

is the formal adjoint of the divergence of a second-order symmetric tensor field.

The following result, where γt = ∂tγ, is a direct consequence of theorem C.2.

Theorem 3.2 (Rougée, 1980, 1991). Along a deformation path p(t) of embeddings in Emb∞(B,E ),
the Riemannian metric over B, γ(t) = p(t)∗q, satisfies the evolution equation

γt = 2p∗d.
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Remark 3.3. Setting D := p∗d and γ := p∗q, we have

D =
1

2
γ (∇γU + (∇γU)t) = DγU ♭,

where U is the left Eulerian velocity, U ♭ = γU , and where Dγ is the formal adjoint of the
divergence operator relative to the metric γ.

Given a reference configuration p0 : B → Ω0, the deformation ϕ writes ϕ = p ◦ p−1
0 . Then,

the right Cauchy–Green tensor is defined on the reference configuration Ω0 = p0(B) by

(3.3) C := ϕ∗q = F⋆ϕqFϕ = qFtϕFϕ,

and the left Cauchy–Green tensor, on the deformed configuration Ωp = p(B), by

(3.4) b := ϕ∗q
−1 = Fϕq

−1F⋆ϕ = FϕF
t
ϕq

−1.

Remark 3.4. The Cauchy–Green tensors are related to the metrics γ and γ0 by

p∗0C = p∗0ϕ
∗q = p∗q = γ,

and

p∗b = p∗ϕ∗q
−1 = p∗0q

−1 = γ−1
0 .

The notion of stress is dual to that of deformation. The most common concept is the one
of Cauchy stress tensor σ, defined on the configuration Ωp = p(B) (a symmetric contravariant
tensor field). To this dual concept of deformations is associated a linear functional (which
corresponds to the opposite of the virtual work of internal forces)

P(w) =

∫

Ω
(σ : Dw♭) volq =

∫

Ω
(τ : Dw♭) ρ volq, Dw♭ =

1

2
Lw q,

where the double-dots means the double contraction (a : b = aijbij), w ∈ TΩ is an Eulerian

virtual velocity, w♭ = qw, and where τ := σ/ρ is the Kirchhoff stress tensor. A geometrical
interpretation of the stresses in terms of virtual work can be found in [20, 83].

This leads us to introduce two stress tensors on the body, the Noll stress tensor [65, 67]

SSS := p∗σ,

and the Rougée stress tensor [74, 75]

(3.5) θ := p∗τ ,

which are both contravariant and symmetric, and appear naturally when writing down the
push-forward of the virtual work of internal forces on the body

P(W ) =

∫

B

(SSS : DγW ♭) volγ =

∫

B

(θ : DγW ♭)µ,

where W = p∗w is a left Eulerian virtual velocity, W ♭ = γW , and the operator Dγ has been
defined in remark 3.3.

Remark 3.5. When one works with a reference configuration Ω0, rather than B, and if we
introduce the deformation ϕ = p ◦ p−1

0 , then, the second Piola–Kirchhoff tensor S, symmetric
and contravariant, is both the pull-back of Kirchhoff stress by ϕ and the push-forward of Rougée’s
stress by p0,

S := ϕ∗τ = p0∗θ

It is defined on the reference configuration Ω0.
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4. The manifold of Riemannian metrics

The set Met(B) of all Riemannian metrics defined on B thus acquires some importance in
Continuum Mechanics. The reader may refer to the work of Rougée [77, 78] (see also [46, 47]) for
a geometrical formulation of hyper-elasticity such as a vector field on Met(B), in other words,
as a section F : Met(B) → TMet(B) of the tangent vector bundle TMet(B). It turns out that
Met(B) is itself a Fréchet manifold. It is in fact an open convex set of the infinite dimensional
vector space (a Fréchet space but not a Banach space)

Γ(S2T ⋆B),

of smooth sections of the vector bundle of covariant symmetric tensors of order two. The tangent
space TγMet(B) is canonically identified with the vector space Γ(S2T ⋆B) and the tangent vector
bundle TMet(B) is trivial,

TMet(B) = Met(B)× Γ(S2T ⋆B).

The cotangent bundle T ⋆Met(B) of Met(B) writes

T ⋆Met(B) = Met(B)× Γ(S2T ⋆B)⋆,

where (Γ(S2T ⋆B))⋆ is the space of tensor-distributions, i.e. continuous linear functionals on
Γ(S2T ⋆B) (with compact support).

Remark 4.1. The general concept of tensor-distributions seems to have been introduced by
Lichnerowicz [54] and extends Schwartz distributions from functions to tensor fields. When
these tensor fields are covariant and alternate (i.e. differential forms) they are called de Rham’s
currents. Surprisingly, currents (whose origin comes from physics) have been discovered before
Schwartz’s distributions and have inspired him to formulate his theory [56].

From the mechanical point of view, an element Pγ of T ⋆γMet(B) can be interpreted as the
virtual work of internal forces. Among this large space of tensor-distributions, there is an
important subset of them which write as

Pγ(ε) =

∫

B

(θ : ε)µ,

where θ is a contravariant second-order tensor field on B and the double-dots means the double
contraction. These particular distributions will be called distributions with density.

Remark 4.2. The correct setting for studying these infinite dimensional manifolds of smooth
mappings [59] seems to be what is now called convenient calculus [48, 10], and has been exten-
sively studied these last four decades. Thanks to the concept of Frölicher spaces [48] (a more
restrictive concept than Diffeology [42], but more adapted to our needs [82]), the definition of dif-
ferentiability on manifolds of smooth mappings has become, nowadays, less tricky. For instance,
it is now possible to overcome some difficulties which were inherent in the theory of Fréchet
spaces. This last category is not nice from the point of view of analysis, because in general the
topological dual of a Fréchet vector space (like T ⋆γMet(B)) or the space of continuous linear
mappings between two Fréchet vector spaces are not Fréchet spaces [35]. They are, however,
still Frölicher spaces [29, 48].

4.1. Weak Riemannian structure on Met(B). The manifold Met(B) of Riemannian metrics
can be equipped itself with a natural Riemannian structure, by setting

(4.1) Gµγ(ε
1, ε2) :=

∫

B

tr(γ−1ε1γ−1ε2)µ, ε1, ε2 ∈ TγMet(B),

where tr(γ−1ε1γ−1ε2) = γijε1ikγ
klε2jl, in a local coordinate system. This (meta-)metric (4.1)

was introduced by Rougée [77, 78] and seems well adapted for the geometrical formulation of
Cauchy elasticity in finite strains. For this reason, we will call it the Rougée metric.
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Remark 4.3. In (4.1), a point X ∈ B being fixed, tr(γ−1(X)ε1(X)γ−1(X)ε2(X)) corresponds
to a scalar product on the finite dimensional space of symmetric matrices and (4.1) can be
interpreted as the “mean value” of these scalar products. In several papers in solid mechanics
(including Rougée’s papers) the integral is omitted, and as noted by Fiala [23], this lead to some
confusion regarding the problem of on which space the metric is defined. From the mathematical
point of view, the geometry associated with this metric is nevertheless somehow pointwise, as
emphasized in [10]. The reason of this confusion (which is present in Rougée’s paper [78]) is the
fact that, besides more recent works on the manifold of Riemannian metrics, there is also an
important literature on the geometry of positive definite matrices (see for instance the book [9])
and it is easy to confuse both concepts. The metrics discussed in our paper are obtained by a
straightforward integration of the corresponding metric on the (finite dimensional) manifold of
positive definite matrices.

In general relativity, where no volume form is defined a priori, one uses a variant of this
metric, the Ebin metric [18, 28, 11] defined as

(4.2) Gγ(ε
1, ε2) :=

∫

B

tr(γ−1ε1γ−1ε2) volγ , ε1, ε2 ∈ TγMet(B).

where volγ is the Riemannian volume associated with the metric γ.

Remark 4.4. An important property of the Ebin metric is that it is invariant by the diffeomor-
phism group Diff(B). More specifically:

Gϕ∗γ(ϕ
∗ε1, ϕ∗ε2) = Gγ(ε

1, ε2), ∀ϕ ∈ Diff(B).

Contrary to the Ebin metric G, the Rougée metric Gµ is not invariant by the diffeomorphism
group Diff(B) but only by its subgroup

Diffµ(B) := {ϕ ∈ Diff(B); ϕ∗µ = µ} ,

of diffeomorphisms which preserve the volume form µ (the mass measure).

These Riemannian structures on Met(B) are relatively well understood and have been inten-
sively studied [17, 18, 28, 32, 11]. There are, however, important differences between Riemannian
geometry on a finite dimensional manifold and on an infinite dimensional manifold. A Riemann-
ian metric G defined on a manifold M (of finite or infinite dimension) induces a mapping

G : TM → T ⋆M

which is injective (a metric is, at each point, a non-degenerate symmetric bilinear form). If M
is of finite dimension this mapping is necessarily bijective but this is no longer necessarily true
in infinite dimension. We will then distinguish a strong Riemannian metric (if G is bijective)
from a weak Riemannian metric (if G is only injective).

The Rougée metric induces a linear injective (but not surjective) mapping

TγMet(B) → T ⋆γMet(B), η 7→ Gµγ(η, ·),

whose range corresponds to distributions with density. In other words, an element Pγ belongs
to this range if it writes

Pγ(ε) =

∫

B

(θ : ε)µ, where θ = γ−1ηγ−1,

for some η ∈ TγMet(B), defining on the body the Rougée stress tensor θ, according to (3.5),
as the density of the distribution Pγ . An elasticity law (in the Cauchy sense) writes thus as

(4.3) θ = γ−1F (γ)γ−1,
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where F is a vector field on Met(B). This formula is better understood using the following
diagram

TMet(B)
Gµ

//

π

��

T ⋆Met(B)

Met(B)

F

DD

θ=γ−1F (γ)γ−1

77
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

By push-forward on Ω = p(B), we recover the Cauchy stress tensor

(4.4) σ = ρ p∗θ = ρq−1p∗(F (p
∗q))q−1.

4.2. Riemannian product structure on Met(B). Finally, we will describe a natural Rie-
mannian product structure on (Met(B), Gµ) which has a strong mechanical signification. Note
first that Met(B) being an open set of Γ(S2T ⋆B), an element γ ∈ Met(B) can also be seen as
an element of TγMet(B) and we can thus consider the mapping

γ 7→ γ, Met(B) → TMet(B)

as a section of the tangent vector bundle, i.e. a vector field on Met(B). Therefore, we can write

(4.5) TγMet(B) = C∞(B)γ ⊕ (C∞(B)γ)⊥,

where orthogonality refers either to Ebin’s metric (4.2), or to Rougée’s metric (4.1). In both
cases, the space (C∞(B)γ)⊥ writes

(C∞(B)γ)⊥ =
{
ε ∈ Γ(S2T ⋆B); tr(γ−1ε) = 0

}
,

and we have the following result.

Lemma 4.5. Let p ∈ Emb∞(B,E ), k a second-order covariant tensor field on Ωp = p(B) and

k = kH + kD,

its decomposition into a spherical part (or hydrostatic part) and a deviator (with respect to the
metric q on E ). So, the pull-back of this decomposition

p∗k = p∗kH + p∗kD

corresponds to the orthogonal decomposition

TγMet(B) = C∞(B)γ ⊕ (C∞(B)γ)⊥.

To this decomposition of the tangent bundle (4.5) corresponds a Riemannian manifold product
structure of (Met(B), Gµ). Indeed, let Vol(B) be the set of volume forms on B, which is an
open positive cone in Ω3(B). Given a volume form µ on B, we define the sub-manifold

Metµ(B) := {γ ∈ Met(B); volγ = µ}

of Met(B) and the mapping

Ψµ : Vol(B)×Metµ(B) → Met(B), (ν,γ) 7→ (ν/µ)2/3γ.

Then, the mapping Ψµ is a Riemannian isometry if we endow Met(B) and its submanifold
Metµ(B) with the Rougée metric Gµ, and the manifold Vol(B) with the following Riemannian
metric

Gµν (ω1, ω2) :=
4

3

∫

B

(ω1

ν

)(ω2

ν

)
µ.

Remark 4.6. A similar decomposition exists for the Riemannian manifold (Met(B), G), where
G is the Ebin metric [11], but then, one needs to endow Vol(B) with the following Riemannian
metric

Gν(ω1, ω2) :=
4

3

∫

B

(ω1

ν

)(ω2

ν

)
ν.
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4.3. Covariant derivatives on TMet(B). On a Fréchet vector space, only the notion of di-
rectional derivative (or derivative along a curve) makes sense. On Γ(S2T ⋆B), this one is written

(4.6) ∂tε := ∂tε(t,X),

where ε is a time-dependent tensor field and the partial derivative with respect to t occurs in
each (finite dimensional) vector space T ⋆XB.

More generally, a covariant derivative on TMet(B) is a linear operator D that associates to
each vector field ε(t) defined along a curve γ(t) ∈ Met(B) (i.e., π ◦ ε(t) = γ(t)), a vector field
Dtε defined along γ(t) and which satisfies the Leibniz rule

Dt(fε) = (∂tf)ε+ fDt(ε),

for any numeric function f : t 7→ f(t). Of course, without further assumption, this definition
is tricky. However, in this paper, and more generally when dealing with Riemannian geometry
on infinite dimensional manifolds, one usually restricts to local operators. This means that
the considered definition involves only the pointwise value of the derivatives of the involved
fields [10], up to a given order. In other words it is assumed that these operators depend only on
a finite number of jets or gradients (as it is common to call them in mechanics) of these fields.

In particular, ∂t defines a covariant derivative on the vector space Γ(S2T ⋆B) which, by
restriction, induces on the open set Met(B) a covariant derivative that can be considered as
canonical. Any other covariant derivative on TMet(B) can therefore be written as

Dtε = ∂tε+ Γγ(γt, ε), γt = ∂tγ,

where

Γγ : TγMet(B)× TγMet(B) → TγMet(B)

is a continuous bilinear operator called the Christoffel operator. It is the analogous, in infinite
dimension, of the Christoffel symbols Γkij in finite dimension. This formula is true in finite
dimension, but could be false in infinite dimension even if apparently no counter-example is
known [10]. We will restrict the definition of covariant derivatives to those which can be written
this way, where Γ is a local operator.

The Riemannian covariant derivative associated with a metric G on Met(B) is characterized,
on one hand, by being compatible with the metric G , i.e.

d

dt
Gγ(t)(ε

1(t), ε2(t)) = Gγ(t)(Dtε
1(t), ε2(t)) +Gγ(t)(ε

1(t),Dtε
2(t)),

for any one-parameter family γ(t) ∈ Met(B) and all vector fields ε1(t), ε2(t) defined along γ(t)
and, on the other hand, by the fact that it is symmetric, i.e.

Ds∂tγ(t, s) = Dt∂sγ(t, s).

for any two-parameters family γ(t, s) ∈ Met(B), meaning here that Γγ(ε
2, ε1) = Γγ(ε

1, ε2).
Note, however, that for a weak Riemannian metric, as it is the case with the Riemannian
structure on Met(B), only the uniqueness of a symmetric covariant derivative that preserves
the metric (Levi-Civita connection) is ensured, but not its existence, a priori.

Theorem 4.7. The Rougée metric Gµ defined by (4.1) over Met(B) admits the following unique
symmetric covariant derivative compatible with it

(4.7) Dtε := ∂tε−
1

2

(
γtγ

−1ε+ εγ−1γt
)
.

Its curvature is non-null and writes

R(∂s, ∂t)ε =
1

4
γ
[
[γ−1γt,γ

−1γs],γ
−1ε
]
,

where the notation [·, ·] means the commutator of two mixed tensors of order two.
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The following notable fact can be observed: although the Rougée metric explicitly depends
on the volume form µ, the associated covariant derivative does not depend on it. This covariant
derivative is moreover invariant by the action of the whole diffeomorphism group of Met(B)
(whereas the metric is invariant by the diffeomorphisms which preserve the volume form µ). In
other words, given a diffeomorphism of the body ψ ∈ Diff(B), a curve γ̃ : t 7→ γ(t) on Met(B)

and a curve ε(t) on TMet(B) defined along γ̃, and using the notation
Dγ̃

Dt rather than Dt, to
insist on the dependence on the path γ̃, this means that

Dψ∗γ̃ (ψ
∗ε)

Dt
= ψ∗

(
Dγ̃ ε

Dt

)

and thus

Γψ∗γ(ψ
∗γt, ψ

∗ε) = ψ∗ (Γγ(γt, ε)) .

Remark 4.8. The covariant derivative associated with the Ebin metric (4.2) on Met(B) has been
calculated in [32]. It is slightly more complicated and writes

(4.8) Dtε := ∂tε−
1

2

(
γtγ

−1ε+ εγ−1γt +
1

2
tr(γ−1γtγ

−1ε)γ −
1

2
tr(γ−1γt)ε−

1

2
tr(γ−1ε)γt

)
.

It is also invariant by Diff(B).

4.4. Geodesics and the Riemannian exponential mapping. In Riemannian geometry,
geodesics are defined as the extremals of the energy functional

E(γ) :=
1

2

∫ 1

0
〈γt,γt〉 dt.

For the Rougée metric, they are therefore solutions of the associated Euler-Lagrange equation

Dtγt = γtt − γtγ
−1γt = 0,

where γtt = ∂2t γ. The crucial observation is that the resolution of this equation is pointwise
in nature, partial derivatives (relative to t) are to be understood as derivatives in the finite
dimensional vector space S2T ⋆XB, where X is fixed. This second-order differential equation
recast as

∂t(γ
−1γt) = 0.

Given initial values (γ0, ε0) ∈ Met(B) × Γ(S2T ⋆B), and introducing the mixed tensor ε̂0 :=
γ−1
0 ε0, we, obtain thus

γ(t) = γ0 exp (tε̂0) ,

where here, exp(tε̂0)(X) means the exponential of the linear endomorphism tε̂0(X) of the finite
dimensional vector space TXB.

We deduce then the expression of the Riemannian exponential mapping associated with the
Rougée metric Gµ. It is defined as the time 1 of the geodesic flow Φ(t,γ0, ε), where (γ0, ε) are
the initial data (position–velocity) at time t = 0 of the geodesic γ(t) = Φ(t,γ0, ε). So we have

Expγ0
(ε) = γ0 exp

(
γ−1
0 ε

)
.

This exponential mapping is a global diffeomorphism from Tγ0Met(B) onto Met(B) for any
γ0 ∈ Met(B) and provides a global chart for Met(B) by second-order symmetric covariant tensor
fields. The proof is similar to that of [11, Proposition 2] (see also [28, 32]). It results essentially
from the fact that, given a finite dimensional Euclidean space (V,q), the exponential mapping
(understood as the exponential of an endomorphism of a finite dimensional vector space)

exp : S2V → S2
+V

is a global diffeomorphism [86].
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Remark 4.9. The logarithm of the metric C = ϕ∗q on a reference configuration Ω0 (right
Cauchy–Green tensor) has been initially introduced by Becker [4] and Hencky [39] (see also [58])
to define the true strain tensor,

E =
1

2
q ln(q−1C),

on the reference configuration Ω0. It was later successfully used to formulate finite strain elasto-
plasticity of metallic materials in [61], where the authors have extended to finite strains the
additive decomposition of the total strain E into an elastic strain Ee and a traceless plastic
strain Ep. This extended decomposition recasts, in this more general geometric framework2

on Met(B) introduced in [76], thanks to the Riemannian logarithm Logγ0
(the inverse of the

Riemannian exponential mapping Expγ0
), as

EEE = p ∗
0E =

1

2
Logγ0

γ,

and thus

EEE = EEE
e +EEE

p,

{
EEE
e = p ∗

0E
e,

EEE
p = p ∗

0E
p,

where tr(γ−1
0 EEE

p) = p ∗
0 tr(q−1Ep) = 0.

4.5. Covariant derivatives on T ⋆Met(B). Recall that the cotangent vector space T ⋆γMet(B)
is a space of tensor-distributions, i.e. continuous linear functionals over the space of the vir-
tual deformation fields TγMet(B). Any covariant derivative on TMet(B) formally induces a
covariant derivative on the cotangent bundle T ⋆Met(B), thanks to the Leibniz rule, defined by

(4.9) (DtP)(ε) = ∂t(P(ε)) − P (Dtε) ,

for any covector field P and any vector field ε defined along a curve γ(t) ∈ Met(B). When P

is a distribution with density, that is when

P(ε) =

∫

B

(θ : ε)µ,

where θ is a symmetric second-order contravariant tensor field on B, we get

(DtP)(ε) =

∫

B

(∂tθ : ε− θ : Γγ(γt, ε))µ.

Note, however, that DtP may not be a distribution with density, because it is not at all obvious
that the expression

∂tθ : ε− θ : Γγ(γt, ε)

can be recast as the contraction of some contravariant tensor field with ε. If this is the case (for
all γ, θ and ε), we then denote this contravariant tensor field (density) by Dtθ, and write

DtP(ε) =

∫

B

(Dtθ : ε)µ.

In that case, we say that the covariant derivative D preserves distributions with densities, and
we have the Leibniz rule

Dtθ : ε+ θ : Dtε = ∂t (θ : ε) .

Remark 4.10. The covariant derivative D always preserves distributions with densities when
Γγ(γt, ε) depends only on ε through its 0-jets, which means that Γγ(γt, ε)(X) depends only on
ε(X), and we will write then

Γγ(γt, ε)(X) = Γγ(γt, ε(X)).

Indeed, there is a natural local duality pairing between tensors θ(X) ∈ S2TXB and ε(X) ∈
S2T ⋆XB, which writes

θ(X) : ε(X).

2This formulation does not requires the introduction of the decomposition RU .
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Using this duality, the adjoint of the linear operator

S2T ⋆XB → S2T ⋆XB, ε(X) 7→ Γγ(γt, ε)(X) = Γγ(γt, ε(X)),

denoted by Γ⋆γ(γt,θ)(X), is defined implicitly by

(4.10) θ(X) : Γγ(γt, ε(X)) = Γ⋆γ(γt,θ(X)) : ε(X).

In that case, we get immediately

Dtθ = ∂tθ − Γ⋆γ(γt,θ).

5. General covariance – Material frame indifference – Objectivity

In Classical Mechanics, the “physical space” is described by a three-dimensional oriented
Euclidean affine space, whereas “time” is assumed to be “absolute” and described by a one-
dimensional oriented Euclidean affine space. These assumptions seem to be confirmed by expe-
rience in a good approximation, at least on a daily scale. Paraphrasing Jean-Marie Souriau [86],
our clocks are theoretically synchronous and we expect that, whatever the fate of each of us,
they will indicate the same time at each of our meetings and, by extension, that time will be
the same everywhere. Likewise, spatial length seems to make absolute sense. The choice of a
time’s unit and of an orthonormal space frame thus makes it possible to locate any event of the
universe by a quadruplet of real numbers (t, x, y, z) which are the coordinates of this event in
this frame and which will be written in a more condensed way in the form (t,x). Therefore, it
is traditionally assumed that a change of observer leads to a transformation

(t̄, x̄) = (t+ t0, g(t)x),

where

g(t)x = Q(t)x+ c(t)

is a path of Euclidean isometries of space E , with Q(t) ∈ SO(3) and c(t) ∈ R
3.

The notion of objectivity or material indifference in modern language, although often confused
and controversial in the mechanical literature, seems to go back to the work of Oldroyd [69] and
the famous treatise of Truesdell and Noll [92], which sought to formulate principles of covariance
that had to be respected by constitutive laws. We will not enter into the debate on the merits
of these hypotheses here [97, 96], but we will seek to clarify the mathematical definition of the
concept of objectivity. To do so, we will introduce the following notation. Given a path of
embeddings p̃ := (p(t)) and a path of space’s diffeomorphisms ϕ̃ := (ϕ(t)), we set

(ϕ̃ ⋆ p̃)(t) := ϕ(t) ◦ p(t),

where ϕ(t) ∈ Diff(E ) and p(t) ∈ Emb∞(E ). In order to define rigorously objectivity, we are lead
to formulate the following definition.

Definition 5.1. A material tensor field is a mapping F : p̃ 7→ tp̃ which, to any path of
embeddings p̃ := (p(t)), associates a tensor field tp̃ = (tp̃(t)), depending on time t and defined,
at each time t, on Ωp(t) := p(t)(B).

Remark 5.2. In more rigorous mathematical language, the mapping F corresponds to a smooth
section along a path p̃ (see Appendix D) of the vector bundle

E =
⊔

p∈Emb∞(B,E )

Ep,

where

Ep := C∞(Ωp,T)

is the vector space of tensor fields of a given type T (a vector space of tensors on R
3) on E

but defined a priori only on Ωp. This (infinite dimensional) vector bundle has two natural
trivializations. The first one writes

(5.1) Ψ1 : E → Emb∞(B,E )× C∞(B,T), tp 7→ (p, tp ◦ p)
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and the second one is given by

(5.2) Ψ2 : E → Emb∞(B,E )× Γ(T(B)), tp 7→ (p, p∗tp),

where T(B) is the (finite dimensional) vector bundle of tensors of type T over B.

Definition 5.3. Let F : p̃ 7→ tp̃ be a material tensor field. Then, we say that

(1) F is objective if

tg̃⋆p̃(t) = g(t)∗ tp̃(t),

for any path of embeddings p̃ and any path of Euclidean isometries g̃ := (g(t)) of E ;
(2) F is general covariant if

tϕ̃⋆p̃(t) = ϕ(t)∗ tp̃(t),

for any path of embeddings p̃ and any path of diffeomorphisms ϕ̃ := (ϕ(t)) of E .

Here, g(t)∗ and ϕ(t)∗ mean the push-forward by g(t) or ϕ(t) (see Appendix D).

It is obvious that any general covariant mapping F is also objective, but the converse is not
true.

Remark 5.4. Objectivity (or general covariance) translates into equivariant properties of sections
along a path of the vector bundle E (see Appendix B).

Let us illustrate this concept with two classical examples [57, 38, 7]. Let F : p̃ 7→ up̃ be the
mapping which, to any path of embeddings p̃, associates its (right) Eulerian velocity

up̃(t) := (∂tp) ◦ p(t)
−1,

which is a vector field on Ωp(t). We have then

ug̃⋆p̃(t) = g(t)∗up̃(t) +w(t),

where w(t) := (∂tg) ◦ g(t)
−1 is the drive velocity and g(t)∗up̃(t) is the push-forward of the

Eulerian velocity by g(t). Thus, the Eulerian velocity is not objective.
Similarly, the Eulerian velocity gradient transforms as

∇ug̃⋆p̃(t) = Q(t)(∇up̃(t))Q(t)t +Ω(t),

where g(t)x = Q(t)x+c(t) and Ω(t) := Qt(t)Q(t)−1 is skew symmetric. The mapping p̃ 7→ ∇up̃
is therefore not objective, but the rate of deformation

d̂p̃ :=
1

2

(
∇up̃ + (∇up̃)

t
)
,

is objective, because

d̂g̃⋆p̃(t) =
1

2

(
∇ug̃⋆p̃(t) + (∇ug̃⋆p̃(t))

t
)
=

1

2
Q(t)

(
∇up̃(t) + (∇up̃(t))

t
)
Q(t)t = g(t)∗d̂p̃(t),

since Ω(t)t = −Ω(t). It is nevertheless not general covariant.

Example 5.5. Let t be a tensor field defined on E and F (p̃) = tp̃, be the restriction of t to the
deformed configuration Ωp(t) = p(t)(B) at time t. Then, F is objective, if and only if, g∗t = t

for each isometry g. When t is a scalar function, this implies that it is constant. If t is a vector
field, then t = 0. If t is a field of covariant symmetric second-order tensors, then t = λq, where
λ is a constant and q is the Euclidean metric. If t is a field of alternate covariant tensors of
order 3, then t = λvolq is proportional to the canonical Euclidean volume form by a constant.

Example 5.6. Let T be a tensor field defined on B and F (p̃) = (p(t)∗T). Then F is general
covariant and therefore objective. This is the case, for instance, of the push-forward of the
mass measure µ on space. We deduce from this fact, and from the objectivity of volq, the
objectivity of the mass density ρ. The mass density is however not general covariant but more
than just objective. It is covariant under paths of volume-preserving diffeomorphisms of E , that
is diffeomorphisms such that ϕ∗volq = volq.
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The notion of objectivity (and of general covariance) extends, without difficulty, from tensor
fields to tensor-distributions, i.e. to continuous linear functionals on tensor fields. More precisely,
let Pp̃ be a path of tensor-distributions over the space of symmetric second-order covariant tensor
fields and g̃ be a path of Euclidean isometries. We will say that Pp̃ is objective if

Pg̃⋆p̃(t) = g(t)∗Pp̃(t),

where
(g(t)∗Pp̃(t))(k) := Pp̃(t)(g(t)

∗k),

for any symmetric second-order covariant tensor fields k defined on Ωp(t). This extended defini-
tion allows us to reformulate the following result known as Noll’s theorem [66, 92].

Theorem 5.7. The tensor-distribution with density

Pp̃(k) :=

∫

Ωp

σp̃ : k volq

is objective if and only if the tensor field σp̃ is.

Proof. The tensor-distribution Pp̃ is objective if and only if

Pg̃⋆p̃(t) = g(t)∗Pp̃(t),

which writes ∫

Ωp̄(t)

σg̃⋆p̃(t) : k̄ volq =

∫

Ωp(t)

σp̃(t) : (g(t)
∗k̄) volq,

for any field k̄ defined on Ωp̄(t), where p̄(t) = g(t) ◦ p(t). But

σp̃(t) : (g(t)
∗k̄) volq = g(t)∗

(
g(t)∗σp̃(t) : k̄ volq

)

since g(t)∗volq = volq. The objectivity of Pp̃ therefore translates, after using the change of
variables formula, into

∫

Ωp̄(t)

σg̃⋆p̃(t) : k̄ volq =

∫

Ωp̄(t)

g(t)∗σp̃(t) : k̄ volq.

This being true for any field k̄ defined on Ωp̄, we have the equivalence between

Pg̃⋆p̃(t) = g(t)∗Pp̃(t)

and
σg̃⋆p̃(t) = g(t)∗σp̃(t),

which completes the proof. �

The next result states that each Cauchy elastic constitutive law as defined by Rougée is
necessarily objective.

Theorem 5.8. Consider a vector field F : Met(B) → TMet(B) and the corresponding elastic
constitutive law in the sense of Rougée: θ = γ−1F (γ)γ−1. Then the resulting Cauchy elastic
law σ = σp, ρ = ρp = (p∗µ)/volq, where

σp = ρp q
−1p∗F (p

∗q)q−1,

is objective.

Proof. Given a path of embeddings p̃ := (p(t)), we have

σp̃ = ρp̃ q
−1εp̃q

−1,

where εp̃(t) = p(t)∗F (p(t)
∗q). But

(g(t) ◦ p(t))∗q = p(t)∗(g(t)∗q) = p(t)∗q,

since g(t) is an isometry of q, and hence εg̃⋆p̃(t) = g(t)∗εp̃(t). Moreover

ρg̃⋆p̃(t)volq = (g(t) ◦ p(t))∗µ = g(t)∗(p(t)∗µ) = (g(t)∗ρp̃(t))volq,
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since g(t)∗volq = volq, and thus ρg̃⋆p̃(t) = g(t)∗ρp̃(t). We get finally

σp̃(t) = (g(t)∗ρp̃(t))q
−1(g(t)∗εp̃(t))q

−1 = g(t)∗σp̃(t).

�

6. Material and objective derivatives

Objectivity has been extended to time derivatives. These objective time derivatives, noted
dp̃/dt here, are principally used to formulate hypo-elasticity laws on the deformed configura-
tion [44, 91]. For instance, in solid mechanics, one often writes

(6.1)
dp̃ τ

dt
= H : de = H : (d− dp),

(
dp̃ τ

dt

ij

= H ijkldkl = H ijkl(dij − dpij)

)
,

where τ is the Kirchhoff stress tensor, d is the total strain rate, and where de = d−dp and dp

are respectively the elastic and the plastic strain rates. The fourth-order tensor H, called the
hypo-elasticity tensor, depends a priori on the state of deformation [6, 85]. In fluid mechanics,
a relative elasticity of the fluid medium is introduced by writing for instance [69, 38]:

(6.2) σ + λ
dp̃ σ

dt
= 2η q−1dq−1,

where η is the dynamic viscosity, and λ is the relaxation time.
Although the concept of objective time derivative is the subject of an abundant literature

in Continuum Mechanics, it rarely seems to be defined with enough mathematical rigour. In
this section, we aim to fill this gap. First, we will formulate the concept of material time
derivative on material tensor fields (which has not to be confused with the particle derivative
as defined in example 6.2). In mathematical terms, a material time derivative is nothing else
than a covariant derivative (along a path) on the vector bundle (of infinite dimension) E defined
in remark 5.2. This point of view will be detailed in section 7. However, in order to be more
readable by the mechanical community we will introduce the following definition.

Definition 6.1. A material derivative is a linear operator dp̃/dt acting on the space of material
tensor fields tp̃, defined along each path of embeddings p̃ : t 7→ p(t), and furthermore satisfying
the Leibniz rule

dp̃
dt

(ftp̃) = (∂tf)tp̃ + f
dp̃
dt

(tp̃),

for each function f : t 7→ f(t).

Example 6.2 (Particle derivative). Perhaps, the best known example of a material derivative
is the particle derivative, defined as follows. Let p̃ : t 7→ p(t) be a path of embeddings and tp̃ be
a tensor field defined along p̃. For each time t, tp̃(t) is a tensor field on Ωp(t), and we will write

t(t,x) := tp̃(t)(x), x ∈ Ωp(t).

Now, for each particle indexed by X ∈ B, its “history” is described by the curve x̃ : t 7→ p(t,X)

on E and ˙̃x(t) = u(t, x̃(t)), where u is the Eulerian velocity. Then,

t(t) := t(t, x̃(t))

is a tensor field in E , defined along the path x̃. The particle derivative of t is defined as the
pointwise derivative

(6.3) ṫ := ∂t(t ◦ p) ◦ p
−1 = ∂tt+∇ut,

where ∇ is the canonical derivative on the Euclidean space E .

Remark 6.3. The particle derivative corresponds to the canonical covariant derivative (see re-
mark D.3) on the vector bundle E associated with the first trivialization (5.1) Emb∞(B,E ) ×
C∞(B,T) described in remark 5.2.
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The extension of the concept of objectivity for material derivatives is naturally obtained by
requiring that they transform objective quantities into objective quantities. This leads us to
formulate the following definitions. We recall that g̃ ⋆ p̃ = (ϕ(t) ◦ p(t)).

Definition 6.4. (1) A material derivative dp̃/dt is objective if

(6.4)

(
dg̃⋆p̃
dt

tg̃⋆p̃

)
(t) = g(t)∗

(
dp̃
dt

tp̃

)
(t),

for each path of embeddings p̃ = (p(t)), each path of Euclidean isometries g̃ = (g(t)), and each
material tensor field tp̃ defined along p̃.

(2) A material derivative dp̃/dt is general covariant if

(6.5)

(
dϕ̃⋆p̃
dt

tϕ̃⋆p̃

)
(t) = ϕ(t)∗

(
dp̃
dt

tp̃

)
(t),

for each path of embeddings p̃ = (p(t)), each path of diffeomorphisms ϕ̃ = (ϕ(t)) of space, and
each material tensor field tp̃ defined along p̃.

Example 6.5 (Non-objectivity of the particle derivative). The particle derivative defined by (6.3)
is not objective. Indeed, if g̃ ⋆ p̃ = (g(t) ◦ p(t)), its Eulerian velocity writes ū = g∗u+w, where
u is the Eulerian velocity of the path p̃ = (p(t)) and w := ∂tg ◦ g

−1 is the drive velocity. We get
thus, thanks to remark C.1,

dg̃⋆p̃
dt

(g̃∗t) = g̃∗
(
∂tt+∇ut+∇g̃∗wt− Lg̃∗w t

)
,

which is not equal to

g̃∗

(
dp̃ t

dt

)
= g̃∗ (∂tt+∇ut) .

Example 6.6 (General covariance of the Lie derivative). Another example of material time
derivative is given by

(6.6)
dp̃ t

dt
=

▽

t := ∂tt+ Lu t.

This one is not only objective but also general covariant [57]. Indeed

dϕ̃⋆p̃
dt

(ϕ̃∗t) = ∂t(ϕ̃∗t) + Lū(ϕ̃∗t).

where ū is the Eulerian velocity of the path of embeddings ϕ̃⋆p̃ = (ϕ(t)◦p(t)). But ū = ϕ̃∗u+w,
where w := ∂tϕ ◦ ϕ−1 is the drive velocity. We get thus (by remark C.1 and (C.1))

dϕ̃⋆p̃
dt

(ϕ̃∗t) = ϕ̃∗(∂tt)− Lw(ϕ̃∗t) + ϕ̃∗(Lu t) + Lw(ϕ̃∗t) = ϕ̃∗ (∂tt+ Lu t) = ϕ̃∗

(
dp̃ t

dt

)
.

The material derivative
▽

t defined by (6.6) corresponds to the canonical covariant deriva-
tive (see remark D.3) on the vector bundle E associated with the second trivialization (5.2)
Emb∞(B,E )× Γ(T(B)) described in remark 5.2. It can thus be recast using lemma C.2 as

(6.7)
dp̃ t

dt
:= p̃∗ (∂t(p̃

∗t)) ,

which allows us for the following fundamental observation: When symmetric second-order co-
variant tensor fields are involved, formula (6.7) can be interpreted as the push-forward on the
deformed configuration of the canonical covariant derivative (4.6) on TMet(B), the manifold
of Riemannian metrics. As there is no reason to limit this interpretation to the canonical co-
variant derivative on TMet(B), this gives us the possibility to produce this way, an infinity of
material time derivatives for second-order covariant tensor fields. As detailed in subsection 4.3,
any covariant derivative on

TMet(B) = Met(B)× Γ(S2T ⋆B)
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writes

Dtε = ∂tε+ Γγ(γt, ε),

where Γγ is a bilinear operator that depends on γ. We then define a material time derivative
on second-order covariant tensor fields, by setting

(6.8)
dp̃ k

dt
:= p̃∗ (Dt(p̃

∗k)) = p̃∗ (∂t(p̃
∗k)) + p̃∗

(
Γp̃∗q(∂t(p̃

∗q), p̃∗k)
)
,

where p̃ = (p(t)) is a path of embeddings, u its Eulerian velocity, and k is a tensor field defined
along p̃.

Theorem 6.7. Let D be a covariant derivative on TMet(B). Then, the material time derivative
on symmetric second-order covariant tensor fields k induced by D and given by (6.8) is objective.

Remark 6.8. It should be noted, however, that these objective material derivatives have no
reason to be, in general, covariant with respect to a non-rigid motion of space.

Proof. We already know that

▽

k = p̃∗ (∂t(p̃
∗k)) = ∂tt+ Lu k

is an objective time derivative (and is even general covariant, see example 6.6), so we only need
to show that

(g̃ ⋆ p̃)∗
(
Γ(g̃⋆p̃)∗q(∂t((g̃ ⋆ p̃)

∗q), (g̃ ⋆ p̃)∗(g̃∗k))
)
= g̃∗

(
p̃∗
(
Γp̃∗q(∂t(p̃

∗q), p̃∗k)
))
,

but this is true since

(g̃ ⋆ p̃)∗ = g̃∗p̃∗, (g̃ ⋆ p̃)∗ = p̃∗g̃∗,

and (g̃ ⋆ p̃)∗q = p̃∗q, regardless of the path g̃ of Euclidean isometries in E . �

Theorem 6.7 extends to second-order contravariant tensor fields, when the covariant derivative
D induced on T ⋆Met(B) (by Leibniz rule) preserves distributions with density. Indeed, in that
case, an operator Dtθ has been introduced for symmetric second-order contravariant tensor
fields θ on B (see subsection 4.3), which is defined implicitly by the relation

Dtθ : ε+ θ : Dtε = ∂t (θ : ε) .

This allows to define a material time derivative on second-order contravariant tensor fields, by
setting

(6.9)
dp̃ τ

dt
:= p̃∗ (Dt(p̃

∗τ )) ,

where p̃ = (p(t)) is a path of embeddings, u is its Eulerian velocity, and τ is a tensor field defined
along p̃. In that case, we have the following pseudo-Leibniz rule between objective derivatives of
covariant and contravariant symmetric second-order tensor fields, induced by the same covariant
derivative D on Met(B),

(6.10)
dp̃ τ

dt
: k+ τ :

dp̃ k

dt
= ∂t(τ : k) + Lu(τ : k) = p̃∗ (∂t(p̃

∗(τ : k))) .

Theorem 6.9. A covariant derivative D on TMet(B), which preserves distributions with den-
sity, induces an objective material derivative on second-order contravariant tensor fields τ ,
which writes

dp̃ τ

dt
:= p̃∗ (Dt(p̃

∗τ )) ,

where Dtθ is defined implicitly by the rule

(6.11) Dtθ : ε = ∂tθ : ε− θ : Γγ(γt, ε),

for all second-order covariant tensor fields ε on B and all second-order contravariant tensor
fields θ on B.
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Proof of theorem 6.9. Let p̃ = (p(t)) be a path of embeddings and g̃ = (g(t)), a path of Euclidean
isometries. We have to show that

dg̃⋆p̃ (g̃∗τ )

dt
= g̃∗

(
dp̃ τ

dt

)
,

for all symmetric second-order contravariant vector fields τ , defined along p̃. By virtue of (6.10)
and the general covariance of the material derivative

p̃∗ (∂t(p̃
∗(τ : k))) = ∂t(τ : k) + Lu(τ : k),

we have

dg̃⋆p̃
dt

(g̃∗τ ) : g̃∗k = g̃∗(∂t(τ : k) + Lu(τ : k))− g̃∗τ :
dg̃⋆p̃
dt

(g̃∗k)

= g̃∗(∂t(τ : k) + Lu(τ : k))− g̃∗τ : g̃∗

(
dp̃ k

dt

)

= g̃∗

(
∂t(τ : k) + Lu(τ : k)− τ :

(
dp̃ k

dt

))

= g̃∗

(
dp̃ τ

dt
: k

)
= g̃∗

(
dp̃ τ

dt

)
: g̃∗k,

for any τ and k, and thus
dg̃⋆p̃
dt

(g∗τ ) = g̃∗

(
dp̃ τ

dt

)
.

�

Distributions with density in T ⋆γMet(B) could have been formulated using the Riemannian
volume volγ , rather than the mass measure µ. In other words, writing

P(ε) =

∫

B

(SSS : ε)volγ ,

instead of

P(ε) =

∫

B

(θ : ε)µ,

with µ = ργ volγ , ργ = p∗ρ, SSS := p∗σ (the Noll stress tensor) and θ := p∗τ (the Rougée stress
tensor). Note that each covariant derivative D on TMet(B), which preserves distributions with
density relative to the mass measure µ, preserves also distributions with density relative to the
volume measure volγ , and vice versa. Moreover, we have expression (6.11) for Dtθ, while we
have

(6.12) DtSSS := DtSSS+
1

2
tr(γ−1γt)SSS,

for all second-order contravariant tensor fields SSS defined on B. If one prefers to keep the
definition of a distribution with density relatively to the mass measure µ, then expression (6.12)
corresponds to the following covariant derivative on TMet(B)

Dtε := Dtε−
1

2
tr(γ−1γt)ε,

and

DtSSS : ε+SSS : D̄tε = ∂t (SSS : ε) .

From these observations, we deduce that for each covariant derivative D on TMet(B), which
preserves distributions with density, we obtain two objective material derivatives on symmetric
contravariant second-order tensor fields. The first one writes

dp̃ τ

dt
:= p∗ (Dt(p

∗τ )) ,
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and the second one writes

d̄p̃σ

dt
:= p∗

(
D̄t(p

∗σ)
)
=
dp̃ σ

dt
+ (divu)σ,

where u is the (right) Eulerian velocity, because

p∗

(
1

2
tr(γ−1γt)SSS

)
= tr

(
q−1d

)
σ = (divu)σ.

Remark 6.10. As observed by Truesdell [91] for the special case Dt = ∂t, this second objective
material derivative can be recast as

d̄p̃σ

dt
= ρ

dp̃
dt

(
σ

ρ

)
,

since

ρ p∗

(
∂tp

∗

(
1

ρ

))
= divu,

due to mass conservation ρt + div(ρu) = 0.

7. A converse theorem for local objective derivatives

So far, we have proved, that each covariant derivative on TMet(B) induces an objective
derivative on symmetric second-order tensor fields. More precisely, given any covariant derivative
D on TMet(B), it induces a material time derivative

dp̃ kp̃
dt

= p̃∗
(
Dt(p̃

∗kp̃)
)
,

on symmetric covariant second-order tensor fields kp̃ defined along a path of embeddings p̃. This
material time derivative is moreover objective (theorem 6.7), which means that

(
dg̃⋆p̃
dt

kg̃⋆p̃

)
(t) = g(t)∗

(
dp̃
dt

kp̃

)
(t),

for each path of Euclidean isometries g̃ = (g(t)). This covariant derivative on TMet(B) induces
moreover a covariant derivative on T ⋆Met(B), using the Leibniz rule, and if it preserves distri-
butions with densities (which is in practice always the case), it induces an objective derivative
on symmetric contravariant second-order tensor fields

dp̃ τp̃
dt

= p̃∗
(
Dt(p̃

∗τp̃)
)
.

But what about the converse? In other words, given an objective material time derivative
on symmetric second-order covariant tensor fields, is it always induced by a covariant derivative
on TMet(B)? At this level of generality, it is highly improbable that the converse is true. One
argument in favor of this claim is that the Nash mapping

N : Emb∞(B,E ) → Met(B), p 7→ γ = p∗q

is far from being surjective, all metrics γ in its range having vanishing curvature. The question
is thus, are we able to describe all known objective rates by a covariant derivative on TMet(B)?
To answer this question, we have first to formulate the problem accurately. This will lead us to
prove a partial – but fully mechanistic – converse of theorem 6.7.

As we have already stated, each material time derivative – therefore each objective derivative –
is in fact a covariant derivative D on the vector bundle E described in remark 5.2. Consider now
the special case, where the tensor type T = S2

R
3⋆ is chosen to be the vector space of symmetric

covariant second-order tensors on R
3. This vector bundle E, with base space Emb∞(B,E ), is

thus the union of vector spaces, noted Ep = C∞(Ωp, S
2
R
3⋆), of symmetric covariant second-

order tensor fields defined on Ωp = p(B). On this vector bundle, there is a preferred covariant
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derivative (see remark D.3 and remark 5.2), the canonical covariant derivative associated with
the second trivialization

(7.1) Ψ2 : E → Emb∞(B,E )× Γ(S2
R
3⋆), Ψ2(tp) = (p, p∗tp),

which writes
▽

k := p∗∂t(p
∗k) = ∂tk+ Lu k,

and corresponds to the Lie rate (or Oldroyd rate, see section 8.1) described in example 6.6.

Why is
▽

k preferred? Just because it is general covariant. However, any other material time
derivative, for instance the particle derivative k̇ of example 6.2, could have been chosen to fix
an “origin” of the affine space of covariant derivatives3 on E. Therefore, with our choice of this
“origin”, each covariant derivative on E writes

(7.2) Dtk =
▽

k+ Γp(pt,k),

where k = kp̃ is a section of the vector bundle E, defined along the path of embeddings p̃, and

Γp : TpEmb∞(B,R3)× Ep → Ep, (Vp,kp) 7→ Γp(Vp,kp)

is a bilinear operator.
By the way, the group of diffeomorphisms Diff(E ) acts on E by the formula

ϕ ⋆ kp := ϕ∗kp,

which is a vector bundle isomorphism, and sends linearly the fiber Ep onto the fiber Eϕ◦p. The
remarkable fact is that, through the second trivialization Ψ2, this action reduces to the trivial
action on each fiber. Indeed, we have

ϕ ⋆ (p, ε) := Ψ2(ϕ∗kp) = (ϕ ◦ p, (ϕ ◦ p)∗(ϕ∗kp)) = (ϕ ◦ p, ε), ε = p∗kp.

Therefore, thanks to the fact that Oldroyd’s rate
▽

k is general covariant, a covariant derivative
D on E, written as (7.2), is general covariant (respectively objective), if and only if

(7.3) Γϕ(t)◦p(t)((ϕ(t) ◦ p(t))t,kϕ(t)◦p(t)) = ϕ(t)∗Γp(t)(pt(t),kp(t)),

for any path ϕ̃ = (ϕ(t)) of diffeomorphisms (respectively isometries), any path of embeddings
p̃ = (p(t)), and any path of tensor fields kp̃ defined along the path p̃. Using the second trivial-
ization (7.1), and setting

Γ̃p(V , ε) := p∗Γp(V , p∗ε),

we can recast condition (7.3) on Γ̃ as

(7.4) Γ̃ϕ(t)◦p(t)((ϕ(t) ◦ p(t))t, ε) = Γ̃p(t)(pt(t), ε),

for any path ϕ̃ = (ϕ(t)) of diffeomorphisms (respectively isometries), any path of embeddings
p̃ = (p(t)), and every tensor fields ε ∈ Γ(S2

R
3⋆(B)).

Unfortunately, at this level of generality, we have no chance to solve (7.4). However, if we

restrict the class of these operators Γ̃p(V , ε) to the ones which depend only on 1-jets of p and
V , and on 0-jets of ε, then we are able to prove a converse of theorem 6.7. We will call such
operators local, since this terminology is consistent with what is usually called a local formulation

of Continuum Mechanics. Therefore, we restrict the problem to operators Γ̃p(V , ε) which are
such that

(7.5) Γ̃p(V , ε)(X) = Υ(p(X),F(X)) ((V (X),Ft(X)), ε(X)) , ∀X ∈ B,

where

Υ : (R3 ×M3(R))× (R3 ×M3(R))× S2
R
3⋆ → S2

R
3⋆

3Indeed, this choice seems to have been implicitly adopted by many authors [40, 94, 95].
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is a smooth mapping, which is bilinear in the couple of variables (V (X),Ft(X)) and ε(X). Here,
we have implicitly interpreted p and V as vector valued functions with values in R

3 and used a
chart around X ∈ B, so that

F(X) :=

(
∂pi

∂XJ
(X)

)
, Ft(X) :=

(
∂V i

∂XJ
(X)

)
,

are interpreted as square matrices of size 3. Besides, we denote by (·)s and (·)a, respectively the
symmetric and the skew-symmetric parts of a mixed tensor in the Euclidean space (R3,q).

Lemma 7.1. Let D be a covariant derivative on E as defined by (7.2), and suppose that D is
local, meaning that it satisfies (7.5).

(1) If D is general covariant, then, Γ̃ ≡ 0.
(2) If D is objective, then we have

(7.6) Γ̃p(V , ε)(X) = ΥF(X)

(
(FtF

−1)s(X), ε(X)
)
, ∀X ∈ B,

where

(7.7) ΥQF(X)

(
Q(FtF

−1)s(X)Q−1, ε(X)
)
= ΥF(X)

(
(FtF

−1)s(X), ε(X)
)
, ∀Q ∈ SO(3).

Proof. The action of a (not necessarily rigid) affine motion ϕ(t,x) = P (t)x+ c(t) on p, V = pt
and ε translates (pointwise) on the arguments of Υ, as follows

p(X) = Pp(X) + c, F(X) = PF(X), V (X) = PV (X) + Ptp(X) + ct,(7.8)

Ft(X) = PFt(X) + PtF(X), ε(X) = ε(X),(7.9)

and the covariance condition (7.4), as

(7.10) Υ(Pp(X)+c,PF(X)) ((PV (X) + Ptp(X) + ct, PFt(X) + PtF(X)), ε(X), )

= Υ(p(X),F(X)) ((V (X),Ft(X)), ε(X)) .

We will first make a change of variables and replace the argument Ft(X) of Υ by Ft(X)F(X)−1,
with

Ft(X)F(X)−1 = P (Ft(X)F(X)−1)P−1 +M,

where M = PtP
−1. The covariance condition (7.10) recasts then as

(7.11) Υ(Pp(X)+c,PF(X))

(
(PV (X) + Ptp(X) + ct, P (Ft(X)F(X)−1)P−1 +M), ε(X)

)
=

Υ(p(X),F(X))

(
(V (X),Ft(X)F(X)−1), ε(X)

)
.

Assume first that D is general covariant. Then, taking P (t) = I and c(t) = tc0 and evalu-
ating (7.11) at t = 0, we deduce that Υ does not depend on V (X). Set now P (t) = exp(tM)
and c(t) = 0, where M is a fix square matrix of size 3. We conclude, then, evaluating (7.11) at
t = 0 that Υ does not depend on (FtF

−1)(X). We have therefore

Υ(p(X),F(X))

(
(V (X),Ft(X)F(X)−1), ε(X)

)
= Υ(p(X),F(X)) ((0, 0), ε(X)) = 0,

and hence, Γ̃ vanishes, which proves point (1).
Assume now that D is objective and hence that (7.11) holds only when P = Q is a rotation.

Then, the argument above, which shows that Υ does not depend on V (X), still holds. Taking,
now, Q(t) = exp(tΛ), where Λ is a skew-symmetric matrix and c(t) = 0, we conclude, as above,
that Υ does not depend on (FtF

−1)a(X). Finally, taking Q(t) = I and c(t) = c0 in (7.11),
we deduce that Υ does not depend on p(X). We conclude that Υ depends only on F(X),
(FtF

−1)s(X) and ε(X). Therefore, and with a slight abuse of notations, we will write

Γ̃p(V , ε)(X) = ΥF(X)

(
(FtF

−1)s(X), ε(X)
)
:= Υ(0,F(X))

(
(0, (Ft(X)F(X)−1)s), ε(X)

)
,

where the invariance condition

(7.12) ΥQF(X)

(
Q(FtF

−1)s(X)Q−1, ε(X)
)
= ΥF(X)

(
(FtF

−1)s(X), ε(X)
)
,

holds, for all Q ∈ SO(3). This shows point (2) and ends the proof. �
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Since its importance, the following obvious corollary of lemma 7.1 will be stated as a theorem.

Theorem 7.2. The Oldroyd objective derivative (Lie derivative)
▽

k is the unique local material
derivative which is general covariant.

We will now state our expected converse result of theorem 6.7 concerning local objective
derivatives.

Theorem 7.3. Let
dp̃ k

dt
=

▽

k+ Γp(pt,k),

be a local objective derivative on symmetric second-order covariant tensor fields k, as defined
by (6.4) and (7.5). Then, there exists a covariant derivative D on TMet(B), such that

dp̃ k

dt
:= p̃∗ (Dt(p̃

∗k)) .

In other words, an objective derivative on symmetric second-order covariant tensor fields which
depends only on the first jets of p and pt = ∂tp and on zero jets of k is equivalent to a covari-
ant derivative on TMet(B). Moreover, such a derivative on TMet(B) preserves distributions
with densities and is thus also equivalent to an objective derivative on symmetric second-order
contravariant tensor fields, by the (pseudo) Leibniz rule (6.10).

Remark 7.4. The construction of such a covariant derivative on TMet(B), provided in the proof
of theorem 7.3, is constructive and requires (in the most general case, see the examples of sections
8.7 and 8.8) the choice of a reference configuration p0. It writes Dtε = ∂tε+ Γp0γ (γt, ε), where

Γp0γ (γt, ε)(X) = ΥF0U0(X)

(
1

2
q−1(F0

−⋆U0
−⋆γtU0

−1F0
−1)(X), ε(X)

)
,

Υ is defined by (7.6), F0 = Tp0, γ0 = p∗0 q and U0 =
√

γ−1
0 γ in the Euclidean space (TXB,γ0).

In some cases (see the examples of sections 8.1 to 8.6), however, when the dependance of ΥF

in F is through γ = F⋆qF, rather than F, then, the construction of D is straightforward and
does not require the particular choice of a reference configuration p0. These two situations will
be illustrated in section 8.

Before providing a proof of theorem 7.3, we will introduce the following lemma which, when
only local formulas are involved, justifies why they can be extended from Riemannian metrics
which write γ = p∗q to all Riemannian metrics defined on the body.

Lemma 7.5. Let X0 ∈ B. Then, for each metric γ ∈ Met(B) and each δγ ∈ Γ(S2T ⋆B), there
exists a path of embedding p̃ = (p(t)), such that

γ(X0) = (p∗q)(0,X0), and δγ(X0) = (∂tp
∗q)(0,X0).

Proof. We need to find a path of embedding p̃ such that, for t = 0 and X = X0, we have

(7.13) γ(X0) = F(X0)
⋆qF(X0), and δγ(X0) = Ft(X0)

⋆qF(X0) + F(X0)
⋆qFt(X0),

where F(X0) = TX0p(0) and Ft(X0) = TX0pt(0). To do so, fix a reference configuration p0, and
set

C := F0(X0)
−⋆γ(X0)F0(X0)

−1.

Then, C is a positive definite, symmetric covariant tensor and we claim that a solution of the
problem (7.13) is given by the path p(t) = U exp(tA)p0, where U is the unique positive square
root of the symmetric endomorphism q−1C and A := C−1D, with

D :=
1

2
F0(X0)

−⋆δγ(X0)F0(X0)
−1.

Indeed, we have at t = 0

F(X0) = UF0(X0), Ft(X0) = UAF0(X0),
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and one can check that

F⋆(X0)qF(X0) = γ(X0), and Ft(X0)
⋆qF(X0) + F(X0)

⋆qFt(X0) = δγ(X0).

�

Proof of theorem 7.3. The following construction requires the choice of a reference configuration
p0, and we will set ϕ := p ◦ p−1

0 . We will first show that the invariance condition (7.7) on Υ in
lemma 7.1 allows us to build a well-defined bilinear operator Γp0γ (δγ, ε) on TγMet(B) such that

Γp0p̃∗q(∂t(p̃
∗q), ε) = Γ̃p(∂tp, ε),

for any path of embeddings p̃ = (p(t)). To do so, we introduce first the polar decomposition of
Fϕ(X) = (FF−1

0 )(X), with F0 = Tp0, and hence we write

F(X) = R(X)U(X)F0(X),

where R(X) is a rotation and U(X) is the unique positive square root of Fϕ(X)tFϕ(X). Next,
we introduce U0(X) := F0(X)−1U(X)F0(X), so that

F(X) = R(X)F0(X)U0(X),

whereU0(X) is the unique positive square root of the positive symmetric endomorphism (relative
to the metric γ0)

γ−1
0 (X)γ(X), where γ := p∗q, and γ0 := p∗0 q.

Now, thanks to theorem 3.2, we have

(FtF
−1)s(X) = q−1d(p(X))

=
1

2
q−1(F−⋆γtF

−1)(X)

=
1

2
q−1(R−⋆F0

−⋆U0
−⋆γtU0

−1F0
−1R−1)(X)

=
1

2
(Rq−1F0

−⋆U0
−⋆γtU0

−1F0
−1R−1)(X)

and by (7.7), we get thus (with Q = R(X)−1)

ΥF(X)

(
(FtF

−1)s(X), ε(X)
)
= ΥF0U0(X)

(
1

2
q−1(F0

−⋆U0
−⋆γtU0

−1F0
−1)(X), ε(X)

)
.

Therefore, since U0(X) is a function of γ(X), this allows us to define a bilinear mapping
Γp0γ (γt, ε), using the formula

Γp0γ (γt, ε)(X) := ΥF0U0(X)

(
1

2
q−1(F0

−⋆U0
−⋆γtU0

−1F0
−1)(X), ε(X)

)
.

This mapping Γp0γ (δγ, ε) is however defined, a priori, only for metrics γ on Met(B), which write
γ = p∗q and with δγ = ∂t(p

∗q). By lemma 7.5, for each metric γ and each variation δγ, there
exists a path of embedding p̃, such that

γ(X) = (p∗q)(0,X), and δγ(X) = (∂tp
∗q)(0,X).

This allows us to conclude that this local bilinear mapping Γp0γ (δγ, ε) extends and is well defined
for all metrics γ and all variations δγ, and defines a covariant derivative

Dtε := ∂tε+ Γp0γ (γt, ε)

on TMet(B). We have moreover by construction

Γp0p∗q (∂t(p
∗q), ε) = Γ̃p(pt, ε)(X).

To conclude, observe that the corresponding covariant derivative Dt on TMet(B) preserves the
distributions with densities because it is local (see remark 4.10). �
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Finally, we have proved so far that every local objective derivative (on covariant second-order
symmetric tensors) derives from a covariant derivative on the space of Riemannian metrics
Met(B)

Dtε = ∂tε+ Γγ(∂tγ, ε),

where Γ is a local bilinear operator which depends smoothly (but in general not linearly on γ).
It writes thus

dp̃ kp̃
dt

=
▽

k− 2p∗ (Γp∗q(p
∗d, p∗k)) .

There are two special cases which describe all existing objective derivatives of the literature.
The first one is defined by those objective derivatives which do not depend explicitly on p∗,
which means, more precisely, that there exists a local bilinear operator Bq such that

p∗Γp∗q(p
∗d, p∗k) = Bq(d,k).

Examples of such objective derivatives are provided in subsections 8.3 to 8.6. The second one
depends of the choice of a reference configuration p0. We apply first a change of variables and
substitute γ̂ := γ−1

0 γ to γ, γ̂t := γ−1
0 γt to γt and write

Γ̃p0
γ̂
(γ̂t, ε) := Γγ0γ̂(γ0γ̂t, ε).

Then, the second case corresponds to those operators Γ̃p0 which do not depend explicitly on p∗,
that is when there exists a local bilinear operator B

b̂
such that

p∗Γ̃
p0

p∗b̂
(p∗d̂, p∗k) = B

b̂
(d̂,k).

Examples of such objective derivatives are the Green–Naghdi objective rate (subsection 8.7)
and, more generally, the Xiao–Bruhns–Meyers family (subsection 8.8).

8. Objective rates in the literature

In this section, we show that all objective derivatives found in the literature are induced by
some covariant derivative on TMet(B),

Dtε = ∂tε+ Γγ(γt, ε),

and we produce an explicit formula for each of them. Since all of these objective derivatives are
local, they induce not only an objective derivative on second-order symmetric covariant tensor
fields but also one on second-order symmetric contravariant tensor fields, using the rule

Dtθ = ∂tθ − Γ⋆γ(γt,θ),

where Γ⋆γ(γt,θ) is the adjoint of the linear mapping defined in remark 4.10. Moreover, these
two operators are linked by the Leibniz rule

Dtθ : ε+ θ : Dtε = ∂t(θ : ε).

Translating this rule on space, rather than on the body, using the change of variables k = p∗ε
and τ = p∗θ, we have accordingly the following (pseudo) Leibniz rule for tensor fields defined
on space,

dp̃ τ

dt
: k+ τ :

dp̃ k

dt
= ∂t(τ : k) + Lu(τ : k),

where u is the Eulerian velocity of the path p̃. Finally, we will use the following notations

d̂ = (∇u)s =
1

2

(
∇u+ (∇u)t

)
= q−1d, ŵ = (∇u)a =

1

2

(
∇u− (∇u)t

)
,

and indicate that, in this section, τ is not related to either the Cauchy or the Kirchhoff stress
tensor, but denotes just a contravariant symmetric second-order tensor field defined on Ωp.
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8.1. Oldroyd objective rate. It was introduced in [69], and sometimes also referred to as the
Lie derivative. It writes

▽

τ = ∂tτ + Lu τ = τ̇ − (∇u)τ − τ (∇u)⋆,

and corresponds (by lemma C.2) to the covariant derivative on T ⋆Met(B) induced by the canon-
ical covariant derivative Dtε = ∂tε on TMet(B), which preserves distributions with density, and
where we have Dtθ = ∂tθ.

8.2. Truesdell objective rate. It was introduced in [91] and corresponds to the variant of
Oldroyd’s derivative discussed in remark 6.10. It writes

◦
τ = τ̇ − (∇u)τ − τ (∇u)⋆ + (divu)τ =

▽

τ + (tr d̂) τ .

It corresponds to the following covariant derivative on TMet(B)

Dtε = ∂tε−
1

2
tr(γ−1γt)ε,

which is not symmetric.

8.3. Zaremba–Jaumann objective rate. It was introduced in [98, 44] (see also [51, 52]) and
writes

△
τ = τ̇ − ŵτ − τ ŵ⋆ =

▽
τ + d̂τ + τ d̂⋆.

It was Paul Rougée [75, 76, 78] who realized, for the first time, that this objective rate corre-
sponds to the covariant derivative associated with the metric Gµ (4.1) on Met(B).

Theorem 8.1 (Rougée, 1991). The Zaremba–Jaumann derivative corresponds to the covariant
derivative on TMet(B) given by

Dtε := ∂tε−
1

2

(
γtγ

−1ε+ εγ−1γt
)
.

Proof. From the Leibniz rule, we get immediately

Dtθ := ∂tθ +
1

2

(
θγtγ

−1 + γ−1γtθ
)
,

and thus

p∗ (Dt(p
∗τ )) =

▽

τ + d̂τ + τ d̂⋆,

because p∗γt = 2d (theorem 3.2), p∗γ
−1 = q−1, d̂ = q−1d and d̂⋆ = dq−1. �

8.4. Hill objective rates. Hill [40] has introduced the following family of objective derivatives

(8.1)

dp̃ τ

dt
= τ̇ −

(
ŵ +m1d̂+m2 tr(d̂) Id

)
τ − τ

(
ŵ +m1d̂+m2 tr(d̂) Id

)⋆

=
▽
τ −

(
(m1 − 1)d̂+m2 tr(d̂) Id

)
τ − τ

(
(m1 − 1)d̂+m2 tr(d̂) Id

)⋆
,

where the two-parameters m1, m2 are real numbers. It contains the Zaremba–Jaumann deriv-
ative (for m1 = m2 = 0), the Oldroyd derivative (for m1 = 1, m2 = 0), and the Truesdell
derivative (for m1 = 1 and m2 = −1/2). Hill’s objective rate corresponds to the following
covariant derivative on TMet(B),

(8.2) Dtε = ∂tε+
1

2
(m1 − 1)

(
γtγ

−1ε+ εγ−1γt
)
+m2 tr(γ

−1γt)ε.
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8.5. Fiala objective rate. In the same way Rougée [75, 76] derived the Zaremba-Jaumann
objective rate from the covariant derivative associated with the metric (4.1), Fiala proposed
in [23] a new objective derivative for symmetric second-order covariant tensor fields, which
writes

(8.3)
dp̃ k

dt
:= k̇+ kŵ + ŵ⋆k+

1

2

(
(tr d̂)k+ tr(q−1k)d− tr(d̂q−1k)q

)
.

It derives from the covariant derivative (4.8) associated with Ebin’s metric (4.2). Since this
covariant derivative is local, it induces (using pseudo Leibniz rule (6.10)) an objective derivative
for symmetric second-order contravariant tensor fields τ , which writes

(8.4)

dp̃ τ

dt
= τ̇ − ŵτ − τ ŵ⋆ +

1

2

(
tr(τq)d̂q−1 − tr(d̂)τ − tr(τd)q−1

)

=
▽

τ + d̂τ + τ d̂⋆ +
1

2

(
tr(τq)d̂q−1 − tr(d̂)τ − tr(τd)q−1

)

Remark 8.2. By remark 6.10, and since tr(d̂) = divu, we define another objective rate by

(8.5)
d̄p̃τ

dt
:= ρ

dp̃
dt

(
τ

ρ

)
= τ̇ − ŵτ − τ ŵ⋆ +

1

2

(
tr(qτ )d̂q−1 + tr(d̂)τ − tr(τd)q−1

)
,

to which corresponds the covariant derivative (4.8) with the additional term −1
2 tr(γ

−1γt)ε.

8.6. Marsden–Hughes objective rates. In [57, Chapter 1, Box 6.1], Marsden and Hughes
claimed that all objective rates of second-order tensor fields are in fact Lie derivatives. More
precisely, they defined the following basic objective rates4 and asserted that each objective rate
of a contravariant symmetric second-order tensor is a linear combination of such derivatives and
of the variant explained in remark 6.10,

d1p̃τ

dt
:= ∂tτ + Lu τ = τ̇ − (∇u)τ − τ (∇u)⋆,

d2p̃τ

dt
:= ∂tτ +

1

2

{
Lu(τq)q

−1 + q−1 Lu(qτ )
}
= τ̇ − ŵτ − τ ŵ⋆,

d3p̃τ

dt
:= ∂tτ + q−1 Lu(qτq)q

−1 = τ̇ + (∇u)tτ + τ ((∇u)t)⋆,

d4p̃τ

dt
:= ρ

d1p̃
dt

(
τ

ρ

)
= τ̇ − (∇u)τ − τ (∇u)⋆ + (divu)τ ,

where ρ is the mass density. These calculations are done using the formulas of proposition D.7
and the fact that a covariant or a contravariant second-order tensor t is symmetric if and only
if t⋆ = t.

Remark 8.3. Note that the first objective derivative d1 is just the Oldroyd derivative (subsection 8.1),
the second one d2 is the Zaremba–Jaumann derivative (subsection 8.3) and the fourth one d4 is
the Truesdell derivative (subsection 8.2).

These four objective derivatives correspond respectively to the following covariant derivatives
on TMet(B):

D1
t ε = ∂tε,

D2
t ε = ∂tε−

1

2

(
γtγ

−1ε+ εγ−1γt
)
,

D3
t ε = ∂tε−

(
γtγ

−1ε+ εγ−1γt
)
,

D4
t ε = ∂tε−

1

2
tr(γ−1γt)ε.

4Note that what are denoted by Lvσ
2 and Lvσ

3 in [57, Chapter 1, Box 6.1] are not symmetric second-order
tensors, and a mean of them is required in order to build an objective derivative on symmetric contravariant
second-order tensors. This is our second objective derivative d2.
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These four expressions are not linearly independent. A covariant derivative Dtε = ∂tε+Γγ(γt, ε)
on TMet(B) is a linear combination of D1

t ε, D
2
t ε, D

3
t ε, D

4
t ε, if and only if there exists real

constants α and β such that

Γγ(γt, ε) = α
(
γtγ

−1ε+ εγ−1γt
)
+ β tr(γ−1γt)ε.

Remark 8.4. One will note that Marsden–Hughes objective rates family coincides with Hill’s
family (8.1)–(8.2).

Furthermore, it is clear that Fiala’s objective derivative (subsection 8.5), which corresponds
to the covariant derivative (4.8), cannot be written this way. Marsden and Hughes’ claim
is therefore false. Many more objective rates can be built which are not Lie derivatives, for
instance, all those which depend explicitly on the choice of a reference configuration p0.

8.7. Green–Naghdi objective rate. It was introduced in [33], and defined using a reference
configuration p0 : B → Ω0. Introducing the deformation ϕ := p◦p−1

0 , we write Fϕ = Tϕ = RU,
where R is a rotation and U is the unique positive square root of the mixed right Cauchy–Green
tensor q−1C, where C = F⋆ϕqFϕ. Then the Green-Naghdi objective rate is defined as

(8.6)
�

τ := τ̇ − τω⋆ − ωτ , ω := RtR
−1.

This objective derivative is local and derives thus from a covariant derivative on TMet(B),
according to theorem 7.3. The derivation of this covariant derivative follows the lines of the
proof of theorem 7.3 and illustrates its effectiveness.

Theorem 8.5. The Green-Naghdi derivative (8.6) corresponds to the covariant derivative

Dtε := ∂tε− ε
(
U−1

0 LU0
−1(γ−1

0 γt)
)
−
(
U−1

0 LU0
−1(γ−1

0 γt)
)⋆

ε

on TMet(B), where U0(X) is the unique positive square root of the positive symmetric endo-
morphism γ−1

0 γ of the Euclidean space (TXB,γ0(X)) and

LU0 : Ends(TXB) → Ends(TXB), S 7→ U0S+ SU0.

Proof. First, we use the pseudo Leibniz rule (6.10), to derive the corresponding objective deriv-
ative on second-order covariant vector fields

�

k := k̇+ ω⋆k+ kω =
▽

k+ (ω −∇u)⋆k+ k(ω −∇u).

Next, using the notations of section 7, we deduce that

Γ̃p(V, ε) = (p∗(ω −∇u))⋆ε+ εp∗(ω −∇u), u = V ◦ p,

and we have to express p∗(ω −∇u)(X) as a function of γ(X) and γt(X) for all X ∈ B, where
γ = p∗q is the pull-back of the Euclidean metric q. To do so, observe that

∇u = (Fϕ)tF
−1
ϕ = (RtU+RUt)(RU)−1 = RtR

−1 +Fϕ(U
−1Ut)F

−1
ϕ = ω + ϕ∗(U

−1Ut),

and thus that

(8.7) ω −∇u = −ϕ∗(U
−1Ut).

Now, introducing the linear tangent map F0 = Tp0 and U0 = p∗0U, we have U0t = p∗0Ut, and

p∗(ω −∇u) = p∗0ϕ
∗(ω −∇u) = −p∗0(U

−1Ut) = −U−1
0 U0t.

We have therefore

Γ̃p(V, ε) = −ε
(
U−1

0 U0t

)
−
(
U−1

0 U0t

)⋆
ε,

where U2
0 = γ−1

0 γ and U0 U0t + U0tU0 = γ−1
0 γt. Finally, we use the fact that the linear

mapping

(8.8) LP : Ends(E) → Ends(E), S 7→ PS + SP,
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defined on the space Ends(E) of symmetric endomorphisms of an Euclidean space E is invertible

if P is positive definite. We conclude that Γ̃p induces the following well-defined Christoffel
operator on TMet(B)

Γp0γ (γt, ε) := −ε
(
U−1

0 LU0
−1(γ−1

0 γt)
)
−
(
U−1

0 LU0
−1(γ−1

0 γt)
)⋆

ε.

�

Remark 8.6. The Green–Naghdi is another example of an objective derivative which is not a Lie
derivative as defined in subsection 8.6, since it depends explicitly on a reference configuration
p0 (through γ0 = p∗q).

8.8. Xiao–Bruhns–Meyers objective rates. A general family of co-rotational objective deriva-
tives, extending Hill’s family, has been obtained by Xiao and coworkers in [94],

(8.9)
dp̃ τ

dt
= τ̇ − Ω̂τ − τ Ω̂⋆, Ω̂ = ŵ + Υ̂

(
b̂, d̂

)
,

which recast as
dp̃ τ

dt
=

▽

τ −
(
Υ̂
(
b̂, d̂

)
− d̂

)
τ − τ

(
Υ̂
(
b̂, d̂

)
− d̂

)⋆
,

where

(8.10) Υ̂
(
b̂, d̂

)
:= ν1(b̂)

(
b̂d̂
)a

+ ν2(b̂)
(
b̂2d̂

)a
+ ν3(b̂)

(
b̂d̂b̂2

)a
,

νk(b̂) are functions of the fundamental isotropic invariants of b̂, and b̂ = bq = (ϕ∗q
−1)q is the

left Cauchy–Green mixed tensor (3.4).

Remark 8.7. This family contains the Jaumann derivative, the Oldroyd–Lie derivative and the
Green-Naghdi derivative. It does not, however, contains the objective derivatives (8.4)-(8.5) of
Fiala type.

This family of objective derivatives is local and induces thus, by the (pseudo) Leibniz rule,
the following objective derivatives on second-order covariant tensor fields k

(8.11)
dp̃ k

dt
= k̇+ k Ω̂+ Ω̂⋆k =

▽

k+ k
(
Υ̂
(
b̂, d̂

)
− d̂

)
+
(
Υ̂
(
b̂, d̂

)
− d̂

)⋆
k.

Theorem 8.8. The choice of a reference configuration p0 allows us to recast the Xiao-Bruhns-
Meyers objective derivative (8.11) as a covariant derivative on TMet(B)

Dtε := ∂tε+ Γp0γ (γt, ε),

where

Γp0γ (γt, ε) := −
1

2

(
γtγ

−1ε+ εγ−1γt
)
+ εLγ−1

0 γ(γ
−1
0 γt) +

(
Lγ−1

0 γ(γ
−1
0 γt)

)⋆
ε,

and

L
γ−1
0 γ

(γ−1
0 γt) := p∗Υ̂

(
p∗(γ

−1
0 γ),

1

2
p∗(γ

−1γt)
)
.

Proof. We use the fact (see remark 3.4) that p∗d = 1
2γt and p

∗b = γ−1
0 , from which we get

p∗(d̂) = p∗(q−1d) =
1

2
γ−1γt, p∗(b̂) = p∗(bq) = γ−1

0 γ.

Besides, νk(b̂) is a function fk of tr b̂, tr(b̂2), tr(b̂3) so that

p∗
(
νk(b̂)

)
= fk(tr(p

∗b̂), tr(p∗b̂2), tr p∗(b̂3)) ◦ p

Therefore, by (8.10), there exists a local linear operator L
γ−1
0 γ

, depending smoothly on γ−1
0 γ

such that

L
γ−1
0 γ

(γ−1
0 γt) := p∗Υ̂

(
p∗(γ

−1
0 γ),

1

2
p∗(γ

−1γt)
)
,
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and using (8.11), we get

p∗
(
dp̃ k

dt

)
= Dtε = ∂tε+ Γp0γ (ε,γt),

where we have set

Γp0γ (γt, ε) := −
1

2

(
γtγ

−1ε+ εγ−1γt
)
+ εLγ−1

0 γ(γ
−1
0 γt) +

(
Lγ−1

0 γ(γ
−1
0 γt)

)⋆
ε.

�

9. Conclusion

We have enhanced the geometrical framework of Continuum Mechanics, insisting on the role
of Met(B), the manifold of Riemannian metrics on B. Working on the body B, an abstract
manifold with boundary instead of a configuration embedded in Euclidean space, has forced
us to take some care when developing the finite strain theory. We have been led to properly
define objectivity/material frame indifference of tensors in a rigorous geometric manner as an
equivariant section of a certain (infinite dimensional) vector bundle. In this geometric framework,
the objectivity of elasticity laws (in the sense of Rougée) becomes a simple theorem and the
objective derivatives/rates are interpreted as covariant derivatives on Met(B).

As stated in the introduction, the question – clearly formulated by Marsden and Hughes
in [57] – of the nature of the objective derivatives is not new. It has been initially addressed
by classifying them into two categories: “Lie type” and “co-rotational objective rates” (see [95]
for a review). In the second case, a natural Leibniz rule is exhibited, which was proved useful
for inelasticity thermodynamic formulation [51, 52]. Xiao, Bruhns and Meyers [94] have then
derived a rather general expression for co-rotational objective rates. Rougée [75, 76, 78] has
observed that the Jaumann rate was in fact a covariant derivative on Met(B), the manifold
of Riemannian metrics on the body, and Fiala provided thereafter a new objective rate that
expresses the same way in [23]. This observation finally proves to be general. Indeed, by
theorem 6.7, each covariant derivative on Met(B) induces an objective derivative on covariant
symmetric second-order tensor fields, and also on contravariant symmetric second-order tensor
fields if it preserves distributions with densities. Conversely, by theorem 7.3, each objective
derivative that depends only on first jets of the embedding p and of the Lagrangian velocity V

(i.e. that are considered as local from Continuum Mechanics point of view) recasts as a covariant
derivative on Met(B). Meanwhile, we have shown that the Oldroyd–Lie rate is the only local
objective derivative which is general covariant.

Finally, we have illustrated our work by calculating the expression of the corresponding co-
variant derivative on Met(B) for all objective derivatives found in the literature, in particular
Hill’s and Xiao–Bruhns–Meyers’ families. Some of them require the choice of a reference con-
figuration and others not. We have furthermore observed that Marsden and Hughes’ claim that
all the objective rates are linear combinations of Lie derivatives is false.

Appendix A. Second-order tensors and their interpretations

Given a real (finite dimensional) vector space E and denoting its dual by E⋆, we can define
four types of second-order tensors on E, which we interpret as bilinear mappings.

(1) b : E × E → R, (x,y) 7→ b(x,y),
(2) b : E × E⋆ → R, (x, β) 7→ b(x, β),
(3) b : E⋆ × E → R, (α,y) 7→ b(α,y),
(4) b : E⋆ × E⋆ → R, (α, β) 7→ b(α, β).

To each of these tensors, we associate, using the convention, of that we call the second argument,
a linear mapping

(1) b̃ : E → E⋆, y 7→ b(·,y),

(2) b̃ : E⋆ → E⋆, β 7→ b(·, β),

(3) b̃ : E → (E⋆)⋆ = E, y 7→ b(·,y),
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(4) b̃ : E⋆ → (E⋆)⋆ = E, β 7→ b(·, β),

and if there is no ambiguity, we will not distinguish between b and b̃ and only use the notation
b. Given a basis (ei) of E, and denoting its dual basis by (ei), their respective components
write (bij), (bi

j), (bij) and (bij).

Given two vector spaces E and F , and a linear mapping L : E → F , its adjoint (or dual linear
mapping) is defined as

L⋆ : F ⋆ → E⋆, α 7→ α ◦ L.

Note that (L−1)⋆ = (L⋆)−1 and (L1 L2)
⋆ = L⋆2 L

⋆
1.

Remark A.1. A second-order covariant, or contravariant, tensor b is symmetric if and only if
b⋆ = b.

When the spaces E and F are respectively equipped with scalar products, noted qE and qF
respectively, the transpose Lt : F → E of a linear mapping L : E → F is defined implicitly by
the relation

〈Lx,y〉F = 〈x, Lty〉E .

The following diagram makes clear the relation between L⋆ and Lt

E⋆ F ⋆
L⋆

oo

E

qE

OO

L // F

Lt

cc

qF

OO

and leads to
qE L

t = L⋆ qF .

Appendix B. Pull-back and push-forward

The fundamental concept of differential geometry that allows to pass from material variables
to spatial variables (and vice versa) are the operations of pull-back and push-forward. For
functions, these operations are defined by

p∗f = f ◦ p (pull-back), p∗F = F ◦ p−1 (push-forward),

where f ∈ C∞(Ω,R) and F ∈ C∞(B,R). For vector fields, the following diagram

TB
Tp //

π
��

TE

π
��

B

U

BB

p // E

u

\\

leads immediately to the natural definitions

p∗u = Tp−1 ◦ u ◦ p (pull-back), p∗U = Tp ◦U ◦ p−1 (push-forward).

For covector fields, the following diagram

T ⋆B

π
��

T ⋆E

π
��

Tp⋆oo

B

α

AA

p // E

β

]]

leads to the following definitions

p∗β = Tp⋆ ◦ β ◦ p (pull-back), p∗α = (Tp⋆)−1 ◦ α ◦ p−1 (push-forward).

The pull-back and push-forward operations are inverse to each other, meaning that p∗ =
(p∗)

−1 = (p−1)∗. They are easily extended to higher-order contravariant, covariant or mixed
tensor fields.
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In local coordinate systems, (XI) on B and (xi) on E , where we have set p(X) = x, the linear
tangent map Tp : TB → TE is represented by the square matrix F defined by

F iJ =
∂xi

∂XJ
,

and its dual tangent linear map Tp⋆ : T ⋆xE → T ⋆XB, by

(F⋆)I
j =

∂xj

∂XI
.

We will write F−⋆ := (F⋆)−1 = (F−1)⋆.

Proposition B.1. For tensor fields of order one or two, we have the following expressions.

(1) For contravariant vector fields W = (W I), w = (wi) , we have

p∗W = F(W ◦ p−1), p∗w = F−1(w ◦ p).

(2) For covariant vector fields α = (αI), β = (βi), we have

p∗α = F−⋆(α ◦ p−1), p∗β = F⋆(β ◦ p).

(3) For second-order covariant tensor fields ε = (εIJ), k = (kij), we have

p∗ε = F−⋆(ε ◦ p−1)F−1, p∗k = F⋆(k ◦ p)F.

(4) For second-order contravariant tensor fields θ = (θIJ) and τ = (τ ij), we have

p∗θ = F(θ ◦ p−1)F⋆, p∗τ = F−1(τ ◦ p)F−⋆.

(5) For second-order mixed tensor fields T̂ = (T̂ IJ) and t̂ = (t̂ij), we have

p∗T̂ = F(T̂ ◦ p−1)F−1, p∗t̂ = F−1(t̂ ◦ p)F.

(6) For second-order mixed tensor fields Ť = (Ť J
I ) and ť = (ť ji ), we have

p∗Ť = F−⋆(Ť ◦ p−1)F⋆, p∗ť = F⋆(ť ◦ p)F−⋆.

Remark B.2. The push-forward and pull-back operations commute with the contraction between
covariant and contravariant tensors. So in particular, we get

(p∗α) · (p∗W ) = p∗(α ·W ), (p∗θ) : (p∗ε) = p∗(θ : ε), tr(p∗T̂) = p∗(tr T̂).

Appendix C. Lie derivative

Given a manifold M , the Lie derivative of a (time-independent) tensor field t ∈ T(M) corre-
sponds to the infinitesimal version of the pull-back operation. More precisely, let u be a vector
field on M , φ(t) its flow and t be a tensor field on M . The Lie derivative Lu t of the tensor field
t with respect to u is defined by

Lu t :=
∂

∂t

∣∣∣∣
t=0

φ(t)∗t.

The Lie derivative has the following properties.

(1) When t = v is a vector field, Lu v = [u,v], where [u,v] is the Lie bracket of the two
vector fields u and v.

(2) Given a diffeomorphism ϕ of M , we have

(C.1) ϕ∗ Lu t = Lϕ∗u ϕ
∗t.

(3) At any time t where φ(t) is defined, we have (note that φ(t)∗u = u)

(C.2)
∂

∂t
(φ(t)∗t) = φ(t)∗ Lu t = Lu φ(t)

∗t.

(4) Given two vector fields u,v on M , we have

L[u,v] t = Lu Lv t− Lv Lu t.



OBJECTIVE RATES AS COVARIANT DERIVATIVES 33

Consider now a time dependent vector field u(t) on M . Its flow φ(t, s) is defined as the
solution a time t of the initial value problem

(C.3) ċ(t) = u(t, c(t)), c(s) = x.

Then, φ(t, s) is a local diffeomorphism with inverse φ(s, t) and we have

φ(t, s) = φ(t, τ) ◦ φ(τ, s),

as soon as the three mappings are defined. The Lie derivative can be extended to time dependent
vector fields as follows.

Lu(t) t :=
∂

∂τ

∣∣∣∣
τ=t

φ(τ, t)∗t.

Remark C.1. Let ϕ̃ = (ϕ(t)) be a path of diffeomorphism. Its Eulerian velocity is defined as the
time dependent vector field u(t) := ∂tϕ ◦ ϕ(t)−1. Given a (time-independent) tensor field t, we
have

∂

∂t
(ϕ(t)∗t) = ϕ(t)∗(Lu(t) t) and

∂

∂t
(ϕ(t)∗t) = −Lu(t)(ϕ(t)∗t).

The preceding results extend to paths of embeddings between two manifolds B and M and
will be summarized by the following lemma.

Lemma C.2. Let p̃ = (p(t)) be a path of embeddings, u(t) := (∂tp) ◦ p(t)
−1 be its (right)

Eulerian velocity and t(t) be a tensor field defined along p(t) ( i.e. on Ωp(t) = p(t)(B) and
possibly time-dependent). Then

∂t(p(t)
∗t(t)) = p(t)∗

(
∂tt+ Lu(t) t(t)

)
.

Proof. Let φ(t, s) be the flow of u(t). Then we get

p(s) = φ(s, t) ◦ p(t).

We have thus

∂t(p(t)
∗t(t)) =

∂

∂s

∣∣∣∣
s=t

(φ(s, t) ◦ p(t))∗t(s)

= p(t)∗
∂

∂s

∣∣∣∣
s=t

φ(s, t)∗t(s)

= p(t)∗
(
∂tt(t) + Lu(t) t(t)

)
.

�

Appendix D. Vector bundles and covariant derivatives

The interested reader may consult [30, 53, 60, 57, 82] for complementary points of view on
differential geometry. Let E be a vector bundle over a manifold M . We denote by Γ(E) the
space of smooth sections of E and by Ωk(M,E) the space of k-forms with values in E, in other
words, the space of sections of the vector bundle ΛkT ⋆M ⊗ E (in particular, Ω0(M,E) = Γ(E)).

Definition D.1 (Covariant derivative). A covariant derivative on vector bundle E over M is a
linear operator

∇ : Γ(E) → Ω1(M,E), s 7→ ∇s,

which satisfies the Leibniz identity.

∇(fs) = df ⊗ s+ f ∇s,

for any function f ∈ C∞(M) and any section s ∈ Γ(E).

Remark D.2. The set of all covariant derivatives defined on a given vector bundle E has an affine
structure. Indeed, given two covariant derivatives ∇1 and ∇2, the difference ∇2−∇1 is a section
of the vector bundle

(T ⋆M ⊗ E
⋆)⊗ E.

Hence, this set is an affine space with associated vector space Γ((T ⋆M ⊗ E
⋆)⊗ E).
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Remark D.3. If a vector bundle E with base manifold M and fiber type E (a vector space) is
trivializable, meaning that there exists a vector bundle isomorphism

Ψ : E →M × E, vx 7→ (x,v),

then, each section s of E corresponds bijectively to a vector valued function S defined by

S :M → E, x 7→ p2 ◦Ψ(s(x)),

where p2 : M × E is the projection onto the second factor. Therefore, there is a canonical
covariant derivative associated with this trivialization which is given by

(∇Xs)(x) := Ψ−1(x, dxS.X).

Definition D.4 (Curvature). Given a covariant derivative ∇ on a vector bundle E, its curvature
is the mapping

R : Γ(E) → Ω2(M,E)

defined by
R(X,Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

When E = TM is the tangent bundle of a manifold M , we define the torsion of this covariant
derivative, by the formula

T (X,Y ) := ∇XY −∇YX − [X,Y ], X, Y ∈ Vect(M),

which is a mixed tensor field of type (1, 2). The curvature tensor of ∇ is a mixed tensor field of
type (1, 3), which writes

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Vect(M).

Definition D.5. A covariant derivative on the tangent bundle TM of a manifoldM is symmetric
if its torsion is zero, that is if

∇vw −∇wv = [v,w], ∀v,w ∈ Vect(M),

where [v,w] := Lv w is the Lie bracket of the vector fields v and w.

Remark D.6. One can show the existence on any differential manifoldM of a covariant derivative.
However, there are an infinite number of such derivatives and none of them play a particular
role. On the other hand, if a manifold M has a Riemannian metric g, then there is a unique
symmetric covariant derivative ∇ such that ∇g = 0 (see for example [30, Theorem 2.51]), this
is the Riemannian covariant derivative.

Any covariant derivative on TM induces by the Leibniz rule a covariant derivative on all
tensor bundles of M . The link between the Lie derivative and a symmetric covariant derivative
is then recalled in the following theorem.

Proposition D.7. Let M be a differential manifold with a symmetric covariant derivative ∇.
Then we have the following relations:

(1) Lie derivative of a function f :

Lu f = ∇uf = df.u;

(2) Lie derivative of a vector field w = (wi):

Luw = [u,w] = ∇uw −∇wu;

(3) Lie derivative of a covector field (1-form) α = (αi):

Lu α = ∇uα+ (∇u)⋆α;

(4) Lie derivative of a second-order covariant tensor field, k = (kij):

Lu k = ∇uk+ (∇u)⋆k+ k(∇u);

(5) Lie derivative of a second-order contravariant tensor field, τ = (τ ij):

Lu τ = ∇uτ − (∇u)τ − τ (∇u)⋆;
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(6) Lie derivative of a second-order mixed tensor field, t̂ = (t̂ij):

Lu t̂ = ∇ut̂− (∇u)t̂+ t̂(∇u);

(7) Lie derivative of a second-order mixed tensor field, ť = (ťi
j):

Lu ť = ∇uť+ (∇u)⋆ť− ť(∇u)⋆.

In order to intrinsically define the geodesic equation of a Riemannian manifold, but also the
covariant derivative of the Lagrangian velocity, it is necessary to extend the notion of covariant
derivative to vector fields (and more generally tensor fields) which are only defined along a
mapping f : K → M , between two manifolds K and M . The rigorous formulation of such a
definition requires first to introduce the notion of pull-back of a vector bundle [41].

Definition D.8. Let π : E → M be a vector bundle and f : K → M be a smooth mapping.
Then the set

f∗E :=
⊔

k∈K

Ef(k) ⊂ E

is a vector bundle above K, referred to as the pull-back by f of the vector bundle E. A section
of this bundle is therefore a mapping s : K → E, such as π(s(k)) = f(k).

Example D.9. A vector field defined along a curve c : I → M is a curve X : I → TM , such
that X(t) ∈ Tc(t)M , for any t ∈ I.

Example D.10. The Lagrangian velocity V (t) : B → TE , at time t, is a section of the pullback
bundle p(t)∗TE .

Proposition D.11. Let π : E →M be a vector bundle, equipped with a covariant derivative ∇
and f : K → M , a smooth mapping. Then, there exists a unique covariant derivative, denoted
f∗∇, on the vector bundle f∗E, called the pull-back of ∇, and such that

(f∗∇)X(f ◦ s) = f∗ (∇Tf.Xs) ,

for any section s of E and any vector field X on K.

Example D.12. Consider the case where K = B, M = E , E = TE is the tangent vector
bundle to E and

f = p : B → E ,

is an embedding of B in E . Consider a local coordinate system (XI) on B and a local coordinate
system (xi) on E , where Christoffel’s symbols are written Γkij . Let V be a section of p∗TE , i.e.
a mapping

V : B → TE , such that π(X(X)) = p(X),

then, we have

[(p∗∇)∂
XI
V ]k = ∂XIV k + Γkij

∂pi

∂XI

V j .

Example D.13. Let (M,γ) be a Riemannian manifold and ∇ the associated covariant deriva-
tive. Let c : I →M be curve. Then, the pull-back of ∇ by c, usually noted Dt is defined on the
vector space of vector fields defined along c. It is characterized by the following properties:

(1) for any function f : I → R,

Dt(fX)(t) = f ′(t)X(t) + f(t)Dt(X)(t);

(2) If X(t) = X̃(c(t)) where X̃ is a vector field on M , then

(DtX)(t) = (∇c′(t)X̃)((t)).

In a local coordinate system (xi) of M , we have:

(DtX)k = ∂tX
k + Γkij(∂tx

i)Xj .
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Remark D.14. On an infinite dimensional manifold, equipped with a covariant derivative, the
curvature is defined along a parameterized surface c(s, t), and writes

R(∂s, ∂t)X = DsDtX −DtDsX.
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des sciences de Berlin, 14:154–193, 1765.
[23] Z. Fiala. Time derivative obtained by applying the Riemannian manifold of Riemannian metrics to kinematics

of continua. C. R. Mecanique, 332:97–102, 2004.
[24] Z. Fiala. Geometrical setting of solid mechanics. Ann. Physics, 326(8):1983–1997, 2011.
[25] Z. Fiala. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental

methods. Acta Mechanica, 226(1):17–35, May 2015.
[26] Z. Fiala. Geometry of finite deformations and time-incremental analysis. International Journal of Non-Linear

Mechanics, 81:230–244, May 2016.
[27] Z. Fiala. Objective time derivatives revised. Zeitschrift für angewandte Mathematik und Physik, 71(1), Nov.

2019.



OBJECTIVE RATES AS COVARIANT DERIVATIVES 37

[28] D. S. Freed and D. Groisser. The basic geometry of the manifold of Riemannian metrics and of its quotient
by the diffeomorphism group. Michigan Math. J., 36(3):323–344, 1989.
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Hermès, Paris 1996. Springer, Mechanical Engineering Series, 1999.

[53] S. Lang. Fundamentals of Differential Geometry, volume 191 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1999.

[54] A. Lichnerowicz. Tensor-distributions. In Magnetohydrodynamics: Waves and Shock Waves in Curved Space-
Time, pages 1–17. Springer Netherlands, 1994.

[55] J. Lubliner. Plasticity Theory. New York: Macmillan 1990. (Maxwell Macmillan International Editions),
1990.

[56] J. Lützen. De Rham’s Currents. In Studies in the History of Mathematics and Physical Sciences, pages
144–147. Springer New York, 1982.

[57] J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Dover Publications, Inc., New
York, 1994. Corrected reprint of the 1983 original.

[58] R. J. Martin, I. Münch, B. Eidel, and P. Neff. A brief history of logarithmic strain measures in nonlinear
elasticity. PAMM, 18(1):e201800366, Dec. 2018.

[59] P. W. Michor. Manifolds of differentiable mappings, volume 3 of Shiva Mathematics Series. Shiva Publishing
Ltd., Nantwich, 1980.

[60] P. W. Michor. Topics in differential geometry, volume 93 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2008.

https://hal.archives-ouvertes.fr/hal-02343934


38 B. KOLEV AND R. DESMORAT

[61] C. Miehe, N. Apel, and M. Lambrecht. Anisotropic additive plasticity in the logarithmic strain space: mod-
ular kinematic formulation and implementation based on incremental minimization principles for standard
materials. Computer Methods in Applied Mechanics and Engineering, 191(47-48):5383–5425, Nov. 2002.

[62] J. Milnor. Remarks on infinite-dimensional Lie groups. In Relativity, groups and topology, II (Les Houches,
1983), pages 1007–1057. North-Holland, Amsterdam, 1984.

[63] W. Noll. A mathematical theory of the mechanical behavior of continuous media. Archive for Rational
Mechanics and Analysis, 2(1):197–226, Jan. 1958.

[64] W. Noll. The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum Mechanics.
pages 266–281, 1959.

[65] W. Noll. A new mathematical theory of simple materials. Arch. Rational Mech. Anal., 48(1):1–50, Jan. 1972.
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