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Abstract 1 

For decades, dose-volume information for segmented anatomy has provided the essential data for 2 

correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information 3 

has formed the basis for modelling those associations via normal tissue complication (NTCP) models 4 

and for driving treatment planning. Limitations to this approach have been identified. Many studies 5 

have emerged demonstrating that the incorporation of information describing the spatial nature of 6 

the dose distribution, and potentially its correlation with anatomy, can provide more robust 7 

associations with toxicity and seed more general NTCP models. Such approaches are culminating in 8 

the application of computationally intensive processes such as machine learning and the application 9 

of neural networks. The opportunities these approaches have for individualising treatment, 10 

predicting toxicity and expanding the solution space for radiation therapy are substantial and have 11 

clearly widespread and disruptive potential. Impediments to reaching that potential include issues 12 

associated with data collection, model generalisation and validation. 13 

This review examines the role of spatial models of complication and summarises relevant published 14 

studies. Sources of data for these studies, appropriate statistical methodology frameworks for 15 

processing spatial dose information and extracting relevant features are described. Spatial 16 

complication modelling is consolidated as a pathway to guiding future developments towards 17 

effective, complication-free radiotherapy treatment. 18 

Keywords: radiotherapy, complications, modelling, dosimetry 19 

Word count: ~15,500 (~22,000 with bibliography) 20 
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1 Introduction 22 

In radiotherapy, the risk of treatment-induced toxicity is the limiting factor for dose escalation in 23 

pursuit of an increase in local control. The prediction of radio-induced side-effects guides the 24 

physician and the patient between treatment alternatives and enables treatment optimisation by 25 

integrating predictive models within computerised planning. 26 

Radio-induced toxicity is classically linked to the dose-volume relationship, patient clinical 27 

parameters (such as medical history and adjuvant treatments) and intrinsic radiosensitivity. With 28 

steady increases in computational capabilities and increased efforts to gather and analyse relevant 29 

data (Deasy et al., 2010), exploiting information from more available data with integrative 30 

approaches is now feasible. 31 

The dose-volume toxicity relationship has been widely investigated. In 2010, the Quantitative 32 

Analysis of Normal Tissue Effects in the Clinic (QUANTEC) review summarized the three-dimensional 33 

dose/volume/outcome data to update and refine the related normal tissue tolerance guidelines 34 

(Marks et al., 2010), initially provided by Emami et al. (1991). Dose-volume histogram (DVH) based 35 

normal tissue complication probability (NTCP) models attempt to condense the dose-volume 36 

information into a number that expresses the risk of a certain toxicity. Most NTCP models are 37 

phenomenological and have the advantage of being characterized by few parameters (typically  3). 38 

Different approaches have been historically developed to model NTCP, with the Lyman–Kutcher–39 

Burman (LKB) model being one of the first and most commonly employed (Lyman, 1985). Even if 40 

prediction of toxicity and treatment plan evaluation with the NTCP-based models is still common 41 

practice, these kinds of models present limitations reducing their prediction capability. DVHs reduce 42 

the 3D (or even 4D) dose distribution within an organ to a unidimensional and discrete 43 

representation of the dose-volume relationship, inhibiting the ability of models to account for the 44 

actual underlying complexity. 45 

Spatial NTCP models have sought to geometrically represent the 3D dose distribution. This allows 46 

information on the pattern as well as the amount of dose to be characterised. Recent spatial NTCP 47 

models have sought to geometrically represent the 3D dose distribution in a single coordinate 48 

system via a spatial normalisation for a joint analysis of dose at the lowest sampling scale (pixel and 49 

voxel levels, referred to from here as “pixel-wise” in 2D and “voxel-wise” in 3D) (e.g., (Marcello et 50 

al., 2020a; Mylona et al., 2020b; Palma et al., 2020a; Jiang et al., 2019; Palma et al., 2019b)). These 51 

low spatial-scale methodologies have allowed the unravelling of the local dose-effect relationship 52 

across a population at each single voxel in a common coordinate system in different organs. Models 53 
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can also be created by defining and analysing spatial features of the 3D dose distribution (e.g. 54 

Buettner et al. (2012b)) or abstractions such as the dose surface map (DSM) (e.g. Heemsbergen et al. 55 

(2020)). These spatial methods, and others described below, have been pursued to improve 56 

prediction and classification. Such models may also facilitate identification of the underlying 57 

aetiology of radio-induced injury and be used to improve patient-specific treatment planning. They 58 

are likely to reduce toxicity (Drean et al., 2016b; Lafond et al., 2020), and may one day inform or 59 

help validate in silico models of treatment toxicity (e.g. (Cicchetti et al., 2020)). 60 

The goal of this review is to describe these recent spatial dose-effect investigations and NTCP 61 

models and provide some guidance around their development. 62 

2 Strategies for characterising dose distributions 63 

2.1 Dose-volume approaches 64 

The concept of the dose-volume relationship of a defined region of interest became commonplace 65 

when both 3D dose computation and 3D segmentation (“contouring”) of regions became practical. 66 

The cumulative DVH synthesises the dose vs volume relationship as a function representing the 67 

percentage of volume that receives at least a certain dose. 68 

2.1.1 The advantages of dose-volume approaches 69 

The primary advantage of the dose-volume approach is linked to the wealth of knowledge obtained 70 

through prior studies of radiation and the resounding clinical success of such approaches. Today’s 71 

radiation therapy is driven by dose-volume constraints based on the results of published studies and 72 

meta-analyses.  So much so, that today’s dose distributions contain little information outside the 73 

bounds of these dose volume parameters, as they are controlled for in clinical practice. 74 

Dose-volume metrics are easily understood and are based on the natural compartmentalisation of 75 

the body into organs. Reporting of them can be reduced to a table of numeric entries representing 76 

the quality of the complex 3D treatment plan. To even further simplify their presentations, software 77 

applications have reduced them to colour codes to indicate alerts when a plan may violate one of 78 

the treatment goals. In busy clinics, this facilitates rapid evaluation. Dose-volume metrics are also 79 

convenient when defining the goals for optimization in inverse treatment planning. 80 

Radiobiological models have been developed to bridge the gap between the physical dose-based 81 

objectives to drive treatment planning and the clinical dose goals reflecting the toxicity risks. Those 82 

commonly studied, such as NTCP, tumour control probability (TCP) and the complication-free 83 
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tumour control probability (P+) (Källman et al., 1992), have typically been designed to operate on 84 

DVH information. 85 

2.1.2 The disadvantages of dose-volume approaches 86 

Fundamentally the DVH assumes that every sub-volume of the region is of equal importance to the 87 

function of that tissue and is equally sensitive to radiation dose. Realistically, the segmented regions 88 

in radiotherapy are typically bulk anatomy and do not reflect the microstructure of anatomy that 89 

may be impacted by radiation. Therefore, the DVH may be too course of a feature to adequately 90 

model the impact radiation may have on the anatomy. 91 

The assumption that each element of tissue is equally important to the NTCP function and equally 92 

sensitive to radiation dose is simply not true for many anatomical regions typically segmented in 93 

treatment planning.  For example, the parotid glands consist of acinar cells producing saliva and a 94 

ductal region that carries the saliva to the oral cavity. Similarly, a kidney is made up of several cell 95 

types and structures. In other cases, such as the oesophagus and rectum, organ structure consists of 96 

a mucosal layer surrounded by muscle tissue.  These structures may have different risks when the 97 

dose is high to the entire circumference of the structure versus when it has the same volume of dose 98 

oriented longitudinally along the structure. Understanding the true causal relationships between 99 

radiation dose and normal tissue dysfunction is limited with dose volume metrics that are naive to 100 

the detailed components of the anatomy. 101 

The spinal cord has a complex spatial arrangement of functional sub-units (FSUs - compartments 102 

that accomplish part of an organ’s function), and subsequently a complex inter-relationship with 103 

overall organ function. Precise pre-clinical experiments performed by Bijl et al. (2003) identified 104 

large variations in dose-volume based predictors of paralysis in rats when the spatial patterns of 105 

irradiation were changed. Conventionally, simple maximum cord dose has been used to predict 106 

subsequent complications (Kirkpatrick et al., 2010). However, the inhomogeneity in irradiation now 107 

afforded with stereotactic spinal radiosurgery exceeds the predictive capability of dose-volume 108 

analysis (Medin and Boike, 2011). Similarly, models of lung complication had focused on their 109 

parallel-like nature and mean lung dose (MLD) had conventionally been used as a principal predictor. 110 

However, evidence for more localised dose-response in humans emerged nearly two decades ago 111 

(Seppenwoolde et al., 2004), following extensive animal experiments (as well reviewed by Voshart et 112 

al. (2021)). 113 

Further, analysis has traditionally been limited to dose-volume metrics for single organs.  Many 114 

human functions involve multiple components of anatomy.  Swallowing, for example involves many 115 
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muscles in the head and neck region. These muscles may be able to compensate for one another and 116 

the impact of a dose pattern across the set of muscles and its impact on swallowing can be quite 117 

complicated.  In many cases, a significant portion of the anatomy is not contoured at all, and the 118 

dose-volume metrics can only be computed for contoured regions. Contouring with high spatial 119 

detail in routine workflow remains burdensome. Similarly, in a shift of spatial focus for dose-toxicity 120 

association, the impact on lung toxicity from cardiac irradiation has been identified (Tucker et al., 121 

2014; van Luijk et al., 2005). 122 

Multiple spatial dose distributions (an essentially infinite number) will yield the same or similar DVH. 123 

Dependence on a dose-volume approach requires an assumption that all those distributions will lead 124 

to the same toxicity – the problem of degeneracy. Conversely, dose-volume derived NTCP models 125 

from studies involving specific irradiation techniques will have been derived with minimal variation 126 

in DVH between patients. Extrapolation of DVH and NTCP metrics beyond the specific context in 127 

which they were derived is known to be dangerous. Due to this limitation, as well as many other 128 

sources of variations between cohorts, DVH-based complication models derived for one treatment 129 

approach tend not to be applicable to alternative irradiation strategies in the same sites (Troeller et 130 

al., 2015). 131 

2.2 Approaches that preserve spatial information 132 

To overcome the limitation of whole organ DVHs, recent approaches have investigated the existence 133 

of spatial signatures of dose distributions across dimensionalities and at diverse spatial scales. Here 134 

we describe the processing of treatment planning data (Figure 1) required to achieve extraction of 135 

features describing spatial distributions at the various spatial scales and development of subsequent 136 

toxicity models (Figure 2). Practical applications of these features and models are described in 137 

Section 5. 138 
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 139 

Figure 1. Processing workflows for preparing data for toxicity modelling across dimensionalities. Orange, path for 140 

histogram development (1D data); green, path for 2D dose surface maps (2D data); and blue, path for 3D dose volume 141 

maps (3D data). Some data sources and processes may not be used in all approaches, and these are indicated with 142 

dashed borders. 143 
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 144 

Figure 2. Data flow in the extraction of dosimetric features and construction of toxicity models. Features extracted from 145 

1D, 2D or 3D data are exploited following different strategies, leading to different kinds of predictive models (NTCP, 146 

machine learning or general regression). 2D DSM and 3D DVM models may require the entire population dose to be 147 

mapped to a single coordinate system before being analysed. 148 

2.2.1 1D precision dose-volume approaches 149 

The simplest approach is to identify a more precise sub-region of the organ where dosimetry and 150 

DVH metrics are most correlated with outcome. Improvements in NTCP models, and evidence of 151 

correlations between local dose and side-effects, have been provided by undertaking DVH analysis 152 

(or analysis with related histogram information) at spatial scales below the organ level. Partitioning 153 

the organs for computing sub-region DVHs for example has demonstrated a sub-anatomical 154 

dependence for specific toxicities (Ebert et al., 2015b; Heemsbergen et al., 2005; Peeters et al., 155 

2006b; Stenmark et al., 2014). The question that may arise is whether the organ partitions are 156 

anatomically-equivalent across individuals allowing DVH comparisons. If sub-region partitions 157 

between patients are generated following the same geometrical criteria, then they can refer to the 158 

same anatomo-physiological regions. The identification of correlative regions can be derived 159 
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manually (e.g. Gulliford et al. (2017)), or by identifying clusters of correlated pixels and voxels in 2D 160 

and 3D representations (e.g. Drean et al. (2016b)). DVH-based features of those sub-regions can be 161 

used to validate their association with complications. 162 

2.2.2 2D surface mapping 163 

Spatial considerations on the distribution of dose to an organ surface can be achieved with dose 164 

surface mapping (DSM). DSMs present a virtual unfolded planar representation of the dose 165 

distribution across an organ wall. Such mapping has been implemented following different strategies 166 

(Sanchez-Nieto et al., 2001; Hoogeman et al., 2004; Munbodh et al., 2008; Tucker et al., 2006b; 167 

Witztum et al., 2016). A 2D image is constructed via parametric mapping from the 3D coordinate 168 

system of the organ wall. The general idea is depicted with a rectal DSM in Figure 3, where a direct 169 

relationship exists between the 3D cylindrical coordinates and the 2D (Ө,h) space. Thus, each pixel in 170 

2D corresponds to a portion of the organ wall where the dose is mapped and propagated by 171 

interpolation. Once constructed, dose surface maps can be used to undertake “pixel-wise” analysis 172 

(Yahya et al., 2017), or parameterised using geometric descriptors such as lateral and longitudinal 173 

extent (Buettner et al., 2009b) or texture features (Chen et al., 2018). 174 

 175 

Figure 3: Construction of a dose surface map (DSM) for the rectum by establishment of a direct relationship between the 176 

3D coordinate system and a planar O(Ө,h) space. 177 
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Crucial aspects in this construction are the definition of the origin (i.e. 0,0) and the resolution and 178 

size of the 2D images. If the rectum was the organ to be studied (e.g. (Buettner et al., 2009a; 179 

Moulton et al., 2017)) a cylindrical coordinate system for building the DSM has been used. In 180 

Buettner et al. (2009b) the contour was thus cut at the posterior-most position on each CT-slice and 181 

unwrapped to a map of 21x21 pixels. Witztum et al. (2016) raised some of the issues concerning 182 

tortuous structures. They developed a raytracing approach to create dose surface maps for the 183 

duodenum accounting for the bend in the structure, following an inner path. 184 

In other hollow organs such as the bladder a similar slice-based methodology has been applied. In 185 

works from Palorini et al. (2016a) and Yahya et al. (2017), 1 mm-resolution DSMs were generated  186 

(cranial-caudal direction), by virtually cutting bladder contours at the points intersecting the sagittal 187 

plane passing through its centre-of-mass. Because of the large inter-individual bladder variability 188 

some issues arise when having large and small bladders to map together for population analysis or 189 

where some parts of the bladder are not equally mapped. In Mylona et al. (2020a) this was 190 

addressed with an anisotropic vertical interpolation to the smallest bladder, aligned at the bladder 191 

base.  192 

2.2.3 3D feature extraction 193 

It is feasible to reduce the complex 3D voxel-level dose information to a smaller number of features 194 

via an appropriate spatial parameterisation. One such approach is to describe the spatial distribution 195 

within an organ via 3D moments (Buettner et al., 2012b; Dean et al., 2016). Alternatively, borrowing 196 

from the world of imaging analytics, supervised descriptions can be obtained via spatial texture 197 

features (“dosiomics” (Liang et al., 2019; Rossi et al., 2018), “dosomics” (Placidi et al., 2020) or 198 

“radiomorphology” (Jiang et al., 2019)), or unsupervised learning can be employed via neural 199 

networks. 200 

2.2.4 3D volume mapping 201 

At a fine scale, dose-outcome correlations can be investigated at the voxel level. For voxel-wise 202 

comparisons to be meaningful, anatomical correspondence across the individuals must be ensured. 203 

This pre-processing step is referred to as “spatial normalisation”, whose goal is to define geometrical 204 

transformations aimed at registering and resampling inter-individual anatomies and doses into a 205 

common coordinate system as depicted in Figure 1 (e.g. (Monti et al., 2020; Acosta et al., 2013; 206 

Rigaud et al., 2019; Acosta and De Crevoisier, 2019)). This 3D-3D dose mapping to a common 207 

coordinate system to create a dose-volume map (DVM) remains challenging. Such mapping may be 208 

obtained via a parametric representation of the anatomy in a spherical or cylindrical coordinate 209 
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system as in Chen et al. (2013). It may be more precisely computed through existing non-rigid 210 

(deformable) registration methods (McWilliam et al., 2017; Monti et al., 2018; Marcello et al., 211 

2020a), or tailored to a particular anatomy as proposed for the rectum in Drean et al. (2016a), or for 212 

the bladder in Mylona et al. (2019) using spatial descriptors. Depending on the investigated 213 

anatomical site, organ-driven registration methods may be more precise than the ones based on 214 

intensity levels. This is the case in Acosta et al. (2013), Drean et al. (2016a) and Mylona et al. (2019) 215 

where anatomical mapping based on 3D structural models of the considered organs were proposed. 216 

These approaches require, nevertheless, a precedent segmentation of some of the considered 217 

structures such as the urethra (Acosta et al., 2017). However, when inter-individual registration is to 218 

new patients without identified structures or is to be structure-agnostic, image information alone 219 

must be used (McWilliam et al., 2017; Monti et al., 2018; Abravan et al., 2020). 220 

The 3D spatial normalisation approach can also be used to align anatomy for derivation of DSMs, 221 

especially in the case of pixel-wise analysis, or for the purpose of sub-region identification. 222 

3 Practical Considerations 223 

The development of spatial response models places specific demands on the nature of technical data 224 

collected for their construction. When interpreting, utilising or publishing a spatial complication 225 

model, factors impacting the underlying technical data should be considered and appropriately 226 

reported and accommodated (see section 4.2.3). The relevance and quality of patient outcome data 227 

is of similar or even greater importance for the derivation of useful models. Additional data types 228 

can constitute modifying and stratifying co-variates, such as patient demographics and co-229 

morbidities, disease staging, treatment characteristics (techniques, timing, adjuvant treatments), 230 

pathologic and genetic information. 231 

3.1 Required technical data 232 

Due to the computational nature of spatial models, it is assumed that required data will be available 233 

in digital form which could be arbitrary in-house, native or proprietary formats, or more generally in 234 

prescribed formats such as Digital Imaging and Communications in Medicine (DICOM) (NEMA), 235 

Neuroimaging Informatics Technology Initiative (NIfTI) (NIfTI, 2020) or Nearly Raw Raster Data 236 

(NRRD) (SourceForge, 2020). The three principal technical data ingredients for model development 237 

are briefly described below. 238 

3.1.1 Imaging 239 
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Anatomical imaging typically provides the reference space for derived models, guides definition of 240 

segmented structures and facilitates intra- and inter-individual registration. The robustness of spatial 241 

models can depend significantly on the sensitivity and specificity of imaging, particularly through 242 

influence on the definition of structures (e.g. (Roach et al., 2019)). 243 

3.1.2 Structures 244 

Many of the processes for characterising spatial dose distributions presented in Sections 2.2 and 5 245 

operate on information related to anatomical and functional structures. The definition of such 246 

structures can be made manually by observers at the time of patient treatment planning or manually 247 

through retrospective review of collated data. Alternatively, autosegmentation routines utilising 248 

anatomical atlases (Kennedy et al., 2019) or artificial intelligence approaches (Fu et al., 2020) can be 249 

used. Structure segmentation can represent a significant source of uncertainty in the derivation and 250 

application of models, with multiple contributing factors: 251 

• Geometric variability: The location and extent of structures will depend on multiple factors 252 

relating to image quality, image sensitivity and specificity, inter-observer variability (e.g. 253 

(Roach et al., 2019)), organ deformation and motion (e.g. (Palorini et al., 2016a)), errors and 254 

limitations in image registration, bias propagated from atlas definitions or neural network 255 

learning environments or selection of a patient template (see Section 2.2) (Acosta et al., 256 

2010). 257 

• Structure definition: A common source of undesired variability, particularly when pooling 258 

data sources or during validation, is variable definition of anatomical structures (e.g. 259 

(Nitsche et al., 2017)). Models need to operate on like-definitions. Variability and ambiguity 260 

can be reduced through the use of consensus definitions, reviews of definitions such as 261 

within the QUANTEC reports (Bentzen et al., 2010), or published standards (Wright et al., 262 

2019). 263 

• Structure naming: Structure naming can often be problematic for scripting model 264 

development, particularly when data comes from multiple institutions. This can be 265 

ameliorated through use of naming conventions (e.g. (Mayo et al., 2018; Santanam et al., 266 

2012)) or ontologies (Phillips et al., 2020). Note that spatial models may utilise or give rise to 267 

non-standard structures (such as predictive clusters identified in DSMs and DVMs). 268 

3.1.3 Dose 269 
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As indicated in Figure 1 and Figure 2, access to multi-dimensional descriptions of dose distributions, 270 

or features derived from them, represents a common minimum level of required technical data. 271 

When deriving and applying spatial models, several aspects of these data should be considered: 272 

• Accuracy: Although dose distributions are frequently available based on planned or intended 273 

treatments, correct models will be based on dose distributions which have been verified or 274 

accumulated as delivered (e.g. (Shelley et al., 2017; Jaffray et al., 2010)). Accuracy should 275 

ideally have been assessed independently, such as via participation in credentialing exercises 276 

(e.g., (Ebert et al., 2011; Molineu et al., 2013; Weber et al., 2014)). Deformations of dose, 277 

due perhaps to the intra-individual accumulation process (Tilly et al., 2013) or inter-278 

individual co-registration (see Section 2.2.3) will impact on the accuracy of dose 279 

representation. 280 

• Precision: Spatial resolution in the description of dose can impact the ability to precisely 281 

represent the underlying response effects. The resolution of dose calculation has previously 282 

been shown to impact even dose-volume based models (Ebert et al., 2010; Kim et al., 2018). 283 

Variation in resolution can have a moderate impact on dosimetric texture features (Placidi et 284 

al., 2020). With an increasing need to develop models for precision stereotactic treatments, 285 

precise descriptions of steep dose gradients across spatially-limited structures are required 286 

(e.g. (Ryu et al., 2007; Hrycushko et al., 2019; Gale et al., 2017; Kim et al., 2014)). 287 

• Completeness: Dose calculations are often limited in extent relative to potentially-involved 288 

anatomy, such as when based on cone beam CT data obtained with accelerator-mounted 289 

imaging systems. This can inhibit spatial models, particularly those relating to low-doses 290 

over extensive regions of anatomy. 291 

• Temporal features: Dose fractionation, inter- and intra-fraction dose temporal patterns can 292 

impact complication incidence (Dörr, 2015). Changes in response due to variable dose-per-293 

fraction, either between voxels or due to variable treatment phases, may need to be 294 

incorporated into the model. Such variations may also be accounted for using equieffective 295 

dose estimates (Bentzen et al., 2012), noting that this leads to spatial discontinuities where 296 

parameters vary between tissues. The complexity of temporal dose effects increases 297 

significantly when intra-treatment variations due to organ motion or the pharmacokinetics 298 

of radionuclide deliveries are considered. 299 

3.1.4 Treatment description 300 
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Treatment factors, such as patient set-up at imaging and treatment, patient preparation, the use of 301 

immobilisation and fixation devices, may be co-variates of importance to the specificity of a model. 302 

This information is often not captured in DICOM fields or through oncology information systems. 303 

3.2 Outcome Data 304 

Outcome information, providing the known output for a model (the “endpoint” or “event 305 

incidence”), comes in diverse forms. For complication outcome, we are typically concerned with 306 

organ-specific symptoms of radiation injury which may manifest over months or years. These can be 307 

graded at discrete (ordinal) levels using standardised clinician- or patient-reported instruments such 308 

as provided by the Common Terminology Criteria for Adverse Events (Trotti et al., 2003) developed 309 

by the United States (US) National Cancer Institute (NCI), instruments developed in-house or by 310 

various international collaboratives. The trend is towards the use of patient-reported complications 311 

for outcome. This is because the severity of symptoms are often under-reported by clinicians (Xiao 312 

et al., 2013), and follows recognition of the importance of focussing on symptoms with the most 313 

impact on patients’ quality of life. Although definitions can vary, complications are typically graded 314 

according to indicative symptoms and required interventions (GX – Grade X): 315 

• G0 – symptoms are absent 316 

• G1 – the complication is mild and no interventions are required 317 

• G2 – the complication is moderate and some local intervention might be required 318 

• G3 – the complication is severe and intervention is required, though is not life-threatening 319 

• G4 – the complication is life-threatening and major intervention is required 320 

• G5 – the complication has caused death 321 

Whilst some models can utilise continuous outcomes, for NTCP models it is common to convert 322 

measures to a binary endpoint classification. These may be either determined at fixed time-points 323 

following treatment, as incidence at any time during follow-up, or the time-to-event incidence if 324 

temporal features can be incorporated in the model. The definition, interpretation, collection and 325 

application of complication outcome measures are notorious sources of uncertainty in outcome 326 

modelling. Multiple factors should be kept in mind related to model accuracy and generalisability: 327 

• Specificity of the included patient cohort. 328 

• The relevance of an outcome to patient quality-of-life. 329 

• Variations in scoring mechanisms and criteria. 330 

• Variations in follow-up time or time between measurements. 331 
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• The identification and influence of comorbidities, concurrent treatments or pre-existing 332 

morbidities. 333 

• The influence of social and/or technical factors on measures. 334 

• The nature of the data source, as discussed below. 335 

3.3 Data sources 336 

When considering sources of data for spatial complication models, we can consider the ability of 337 

those sources to meet specific criteria for development of generalizable, robust and powerful 338 

models. A source should provide large volumes of high quality, well-curated data for patients with 339 

diverse characteristics and treated with diverse techniques (noting that data diversity can lead to 340 

unexpectedly biased results, as discussed in Section 6.1). The sub-optimal performance of many 341 

radiotherapy outcomes models can largely be blamed on the paucity and lack of diversity of 342 

available data (Luo et al., 2020). 343 

Table 1 lists specific criteria, provides some examples of sources and attempts to describe, via 344 

generalisations, how likely each source is to meet the criteria. In Table 1, quality infers the 345 

completeness, accuracy and consistency of technical and outcome data. Diversity relates to the 346 

variability in studied populations, radiotherapy technique and overall patient treatment, including 347 

trial vs non-trial contexts (Chen et al., 2016; Krauss, 2018). Diversity also pertains to inter-individual 348 

variations in spatially-localised dose (note also the implications of diversity for model 349 

generalizability, as discussed in Section 6.2). 350 

Some points to note in relation to Table 1: 351 

- Single-institution studies enable ready access to appropriate high-quality data though with 352 

minimal variability and typically only small patient numbers. Collated data is rarely made 353 

available outside the institution. 354 

- Multi-centre clinical trials often employ rigorous data collation. However, such trials will 355 

rarely be statistically powered specifically for the purpose of spatial response modelling and 356 

so the sample size may be insufficient. Software systems developed over the last couple of 357 

decades, both in-house and commercially, have facilitated quality assessment of technical 358 

data by multicentre trials groups (e.g. (Ebert et al., 2010; Deasy et al., 2003; La Macchia et 359 

al., 2012; Meroni et al., 2019; Roelofs et al., 2014; Deasy and Adita, 2013; Purdy, 2008; 360 

Purdy et al., 1998)). Although the quality of clinical trial data can be advantageous, variations 361 

from trial conditions in the clinic, including participant selection, can bias model predictions 362 

relative to non-trial practice (Ohri et al., 2013). 363 
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- Data pooling and publication. International policies are trending towards data availability 364 

and interoperability (e.g. (Hayman et al., 2019; Taichman et al., 2017)). In Table 1 we 365 

distinguish “public” pooling and publication, such as provided by the Cancer Imaging Archive 366 

(www.cancerimagingarchive.net, (Clark et al., 2013)), from “private” pooling, such as might 367 

be achieved via manufacturer-led knowledge base collaboratives and user-communities. 368 

Both public and private data pools have the potential for development of large cohorts with 369 

data variability, though data quality may be ambiguous if not well documented. 370 

- Federated data access can enable accessing large patient cohorts spanning multiple 371 

repositories, including clinical systems at individual treatment centres. Ethical and socio-372 

political issues can be minimised if model parameters can be estimated for data at each site, 373 

before being combined centrally (Deist et al., 2017). Although no published evidence was 374 

found that spatial complication models have been derived through this approach, the 375 

potential for validation of developed models is significant. 376 

 377 

Table 1: Potential sources of data for spatial models and their ability to meet desirable criteria for forming 378 

statistically-powerful, generalisable models that meet current standards for validation and translation. 379 

Source 
Technical 

data quality 

Outcome 

data quality 

Variability/ 

diversity 

Sample 

size 
FAIR 

Facilitates 

validation 

Single institution 

studies 
High High Low Low Low Low 

Multicentre clinical 

trials 
High High Medium Medium High Medium 

Public data pooling and 

publication 
Variable Variable Medium Medium High High 

Private data pooling Variable Low Medium High Medium Variable 

Federated data access Low Low High High Variable High 

a Including dosimetric accuracy. 380 

b A data source will have a high ability to satisfy this criterion if it meets the FAIR principles 381 

(Wilkinson et al., 2016) defined by the FORCE 11 (Future of Research Communications and e-382 

Scholarship) community, of data being findable, accessible, interoperable and re-usable. 383 

c e.g., Treatment planning system manufacturer-facilitated knowledge base consortia. 384 

4 Statistical and Modelling Considerations 385 
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A central aim of using spatial dose descriptors to model dose-complication is to reduce the impact of 386 

degeneracy relative to dose-volume approaches. It is important that the process utilised maintains 387 

the principles associated with robust, unambiguous statistical analysis and interpretation. Here we 388 

summarise such relevant considerations. 389 

4.1 Feature Selection 390 

4.1.1 Candidate dosimetric features and collinearity 391 

An important step in developing phenomenological NTCP models (van der Schaaf et al., 2015) is to 392 

start off with a list of potential prognostic factors based on the literature and underlying 393 

radiobiological assumptions (e.g. assumed α/β ratio). This can reduce the number of false positive 394 

findings and guide the feature reduction process (Palma et al., 2020a; Heinze et al., 2018). The 395 

inhomogeneous physical dose distribution can be aggregated into dose features (Figure 2) that 396 

represent the biological dose received and are predictive for the toxicity endpoint of interest. The 397 

result may be just a small number of features as derived from a spatial parameterisation. However, 398 

hundreds to thousands of dose features can be retrieved from a spatial voxel-wise 3D dose 399 

distribution, even though the sample size may be quite limited, and collinearity is likely. Candidate 400 

prognostic factors selected from a group of correlated variables are typically those that have the 401 

highest predictive power at univariate analysis compared to the correlated variables that are a priori 402 

excluded. A general rule of thumb is that correlation between candidate variables for a multivariable 403 

model should be below ≈ 0.7 (El Naqa et al., 2009; Schaake et al., 2016). 404 

4.1.2 Feature reduction 405 

The generally accepted rule of thumb is that regression models should be used with a minimum of 406 

10 “events per variable” EPV (Peduzzi et al., 1996). This rule has been criticized as being too strict - 407 

Vittinghoff and McCulloch (2007) instead recommend a minimum of 7 EPV. After pre-processing the 408 

dataset to a candidate list of features considered for modelling, a variable selection algorithm must 409 

be chosen (Heinze et al., 2018; Steyerberg and Vergouwe, 2014). Valid approaches to reduce the 410 

number of features (and clinical co-variates) to the most predictive in a multivariate model are: 1) 411 

select variables for the final multivariable model based on their univariate model estimates, using a 412 

p value threshold; 2) backward and forward selection tools like Wald, Likelihood Ratio and 413 

conditional regression methods; and 3) the LASSO method (least absolute shrinkage and selection 414 

operator) which is a logistic regression analysis with a penalty for the magnitude of the regression 415 

coefficients to prevent overfitting (Tibshirani, 1996; Buettner et al., 2011; Gabryś et al., 2018). 416 

Consideration can be given to reduction of features through use of their principal components 417 
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(e.g.(Chen et al., 2011)). Additionally, feature selection can be combined with the method to 418 

determine association with outcome through algorithms such as random forest, and through the 419 

stability of features in associative models derived from sampled sub-sets of the full data (i.e. 420 

“bootstrapping”). Adequate feature reduction is vital to ensuring the ability for a model to be 421 

generalised. An excellent overview of techniques is provided in Guyon and Elisseeff (2003). 422 

4.1.3 Co-variates 423 

The inclusion of clinical factors in NTCP models may improve the predictive power of the model 424 

considerably (Defraene et al., 2012; Morimoto et al., 2019; Rancati et al., 2011; Dean et al., 2017; 425 

Palma et al., 2020b). A preselection of all treatment- patient- and tumour- related factors by an 426 

educated guess is needed to avoid false positive results. For this purpose, a literature search is 427 

recommended to define candidate clinical factors to be considered subsequently in model building 428 

(Steyerberg and Vergouwe, 2014). 429 

4.1.4 Models and Algorithms 430 

To parametrize the dose-dependence of an organ at risk, typically a sigmoid-shaped function is 431 

fitted, like the LKB model, the Relative Seriality (RS) model, and the general logistic regression model 432 

(Trott et al., 2012). It has been demonstrated that the general applied logistic regression technique 433 

produces very similar dose-effect curves as the LKB and RS model (Defraene et al., 2012). A 434 

prerequisite is that the type and pattern of toxicity (i.e. the dependent variable) has to be translated 435 

and captured in a ‘present (1)/not present (0)’’ for logistic regression modelling. 436 

As an alternative in the current information age, data mining and machine learning approaches for 437 

toxicity prediction research are increasingly applied (Robertson et al., 2015; Beasley et al., 2018; 438 

Gabryś et al., 2018; Luo et al., 2020; Dean et al., 2018; Palma et al., 2019a). Commonalities and 439 

differences between the more conventional methods of model-based statistical inference and the 440 

rapidly progressing field of data driven machine learning have given rise to an active debate (c.f. the 441 

field of imaging in neuroscience (Bzdok, 2017)). It has been shown that machine learning approaches 442 

do not, by default, result in better predictions (Yahya et al., 2016; Dean et al., 2018). Unsupervised 443 

machine learning approaches aim to produce accurate predictions for unseen data based on a large 444 

body of training data, and do not depend on tractable relations between variables, which can limit 445 

sensible extrapolation of the associated models. Conventional regression, on the other hand, may 446 

reveal the specific dependence of a given variable on several independent variables within a data 447 

set. From this comes the opportunity to extrapolate beyond the initial model fitting, beyond the 448 

initial conditions under which data were acquired, by adaptation. 449 
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Selection of the appropriate statistical test(s) depends on the nature of the predicted outcome. If 450 

time to event is considered important, parameters of a proportional hazards model may be 451 

inspected (provided proportionality of the hazard is valid), or e.g. accelerated failure time models 452 

may be employed (Bradburn et al., 2003). On the other hand, when fixed time point differences or 453 

incidence over multiple time points are considered sufficiently descriptive, parametric t-tests or 454 

nonparametric signed-rank tests can be performed (Lumley et al., 2002). Rather than to seek 455 

rejection of a null-hypothesis, Bayesian analysis may provide a more informative description of 456 

observed differences (Kruschke, 2013). 457 

4.1.5 Voxel-wise models 458 

Although conventional statistics can be applied at a pixel-wise or voxel-wise level, a comparison of 459 

the aggregated data dichotomised by endpoint is a commonly used approach. Detailed descriptions 460 

and formalisms of the process for voxel-wise analysis for toxicity studies are provided by Acosta and 461 

De Crevoisier (2019) and Palma et al. (2020a). The idea of identifying local dose-response patterns 462 

by voxel-wise analysis based on two-sample tests was derived from neuroimaging studies where the 463 

aim is to discover voxel-wise changes due to a specific disease (Ashburner and Friston, 2000; 464 

Whitwell, 2009). When comparing DSMs/DVMs, the null-hypothesis is that there is no difference 465 

between the dose distributions of the patients with and without toxicity, which can be tested either 466 

using parametric (e.g. Student’s T-test) or nonparametric tests (e.g. the Mann-Whitney U test or the 467 

Wilcoxon rank-sum test). In both cases, a map of p-values can be filled in voxel by voxel, pinpointing 468 

where are the significant differences between the groups of patients.  469 
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Figure 4: Example of voxel (pixel)-wise assessment of a dose-complication relationship for a change in international 471 

prostate symptom score (IPSS) of ≥ 10 in a prostate radiotherapy trial cohort (Yahya et al., 2017). Bladder DSMs have 472 

been derived by cylindrical mapping using 200 equally-spaced radial samples at each interpolated 1 mm slice vertically 473 

from the bladder base (up to 45 mm for all patients). Pixel-wise logistic regression incorporating clinical factors leads to 474 

the (uncorrected) p-value and odds ratio maps shown, including demonstration of a confounding protective effect of 475 

dose at the bladder base. 476 

Logistic regression, LKB modelling or Logit dose-response modelling are possible alternative 477 

approaches to studying local dose-response effects at the voxel-level (as illustrated via an example 478 

for DSMs in Figure 4). For each voxel in the DSM/DVM, the relationship between the dose and the 479 

incidence of a selected toxicity endpoint is calculated. When the actuarial incidence of the side-480 

effect is considered, Cox regression constitutes a suitable choice (Marcello et al., 2020a; Marcello et 481 

al., 2020b). This analysis produces a map of best-fit parameters, constant and b-coefficient for dose 482 

for the logistic regression, TD50 (uniform dose corresponding to 50% complication probability) and 483 

slope at TD50 for LKB and Logit models, H0(t) and β-coefficient for dose when Cox is used. This kind 484 

of analysis allows identifying regions where the dose-response is steeper vs areas where it is 485 

shallow, thus providing a hypothesis for treatment optimization on selected sub-regions. 486 

Clinical risk factors can be included, with the inclusion of multiple b-coefficients/ β-coefficients in 487 

logistic and Cox regressions and with the addition of dose modifying factors in LKB and Logit models 488 

(Peeters et al., 2006a). Of note, in this case, a map of effect sizes for the clinical risk factors is 489 

produced, with a variation of effect sizes at the voxel level. Discussion is still open on the meaning of 490 

these variations, with the possibility of a clinical factor to be a protective factor in some voxels and a 491 

risk factor in others. A possible alternative way to include clinical risk factors is to use local dose-492 

based modelling to determine areas with different dose-response curves and apply an adjustment 493 

for clinical risk factors at a sub-region level or a patient level. 494 

4.1.6 Significance 495 

From a modelling perspective a large variation over the population provides the best opportunity to 496 

derive a high-quality dose-effect model (see Table 1). Techniques that result in high rates of toxicity 497 

do not necessarily exhibit a large variation over patients. When deriving statistics at the voxel-level, 498 

dose deposited by external beams gives rise to correlations between dose variables. Establishing 499 

significance based on per-voxel null hypothesis testing (see Section 5.2) severely suffers from 500 

multiple testing issues – the likelihood of incorrect rejection of that hypothesis. Methods based on 501 

estimated false discovery rate (FDR) have been proposed, which have been shown to hold under 502 

positive dependencies (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Storey, 2002). 503 

Permutation methods can be used to establish significance based on test statistics aggregated over 504 
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the individual voxels (Manly, 1997; Chen et al., 2013; Palma et al., 2020a): a pertinent global 505 

threshold of the single-voxel test statistic is derived, leading to the selection of voxels that exceed 506 

that value. Reporting the adjusted map beyond arbitrary thresholds for significance (such as the 507 

commonly-used p = 0.05) might be suggested, allowing readers to make a more informed conclusion 508 

by also considering the trends and spatial patterns of association, rather than focusing on specific 509 

highly significant voxels (Palorini et al., 2016b). 510 

4.2 Performance, validity and reporting 511 

Three main purposes of statistical models can be identified: 1) predictive/prognostic models, 512 

focussing on event prediction; 2) explanatory models explaining difference in outcome via 513 

explanatory variables, focussing on (causal) relationships and the magnitude of effects; and 3) 514 

descriptive models with the main purpose to capture accurately the association between the 515 

dependent variable  and the independent variables, which may focus on both elements of 516 

prediction, relationships and magnitude of effects (Shmueli, 2010). 517 

4.2.1 Model performance 518 

NTCP models are descriptive models, describing the relationship between biological dose, clinical 519 

cofactors, and toxicity risks. To evaluate discriminative (predictive) power, the performance of the 520 

model is commonly reported through the area under the receiver operating characteristic curve 521 

(AUC) which is a measure that combines the specificity and sensitivity in one number (Dean et al., 522 

2018; Men et al., 2019). In case of a large imbalance in the data, the F-score based on precision-523 

recall could additionally be considered (Saito and Rehmsmeier, 2015). 524 

4.2.2 Model validity 525 

The internal validity of a prediction model concerns the reproducibility of the underlying data. To 526 

avoid overfitting and unstable models, preferred methods for internal validation are cross-validation 527 

and bootstrap resampling techniques (Heinze et al., 2018; Steyerberg and Vergouwe, 2014; Xu et al., 528 

2012). For the external validation of the model, concerning the generalizability of the results to 529 

other similar patient populations outside the database and outside the institution, independent 530 

validation datasets are required (Bentzen et al., 2010). A relevant example is provided by Mylona et 531 

al. (2020b), where dosimetry for sub-regions in the bladder was found to be more predictive of 532 

complications than that for the whole organ, as validated in an external cohort. 533 

4.2.3 Model reporting 534 
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It is recommended to report at least the following characteristics of a developed phenomenological 535 

(data-driven) NTCP model (Jackson et al., 2010; Collins et al., 2015): study population, received 536 

treatment, definition and measurement of predicted outcome, dose-volume information of full 537 

organs and relevant sub-volumes, basic statistical data on incidence of toxicity including number of 538 

subjects and number of events, complication rates associated with constraints, available follow-up 539 

time, statistical motivation of sample size, handling of missing data, numerical range and median of 540 

the dosimetric variables of interest, model parameter estimates and their standard errors, applied 541 

feature selection method (model building algorithm), candidate variable list, applied validation 542 

methods, goodness-of-fit and discriminative power of the final model. For spatial models, it is also 543 

recommended to report dose-grid resolution and dose calculation algorithm (Placidi et al., 2020), 544 

and a definition for the algorithms used in extraction of features (e.g. (Zwanenburg et al., 2020)). A 545 

checklist for transparent reporting is available through the TRIPOD initiative (Collins et al., 2015). 546 

5 Review of methods – spatial dose associations with complications 547 

and applications to NTCP calculation 548 

Section 2 defined, in general terms, approaches that may be used, in various dimensions, to 549 

represent dose information in ways that retain spatial information from which features may be 550 

extracted. Section 3 detailed where the data may be obtained from to inform those processes, and 551 

for describing the complication outcomes with which the features will be correlated, using the 552 

statistical processes described in Section 4. We can now review publications which attempt to 553 

combine these to derive NTCP models and for examining associations of spatial dose information 554 

with complication incidence. 555 

Evidence of improved predictive capabilities with models which are inclusive of spatial information 556 

have been emerging from analysis of isolated data sets over the last 10 – 15 years. Table 2 provides 557 

a summary of some previously published analyses where a comparison has been made between 558 

histogram-based toxicity models and those incorporating various forms of spatial dose information.559 
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 560 

Table 2: A selection of published studies comparing histogram-based toxicity modelling to models incorporating spatial information. Note that some studies incorporated multiple 561 

approaches to spatial feature extraction. 562 

Reference Tumour 
site 

Evaluated 
region 

Toxicity 
endpoint 

Spatial method Comparison Impact on complication prediction 

Heemsbergen 
et al. (2005) 

Prostate Rectum Various Pixel-wise, DSM sub-
regions 

Total rectum DSH vs 
sub-regions alone 

Several specific toxicities only associated with 
spatially-localised dose 

Peeters et al. 
(2005)  

Prostate Rectum Acute rectal 
≥ G2 

Dose-length 
parameters 

Total rectum DVH and 
DSH vs addition of 
spatial features 

Most significant DVH and dose-length parameter 
both improved final model 

Peeters et al. 
(2006b) 

Prostate Anorectum Various DVHs for sub-regions 
(rectum, anus) 

Total anorectum DVH 
vs sub-regions 

Specific toxicities better predicted by sub-region 
dosimetry 

Acosta et al. 
(2013) 

Prostate Rectum  Rectal bleeding Voxel-wise dose, DVM Rectum DVH vs voxel-
wise 

Rectal bleeding only correlates with identified 
local dose levels, not with total rectum DVH. 

Drean et al. 
(2016b)  

Prostate Rectum  Rectal bleeding Voxel-wise and 
manually identified 
sub-region 

Rectum DVH vs 
different sub-regions 

DVH-based inferior-anterior hemi rectum (voxel-
wise identified sub-region) performed best. 

Casares-
Magaz et al. 
(2017)  

Prostate Rectum  Various Pixel-wise DSM Rectal DVH and DSH vs 
pixel-wise 

For all endpoints DSM-based parameters showed 
better AUCs (mean 0.64) than the best DSH/DSH-
based parameters (mean 0.61) 

Rossi et al. 
(2018)  

Prostate Rectum  Rectal bleeding 
Faecal leakage 

3D texture features Rectal DVH vs addition 
of spatial features 

Bleeding - AUC increased 0.68 to 0.72; leakage - 

AUC increased from 0.68 to 0.75 

Buettner et al. 
(2009a)  

Prostate Rectum Rectal bleeding CNN on DSM Rectal DSH vs addition 
of spatial features 

AUC increased from 0.59 to 0.64 

Buettner et al. 
(2011)  

Prostate Rectum Various Parameterised DSM NTCP based on rectal 
vs addition of spatial 
features 

AUC increased from 0.59 to 0.63 – 0.67 

Zhen et al. 
(2017)  

Cervix Rectum General toxicity DSM texture features 
and CNN (with transfer 
learning) 

Peak dose-indices vs 
texture features vs CNN 

AUC 0.47-0.58 (dose-indices), 0.70 (texture 
features), 0.89 (CNN) 

Wilkins et al. 
(2020) 

Prostate Anorectum Various Parameterised DSM; 
manual sub-regions 

Rectal DVH vs sub-
region DVH vs DSM 

DSM-based parameters did not improve 
prediction compared to DVH-based parameters; 
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(rectum, anal-canal) features sub-region dosimetry not identified as more 
predictive 

Heemsbergen 
et al. (2010) 

Prostate Bladder Urinary 
obstruction 

DVM, voxel-wise 
(specific local dose 
points) 

DSH-based total 
bladder vs addition of 
local point dose trigone  

Both DVH point and local trigone dose point 
added to final model 

Improta et al. 
(2016)  

Prostate Bladder IPSS toxicity score Pixel-wise DSM Bladder DSH vs 
addition of spatial 
features 

AUC increased from 0.58-0.71 to 0.66-0.77 

Palorini et al. 
(2016b)  

Prostate Bladder  Acute urinary 
symptoms 

Pixel-wise and 
parameterised DSM 

Bladder DSH vs 
parameterised DSM 

For all endpoints DSM-based parameters showed 
better AUCs than the best DSH-based parameters 

Rossi et al. 
(2018)  

Prostate Bladder  Nocturia 
Incontinence 

3D texture features Bladder DVH vs 
addition of texture 
features 

Nocturia - AUC increased from 0.63 to 0.67; 

Incontinence - AUC increased from 0.71 to 0.73 

Mylona et al. 
(2019)  

Prostate Bladder, 
urethra 

Acute and late 
urinary symptoms 

Sub-regions derived 
from voxel-wise DVM 
analysis 

Bladder DVH vs sub-
regions DVHs 

AUC improvements in both acute and late toxicity 
in several sub-regions including the urethra (AUCs 
≥ 0.62) 

Beasley et al. 
(2018)  

H&N Head region Trismus Voxel-wise DVM Organ vs sub-region 
DVH 

Identified voxel cluster most significant 

Buettner et al. 
(2012b)  

H&N Salivary 
glands 

Xerostomia Parameterised 3D 
organ dose 
distribution 

Mean dose vs 3D 
moments 

AUC increased from ~0.7 to > 0.8 

Gabryś et al. 
(2018)  

H&N Parotid 
glands 

Xerostomia Parameterised 3D 
dose 

Mean dose and parotid 
DVH vs addition of 
multiple spatial 
features 

AUC increased from < 0.6 to 0.68 – 0.78 for dose-
gradient features 

Men et al. 
(2019)  

H&N Glands Xerostomia 3D dose CNN and CT 
images 

Combinations of basic 
dose-volume metrics, 
clinical parameters, 
and CNN based on 
images, structures and 
dose 

AUC increased from 0.56 for dose metrics alone 
to 0.84 with all CNN information 

Monti et al. 
(2017)  

H&N Neck region Dysphagia Voxel-wise DVM Sub-region mean dose 
and multi-organ DVH 
(Alterio et al., 2017) 

AUC confirmed between multi-organ vs voxel-
wise analysis (~0.8) 

Dean et al. 
(2018) 

H&N Pharyngeal 
mucosa 

Dysphagia 3D spatial 
parameterisation 

Organ DVH vs spatial 
features 

DVH features as predictive as spatial features 
(AUC ~ 0.71-0.82) and maintained on external 
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validation 

Dean et al. 
(2016) 

H&N Approximated 
oral mucosa 

Acute mucositis 3D moments Organ DVH vs addition 
of spatial features 

No improvement 

Dean et al. 
(2017) 

H&N Oral cavity Acute mucositis Sub-region definition 
(mucosal surface) 

Organ DVH vs sub-
region 

No improvement 

Palma et al. 
(2016) 

Thorax Lung Lung fibrosis Voxel-wise DVM 
identified sub-regions 

Whole-lung mean dose 
vs sub-region-based 
mean dose  

AUC increased from 0.60 to 0.75 

Palma et al. 
(2019a) 

Thorax Lung Lung fibrosis Voxel-wise DVM LKB vs 3D model (PACE) AUC increased from 0.66 to 0.85 

Lee et al. 
(2020)  

Lung Oesophagus Weight loss 3D texture features Combinations of DVH 
and radiomic/dosiomic 
features 

Substantial increases in AUC though addition of 
spatial features 

Liang et al. 
(2020) 

Lung Lung Pneumonitis 3D dose texture 
features and CNN 

DVH vs NTCP vs 
dosiomics vs 3D CNN 

AUC increased from 0.676 (DVH) to 0.744 (NTCP) 
to 0.782 (dosiomics) to 0.842 (CNN) 
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 563 

Figure 5 illustrates the progression from dose-volume to spatial models of varying complexity, using 564 

the relationship of pelvic radiotherapy dose to gastrointestinal complications as an example. 565 

References describing studies are provided, grouped according to the complexity of anatomical 566 

information used and by the spatial dose features used in the investigations. Many of the cited 567 

studies are discussed in more detail below. 568 

 569 

Figure 5: Illustration of the variety and evolution of methods for incorporation of dosimetric features into dose-570 

complication association studies and NTCP models in the context of gastro-intestinal toxicity. References are provided as 571 

examples for studies involving various combinations of anatomical information and dosimetric feature extraction and 572 

are not exhaustive. Studies can be further broken down according to the model used for association with complication 573 

(see e.g., Acosta and De Crevoisier (2019)). (BEV – beam’s eye view). 574 

5.1 Use of histogram-based features 575 

5.1.1 Description 576 

2D 3D

2D rectum 
BEV

3D rectum Manual sub-regions Broader pelvic 
anatomy

Statistical sub-
regions
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Estimated DVH Emami et al 
1991

Calculated DVH Fiorino et al 2002;
Gulliford et al 2004; Rancati et al 
2004; Sohn et al 2007; Michalski 
et al 2010; Tomatis et al 2012; 
Ospina et al 2014; Fargeas et al 
2018

Peeters et al 2006b; 
Buettner et al 2012; 
Stenmark et al 2014; 
Ebert et al 2015b; 
Gulliford et al 2017; 
Wilkins et al 2020

Smeenk et al 2012; 
Shaake et al 2016

Drean et al 2016b; 
Mylona et al 2020b

DSH/DWH/zDVH Cheng and Das 1999; Meijer et al 
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Buettner et al 2012; Kim 
et al 2014; Ebert et al 
2015b; Wilkins et al 
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Moulton et al 2017; Shelley et al 
2017; Vanneste et al 2018; 
Henderson et al 2018; Casares-
Magaz et al 2017, 2019 

Buettner et al 2012;
Wilkins et al 2020
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Supervised Casares-Magaz et al 2017; Chen 
et al 2018

Unsupervised Buettner et al 2009a;
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s)

3D voxel-wise Acosta et al 2013;
Fargeas et al 2013;
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Supervised Rossi et al 2018

Unsupervised Zhen et al 2017 Coloigner et al 2015
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The degeneracy of the spatial dose distribution into the associated DVH of a structure may be 577 

moderated if the dose distribution can be correlated with more specific descriptions of the 578 

underlying functional structures themselves. This can be achieved, for example, by breaking a given 579 

structure down spatially into more precise or component sub-structures according to some 580 

anatomical or statistical criterion (as described in Section 2.2.1). The DVH characteristics of each sub-581 

structure can be considered independently. Analysis of more specific structures can also reveal that 582 

dose to the originally-hypothesised structure of interest may be less correlated with complication 583 

than alternative adjacent structures. It is also possible to utilise additional spatial information 584 

regarding the structure (such as medical imaging scans) to modify the basic DVH information being 585 

used as input to a dose-volume based NTCP model. 586 

5.1.2 Examples 587 

A first class of models is based on the assumption that the organs can be thought of as organized in 588 

functional sub-units (FSUs). If the density of FSUs 𝑓(𝑟) is not homogeneous throughout the 589 

considered structure Ω, a more informative version of the DVH would be weighted by the 590 

corresponding 𝑓(𝑟) yielding 𝑓𝐷𝑉𝐻(𝐷0), defined as: 591 

𝑓𝐷𝑉𝐻(𝐷0) =
∫ 𝑓(𝑟)𝐻[𝐷(𝑟) − 𝐷0]𝑑𝑟Ω

∫ 𝑓(𝑟)𝑑𝑟
Ω

 592 

where 𝐻(∙) is the Heaviside step function (Lu et al., 1997). Though DVH-based NTCP models would 593 

be better recast on fDVH, it has been recognized that the derivation of the detailed underlying 594 

arrangement of FSUs in most anatomical sites still requires dedicated studies from techniques such 595 

as functional imaging (e.g. (Arslan et al., 2018; Lee and Park, 2020)). 596 

For lung, a low-cost variation on the fDVH concept is represented by the dose-mass histogram 597 

(DMH), in which the mass density (easily estimated from the planning CT) is considered as a 598 

surrogate of FSU density. As expected, the DMH results to be independent of breathing phase 599 

(Nioutsikou et al., 2005; Cella et al., 2015). Interestingly, however, a study on the risk of 600 

postoperative pulmonary complications among oesophageal cancer patients found no evidence of 601 

significant benefits from the substitution of DVHs with DMHs within the NTCP model (Tucker et al., 602 

2006a). 603 

Similarly, for hollow organs such as the rectum, the absence of FSUs within the wall content led to 604 

the development of the dose-wall histogram (DWH). DWHs represent the DVH of the organ wall only 605 

based on the segmented outer organ contour (Meijer et al., 1999). The dose-surface histogram 606 
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(DSH) lies, instead, on the histogram of the dose delivered to a representative surface of the organ. 607 

Two main approaches have been proposed for the DSH computation: one based on the interpolation 608 

of the dose on the organ surface (Lu et al., 1995), and one normalizing the DVH of the organ wall by 609 

the shell depth in the limit of vanishing thickness (Palma and Cella, 2019). There is often a strong 610 

correlation between the various histogram types (Fiorino et al., 2003; Carillo et al., 2012; Hoogeman 611 

et al., 2005). An exception is when the irradiation technique delivers a dose gradient that is steep 612 

relative to the organ size, such as found by Kim et al for prostate cancer patients treated with 613 

stereotactic radiotherapy (Kim et al., 2014). 614 

A first hybrid approach for including a notion of spatial dose distribution within a histogram 615 

framework is the zDVH (Cheng and Das, 1999), which expresses the volume receiving a given dose at 616 

a given cranio-caudal position in the form of a 2D histogram. 617 

An effective approach based on pathophysiological knowledge of the toxicity aetiology consists in 618 

splitting a heterogeneous district into component substructures to achieve better DVH-response 619 

predictions. This approach has been made for the anorectum (Peeters et al., 2006b; Ebert et al., 620 

2015a) and the bladder trigone (Ghadjar et al., 2014; Henderson et al., 2018). Outcome associations 621 

have also been undertaken over broader spatial ranges of anatomy than conventionally 622 

hypothesised. For rectal toxicity in pelvic radiotherapy for example, although the gastrointestinal 623 

tract is usually targeted for derivation of associations, alternative structures can provide stronger 624 

associations with specific toxicities. Smeenk et al showed that incontinence was more strongly 625 

associated to dose to the pelvic floor muscles (Smeenk et al., 2012), whilst Gulliford et al discovered 626 

the importance of dose to the peri-rectal fat space for control-like symptoms (Gulliford et al., 2017). 627 

The emergence of voxel-wise toxicity analyses in radiation oncology has fostered a data-driven 628 

evolution of this approach. This is aimed at defining, on a statistical basis, the relevant anatomical 629 

substructures involved in the development of radiation induced morbidity and from which 630 

histogram-based features can be extracted. This approach is described in Sections 5.2 and 5.4. 631 

5.2 Voxel-wise assessment 632 

5.2.1 Description 633 

In contrast to analyses based on known or hypothesised FSUs as in Section 5.1, the use of voxel-wise 634 

methods points to an “agnostic”/bottom-up approach. Once the DSMs/DVMs in a cohort are 635 

spatially registered to a common coordinate system (see Section 2.2 for relevant details) in a way 636 

that they can be compared voxel-wise, the regions which are significantly associated to the 637 
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particular (toxicity) outcome are identified by statistical inference. Different approaches can be used, 638 

as described in Section 4.1.5. In general, the final goal of voxel-wise analysis is to identify regions 639 

driving the clinical manifestation of radio-induced side effects, i.e. to find clusters of voxels where 640 

the dose is significantly different in patients with/without toxicity (see also Section 5.4). The 641 

resulting organ sub-regions do not consider any prior anatomical or functional division. They can 642 

provide information to make inferences on the differential radio-sensibility of some organs or the 643 

simultaneous implication of different structures on some radio-induced toxicities. 644 

Voxel-wise assessment does not by default generate an NTCP model. DVHs in the regions that were 645 

highlighted as statistically associated with the selected outcome should be considered to derive 646 

NTCP models following a classical dose-response analysis. Alternatively, a total complication risk can 647 

be formed from aggregation of risks determined at the voxel level. 648 

5.2.2 Examples 649 

2D dose-surface outcome mapping 650 

2D DSMs (Section 2.2.2) are usually generated from an anatomical structure and restricted to the 651 

surface of this structure. This choice produces results which can be easily translated into organ sub-652 

regions to be spared. Historically, the first analyses of DSMs in the radiotherapy field were related to 653 

hollow organs whose geometry could be easily associated with a cylinder, such as the oesophagus 654 

(Chen et al., 2013; Dankers et al., 2017) and the rectum (Casares-Magaz et al., 2019; Munbodh et al., 655 

2008; Onjukka et al., 2019; Sanchez-Nieto et al., 2001; Tucker et al., 2006b; Wortel et al., 2015). 656 

Although pixel-wise assessment can be made to derive patterns of response, significant progress has 657 

been made by parameterising the DSMs, reducing the number of features and providing parameters 658 

for NTCP models, as discussed in Section 5.3. 659 

Pixel-wise studies have related DSMs for the bladder with a number of early and late urinary 660 

endpoints (Palorini et al., 2016b; Mylona et al., 2020a; Palorini et al., 2016a; Yahya et al., 2017; 661 

Improta et al., 2016). Recently a method for the calculation of DSM for the heart was implemented 662 

by using a modified cylindrical coordinate system (McWilliam et al., 2020). DSMs of the heart were 663 

analysed to infer possible local dose effect for survival after lung cancer radiotherapy. The rationale 664 

for considering heart DSMs rather than DVMs resides in the location on the surface of some clinically 665 

relevant sub-regions, such as the coronary arteries, the electrical conduction system and the 666 

myocardium. 667 

3D voxel-wise outcome mapping 668 
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DVMs (Section 2.2.4) can be generated either starting from an anatomical structure and restricted to 669 

its volume or independently from any structure. The second choice has the power to embrace a 670 

totally agnostic approach regarding which organs/tissues are involved in radio-induced toxicity and 671 

entails the possibility of highlighting the interaction between different organs and FSUs. Notably, 672 

special care should be taken in order to counteract the possibility of finding significant areas which 673 

offer no feasible anatomical explanation and which could lead to inappropriate organ-sparing 674 

objectives in treatment planning. 675 

Organ-based DVMs were considered in the literature for the analysis of both rectal (Acosta et al., 676 

2013; Drean et al., 2016b; Mylona et al., 2020b; Shelley et al., 2017; Marcello et al., 2020b) and 677 

urinary (Mylona et al., 2019; Mylona et al., 2020a; Mylona et al., 2020b; Marcello et al., 2020a) 678 

toxicity. These kinds of analysis heavily build upon robust co-registration methods, which become 679 

even more critical when organs highly prone to organ motion and variable filling are considered. 680 

The first published example of the use of quasi-organ-agnostic DVMs was from Heemsbergen et al. 681 

(2010) investigating urinary toxicity. In this case, the 3D reconstruction started with the definition of 682 

the outer surface of the prostate and with the identification of the spatial coordinates of the 683 

prostate centre of mass. After that, for every patient, a spherical surface was considered, extending 684 

6 cm from the prostate. Every voxel inside this region was identified through polar coordinates 685 

(distance from the prostate centre of mass and two angles identifying the vector connecting the 686 

single voxel to the prostate centre of mass) and the absorbed dose in each voxel was calculated by 687 

trilinear interpolation of the nearest dose points of the individual dose grid. 688 

Regression coefficients associated to each voxel specifically in the salivary glands have been used to 689 

shed light on the regional radio-sensitivity of the glands (Jiang et al., 2019). Other studies considered 690 

DVMs without any restriction to specific contoured organs for investigation of local dose effects in 691 

the thoracic/head and neck region (Beasley et al., 2018; McWilliam et al., 2017; Monti et al., 2017; 692 

Palma et al., 2016; Palma et al., 2019d; Palma et al., 2019c; Green et al., 2020), with interest in the 693 

association of dose pattern with lung toxicity, acute dysphagia, trismus and survival. 694 
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 695 

Figure 6: Flowchart for 3D voxel-wise analysis of dosimetric association with lung toxicity following stereotactic body 696 

lung radiotherapy, reproduced from Palma et al. (2019c). Structures and dose distributions are spatially normalised to a 697 

common coordinate system (CCS) via course alignment of structures and CT elastic image registration (EIR). Voxel-wise 698 

significance maps are then derived by calculating a test statistic at the voxel level and adjusting for multiple comparisons 699 

via a permutation algorithm. 700 

NTCP from voxel-wise methods 701 

As already pointed out, although voxel-wise analysis can identify important organ sub-regions, it 702 

does not provide an NTCP. 703 

NTCP can be derived by classical dose-response modelling on the specific sub-regions, either 704 

including the whole DVH as calculated in the specific identified areas or choosing some particular 705 

DVH cut-points. Examples of this kind of approach can be found in (Buettner et al., 2009b; 706 

Heemsbergen et al., 2010; Mylona et al., 2019; Onjukka et al., 2019; Palma et al., 2016; Casares-707 

Magaz et al., 2017). In Drean et al. (2016b), parameters for the LKB model were computed within 708 

the voxel-wise derived sub-region. 709 

More sophisticated and more global approaches were also developed, taking information from 710 

voxel-wise analysis directly into account. Vinogradskiy et al. (2012) proposed a modified LKB model 711 

where the lung dose in each voxel was weighted using a user-defined spatial weighting matrix which 712 

could be derived by a previous voxel-wise analysis. Jiang et al. (2019) demonstrated prediction of 713 

xerostomia induced by the irradiation of the salivary glands in head-and-neck cancer patients using a 714 

ridge logistic regression model directly dealing with the local dose delivered to each voxel of the 715 

organ at risk. The framework was naturally able to include non-dosimetric predictors in the NTCP 716 

model. 717 

Palma et al. (2019a) established a new formalism, called PACE (Probabilistic Atlas for normal tissue 718 

Complication Estimation in radiation therapy), which incorporates regional dose information coming 719 
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from regression performed at the voxel-wise with clinical risk factors. PACE builds upon the LKB 720 

model and substitutes the generalized equivalent uniform dose (EUD) with a weighted combination 721 

of risks as calculated by regression at the voxel level, using confidence intervals for predicted risks as 722 

weights (thus giving more weight to more certain predictions). 723 

5.3 Spatial parameterisation of dose distributions 724 

5.3.1 Description 725 

Attempts to reduce the number of features, reduce collinearity and generalise models from voxel-726 

wise analyses can be made by parameterising the dose distribution. For analyses restricted to 727 

specific organs, this will typically involve functional parameterisation of DSMs and organ-constrained 728 

DVMs, with or without registration to a template geometry. The resulting parameters can then 729 

become co-variates in regression models or supervised machine learning models. More widespread 730 

dose distributions can be parameterised using techniques borrowed from imaging analytics – 731 

namely, the supervised derivation of specific feature classes (“dosiomics” (Liang et al., 2019)). 732 

Unsupervised classification of outcome based on the dose distribution can also be attempted with 733 

convolutional neural networks, with or without the inclusion of anatomical and functional imaging 734 

information. 735 

5.3.2 Examples 736 

Parameterisation of 2D dose 737 

The process of derivation of parameters for geometric descriptors from a DSM is illustrated in Figure 738 

2, particularly in the context of investigating rectal complications due to prostate radiotherapy. 739 

Concentric isodoses on the rectal wall from prostate radiotherapy can be thresholded systematically 740 

at different doses and fitted with an ellipse. Parameterised geometrical features can then be 741 

calculated (Buettner et al., 2009b). 742 

Previous studies on rectal toxicity following prostate radiotherapy indicate that spatial dose metrics 743 

such as lateral extent of dose around the circumference of the rectum, longitudinal extent and 744 

eccentricity derived from rectal dose surface maps (DSM), are related to toxicities including rectal 745 

bleeding and loose stools (Buettner et al., 2009b; Moulton et al., 2017). Interestingly, a recent test of 746 

this approach failed to demonstrate any improvement over DVH-based prediction of rectal toxicity 747 

(Wilkins et al., 2020). This result may be confounded by the differences between planned and 748 

delivered dose distributions (see Section 3.1.3), with Shelley et al. (2017) finding parameters derived 749 
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from DSMs for accumulated dose being more predictive than those from planned dose, as also 750 

found by Casares-Magaz et al. (2019) at the pixel-level. 751 

Casares-Magaz et al. (2017) demonstrated that parameterised DSMs performed slightly better than 752 

DSHs when predicting rectal toxicity and produced results for more endpoints by quantifying the 753 

dose when a DSM was subdivided to a 3x3 matrix. Vanneste et al. (2018) used DSMs to evaluate the 754 

effect of hydrogel rectal spacers on dose to the rectum for prostate radiotherapy. 755 

Although most published data relating to parameterised rectal DSMs is from patients who received 756 

prostate radiotherapy, Chen et al. (2018) detail the use of DSM to relate the dose from both external 757 

beam and brachytherapy for a cohort of cervix patients. The two dose distributions were non-rigidly 758 

registered, and a rectal DSM created from the summed dose distribution. Both volumetric and 759 

texture metrics were calculated, and principal component analysis used to provide inputs to a 760 

support vector machine-based model. Area and texture parameters were found to be important and 761 

to have an improved AUC compared to the standard Groupe Européen de Curiethérapie/European 762 

Society for Radiotherapy (GEC-ESTRO) model. 763 

Parameterisation of 3D dose 764 

For a solid structure such as the parotid it is possible to define metrics to quantify the relative 3D 765 

spatial distribution of dose to the whole organ.  Buettner et al. (2012b) used 3D spatial invariant 766 

moments to characterise the morphology of the dose distribution to the parotid in terms of centre 767 

of mass, spread and skewness.  They showed that minimising the dose to cranial and lateral regions 768 

of the parotid gland would decrease the incidence of xerostomia.  The model containing spatial 769 

metrics had a significantly-improved performance compared to the standard predictive of model of 770 

mean dose. 3D moments were also used in a comparison of the conventional oral mucosa outline 771 

and a novel segmentation to predict acute mucositis (Dean et al., 2016).  Dose distributions to the 772 

two organ-as-risk (OAR) structures were calculated and used as inputs to both penalised logistic 773 

regression and random forest models. In this example, using the novel segmentation and spatial 774 

metrics did not improve model performance compared to a model built on fractional dose-volume 775 

data for the conventional structure. (Dean et al., 2018) studied acute dysphagia using moments and 776 

dose–volume-length and -circumference data for the pharyngeal mucosa. They demonstrated that 777 

although the length and circumference that received over 1 Gy per fraction were shown to be 778 

important, a penalised logistic regression NTCP model trained purely on dose-volume data 779 

performed equally well on internal validation and was superior when applied to an external 780 

validation cohort. 781 
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Supervised broad spatial descriptors 782 

The papers described so far have used a variety of bespoke methods to parameterise the spatial 783 

distribution of dose.  However, synergy with the field of radiomics allows spatial dose distributions 784 

to be characterised by a vast array of standardised metrics (Zwanenburg et al., 2020). Here the 3D 785 

radiotherapy dose distribution can be characterised in full with or without reference to structure 786 

segmentation. Radiomic features from patient images can be integrated to derive models predictive 787 

of complication (Talamonti et al., 2019). 788 

One study which assessed this concept and compared predictions to previous work is described by 789 

Gabryś et al. (2018).  This study compared models to predict xerostomia starting with a standard 790 

model based on mean dose and parotid-specific spatial metrics described above (Buettner et al., 791 

2012b).  Spatial descriptors were extended for the parotid gland to consider entropy along with 792 

dosiomic descriptors of DVH shape and general dosiomic features describing the gradient of the 793 

entire 3D dose distribution. The manuscript describes comparisons of many models including 794 

conventional statistical and machine learning approaches.  Additionally, feature selection and class 795 

balance approaches were compared. Overall the strongest features identified were parotid gland 796 

volume eccentricity and the spread of the contralateral parotid dose distribution.  The contralateral 797 

dose gradient of the 3D dose distribution (right to left) was also identified on univariate analysis but 798 

did not feature strongly in the final multivariate analysis. Similarly, Lee et al. (2020) informed 799 

machine learning algorithms with combinations of dose-volume, radiomics and dosiomics features, 800 

together with clinical co-variates. Resulting predictive models of weight loss in lung cancer 801 

radiotherapy with greater accuracy than models based on dose-volume and clinical co-variates 802 

alone, though still with a relatively modest AUC of 0.71. 803 

Liang et al. (2019) compared conventional dosimetric models with models derived from dosiomic 804 

features to predict radiation pneumonitis. It was demonstrated that a multivariate NTCP model 805 

including the Grey Level Co-occurence Matrix (GLCM) contrast and Grey Level Run Length Matrix 806 

(GLRLM) (which has similarities to lateral and longitudinal extent described previously) 807 

outperformed models based on dose-volume parameters and conventional NTCP model parameters. 808 

Rossi et al. (2018) included texture analysis features in a study to predict genitourinary and 809 

gastrointestinal toxicity following prostate radiotherapy.  The 3D texture analysis features for the 810 

rectum and bladder were derived from standard radiomics and used alongside non-treatment 811 

related features (such as age, staging and comorbidities) and DVH-based metrics to build 812 

multivariate logistic regression NTCP models.  It was demonstrated that for gastrointestinal 813 

endpoints inclusion of texture features improved the AUC compared to models containing only 814 
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clinical and DVH-based features.  Results for genitourinary toxicity were generally not improved by 815 

any dosimetric features. 816 

Unsupervised broad spatial descriptors 817 

An alternative to utilising crafted dosiomic descriptors of broad distributions is to apply neural 818 

networks. For example, Buettner et al. (2009a) used DSMs derived by the rectum unfolding as input 819 

for a rectal bleeding model based on locally-connected neural networks able to account for the 820 

topology of the dose distribution. The higher performance achieved by such models, compared to 821 

the more traditional fully-connected conventional neural nets based on DSHs, suggested that 822 

morphological aspects of the dose distributions play a relevant role in the development of radiation 823 

induced morbidity. Zhen et al. (2017) utilised a convolutional neural network (CNN) to distinguish 824 

rectal DSMs indicative of toxicity, incorporating transfer learning to compensate limited patient 825 

data. 826 

CNNs can be used to extract unspecified higher-level features of 3D dose distributions which can 827 

directly classify the distributions as likely to lead to complications, and studies have begun to emerge 828 

demonstrating this with varying combinations of ancillary information. Ibragimov et al (Ibragimov et 829 

al., 2018; Ibragimov et al., 2019) utilised CNNs incorporating 3D dose information, supplemented 830 

with transfer learning from previous abdominal imaging, for hepatobiliary toxicity prediction 831 

following stereotactic liver radiotherapy. Incorporating the CNNs with more conventional features 832 

including dose-volume parameters, dose-fractionation and clinical co-variates increased the model 833 

predictions (increase in AUC from 0.79 to 0.85). In a strategy which preferences identifying likely 834 

toxicity (i.e., minimising false negatives), the CNN approach halved the number of false positive 835 

predictions relative to DVH-based prediction. Ibragimov et al were able to extend this approach to a 836 

structure-agnostic spatial assessment to map anatomical regions where dose variations associate 837 

with toxicity. This revealed regions associated with the hepatobiliary tract and liver as specific focus 838 

regions to guide dose planning (Ibragimov et al., 2020). 839 

In a progression from the dosiomics approach, Liang et al. (2020) utilised CNNs incorporating the 3D 840 

dose distribution for predicting pneumonitis following volumetric-modulated radiotherapy. A 841 

superior prediction (AUC 0.842) was achieved relative to regression models incorporating 842 

dosimetric, NTCP and dosiomics features (AUC < 0.782). Class activation maps were used to identify 843 

lung regions associated with increased or reduced high-grade toxicity. 844 

In head and neck cancer radiotherapy, Men et al. (2019) used CNNs which incorporated one or more 845 

of the planning CT images, planned 3D dose and segmented anatomy, for prediction of grade ≥ 2 846 
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xerostomia, and compared prediction against regression models incorporating dose with or without 847 

clinical co-variates. The CNNs provided greater accuracy (AUC < 0.84), compared to the regression 848 

models, for all combinations of 3D information except for when 3D dose was removed. 849 

5.4 Spatial clustering 850 

5.4.1 Description 851 

Thames et al. (2004) proposed that hot spots distributed as small areas throughout an organ at risk 852 

are likely to cause a different response than if the highest dose covers one contiguous region. This 853 

difference would translate through to a difference in toxicity prediction using NTCP models which 854 

describe the clustering of damage to FSUs. This concept of spatial dose clusters forms bridges 855 

between voxel-wise assessment, definition of sub-regions and spatial analysis based on spatial 856 

parameterisation. The cluster models highlight the relevance of including both the number and the 857 

spatial location of radiation-sterilized FSUs in a comprehensive NTCP model (Thames et al., 2004). In 858 

a general sense, these models suggest that a volume receiving at least a given dose value is more 859 

likely associated with a radiation-induced toxicity if it corresponds to a connected spatial cluster 860 

rather than if spatially scattered (Deasy and El Naqa, 2008). 861 

5.4.2 Examples 862 

Tucker et al demonstrated a practical application of the method described by Thames using rectal 863 

DSMs (Tucker et al., 2006b).  Nine case-control pairs with very similar absolute DSH but with and 864 

without grade 2 rectal bleeding were used to fit a local-effect cluster model. The logistic function 865 

describing the probability of damage for each voxel in each DSM had 2 unknown parameters. The 866 

model was fitted to maximise the relationship between maximum cluster size (considering 2-867 

connectivity) between the cases and controls. Although the cohort was very small, the authors were 868 

able to find parameter values which separated cases from controls and inferred that dose 869 

distributions in the region of 30 Gy were important for the prediction of rectal bleeding. 870 

Chao et al (Chao et al., 2020; Chao et al., 2018) also developed spatial cluster metrics based on the 871 

method proposed by Thames et al. They demonstrated that maximum cluster size for the superior 5 872 

cm of the oesophagus was not related to conventional dose-volume and NTCP metrics and inferred 873 

that spatial distributions were not represented by conventional dose metrics. They applied a cluster-874 

based approach to model xerostomia (Chao et al., 2019). The metrics included mean cluster size and 875 

largest cluster size normalised to the volume of the gland which were incorporated into LKB models. 876 

Although no conventional (DVH-based) LKB model was derived from the cohort a comparison was 877 
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made with published models utilising mean dose (n=1). TD50 was higher for the thresholded cluster 878 

model at just below 40 Gy compared to 26 Gy from the literature. 879 

The concept of spatial cluster models can be expanded using percolation theory, which has origins in 880 

statistical physics and considers how clusters are connected. Originally proposed at a similar time to 881 

Thames’ (Thames et al., 2004) work on cluster models, Myers and Niemierko (2004) presented the 882 

use of percolation theory for predicting NTCP from clusters. Gale et al. (2017) describe how the 883 

concept can be applied to geometric arrangements of FSUs to predict toxicity for both parallel and 884 

serial organs. 885 

Several studies considered the clusters of organ voxel 𝐿𝑝
− whose dose-toxicity association exceeded 886 

some statistical significance threshold 𝑝. They showed that the mean dose in such clusters could be 887 

a more powerful predictor of toxicity than traditional metrics associated to the organ considered as 888 

a whole structure. Hence, an NTCP model can be proficiently trained as a logistic regression of the 889 

patients’ outcomes as a function of simple dose metrics in the cluster 𝐿𝑝
− propagated from the 890 

common coordinate system of the voxel-wise analysis (see Section 5.2) to each individual native 891 

space. In this way, sub-regions have been identified in different locations such as the lungs (Palma et 892 

al., 2016), the heart (McWilliam et al., 2017), head and neck (Monti et al., 2017), the rectum (Acosta 893 

et al., 2013; Drean et al., 2016b) and the bladder(Mylona et al., 2019). 894 

6 Ongoing Endeavours 895 

6.1 Model development and validation 896 

As for other approaches to radiotherapy complication modelling, a major issue is represented by the 897 

quantity and quality of data available to researchers. Relative to DVH-based models, spatial methods 898 

require more comprehensive data (see Section 3). Despite the abundance of relevant data 899 

generated continuously around the world and the technical capability to collect it, and despite 900 

decades of pleas (e.g. (Deasy et al., 2010)), remarkably little data has become available to progress 901 

this type of analysis. Based on legislative constraints (i.e., ownership, privacy and patient consent 902 

needs) it is likely, at least in the next few years, that data will prevalently come from clinical trials 903 

where their recovery, storage and access are already planned. 904 

The implementation of innovative trials including large cohorts of clinical data (Baumann et al., 905 

2016) could rapidly change the landscape. Such trials could multiply the opportunities for developing 906 

models, provide opportunities for validating models, and enable the merging of different large 907 

cohorts to increase feature diversity. A specific issue may concern the possibility of introducing 908 
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unpredictable biases if pooling together cohorts of patients treated, for instance, at different dose 909 

levels with largely different spatial locations of the high-dose volumes. Uncontrolled voxel-wise 910 

comparisons could lead to “false” spatial effects due, for instance, to the higher incidence or 911 

prevalence of side effects in cohorts delivering systematically higher doses and/or treating larger 912 

volumes. Ideally, the availability of large cohorts should be accompanied by a proper grouping of 913 

patients to make the different patient groups comparable. 914 

6.2 Model generalisation and extension 915 

Apart from the critical issues related to generalizability of NTCP models such as technical, temporal 916 

or geographical variabilities (van der Schaaf et al., 2015), a few specific points deserve discussion. 917 

The interplay between the spatial patterns of a certain modality/technique and the inter-individual 918 

variability is a challenging issue: well driven studies may help in quantifying the real impact of a 919 

modality with respect to another. The generalizability of models across different modalities need 920 

high-quality studies and extensive validation. One confounding problem is that the patterns of dose 921 

delivered today already reflect the existing knowledge based on dose volume metrics. As these 922 

models mature, there is the potential for radiobiological predictions that consider the spatial pattern 923 

of dose that can drive the optimization of treatment plans towards more favourable dose patterns 924 

beyond that of the traditional dose-volume metrics. 925 

Another important field of investigation regarding model generalisation is represented by the 926 

challenge of combined therapies. Data from studies testing radiotherapy-only vs combined therapy 927 

(for instance chemotherapy, immunotherapy) could help in assessing spatial dosimetry correlations 928 

specifically linked to the action, for instance, of a drug and making possible local dose corrections 929 

incorporating its effect. Similarly, highly non-conventional dose and dose-rate distributions, such as 930 

from ultra-fast irradiation (Esplen et al., 2020) or molecular radiotherapy (Stokke et al., 2017) will 931 

offer new data sources with which to generalise derived models. 932 

6.3 Including intra and inter-fraction changes 933 

In many situations, both intra and inter-fraction anatomical and geometrical changes may have a 934 

significant impact in modifying the delivered dose with respect to the planned one. In particular, the 935 

prevalence of systematic over random changes may potentially blur (or even hide) the correlation 936 

with toxicities; consequently, investigations quantifying these effects are needed. As an example, 937 

the impact of variable bladder filling on bladder DSM can be assessed from daily cone-beam CT 938 

imaging: one recent study showed a relatively small impact of variable filling on bladder DSM during 939 

image-guided radiotherapy of prostate cancer (Palorini et al., 2016a). A statistical approach based on 940 
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Gaussian-like variations of local doses likely works in several situations but is expected to fail in 941 

others, such as when the phenomenon itself is prevalently non-Gaussian. Shelley et al. (2017) 942 

demonstrated superiority in toxicity prediction from rectal DSMs formed from estimated delivered 943 

rather than planned dose. 944 

When the toxicity rate is small (say, <10%), those few patients with large systematic changes 945 

resulting in a relevant increase of dose to proximal OARs may jeopardise results. Greater efforts may 946 

especially be expected in trying to incorporate individually-assessed anatomical modifications in 947 

stereotactic body radiation therapy (SBRT) (Magallon-Baro et al., 2019), looking to the 3D dose-of-948 

the-day and/or to the accumulated dose instead of the planned dose distribution. SBRT is also prone 949 

to be associated with larger effects due to both the reduced margins and the high dose per fraction, 950 

dealing with an enhanced impact on critical regions even with small anatomical/geometrical 951 

changes. Relevant effects due to systematic deviations between the planned and the delivered dose 952 

may occur even in unexpected situations and the availability of in-room imaging information is of 953 

paramount importance to identify them. The recently reported correlation between shift toward the 954 

heart of field isocentre during delivery and poorer survival in lung cancer patients treated with SBRT 955 

is a highly paradigmatic example (Johnson-Hart et al., 2018). 956 

Similarly, intra-fraction changes are known to significantly affect the delivered dose in specific sites. 957 

Breathing-induced motion can be highly anisotropic and variable between patients in the different 958 

thoracic and abdominal areas. Although, to our knowledge, no studies have reported on the impact 959 

of intra-fraction motion on spatial models, more relevant research in this area is needed. 960 

6.4 Potential applications of artificial intelligence 961 

The rise of deep learning approaches for image segmentation, pattern recognition and patient 962 

classification adds many opportunities to extend this field (El Naqa and Das, 2020). Ready access to 963 

advanced deep learning tools is making this kind of analysis more popular (with examples given in 964 

Section 5.3). A merit of these methods is the opportunity to consider features mostly “hidden” to 965 

the human eye and to find complex correlations in a multi-layer approach. On the other hand, this 966 

same merit may also constitute a disadvantage from the point of view of interpretability of the 967 

results and consequent confidence in clinically applying them; in fact, any attempt to maintain some 968 

causality to explain any correlation is largely lost. A major issue regarding artificial intelligence 969 

models is their intrinsically higher difficulty in being validated. Valdes and Interian (2018) provide a 970 

timely summary of the potential for mis-interpretation in such complex approaches. Keeping the 971 

models as simple and interpretable as possible should be considered valuable: the benefit of the 972 
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addition of deep learning based spatial signatures should always be demonstrated and quantified in 973 

validation cohorts.  974 

6.5 Understanding pathophysiology 975 

An intriguing and relevant field of investigation related to NTCP models based on 3D/2D similarity 976 

comparisons concerns the meaning of the resulting regions whose dose differences are predictive of 977 

toxicity. As already underlined, the information resulting from these analyses cannot be 978 

automatically associated to a specific cause, being intrinsically a phenomenological finding (i.e.: 979 

simply reflecting some statistical correlation). Moreover, the assessment of specific 980 

volumes/surfaces within the body/OARs apparently more “sensitive” to radiation can be biased by 981 

unknown factors or just due to geometrical or technical issues. Any hypothetical causality has to be 982 

considered as a strength of such models, in case the found results are consistent with known 983 

physiological processes/functionalities. As examples, identification of the bladder trigone as a 984 

structure likely to be highly sensitive (Rancati et al., 2017; Henderson et al., 2018; Yahya et al., 2017) 985 

is consistent with the involvement of the trigone in the physiology of urination, and the physiological 986 

connection between the heart and lungs (Ghobadi et al., 2012) adds validity to correlation of heart 987 

dose with lung toxicity (Palma et al., 2019c; Palma et al., 2019d).  Any hypothesis generated by such 988 

models would deserve to be tested in pre-clinical and clinical studies. Animal models may be well 989 

used to verify the existence of spatial effects. Conversely, pre-clinical research may first explain 990 

specific patterns of toxicity that may be confirmed later by studies dealing with dose similarity 991 

comparison.  An interesting example is the evidence of spatial dosimetry effects within parotids 992 

impacting xerostomia, due to the sparing (or not) of stem cells contained in the ductal region. Such 993 

observations have been reported in animal experiments (van Luijk et al., 2015) and confirmed by a 994 

3D dose comparison investigation on data from a large patient cohort treated for head-neck cancer 995 

(Jiang et al., 2019). 996 

6.6 Model application 997 

Although examples of practical applications of NTCP models incorporating spatial dosimetric 998 

features are rare, it is likely that a few of the most robust results will increasingly influence planning 999 

optimization. When a causal relationship between a spatial effect and the pattern of the 1000 

corresponding side effects is apparent, changes may be easily implemented in clinical practice. Two 1001 

examples are the previously-cited cases of the bladder trigone for prostate cancer and the ductal 1002 

region of the parotid glands. The latter, cited above as originating in pre-clinical studies, is being 1003 

assessed within a clinical trial (van Luijk et al., 2015), which is probably the first example of a trial 1004 
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specifically looking to the possibility to exploit information regarding the spatial dose distribution 1005 

within an OAR to reduce toxicity. 1006 

A likely progression will be the incorporation of spatial models into tools to evaluate the planned 3D 1007 

dose distribution and for generating NTCP and risk estimates. This could be accomplished, for 1008 

instance, within clinical trials or as an additional tool for plan quality assurance, in complement with 1009 

conventional DVH-based EUD/NTCP estimates. The propagation of identified sensitive sub-regions to 1010 

an individual would facilitate toxicity-minimised planning, without the need to modify current 1011 

optimisation methods (Acosta and De Crevoisier, 2019). This has been demonstrated by Lafond et al. 1012 

(2020). A subsequent natural extension would be the possibility to implement these models directly 1013 

into the optimization engine. However, the general adoption of spatial models is greatly inhibited by 1014 

the prior evolution of the planning process and optimisation engines in the context of dose-volume 1015 

approaches. For spatial models that cannot be formulated via dose-volume terminology, research 1016 

planning systems are required to enable inclusion of the relevant predicted complication models in 1017 

optimisation constraints and objectives or via scripting capabilities of commercial planning systems 1018 

(e.g. (Voutilainen, 2016)). With the growth of artificial intelligence based planning systems, there is 1019 

considerable scope for building automated planning algorithms that directly incorporate spatial 1020 

models to augment or replace dose-volume based optimisation (Wang et al., 2019). 1021 

Intriguingly, for models which are agnostic to segmented structures, plan optimisation could in 1022 

principle be feasible without the incorporation of dose-volume data for OARs. This would permit a 1023 

segmentation-free plan optimization. In the same direction, this kind of approach could also find 1024 

applications in overall treatment optimization, directly considering patient outcome as the goal and 1025 

incorporating possible “systemic” effects due to the irradiation of multiple organs and to the 1026 

interaction with the immune system (for instance through the implicit consideration of the 1027 

incidental irradiation of nodes and of the vascular system). Similarly, one could hypothesize 1028 

applications in combined treatments to include the effect of modifying agents at the voxel-level, and 1029 

to “virtual human” simulation in the optimisation of patient-specific treatments. 1030 

7 Conclusion 1031 

The field reviewed in in this paper is still in its infancy. However, models which consider the spatial 1032 

characteristics of radiotherapy dose will permit the expansion, or at least fine-graining, of the 1033 

solution space for radiotherapy treatment planning and improving the prediction of treatment 1034 

complications. The potential for large-scale relevant applications in treatment personalization, plan 1035 
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optimization and evaluation are more than promising. Rapid developments and extensive 1036 

applications are expected in the coming years. 1037 
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