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• Claudio Fiorino 12 1 Abstract 1 For decades, dose-volume information for segmented anatomy has provided the essential data for 2 correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information 3 has formed the basis for modelling those associations via normal tissue complication (NTCP) models 4 and for driving treatment planning. Limitations to this approach have been identified. Many studies 5 have emerged demonstrating that the incorporation of information describing the spatial nature of 6 the dose distribution, and potentially its correlation with anatomy, can provide more robust 7 associations with toxicity and seed more general NTCP models. Such approaches are culminating in 8 the application of computationally intensive processes such as machine learning and the application 9 of neural networks. The opportunities these approaches have for individualising treatment, 10 predicting toxicity and expanding the solution space for radiation therapy are substantial and have 11 clearly widespread and disruptive potential. Impediments to reaching that potential include issues 12 associated with data collection, model generalisation and validation. 13 This review examines the role of spatial models of complication and summarises relevant published 14 studies. Sources of data for these studies, appropriate statistical methodology frameworks for 15 processing spatial dose information and extracting relevant features are described. Spatial 16 complication modelling is consolidated as a pathway to guiding future developments towards 17 effective, complication-free radiotherapy treatment. In radiotherapy, the risk of treatment-induced toxicity is the limiting factor for dose escalation in 23 pursuit of an increase in local control. The prediction of radio-induced side-effects guides the 24 physician and the patient between treatment alternatives and enables treatment optimisation by 25 integrating predictive models within computerised planning. 26

Radio-induced toxicity is classically linked to the dose-volume relationship, patient clinical 27 parameters (such as medical history and adjuvant treatments) and intrinsic radiosensitivity. With 28 steady increases in computational capabilities and increased efforts to gather and analyse relevant 29 data [START_REF] Deasy | Improving normal tissue complication probability models: the need to adopt a "data-1180 pooling[END_REF], exploiting information from more available data with integrative 30 approaches is now feasible. 31

The dose-volume toxicity relationship has been widely investigated. In 2010, the Quantitative 32 Analysis of Normal Tissue Effects in the Clinic (QUANTEC) review summarized the three-dimensional 33 dose/volume/outcome data to update and refine the related normal tissue tolerance guidelines 34 [START_REF] Marks | Use of normal tissue complication probability models in the clinic[END_REF], initially provided by [START_REF] Emami | Tolerance of normal tissue to therapeutic irradiation[END_REF]. Dose-volume histogram (DVH) based 35 normal tissue complication probability (NTCP) models attempt to condense the dose-volume 36 information into a number that expresses the risk of a certain toxicity. Most NTCP models are 37 phenomenological and have the advantage of being characterized by few parameters (typically  3). 38

Different approaches have been historically developed to model NTCP, with the Burman (LKB) model being one of the first and most commonly employed [START_REF] Lyman | Complication Probability as Assessed from Dose-Volume[END_REF]. Even if 40 prediction of toxicity and treatment plan evaluation with the NTCP-based models is still common 41 practice, these kinds of models present limitations reducing their prediction capability. DVHs reduce 42 the 3D (or even 4D) dose distribution within an organ to a unidimensional and discrete 43 representation of the dose-volume relationship, inhibiting the ability of models to account for the 44 actual underlying complexity. 45 Spatial NTCP models have sought to geometrically represent the 3D dose distribution. This allows 46 information on the pattern as well as the amount of dose to be characterised. Recent spatial NTCP 47 models have sought to geometrically represent the 3D dose distribution in a single coordinate 48 system via a spatial normalisation for a joint analysis of dose at the lowest sampling scale (pixel and 49 voxel levels, referred to from here as "pixel-wise" in 2D and "voxel-wise" in 3D) (e.g., (Marcello et 50 al., 2020a;Mylona et al., 2020b;Palma et al., 2020a;[START_REF] Jiang | Machine Learning Methods Uncover Radiomorphologic Dose 1316 Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck[END_REF]Palma et al., 2019b)). These 51 low spatial-scale methodologies have allowed the unravelling of the local dose-effect relationship 52 across a population at each single voxel in a common coordinate system in different organs. Models 53 Page 6 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1

A c c e p t e d M a n u s c r i p t can also be created by defining and analysing spatial features of the 3D dose distribution (e.g. 54 Buettner et al. (2012b)) or abstractions such as the dose surface map (DSM) (e.g. Heemsbergen et al. 55 (2020)). These spatial methods, and others described below, have been pursued to improve 56 prediction and classification. Such models may also facilitate identification of the underlying 57 aetiology of radio-induced injury and be used to improve patient-specific treatment planning. They 58 are likely to reduce toxicity (Drean et al., 2016b;[START_REF] Lafond | Planning With Patient-Specific Rectal Sub-Region Constraints 1344 Decreases Probability of Toxicity in Prostate[END_REF], and may one day inform or 59 help validate in silico models of treatment toxicity (e.g. [START_REF] Cicchetti | In silico model of the early effects of 1149 radiation therapy on the microcirculation and the surrounding tissues[END_REF]). 60

The goal of this review is to describe these recent spatial dose-effect investigations and NTCP 61 models and provide some guidance around their development. 62 2 Strategies for characterising dose distributions 63

Dose-volume approaches 64

The concept of the dose-volume relationship of a defined region of interest became commonplace 65 when both 3D dose computation and 3D segmentation ("contouring") of regions became practical. 66

The cumulative DVH synthesises the dose vs volume relationship as a function representing the 67 percentage of volume that receives at least a certain dose. 68

2.1.1

The advantages of dose-volume approaches 69

The primary advantage of the dose-volume approach is linked to the wealth of knowledge obtained 70 through prior studies of radiation and the resounding clinical success of such approaches. Today's 71 radiation therapy is driven by dose-volume constraints based on the results of published studies and 72 meta-analyses. So much so, that today's dose distributions contain little information outside the 73 bounds of these dose volume parameters, as they are controlled for in clinical practice. 74 Dose-volume metrics are easily understood and are based on the natural compartmentalisation of 75 the body into organs. Reporting of them can be reduced to a table of numeric entries representing 76 the quality of the complex 3D treatment plan. To even further simplify their presentations, software 77 applications have reduced them to colour codes to indicate alerts when a plan may violate one of 78 the treatment goals. In busy clinics, this facilitates rapid evaluation. Dose-volume metrics are also 79 convenient when defining the goals for optimization in inverse treatment planning. 80

Radiobiological models have been developed to bridge the gap between the physical dose-based 81 objectives to drive treatment planning and the clinical dose goals reflecting the toxicity risks. Those 82 commonly studied, such as NTCP, tumour control probability (TCP) and the complication-free 83
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A c c e p t e d M a n u s c r i p t tumour control probability (P+) [START_REF] Källman | An algorithm for maximizing the probability of complication-1322 free tumour control in radiation therapy[END_REF], have typically been designed to operate on 84 DVH information. 85

2.1.2

The disadvantages of dose-volume approaches 86 Fundamentally the DVH assumes that every sub-volume of the region is of equal importance to the 87 function of that tissue and is equally sensitive to radiation dose. Realistically, the segmented regions 88 in radiotherapy are typically bulk anatomy and do not reflect the microstructure of anatomy that 89 may be impacted by radiation. Therefore, the DVH may be too course of a feature to adequately 90 model the impact radiation may have on the anatomy. 91

The assumption that each element of tissue is equally important to the NTCP function and equally 92 sensitive to radiation dose is simply not true for many anatomical regions typically segmented in 93 treatment planning. For example, the parotid glands consist of acinar cells producing saliva and a 94 ductal region that carries the saliva to the oral cavity. Similarly, a kidney is made up of several cell 95 types and structures. In other cases, such as the oesophagus and rectum, organ structure consists of 96 a mucosal layer surrounded by muscle tissue. These structures may have different risks when the 97 dose is high to the entire circumference of the structure versus when it has the same volume of dose 98 oriented longitudinally along the structure. Understanding the true causal relationships between 99 radiation dose and normal tissue dysfunction is limited with dose volume metrics that are naive to 100 the detailed components of the anatomy. 101

The spinal cord has a complex spatial arrangement of functional sub-units (FSUs -compartments 102 that accomplish part of an organ's function), and subsequently a complex inter-relationship with 103 overall organ function. Precise pre-clinical experiments performed by [START_REF] Bijl | Unexpected 1089 changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions[END_REF] identified 104 large variations in dose-volume based predictors of paralysis in rats when the spatial patterns of 105 irradiation were changed. Conventionally, simple maximum cord dose has been used to predict 106 subsequent complications [START_REF] Kirkpatrick | Radiation Dose–Volume Effects in 1334 the[END_REF]. However, the inhomogeneity in irradiation now 107 afforded with stereotactic spinal radiosurgery exceeds the predictive capability of dose-volume 108 analysis [START_REF] Medin | Spinal cord tolerance in the age of spinal radiosurgery: lessons from 1398 preclinical studies[END_REF]. Similarly, models of lung complication had focused on their 109 parallel-like nature and mean lung dose (MLD) had conventionally been used as a principal predictor. 110 However, evidence for more localised dose-response in humans emerged nearly two decades ago 111 [START_REF] Seppenwoolde | Regional 1565 differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer[END_REF], following extensive animal experiments (as well reviewed by Voshart et 112 al. (2021)). 113

Further, analysis has traditionally been limited to dose-volume metrics for single organs. Many 114 human functions involve multiple components of anatomy. Swallowing, for example involves many 115
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A c c e p t e d M a n u s c r i p t muscles in the head and neck region. These muscles may be able to compensate for one another and 116 the impact of a dose pattern across the set of muscles and its impact on swallowing can be quite 117 complicated. In many cases, a significant portion of the anatomy is not contoured at all, and the 118 dose-volume metrics can only be computed for contoured regions. Contouring with high spatial 119 detail in routine workflow remains burdensome. Similarly, in a shift of spatial focus for dose-toxicity 120 association, the impact on lung toxicity from cardiac irradiation has been identified (Tucker et al., 121 2014;[START_REF] Van Luijk | Radiation damage to the heart enhances early radiation-induced lung function loss[END_REF]. 122

Multiple spatial dose distributions (an essentially infinite number) will yield the same or similar DVH. 123 Dependence on a dose-volume approach requires an assumption that all those distributions will lead 124 to the same toxicity -the problem of degeneracy. Conversely, dose-volume derived NTCP models 125 from studies involving specific irradiation techniques will have been derived with minimal variation 126 in DVH between patients. Extrapolation of DVH and NTCP metrics beyond the specific context in 127 which they were derived is known to be dangerous. Due to this limitation, as well as many other 128 sources of variations between cohorts, DVH-based complication models derived for one treatment 129 approach tend not to be applicable to alternative irradiation strategies in the same sites (Troeller et 130 al., 2015). 131

Approaches that preserve spatial information 132

To overcome the limitation of whole organ DVHs, recent approaches have investigated the existence 133 of spatial signatures of dose distributions across dimensionalities and at diverse spatial scales. Here 134 we describe the processing of treatment planning data (Figure 1) required to achieve extraction of 135 features describing spatial distributions at the various spatial scales and development of subsequent 136 toxicity models (Figure 2). Practical applications of these features and models are described in 137 Section 5. 138 

1D precision dose-volume approaches 149

The simplest approach is to identify a more precise sub-region of the organ where dosimetry and 150 DVH metrics are most correlated with outcome. Improvements in NTCP models, and evidence of 151 correlations between local dose and side-effects, have been provided by undertaking DVH analysis 152 (or analysis with related histogram information) at spatial scales below the organ level. Partitioning 153 the organs for computing sub-region DVHs for example has demonstrated a sub-anatomical 154 dependence for specific toxicities (Ebert et al., 2015b;[START_REF] Heemsbergen | Gastrointestinal 1276 toxicity and its relation to dose distributions in the anorectal region of prostate cancer 1277 patients treated with radiotherapy[END_REF]Peeters et al., 155 2006b;[START_REF] Stenmark | Dose to the inferior rectum is 1580 strongly associated with patient reported bowel quality of life after radiation therapy for 1581 prostate cancer[END_REF]. The question that may arise is whether the organ partitions are 156 anatomically-equivalent across individuals allowing DVH comparisons. If sub-region partitions 157 between patients are generated following the same geometrical criteria, then they can refer to the 158 same anatomo-physiological regions. The identification of correlative regions can be derived 159 manually (e.g. [START_REF] Gulliford | Radiotherapy dose-distribution to the perirectal fat space (PRS) is related to gastrointestinal 1261 control-related complications[END_REF]), or by identifying clusters of correlated pixels and voxels in 2D 160 and 3D representations (e.g. Drean et al. (2016b)). DVH-based features of those sub-regions can be 161 used to validate their association with complications. 162

2D surface mapping

163 Spatial considerations on the distribution of dose to an organ surface can be achieved with dose 164 surface mapping (DSM). DSMs present a virtual unfolded planar representation of the dose 165 distribution across an organ wall. Such mapping has been implemented following different strategies 166 [START_REF] Sanchez-Nieto | Biological dose surface maps: 1556 evaluation of 3D dose data for tubular organs Radioth[END_REF][START_REF] Hoogeman | Quantification of local rectal wall displacements by virtual rectum unfolding[END_REF][START_REF] Munbodh | Dosimetric and anatomic 1429 indicators of late rectal toxicity after high-dose intensity modulated radiation therapy for 1430 prostate cancer[END_REF]Tucker et al., 2006b;167 Witztum et al., 2016). A 2D image is constructed via parametric mapping from the 3D coordinate 168 system of the organ wall. The general idea is depicted with a rectal DSM in Figure 3, where a direct 169 relationship exists between the 3D cylindrical coordinates and the 2D (Ө,h) space. Thus, each pixel in 170 2D corresponds to a portion of the organ wall where the dose is mapped and propagated by 171 interpolation. Once constructed, dose surface maps can be used to undertake "pixel-wise" analysis 172 [START_REF] Yahya | Modeling 1689 Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder 1690 Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface[END_REF], or parameterised using geometric descriptors such as lateral and longitudinal 173 extent (Buettner et al., 2009b) or texture features [START_REF] Chen | Investigating rectal toxicity associated dosimetric features with deformable accumulated 1141 rectal surface dose maps for cervical cancer radiotherapy[END_REF]. 174 175 A c c e p t e d M a n u s c r i p t size of the 2D images. If the rectum was the organ to be studied (e.g. (Buettner et al., 2009a;179 Moulton et al., 2017)) a cylindrical coordinate system for building the DSM has been used. In 180 Buettner et al. (2009b) the contour was thus cut at the posterior-most position on each CT-slice and 181 unwrapped to a map of 21x21 pixels. [START_REF] Witztum | Unwrapping 3D complex hollow 1673 organs for spatial dose surface analysis[END_REF] raised some of the issues concerning 182 tortuous structures. They developed a raytracing approach to create dose surface maps for the 183 duodenum accounting for the bend in the structure, following an inner path. 184

In other hollow organs such as the bladder a similar slice-based methodology has been applied. In 185 works from Palorini et al. (2016a) and [START_REF] Yahya | Modeling 1689 Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder 1690 Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface[END_REF], 1 mm-resolution DSMs were generated 186 (cranial-caudal direction), by virtually cutting bladder contours at the points intersecting the sagittal 187 plane passing through its centre-of-mass. Because of the large inter-individual bladder variability 188 some issues arise when having large and small bladders to map together for population analysis or 189 where some parts of the bladder are not equally mapped. In Mylona et al. (2020a) this was 190 addressed with an anisotropic vertical interpolation to the smallest bladder, aligned at the bladder 191 base. 192

3D feature extraction 193

It is feasible to reduce the complex 3D voxel-level dose information to a smaller number of features 194 via an appropriate spatial parameterisation. One such approach is to describe the spatial distribution 195 within an organ via 3D moments (Buettner et al., 2012b;[START_REF] Dean | Normal tissue complication probability (NTCP) modelling using 1174 spatial dose metrics and machine learning methods for severe acute oral mucositis resulting 1175 from head and neck radiotherapy Radioth[END_REF]. Alternatively,borrowing 196 from the world of imaging analytics, supervised descriptions can be obtained via spatial texture 197 features ("dosiomics" [START_REF] Liang | Dosiomics: Extracting 1355 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis 1356[END_REF][START_REF] Rossi | Texture analysis of 3D dose distributions for predictive modelling of toxicity rates in 1549 radiotherapy[END_REF], "dosomics" [START_REF] Placidi | Stability of dosomics 1515 features extraction on grid resolution and algorithm for radiotherapy dose calculation[END_REF] or 198 "radiomorphology" [START_REF] Jiang | Machine Learning Methods Uncover Radiomorphologic Dose 1316 Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck[END_REF]), or unsupervised learning can be employed via neural 199 networks. 200

3D volume mapping

201 At a fine scale, dose-outcome correlations can be investigated at the voxel level. For voxel-wise 202 comparisons to be meaningful, anatomical correspondence across the individuals must be ensured. 203

This pre-processing step is referred to as "spatial normalisation", whose goal is to define geometrical 204 transformations aimed at registering and resampling inter-individual anatomies and doses into a 205 common coordinate system as depicted in Figure 1 (e.g. [START_REF] Monti | A novel 1416 framework for spatial normalization of dose distributions in voxel-based analyses of brain 1417 irradiation outcomes[END_REF][START_REF] Acosta | Voxel-based 1059 population analysis for correlating local dose and rectal toxicity in prostate cancer 1060 radiotherapy[END_REF]206 Rigaud et al., 2019;[START_REF] Acosta | Modelling Radiotherapy Side Effects -Practical Applications for 1052 Planning Optimisation[END_REF]). This 3D-3D dose mapping to a common 207 coordinate system to create a dose-volume map (DVM) remains challenging. Such mapping may be 208 obtained via a parametric representation of the anatomy in a spherical or cylindrical coordinate 209
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A c c e p t e d M a n u s c r i p t system as in [START_REF] Chen | Multiple comparisons permutation test for 1138 image based data mining in radiotherapy[END_REF]. It may be more precisely computed through existing non-rigid 210 (deformable) registration methods [START_REF] Mcwilliam | Radiation 1396 dose to heart base linked with poorer survival in lung cancer patients[END_REF][START_REF] Monti | Inter-patient image registration algorithms to 1414 disentangle regional dose bioeffects[END_REF]Marcello et al., 211 2020a), or tailored to a particular anatomy as proposed for the rectum in Drean et al. (2016a), or for 212 the bladder in [START_REF] Mylona | Voxel-based analysis for 1444 identification of urethro-vesical subregions predicting urinary toxicity after prostate cancer 1445 radiotherapy[END_REF] using spatial descriptors. Depending on the investigated 213 anatomical site, organ-driven registration methods may be more precise than the ones based on 214 intensity levels. This is the case in [START_REF] Acosta | Voxel-based 1059 population analysis for correlating local dose and rectal toxicity in prostate cancer 1060 radiotherapy[END_REF], Drean et al. (2016a) and Mylona et al. (2019) 215 where anatomical mapping based on 3D structural models of the considered organs were proposed. 216

These approaches require, nevertheless, a precedent segmentation of some of the considered 217 structures such as the urethra [START_REF] Acosta | Multi-atlas-based segmentation of prostatic urethra from planning CT imaging to 1063 quantify dose distribution in prostate cancer radiotherapy[END_REF]. However, when inter-individual registration is to 218 new patients without identified structures or is to be structure-agnostic, image information alone 219 must be used [START_REF] Mcwilliam | Radiation 1396 dose to heart base linked with poorer survival in lung cancer patients[END_REF][START_REF] Monti | Inter-patient image registration algorithms to 1414 disentangle regional dose bioeffects[END_REF][START_REF] Abravan | Radiotherapy-Related 1049 Lymphopenia Affects Overall Survival in Patients With Lung[END_REF]. 220

The 3D spatial normalisation approach can also be used to align anatomy for derivation of DSMs, 221 especially in the case of pixel-wise analysis, or for the purpose of sub-region identification. 222 A c c e p t e d M a n u s c r i p t segmented structures and facilitates intra-and inter-individual registration. The robustness of spatial 241 models can depend significantly on the sensitivity and specificity of imaging, particularly through 242 influence on the definition of structures (e.g. [START_REF] Roach | Multi-observer contouring of male pelvic 1538 anatomy: Highly variable agreement across conventional and emerging structures of interest 1539[END_REF]). 243

Practical Considerations

Structures 244

Many of the processes for characterising spatial dose distributions presented in Sections 2.2 and 5 245 operate on information related to anatomical and functional structures. The definition of such 246 structures can be made manually by observers at the time of patient treatment planning or manually 247 through retrospective review of collated data. Alternatively, autosegmentation routines utilising 248 anatomical atlases [START_REF] Kennedy | Similarity clustering-based atlas selection for pelvic CT 1325 image segmentation[END_REF] or artificial intelligence approaches [START_REF] Fu | Deep learning in medical image registration: a 1242 review[END_REF] can be 249 used. Structure segmentation can represent a significant source of uncertainty in the derivation and 250 application of models, with multiple contributing factors: 251

• Geometric variability: The location and extent of structures will depend on multiple factors 252 relating to image quality, image sensitivity and specificity, inter-observer variability (e.g. 253 [START_REF] Roach | Multi-observer contouring of male pelvic 1538 anatomy: Highly variable agreement across conventional and emerging structures of interest 1539[END_REF]), organ deformation and motion (e.g. (Palorini et al., 2016a)), errors and 254 limitations in image registration, bias propagated from atlas definitions or neural network 255 learning environments or selection of a patient template (see Section 2.2) (Acosta et al., 256 2010). 257

• Structure definition: A common source of undesired variability, particularly when pooling 258 data sources or during validation, is variable definition of anatomical structures (e.g. 259 [START_REF] Nitsche | Comparison of different contouring definitions of the rectum as organ at risk (OAR) and 1462 dose-volume parameters predicting rectal inflammation in radiotherapy of prostate cancer: 1463 which definition to use?[END_REF]). Models need to operate on like-definitions. Variability and ambiguity 260 can be reduced through the use of consensus definitions, reviews of definitions such as 261 within the QUANTEC reports [START_REF] Bentzen | Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an 1084 introduction to the scientific issues[END_REF], or published standards (Wright et al., 262 2019). 263

• Structure naming: Structure naming can often be problematic for scripting model 264 development, particularly when data comes from multiple institutions. This can be 265 ameliorated through use of naming conventions (e.g. [START_REF] Mayo | American Association of Physicists in Medicine Task 1390 Group 263: Standardizing Nomenclatures in Radiation[END_REF]Santanam et al., 266 2012)) or ontologies [START_REF] Phillips | Ontologies in 1513 radiation oncology[END_REF]. Note that spatial models may utilise or give rise to 267 non-standard structures (such as predictive clusters identified in DSMs and DVMs). 268

Dose 269
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As indicated in Figure 1 and Figure 2, access to multi-dimensional descriptions of dose distributions, 270 or features derived from them, represents a common minimum level of required technical data. 271

When deriving and applying spatial models, several aspects of these data should be considered: 272

• Accuracy: Although dose distributions are frequently available based on planned or intended 273 treatments, correct models will be based on dose distributions which have been verified or 274 accumulated as delivered (e.g. [START_REF] Shelley | Delivered dose can be a better 1569 predictor of rectal toxicity than planned dose in prostate radiotherapy[END_REF][START_REF] Jaffray | Accurate accumulation of dose for 1312 improved understanding of radiation effects in normal tissue[END_REF]). Accuracy should 275 ideally have been assessed independently, such as via participation in credentialing exercises 276 (e.g., [START_REF] Ebert | Dosimetric intercomparison for multicenter clinical trials using a patient-1214 based anatomic pelvic phantom[END_REF][START_REF] Molineu | Credentialing results from IMRT 1412 irradiations of an anthropomorphic head and neck phantom[END_REF][START_REF] Weber | IMRT credentialing for prospective trials using institutional virtual phantoms: 1656 results of a joint European Organization for the Research and Treatment of Cancer and 1657[END_REF]). Deformations of dose, 277 due perhaps to the intra-individual accumulation process [START_REF] Tilly | Dose mapping sensitivity to deformable registration uncertainties 1601 in fractionated radiotherapy -applied to prostate proton treatments[END_REF] or inter-278 individual co-registration (see Section 2.2.3) will impact on the accuracy of dose 279 representation. 280

• Precision: Spatial resolution in the description of dose can impact the ability to precisely 281 represent the underlying response effects. The resolution of dose calculation has previously 282 been shown to impact even dose-volume based models [START_REF] Ebert | Comparison of DVH data from multiple radiotherapy treatment planning systems[END_REF][START_REF] Kim | Dosimetric and radiobiological comparison in different dose calculation grid sizes between 1332 Acuros XB and anisotropic analytical algorithm for prostate VMAT[END_REF]. 283

Variation in resolution can have a moderate impact on dosimetric texture features (Placidi et 284 al., 2020). With an increasing need to develop models for precision stereotactic treatments, 285 precise descriptions of steep dose gradients across spatially-limited structures are required 286 (e.g. [START_REF] Ryu | Partial volume 1551 tolerance of the spinal cord and complications of single-dose radiosurgery[END_REF][START_REF] Hrycushko | Spinal Nerve Tolerance to Single-1295 Session Stereotactic Ablative Radiation Therapy[END_REF][START_REF] Gale | Using percolation networks to incorporate spatial-dose 1247 information for assessment of complication probability in radiotherapy[END_REF][START_REF] Kim | Predictors of rectal 1328 tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy 1329 for prostate cancer[END_REF]). 287

• Completeness: Dose calculations are often limited in extent relative to potentially-involved 288 anatomy, such as when based on cone beam CT data obtained with accelerator-mounted 289 imaging systems. This can inhibit spatial models, particularly those relating to low-doses 290 over extensive regions of anatomy. 291

• Temporal features: Dose fractionation, inter-and intra-fraction dose temporal patterns can 292 impact complication incidence [START_REF] Dörr | Radiobiology of tissue reactions[END_REF]. Changes in response due to variable dose-per-293 fraction, either between voxels or due to variable treatment phases, may need to be 294 incorporated into the model. Such variations may also be accounted for using equieffective 295 dose estimates [START_REF] Bentzen | Bioeffect modeling and equieffective dose concepts in 1087 radiation oncology--terminology[END_REF], noting that this leads to spatial discontinuities where 296 parameters vary between tissues. The complexity of temporal dose effects increases 297 significantly when intra-treatment variations due to organ motion or the pharmacokinetics 298 of radionuclide deliveries are considered. 299

Treatment description 300
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A c c e p t e d M a n u s c r i p t immobilisation and fixation devices, may be co-variates of importance to the specificity of a model. 302

This information is often not captured in DICOM fields or through oncology information systems. 303

3.2

Outcome Data

304

Outcome information, providing the known output for a model (the "endpoint" or "event 305

incidence"), comes in diverse forms. For complication outcome, we are typically concerned with 306 organ-specific symptoms of radiation injury which may manifest over months or years. These can be 307 graded at discrete (ordinal) levels using standardised clinician-or patient-reported instruments such 308 as provided by the Common Terminology Criteria for Adverse Events [START_REF] Trotti | CTCAE v3.0: development of a comprehensive grading 1614 system for the adverse effects of cancer treatment[END_REF] developed 309 by the United States (US) National Cancer Institute (NCI), instruments developed in-house or by 310 various international collaboratives. The trend is towards the use of patient-reported complications 311 for outcome. This is because the severity of symptoms are often under-reported by clinicians (Xiao 312 et al., 2013), and follows recognition of the importance of focussing on symptoms with the most 313 impact on patients' quality of life. Although definitions can vary, complications are typically graded 314 according to indicative symptoms and required interventions (GX -Grade X): 315

• G0 -symptoms are absent 316

• G1 -the complication is mild and no interventions are required 317

• G2 -the complication is moderate and some local intervention might be required 318

• G3 -the complication is severe and intervention is required, though is not life-threatening 319

• G4 -the complication is life-threatening and major intervention is required 320

• G5 -the complication has caused death 321 Whilst some models can utilise continuous outcomes, for NTCP models it is common to convert 322 measures to a binary endpoint classification. These may be either determined at fixed time-points 323 following treatment, as incidence at any time during follow-up, or the time-to-event incidence if 324 temporal features can be incorporated in the model. The definition, interpretation, collection and 325 application of complication outcome measures are notorious sources of uncertainty in outcome 326 modelling. Multiple factors should be kept in mind related to model accuracy and generalisability: 327

• Specificity of the included patient cohort. 328

• The relevance of an outcome to patient quality-of-life. 329

• Variations in scoring mechanisms and criteria. 330

• Variations in follow-up time or time between measurements. 331
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• The identification and influence of comorbidities, concurrent treatments or pre-existing 332 morbidities. 333

• The influence of social and/or technical factors on measures. 334

• The nature of the data source, as discussed below. 335

Data sources

336 When considering sources of data for spatial complication models, we can consider the ability of 337 those sources to meet specific criteria for development of generalizable, robust and powerful 338 models. A source should provide large volumes of high quality, well-curated data for patients with 339 diverse characteristics and treated with diverse techniques (noting that data diversity can lead to 340 unexpectedly biased results, as discussed in Section 6.1). The sub-optimal performance of many 341 radiotherapy outcomes models can largely be blamed on the paucity and lack of diversity of 342 available data [START_REF] Luo | Machine learning for radiation outcome modeling and prediction[END_REF]. 343

Table 1 lists specific criteria, provides some examples of sources and attempts to describe, via 344 generalisations, how likely each source is to meet the criteria. In Table 1, quality infers the 345 completeness, accuracy and consistency of technical and outcome data. Diversity relates to the 346 variability in studied populations, radiotherapy technique and overall patient treatment, including 347 trial vs non-trial contexts [START_REF] Chen | Association Between Treatment at a High-Volume Facility 1144 and Improved Survival for Radiation-Treated Men With High-Risk Prostate[END_REF][START_REF] Krauss | Why all randomised controlled trials produce biased results[END_REF]. Diversity also pertains to inter-individual 348 variations in spatially-localised dose (note also the implications of diversity for model 349 generalizability, as discussed in Section 6.2). 350 Some points to note in relation to Table 1: 351 -Single-institution studies enable ready access to appropriate high-quality data though with 352 minimal variability and typically only small patient numbers. Collated data is rarely made 353 available outside the institution. 354 -Multi-centre clinical trials often employ rigorous data collation. However, such trials will 355 rarely be statistically powered specifically for the purpose of spatial response modelling and 356 so the sample size may be insufficient. Software systems developed over the last couple of 357 decades, both in-house and commercially, have facilitated quality assessment of technical 358 data by multicentre trials groups (e.g. [START_REF] Ebert | Comparison of DVH data from multiple radiotherapy treatment planning systems[END_REF][START_REF] Deasy | CERR: a computational environment for radiotherapy[END_REF]La Macchia et 359 al., 2012;[START_REF] Meroni | A dedicated cloud system for real-1408 time upfront quality assurance in pediatric radiation therapy[END_REF][START_REF] Roelofs | International 1545 data-sharing for radiotherapy research: an open-source based infrastructure for multicentric 1546 clinical data mining[END_REF][START_REF] Deasy | Informatics in Radiation Oncology, ed G Starkschall and R A Siochi[END_REF][START_REF] Purdy | Quality assurance issues in conducting multi-institutional advanced technology 1518 clinical trials[END_REF]360 Purdy et al., 1998)). Although the quality of clinical trial data can be advantageous, variations 361 from trial conditions in the clinic, including participant selection, can bias model predictions 362 relative to non-trial practice [START_REF] Ohri | Radiotherapy protocol 1465 deviations and clinical outcomes: A meta-analysis of cooperative group clinical trials[END_REF]. 363
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A c c e p t e d M a n u s c r i p t distinguish "public" pooling and publication, such as provided by the Cancer Imaging Archive 366 (www.cancerimagingarchive.net, [START_REF] Clark | The Cancer Imaging Archive (TCIA): maintaining and operating a 1152 public information repository[END_REF]), from "private" pooling, such as might 367 be achieved via manufacturer-led knowledge base collaboratives and user-communities. 368

Both public and private data pools have the potential for development of large cohorts with 369 data variability, though data quality may be ambiguous if not well documented. 370 -Federated data access can enable accessing large patient cohorts spanning multiple 371 repositories, including clinical systems at individual treatment centres. Ethical and socio-372 political issues can be minimised if model parameters can be estimated for data at each site, 373 before being combined centrally [START_REF] Deist | Infrastructure and distributed learning methodology for 1191 privacy-preserving multi-centric rapid learning health care[END_REF]. Although no published evidence was 374 found that spatial complication models have been derived through this approach, the 375 potential for validation of developed models is significant. 376 377 start off with a list of potential prognostic factors based on the literature and underlying 393 radiobiological assumptions (e.g. assumed α/β ratio). This can reduce the number of false positive 394 findings and guide the feature reduction process (Palma et al., 2020a;[START_REF] Heinze | Variable selection -A review and recommendations for the 1282 practicing statistician[END_REF]. The 395 inhomogeneous physical dose distribution can be aggregated into dose features (Figure 2) that 396 represent the biological dose received and are predictive for the toxicity endpoint of interest. The 397 result may be just a small number of features as derived from a spatial parameterisation. However, 398 hundreds to thousands of dose features can be retrieved from a spatial voxel-wise 3D dose 399 distribution, even though the sample size may be quite limited, and collinearity is likely. Candidate 400 prognostic factors selected from a group of correlated variables are typically those that have the 401 highest predictive power at univariate analysis compared to the correlated variables that are a priori 402 excluded. A general rule of thumb is that correlation between candidate variables for a multivariable 403 model should be below ≈ 0.7 (El [START_REF] El Naqa | Predicting radiotherapy outcomes 1219 using statistical learning techniques[END_REF][START_REF] Schaake | Normal tissue complication probability (NTCP) models for late rectal bleeding, stool 1562 frequency and fecal incontinence after radiotherapy in prostate cancer patients[END_REF]. 404

4.1.2

Feature reduction

405

The generally accepted rule of thumb is that regression models should be used with a minimum of 406 10 "events per variable" EPV [START_REF] Peduzzi | A simulation study of the number 1501 of events per variable in logistic regression analysis[END_REF]. This rule has been criticized as being too strict -407 [START_REF] Vittinghoff | Relaxing the rule of ten events per variable in logistic and Cox 1646 regression[END_REF] instead recommend a minimum of 7 EPV. After pre-processing the 408 dataset to a candidate list of features considered for modelling, a variable selection algorithm must 409 be chosen [START_REF] Heinze | Variable selection -A review and recommendations for the 1282 practicing statistician[END_REF][START_REF] Steyerberg | Towards better clinical prediction models: seven steps for 1583 development and an ABCD for validation[END_REF]. Valid approaches to reduce the 410 number of features (and clinical co-variates) to the most predictive in a multivariate model are: 1) 411 select variables for the final multivariable model based on their univariate model estimates, using a 412 p value threshold; 2) backward and forward selection tools like Wald, Likelihood Ratio and 413 conditional regression methods; and 3) the LASSO method (least absolute shrinkage and selection 414 operator) which is a logistic regression analysis with a penalty for the magnitude of the regression 415 coefficients to prevent overfitting [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF][START_REF] Buettner | Modeling late rectal toxicities based on a 1096 parameterized representation of the 3D dose distribution[END_REF][START_REF] Gabryś | Design and Selection of Machine 1244 Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication 1245 Probability Modeling of Xerostomia[END_REF]. 416

Consideration can be given to reduction of features through use of their principal components 417
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A c c e p t e d M a n u s c r i p t (e.g. [START_REF] Chen | Spatial Characterization and Classification of Rectal Bleeding in Prostate 1133 Cancer Radiotherapy with a Voxel-Based Principal Components Analysis Model for 3D Dose 1134 Distribution[END_REF]). Additionally, feature selection can be combined with the method to 418 determine association with outcome through algorithms such as random forest, and through the 419 stability of features in associative models derived from sampled sub-sets of the full data (i.e. 420 "bootstrapping"). Adequate feature reduction is vital to ensuring the ability for a model to be 421

generalised. An excellent overview of techniques is provided in [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. 422

4.1.3

Co-variates 423

The inclusion of clinical factors in NTCP models may improve the predictive power of the model 424 considerably [START_REF] Defraene | The Benefits of Including Clinical Factors in Rectal Normal Tissue 1187 Complication Probability Modeling After Radiotherapy for Prostate[END_REF][START_REF] Morimoto | Development of Normal Tissue Complication Probability Model for 1423 Trismus in Head and Neck Cancer Patients Treated With Radiotherapy: The Role of 1424 Dosimetric and Clinical Factors[END_REF][START_REF] Rancati | Inclusion of clinical risk factors into NTCP 1524 modelling of late rectal toxicity after high dose radiotherapy for prostate cancer[END_REF][START_REF] Dean | Normal Tissue Complication Probability (NTCP) Modelling of Severe Acute Mucositis using a 1171 Novel Oral Mucosal Surface Organ at[END_REF]425 Palma et al., 2020b). A preselection of all treatment-patient-and tumour-related factors by an 426 educated guess is needed to avoid false positive results. For this purpose, a literature search is 427 recommended to define candidate clinical factors to be considered subsequently in model building 428 [START_REF] Steyerberg | Towards better clinical prediction models: seven steps for 1583 development and an ABCD for validation[END_REF]. 429

Models and Algorithms 430

To parametrize the dose-dependence of an organ at risk, typically a sigmoid-shaped function is 431 fitted, like the LKB model, the Relative Seriality (RS) model, and the general logistic regression model 432 [START_REF] Trott | Biological mechanisms of normal tissue damage: Importance for the design of NTCP models 1611[END_REF]. It has been demonstrated that the general applied logistic regression technique 433 produces very similar dose-effect curves as the LKB and RS model [START_REF] Defraene | The Benefits of Including Clinical Factors in Rectal Normal Tissue 1187 Complication Probability Modeling After Radiotherapy for Prostate[END_REF]. A 434 prerequisite is that the type and pattern of toxicity (i.e. the dependent variable) has to be translated 435 and captured in a 'present (1)/not present (0)'' for logistic regression modelling. 436

As an alternative in the current information age, data mining and machine learning approaches for 437 toxicity prediction research are increasingly applied [START_REF] Robertson | A data-mining framework for large scale analysis 1542 of dose-outcome relationships in a database of irradiated head and neck cancer patients 1543[END_REF][START_REF] Beasley | Image-based Data Mining to Probe 1077 Dosimetric Correlates of Radiation-induced Trismus[END_REF]438 Gabryś et al., 2018;[START_REF] Luo | Machine learning for radiation outcome modeling and prediction[END_REF][START_REF] Dean | Incorporating spatial dose metrics in machine 1166 learning-based normal tissue complication probability (NTCP) models of severe acute 1167 dysphagia resulting from head and neck radiotherapy[END_REF]Palma et al., 2019a). Commonalities and 439 differences between the more conventional methods of model-based statistical inference and the 440 rapidly progressing field of data driven machine learning have given rise to an active debate (c.f. the 441 field of imaging in neuroscience (Bzdok, 2017)). It has been shown that machine learning approaches 442 do not, by default, result in better predictions [START_REF] Yahya | Statistical-1685 learning strategies generate only modestly performing predictive models for urinary 1686 symptoms following external beam radiotherapy of the prostate: A comparison of 1687 conventional and machine-learning methods[END_REF][START_REF] Dean | Incorporating spatial dose metrics in machine 1166 learning-based normal tissue complication probability (NTCP) models of severe acute 1167 dysphagia resulting from head and neck radiotherapy[END_REF]. Unsupervised 443 machine learning approaches aim to produce accurate predictions for unseen data based on a large 444 body of training data, and do not depend on tractable relations between variables, which can limit 445 sensible extrapolation of the associated models. Conventional regression, on the other hand, may 446 reveal the specific dependence of a given variable on several independent variables within a data 447 set. From this comes the opportunity to extrapolate beyond the initial model fitting, beyond the 448 initial conditions under which data were acquired, by adaptation. 449 Selection of the appropriate statistical test(s) depends on the nature of the predicted outcome. If 450 time to event is considered important, parameters of a proportional hazards model may be 451 inspected (provided proportionality of the hazard is valid), or e.g. accelerated failure time models 452 may be employed [START_REF] Bradburn | Survival analysis part II: multivariate data 1092 analysis--an introduction to concepts and methods[END_REF]. On the other hand, when fixed time point differences or 453 incidence over multiple time points are considered sufficiently descriptive, parametric t-tests or 454 nonparametric signed-rank tests can be performed [START_REF] Lumley | The importance of the normality assumption in large 1362 public health data sets[END_REF]. Rather than to seek 455 rejection of a null-hypothesis, Bayesian analysis may provide a more informative description of 456 observed differences [START_REF] Kruschke | Bayesian estimation supersedes the t test[END_REF]. 457

4.1.5

Voxel-wise models 458

Although conventional statistics can be applied at a pixel-wise or voxel-wise level, a comparison of 459 the aggregated data dichotomised by endpoint is a commonly used approach. Detailed descriptions 460 and formalisms of the process for voxel-wise analysis for toxicity studies are provided by Acosta and 461 De Crevoisier (2019) and Palma et al. (2020a). The idea of identifying local dose-response patterns 462 by voxel-wise analysis based on two-sample tests was derived from neuroimaging studies where the 463 aim is to discover voxel-wise changes due to a specific disease [START_REF] Ashburner | Voxel-Based Morphometry-The Methods[END_REF]464 Whitwell, 2009). When comparing DSMs/DVMs, the null-hypothesis is that there is no difference 465 between the dose distributions of the patients with and without toxicity, which can be tested either 466 

476

Logistic regression, LKB modelling or Logit dose-response modelling are possible alternative 477 approaches to studying local dose-response effects at the voxel-level (as illustrated via an example 478 for DSMs in Figure 4). For each voxel in the DSM/DVM, the relationship between the dose and the 479 incidence of a selected toxicity endpoint is calculated. When the actuarial incidence of the side-480 effect is considered, Cox regression constitutes a suitable choice (Marcello et al., 2020a;Marcello et 481 al., 2020b). This analysis produces a map of best-fit parameters, constant and b-coefficient for dose 482 for the logistic regression, TD50 (uniform dose corresponding to 50% complication probability) and 483 slope at TD50 for LKB and Logit models, H0(t) and β-coefficient for dose when Cox is used. This kind 484 of analysis allows identifying regions where the dose-response is steeper vs areas where it is 485 shallow, thus providing a hypothesis for treatment optimization on selected sub-regions. 486

Clinical risk factors can be included, with the inclusion of multiple b-coefficients/ β-coefficients in 487 logistic and Cox regressions and with the addition of dose modifying factors in LKB and Logit models 488 (Peeters et al., 2006a). Of note, in this case, a map of effect sizes for the clinical risk factors is 489 produced, with a variation of effect sizes at the voxel level. Discussion is still open on the meaning of 490 these variations, with the possibility of a clinical factor to be a protective factor in some voxels and a 491 risk factor in others. A possible alternative way to include clinical risk factors is to use local dose-492 based modelling to determine areas with different dose-response curves and apply an adjustment 493 for clinical risk factors at a sub-region level or a patient level. 494

Significance 495

From a modelling perspective a large variation over the population provides the best opportunity to 496 derive a high-quality dose-effect model (see Table 1). Techniques that result in high rates of toxicity 497 do not necessarily exhibit a large variation over patients. When deriving statistics at the voxel-level, 498 dose deposited by external beams gives rise to correlations between dose variables. Establishing 499 significance based on per-voxel null hypothesis testing (see Section 5.2) severely suffers from 500 multiple testing issues -the likelihood of incorrect rejection of that hypothesis. Methods based on 501 estimated false discovery rate (FDR) have been proposed, which have been shown to hold under 502 positive dependencies [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful 1079 Approach to Multiple Testing[END_REF][START_REF] Benjamini | The Control of the False Discovery Rate in Multiple Testing under 1081 Dependency[END_REF][START_REF] Storey | A Direct Approach to False Discovery Rates[END_REF]. 503

Permutation methods can be used to establish significance based on test statistics aggregated over 504
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A c c e p t e d M a n u s c r i p t the individual voxels [START_REF] Manly | Bootstrap and Monte Carlo Methods in Biology[END_REF][START_REF] Chen | Multiple comparisons permutation test for 1138 image based data mining in radiotherapy[END_REF]Palma et al., 2020a): a pertinent global 505 threshold of the single-voxel test statistic is derived, leading to the selection of voxels that exceed 506 that value. Reporting the adjusted map beyond arbitrary thresholds for significance (such as the 507 commonly-used p = 0.05) might be suggested, allowing readers to make a more informed conclusion 508 by also considering the trends and spatial patterns of association, rather than focusing on specific 509 highly significant voxels (Palorini et al., 2016b). 510

4.2

Performance, validity and reporting 511 Three main purposes of statistical models can be identified: 1) predictive/prognostic models, 512 focussing on event prediction; 2) explanatory models explaining difference in outcome via 513 explanatory variables, focussing on (causal) relationships and the magnitude of effects; and 3) 514 descriptive models with the main purpose to capture accurately the association between the 515 dependent variable and the independent variables, which may focus on both elements of 516 prediction, relationships and magnitude of effects [START_REF] Shmueli | To Explain or to Predict?[END_REF]. 517

4.2.1

Model performance 518 NTCP models are descriptive models, describing the relationship between biological dose, clinical 519 cofactors, and toxicity risks. To evaluate discriminative (predictive) power, the performance of the 520 model is commonly reported through the area under the receiver operating characteristic curve 521 (AUC) which is a measure that combines the specificity and sensitivity in one number (Dean et al., 522 2018;Men et al., 2019). In case of a large imbalance in the data, the F-score based on precision-523 recall could additionally be considered [START_REF] Saito | The precision-recall plot is more informative than the ROC plot 1554 when evaluating binary classifiers on imbalanced datasets[END_REF]. 524

Model validity 525

The internal validity of a prediction model concerns the reproducibility of the underlying data. To 526 avoid overfitting and unstable models, preferred methods for internal validation are cross-validation 527 and bootstrap resampling techniques [START_REF] Heinze | Variable selection -A review and recommendations for the 1282 practicing statistician[END_REF][START_REF] Steyerberg | Towards better clinical prediction models: seven steps for 1583 development and an ABCD for validation[END_REF]Xu et al., 528 2012). For the external validation of the model, concerning the generalizability of the results to 529 other similar patient populations outside the database and outside the institution, independent 530 validation datasets are required [START_REF] Bentzen | Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an 1084 introduction to the scientific issues[END_REF]. A relevant example is provided by Mylona et 531 al. (2020b), where dosimetry for sub-regions in the bladder was found to be more predictive of 532 complications than that for the whole organ, as validated in an external cohort. 533

Model reporting 534
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It is recommended to report at least the following characteristics of a developed phenomenological 535 (data-driven) NTCP model [START_REF] Jackson | The lessons of QUANTEC: recommendations for reporting and gathering data on dose-1310 volume dependencies of treatment outcome[END_REF][START_REF] Collins | Transparent reporting of a multivariable 1154 prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement[END_REF]: study population, received 536 treatment, definition and measurement of predicted outcome, dose-volume information of full 537 organs and relevant sub-volumes, basic statistical data on incidence of toxicity including number of 538 subjects and number of events, complication rates associated with constraints, available follow-up 539 time, statistical motivation of sample size, handling of missing data, numerical range and median of 540 the dosimetric variables of interest, model parameter estimates and their standard errors, applied 541 feature selection method (model building algorithm), candidate variable list, applied validation 542 methods, goodness-of-fit and discriminative power of the final model. For spatial models, it is also 543 recommended to report dose-grid resolution and dose calculation algorithm [START_REF] Placidi | Stability of dosomics 1515 features extraction on grid resolution and algorithm for radiotherapy dose calculation[END_REF], 544 and a definition for the algorithms used in extraction of features (e.g. [START_REF] Zwanenburg | The Image Biomarker Standardization Initiative: 1704 Standardized Quantitative Radiomics for High-Throughput Image-based[END_REF]). A 545 checklist for transparent reporting is available through the TRIPOD initiative [START_REF] Collins | Transparent reporting of a multivariable 1154 prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement[END_REF]. 546 5 Review of methods -spatial dose associations with complications 547 and applications to NTCP calculation 548 Section 2 defined, in general terms, approaches that may be used, in various dimensions, to 549 represent dose information in ways that retain spatial information from which features may be 550 extracted. Section 3 detailed where the data may be obtained from to inform those processes, and 551 for describing the complication outcomes with which the features will be correlated, using the 552 statistical processes described in Section 4. We can now review publications which attempt to 553 combine these to derive NTCP models and for examining associations of spatial dose information 554 with complication incidence. 555

Evidence of improved predictive capabilities with models which are inclusive of spatial information 556 have been emerging from analysis of isolated data sets over the last 10 -15 years. Table 2 provides 
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The degeneracy of the spatial dose distribution into the associated DVH of a structure may be 577 moderated if the dose distribution can be correlated with more specific descriptions of the 578 underlying functional structures themselves. This can be achieved, for example, by breaking a given 579 structure down spatially into more precise or component sub-structures according to some 580 anatomical or statistical criterion (as described in Section 2.2.1). The DVH characteristics of each sub-581 structure can be considered independently. Analysis of more specific structures can also reveal that 582 dose to the originally-hypothesised structure of interest may be less correlated with complication 583 than alternative adjacent structures. It is also possible to utilise additional spatial information 584 regarding the structure (such as medical imaging scans) to modify the basic DVH information being 585 used as input to a dose-volume based NTCP model. 586

Examples

587

A first class of models is based on the assumption that the organs can be thought of as organized in 588 functional sub-units (FSUs). If the density of FSUs 𝑓(𝑟 ⃗) is not homogeneous throughout the 589 considered structure Ω, a more informative version of the DVH would be weighted by the 590 corresponding 𝑓(𝑟 ⃗) yielding 𝑓𝐷𝑉𝐻(𝐷 0 ), defined as: 591

𝑓𝐷𝑉𝐻(𝐷 0 ) = ∫ 𝑓(𝑟 ⃗)𝐻[𝐷(𝑟 ⃗) -𝐷 0 ]𝑑𝑟 ⃗ Ω ∫ 𝑓(𝑟 ⃗)𝑑𝑟 ⃗ Ω 592
where 𝐻(•) is the Heaviside step function [START_REF] Lu | Functional dose -volume histograms for functionally 1360 heterogeneous normal organs[END_REF]. Though DVH-based NTCP models would 593 be better recast on fDVH, it has been recognized that the derivation of the detailed underlying 594 arrangement of FSUs in most anatomical sites still requires dedicated studies from techniques such 595 as functional imaging (e.g. [START_REF] Arslan | Human brain 1070 mapping: A systematic comparison of parcellation methods for the human cerebral cortex[END_REF][START_REF] Lee | Single photon emission computed tomography (SPECT) or positron 1349 emission tomography (PET) imaging for radiotherapy planning in patients with lung cancer: a 1350 meta-analysis[END_REF]). 596

For lung, a low-cost variation on the fDVH concept is represented by the dose-mass histogram 597 (DMH), in which the mass density (easily estimated from the planning CT) is considered as a 598 surrogate of FSU density. As expected, the DMH results to be independent of breathing phase 599 [START_REF] Nioutsikou | Reconsidering the definition of a 1459 dose-volume histogram[END_REF][START_REF] Cella | Modeling the risk of radiation-induced lung fibrosis: Irradiated 1122 heart tissue is as important as irradiated lung[END_REF]. Interestingly, however, a study on the risk of 600 postoperative pulmonary complications among oesophageal cancer patients found no evidence of 601 significant benefits from the substitution of DVHs with DMHs within the NTCP model (Tucker et al., 602 2006a). 603

Similarly, for hollow organs such as the rectum, the absence of FSUs within the wall content led to 604 the development of the dose-wall histogram (DWH). DWHs represent the DVH of the organ wall only 605 based on the segmented outer organ contour [START_REF] Meijer | Dose-wall 1400 histograms and normalized dose-surface histograms for the rectum: a new method to 1401 analyze the dose distribution over the rectum in conformal radiotherapy[END_REF]. The dose-surface histogram 606
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A c c e p t e d M a n u s c r i p t (DSH) lies, instead, on the histogram of the dose delivered to a representative surface of the organ. 607 Two main approaches have been proposed for the DSH computation: one based on the interpolation 608 of the dose on the organ surface [START_REF] Lu | Dose-surface 1358 histograms as treatment planning tool for prostate conformal therapy[END_REF], and one normalizing the DVH of the organ wall by 609 the shell depth in the limit of vanishing thickness (Palma and Cella, 2019). There is often a strong 610 correlation between the various histogram types [START_REF] Fiorino | A cylindrical model of the rectum: comparing dose-1235 volume, dose-surface and dose-wall histograms in the radiotherapy of prostate cancer[END_REF][START_REF] Carillo | Correlation between surrogates of bladder dosimetry and dose-volume 1111 histograms of the bladder wall defined on MRI in prostate cancer radiotherapy Radioth[END_REF]Hoogeman 611 et al., 2005). An exception is when the irradiation technique delivers a dose gradient that is steep 612 relative to the organ size, such as found by Kim et al for prostate cancer patients treated with 613 stereotactic radiotherapy [START_REF] Kim | Predictors of rectal 1328 tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy 1329 for prostate cancer[END_REF]. 614

A first hybrid approach for including a notion of spatial dose distribution within a histogram 615 framework is the zDVH [START_REF] Cheng | Treatment plan evaluation using dose-volume histogram (DVH) and 1147 spatial dose-volume histogram (zDVH)[END_REF], which expresses the volume receiving a given dose at 616 a given cranio-caudal position in the form of a 2D histogram. 617

An effective approach based on pathophysiological knowledge of the toxicity aetiology consists in 618 splitting a heterogeneous district into component substructures to achieve better DVH-response 619 predictions. This approach has been made for the anorectum (Peeters et al., 2006b;Ebert et al., 620 2015a) and the bladder trigone [START_REF] Ghadjar | Impact of Dose to the Bladder Trigone 1251 on Long-Term Urinary Function After High-Dose Intensity Modulated Radiation Therapy for 1252 Localized Prostate[END_REF][START_REF] Henderson | An 1284 Investigation of Dosimetric Correlates of Acute Toxicity in Prostate Stereotactic Body 1285 Radiotherapy: Dose to Urinary Trigone is Associated with Acute Urinary Toxicity[END_REF]. Outcome associations 621 have also been undertaken over broader spatial ranges of anatomy than conventionally 622 hypothesised. For rectal toxicity in pelvic radiotherapy for example, although the gastrointestinal 623 tract is usually targeted for derivation of associations, alternative structures can provide stronger 624 associations with specific toxicities. Smeenk et al showed that incontinence was more strongly 625 associated to dose to the pelvic floor muscles [START_REF] Smeenk | Dose-effect 1573 relationships for individual pelvic floor muscles and anorectal complaints after prostate 1574 radiotherapy[END_REF], whilst Gulliford et al discovered 626 the importance of dose to the peri-rectal fat space for control-like symptoms [START_REF] Gulliford | Radiotherapy dose-distribution to the perirectal fat space (PRS) is related to gastrointestinal 1261 control-related complications[END_REF]. 627

The emergence of voxel-wise toxicity analyses in radiation oncology has fostered a data-driven 628 evolution of this approach. This is aimed at defining, on a statistical basis, the relevant anatomical 629 substructures involved in the development of radiation induced morbidity and from which 630 histogram-based features can be extracted. This approach is described in Sections 5.2 and 5.4. 631

5.2

Voxel-wise assessment 632

Description 633

In contrast to analyses based on known or hypothesised FSUs as in Section 5.1, the use of voxel-wise 634 methods points to an "agnostic"/bottom-up approach. Once the DSMs/DVMs in a cohort are 635 spatially registered to a common coordinate system (see Section 2.2 for relevant details) in a way 636 that they can be compared voxel-wise, the regions which are significantly associated to the 637
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A c c e p t e d M a n u s c r i p t particular (toxicity) outcome are identified by statistical inference. Different approaches can be used, 638 as described in Section 4.1.5. In general, the final goal of voxel-wise analysis is to identify regions 639 driving the clinical manifestation of radio-induced side effects, i.e. to find clusters of voxels where 640 the dose is significantly different in patients with/without toxicity (see also Section 5.4). The 641 resulting organ sub-regions do not consider any prior anatomical or functional division. They can 642 provide information to make inferences on the differential radio-sensibility of some organs or the 643 simultaneous implication of different structures on some radio-induced toxicities. 644

Voxel-wise assessment does not by default generate an NTCP model. DVHs in the regions that were 645 highlighted as statistically associated with the selected outcome should be considered to derive 646 NTCP models following a classical dose-response analysis. Alternatively, a total complication risk can 647 be formed from aggregation of risks determined at the voxel level. 648

Examples

649

2D dose-surface outcome mapping 650 2D DSMs (Section 2.2.2) are usually generated from an anatomical structure and restricted to the 651 surface of this structure. This choice produces results which can be easily translated into organ sub-652 regions to be spared. Historically, the first analyses of DSMs in the radiotherapy field were related to 653 hollow organs whose geometry could be easily associated with a cylinder, such as the oesophagus 654 [START_REF] Chen | Multiple comparisons permutation test for 1138 image based data mining in radiotherapy[END_REF][START_REF] Dankers | Esophageal wall 1161 dose-surface maps do not improve the predictive performance of a multivariable NTCP 1162 model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-1163 modulated (chemo-)radiotherapy[END_REF] and the rectum [START_REF] Casares-Magaz | High accumulated doses to the inferior rectum are associated 1115 with late gastro-intestinal toxicity in a case-control study of prostate cancer patients treated 1116 with radiotherapy[END_REF]Munbodh et al., 655 2008;[START_REF] Onjukka | Patterns in ano-rectal dose maps and the risk of 1469 late toxicity after prostate IMRT[END_REF][START_REF] Sanchez-Nieto | Biological dose surface maps: 1556 evaluation of 3D dose data for tubular organs Radioth[END_REF]Tucker et al., 2006b;[START_REF] Wortel R C | Dose-surface maps identifying local dose-effects for acute 1676 gastrointestinal toxicity after radiotherapy for prostate cancer[END_REF]. 656

Although pixel-wise assessment can be made to derive patterns of response, significant progress has 657 been made by parameterising the DSMs, reducing the number of features and providing parameters 658 for NTCP models, as discussed in Section 5.3. 659

Pixel-wise studies have related DSMs for the bladder with a number of early and late urinary 660 endpoints (Palorini et al., 2016b;Mylona et al., 2020a;Palorini et al., 2016a;[START_REF] Yahya | Modeling 1689 Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder 1690 Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface[END_REF]661 Improta et al., 2016). Recently a method for the calculation of DSM for the heart was implemented 662 by using a modified cylindrical coordinate system [START_REF] Mcwilliam | Dose surface maps of 1393 the heart can identify regions associated with worse survival for lung cancer patients treated 1394 with radiotherapy[END_REF]. DSMs of the heart were 663 analysed to infer possible local dose effect for survival after lung cancer radiotherapy. The rationale 664 for considering heart DSMs rather than DVMs resides in the location on the surface of some clinically 665 relevant sub-regions, such as the coronary arteries, the electrical conduction system and the 666 myocardium. 667

3D voxel-wise outcome mapping 668
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DVMs (Section 2.2.4) can be generated either starting from an anatomical structure and restricted to 669 its volume or independently from any structure. The second choice has the power to embrace a 670 totally agnostic approach regarding which organs/tissues are involved in radio-induced toxicity and 671 entails the possibility of highlighting the interaction between different organs and FSUs. Notably, 672 special care should be taken in order to counteract the possibility of finding significant areas which 673 offer no feasible anatomical explanation and which could lead to inappropriate organ-sparing 674 objectives in treatment planning. 675

Organ-based DVMs were considered in the literature for the analysis of both rectal (Acosta et al., 676 2013;Drean et al., 2016b;Mylona et al., 2020b;[START_REF] Shelley | Delivered dose can be a better 1569 predictor of rectal toxicity than planned dose in prostate radiotherapy[END_REF]Marcello et al., 2020b) and 677 urinary [START_REF] Mylona | Voxel-based analysis for 1444 identification of urethro-vesical subregions predicting urinary toxicity after prostate cancer 1445 radiotherapy[END_REF]Mylona et al., 2020a;Mylona et al., 2020b;Marcello et al., 2020a) 678 toxicity. These kinds of analysis heavily build upon robust co-registration methods, which become 679 even more critical when organs highly prone to organ motion and variable filling are considered. 680

The first published example of the use of quasi-organ-agnostic DVMs was from Heemsbergen et al. 681 (2010) investigating urinary toxicity. In this case, the 3D reconstruction started with the definition of 682 the outer surface of the prostate and with the identification of the spatial coordinates of the 683 prostate centre of mass. After that, for every patient, a spherical surface was considered, extending 684 6 cm from the prostate. Every voxel inside this region was identified through polar coordinates 685 (distance from the prostate centre of mass and two angles identifying the vector connecting the 686 single voxel to the prostate centre of mass) and the absorbed dose in each voxel was calculated by 687 trilinear interpolation of the nearest dose points of the individual dose grid. 688

Regression coefficients associated to each voxel specifically in the salivary glands have been used to 689 shed light on the regional radio-sensitivity of the glands [START_REF] Jiang | Machine Learning Methods Uncover Radiomorphologic Dose 1316 Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck[END_REF]. Other studies considered 690 DVMs without any restriction to specific contoured organs for investigation of local dose effects in 691 the thoracic/head and neck region [START_REF] Beasley | Image-based Data Mining to Probe 1077 Dosimetric Correlates of Radiation-induced Trismus[END_REF][START_REF] Mcwilliam | Radiation 1396 dose to heart base linked with poorer survival in lung cancer patients[END_REF][START_REF] Monti | Voxel-based analysis unveils regional dose differences associated with 1420 radiation-induced morbidity in head and neck cancer patients[END_REF]692 Palma et al., 2016;Palma et al., 2019d;Palma et al., 2019c;[START_REF] Green | Image Based Data Mining 1258 Using Per-voxel Cox Regression[END_REF], with interest in the 693 association of dose pattern with lung toxicity, acute dysphagia, trismus and survival. 694 

700

NTCP from voxel-wise methods 701

As already pointed out, although voxel-wise analysis can identify important organ sub-regions, it 702 does not provide an NTCP. 703 NTCP can be derived by classical dose-response modelling on the specific sub-regions, either 704 including the whole DVH as calculated in the specific identified areas or choosing some particular 705 DVH cut-points. Examples of this kind of approach can be found in (Buettner et al., 2009b;706 Heemsbergen et al., 2010;[START_REF] Mylona | Voxel-based analysis for 1444 identification of urethro-vesical subregions predicting urinary toxicity after prostate cancer 1445 radiotherapy[END_REF][START_REF] Onjukka | Patterns in ano-rectal dose maps and the risk of 1469 late toxicity after prostate IMRT[END_REF][START_REF] Palma | A Voxel-Based Approach to Explore Local Dose Differences 1483 Associated With Radiation-Induced Lung Damage[END_REF]Casares-707 Magaz et al., 2017). In Drean et al. (2016b), parameters for the LKB model were computed within 708 the voxel-wise derived sub-region. 709 More sophisticated and more global approaches were also developed, taking information from 710 voxel-wise analysis directly into account. [START_REF] Vinogradskiy | A novel method to incorporate the spatial 1643 location of the lung dose distribution into predictive radiation pneumonitis modeling[END_REF] proposed a modified LKB model 711 where the lung dose in each voxel was weighted using a user-defined spatial weighting matrix which 712 could be derived by a previous voxel-wise analysis. [START_REF] Jiang | Machine Learning Methods Uncover Radiomorphologic Dose 1316 Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck[END_REF] A c c e p t e d M a n u s c r i p t of risks as calculated by regression at the voxel level, using confidence intervals for predicted risks as 722 weights (thus giving more weight to more certain predictions). 723

5.3

Spatial parameterisation of dose distributions 724

Description 725

Attempts to reduce the number of features, reduce collinearity and generalise models from voxel-726 wise analyses can be made by parameterising the dose distribution. For analyses restricted to 727 specific organs, this will typically involve functional parameterisation of DSMs and organ-constrained 728 DVMs, with or without registration to a template geometry. The resulting parameters can then 729 become co-variates in regression models or supervised machine learning models. More widespread 730 dose distributions can be parameterised using techniques borrowed from imaging analytics -731 namely, the supervised derivation of specific feature classes ("dosiomics" [START_REF] Liang | Dosiomics: Extracting 1355 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis 1356[END_REF]). 732

Unsupervised classification of outcome based on the dose distribution can also be attempted with 733 convolutional neural networks, with or without the inclusion of anatomical and functional imaging 734 information. 735

Examples 736

Parameterisation of 2D dose 737

The process of derivation of parameters for geometric descriptors from a DSM is illustrated in Figure 738 2, particularly in the context of investigating rectal complications due to prostate radiotherapy. 739 Concentric isodoses on the rectal wall from prostate radiotherapy can be thresholded systematically 740 at different doses and fitted with an ellipse. Parameterised geometrical features can then be 741 calculated (Buettner et al., 2009b). 742

Previous studies on rectal toxicity following prostate radiotherapy indicate that spatial dose metrics 743 such as lateral extent of dose around the circumference of the rectum, longitudinal extent and 744 eccentricity derived from rectal dose surface maps (DSM), are related to toxicities including rectal 745 bleeding and loose stools (Buettner et al., 2009b;[START_REF] Moulton C R | Spatial features of dose-surface maps from deformably-registered plans correlate with late 1427 gastrointestinal complications[END_REF]. Interestingly, a recent test of 746 this approach failed to demonstrate any improvement over DVH-based prediction of rectal toxicity 747 [START_REF] Wilkins | Derivation of 1661 Dose/Volume Constraints for the Anorectum from Clinician-and Patient-Reported Outcomes 1662 in the CHHiP Trial of Radiation Therapy Fractionation[END_REF]. This result may be confounded by the differences between planned and 748 delivered dose distributions (see Section 3.1.3), with [START_REF] Shelley | Delivered dose can be a better 1569 predictor of rectal toxicity than planned dose in prostate radiotherapy[END_REF] DSHs when predicting rectal toxicity and produced results for more endpoints by quantifying the 753 dose when a DSM was subdivided to a 3x3 matrix. [START_REF] Vanneste | Ano-rectal wall dose-1640 surface maps localize the dosimetric benefit of hydrogel rectum spacers in prostate cancer 1641 radiotherapy[END_REF] used DSMs to evaluate the 754 effect of hydrogel rectal spacers on dose to the rectum for prostate radiotherapy. 755

Although most published data relating to parameterised rectal DSMs is from patients who received 756 prostate radiotherapy, [START_REF] Chen | Investigating rectal toxicity associated dosimetric features with deformable accumulated 1141 rectal surface dose maps for cervical cancer radiotherapy[END_REF] detail the use of DSM to relate the dose from both external 757 beam and brachytherapy for a cohort of cervix patients. The two dose distributions were non-rigidly 758 registered, and a rectal DSM created from the summed dose distribution. Both volumetric and 759 texture metrics were calculated, and principal component analysis used to provide inputs to a 760 support vector machine-based model. Area and texture parameters were found to be important and 761

to have an improved AUC compared to the standard Groupe Européen de Curiethérapie/European 762 Society for Radiotherapy (GEC-ESTRO) model. 763

Parameterisation of 3D dose 764

For a solid structure such as the parotid it is possible to define metrics to quantify the relative 3D 765 spatial distribution of dose to the whole organ. Buettner et al. (2012b) used 3D spatial invariant 766 moments to characterise the morphology of the dose distribution to the parotid in terms of centre 767 of mass, spread and skewness. They showed that minimising the dose to cranial and lateral regions 768 of the parotid gland would decrease the incidence of xerostomia. The model containing spatial 769 metrics had a significantly-improved performance compared to the standard predictive of model of 770 mean dose. 3D moments were also used in a comparison of the conventional oral mucosa outline 771 and a novel segmentation to predict acute mucositis [START_REF] Dean | Normal tissue complication probability (NTCP) modelling using 1174 spatial dose metrics and machine learning methods for severe acute oral mucositis resulting 1175 from head and neck radiotherapy Radioth[END_REF]. Dose distributions to the 772 two organ-as-risk (OAR) structures were calculated and used as inputs to both penalised logistic 773 regression and random forest models. In this example, using the novel segmentation and spatial 774 metrics did not improve model performance compared to a model built on fractional dose-volume 775 data for the conventional structure. [START_REF] Dean | Incorporating spatial dose metrics in machine 1166 learning-based normal tissue complication probability (NTCP) models of severe acute 1167 dysphagia resulting from head and neck radiotherapy[END_REF] studied acute dysphagia using moments and 776 dose-volume-length and -circumference data for the pharyngeal mucosa. They demonstrated that 777 although the length and circumference that received over 1 Gy per fraction were shown to be 778 important, a penalised logistic regression NTCP model trained purely on dose-volume data 779 performed equally well on internal validation and was superior when applied to an external 780 validation cohort. 781
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The papers described so far have used a variety of bespoke methods to parameterise the spatial 783 distribution of dose. However, synergy with the field of radiomics allows spatial dose distributions 784 to be characterised by a vast array of standardised metrics [START_REF] Zwanenburg | The Image Biomarker Standardization Initiative: 1704 Standardized Quantitative Radiomics for High-Throughput Image-based[END_REF]. Here the 3D 785 radiotherapy dose distribution can be characterised in full with or without reference to structure 786 segmentation. Radiomic features from patient images can be integrated to derive models predictive 787 of complication [START_REF] Talamonti | Radiomic and Dosiomic Profiling of 1595 Paediatric Medulloblastoma Tumours Treated with Intensity Modulated Radiation Therapy[END_REF]. 788

One study which assessed this concept and compared predictions to previous work is described by 789 [START_REF] Gabryś | Design and Selection of Machine 1244 Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication 1245 Probability Modeling of Xerostomia[END_REF]. This study compared models to predict xerostomia starting with a standard 790 model based on mean dose and parotid-specific spatial metrics described above (Buettner et al., 791 2012b). Spatial descriptors were extended for the parotid gland to consider entropy along with 792 dosiomic descriptors of DVH shape and general dosiomic features describing the gradient of the 793 entire 3D dose distribution. The manuscript describes comparisons of many models including 794 conventional statistical and machine learning approaches. Additionally, feature selection and class 795 balance approaches were compared. Overall the strongest features identified were parotid gland 796 volume eccentricity and the spread of the contralateral parotid dose distribution. The contralateral 797 dose gradient of the 3D dose distribution (right to left) was also identified on univariate analysis but 798 did not feature strongly in the final multivariate analysis. Similarly, Lee et al. (2020) CNNs can be used to extract unspecified higher-level features of 3D dose distributions which can 827 directly classify the distributions as likely to lead to complications, and studies have begun to emerge 828 demonstrating this with varying combinations of ancillary information. Ibragimov et al (Ibragimov et 829 al., 2018;[START_REF] Ibragimov | Neural Networks for Deep 1303 Radiotherapy Dose Analysis and Prediction of Liver SBRT Outcomes[END_REF] utilised CNNs incorporating 3D dose information, supplemented 830 with transfer learning from previous abdominal imaging, for hepatobiliary toxicity prediction 831 following stereotactic liver radiotherapy. Incorporating the CNNs with more conventional features 832 including dose-volume parameters, dose-fractionation and clinical co-variates increased the model 833 predictions (increase in AUC from 0.79 to 0.85). In a strategy which preferences identifying likely 834 toxicity (i.e., minimising false negatives), the CNN approach halved the number of false positive 835 predictions relative to DVH-based prediction. Ibragimov et al were able to extend this approach to a 836 structure-agnostic spatial assessment to map anatomical regions where dose variations associate 837 with toxicity. This revealed regions associated with the hepatobiliary tract and liver as specific focus 838 regions to guide dose planning [START_REF] Ibragimov | Deep learning 1300 for identification of critical regions associated with toxicities after liver stereotactic body 1301 radiation therapy[END_REF]. 839

In a progression from the dosiomics approach, [START_REF] Liang | Prediction of Radiation 1352 Pneumonitis With Dose Distribution: A Convolutional Neural Network (CNN) Based Model[END_REF] (2004) proposed that hot spots distributed as small areas throughout an organ at risk 852 are likely to cause a different response than if the highest dose covers one contiguous region. This 853 difference would translate through to a difference in toxicity prediction using NTCP models which 854 describe the clustering of damage to FSUs. This concept of spatial dose clusters forms bridges 855 between voxel-wise assessment, definition of sub-regions and spatial analysis based on spatial 856 parameterisation. The cluster models highlight the relevance of including both the number and the 857 spatial location of radiation-sterilized FSUs in a comprehensive NTCP model [START_REF] Thames | Cluster models of dose-volume 1598 effects[END_REF]. In 858 a general sense, these models suggest that a volume receiving at least a given dose value is more 859 likely associated with a radiation-induced toxicity if it corresponds to a connected spatial cluster 860 rather than if spatially scattered [START_REF] Deasy | Image-based modeling of normal tissue complication probability for 1184 radiation therapy[END_REF]. 861

Examples 862

Tucker et al demonstrated a practical application of the method described by Thames using rectal 863 DSMs (Tucker et al., 2006b). Nine case-control pairs with very similar absolute DSH but with and 864 without grade 2 rectal bleeding were used to fit a local-effect cluster model. The logistic function 865 describing the probability of damage for each voxel in each DSM had 2 unknown parameters. The 866 model was fitted to maximise the relationship between maximum cluster size (considering 2-867 connectivity) between the cases and controls. Although the cohort was very small, the authors were 868 able to find parameter values which separated cases from controls and inferred that dose 869 distributions in the region of 30 Gy were important for the prediction of rectal bleeding. 870 Chao et al [START_REF] Chao | Dose cluster model parameterization of the parotid 1124 gland in irradiation of head and neck cancer[END_REF][START_REF] Chao | Three-dimensional 1129 cluster formation and structure in heterogeneous dose distribution of intensity modulated 1130 radiation therapy[END_REF]) also developed spatial cluster metrics based on the 871 method proposed by Thames et al. They demonstrated that maximum cluster size for the superior 5 872 cm of the oesophagus was not related to conventional dose-volume and NTCP metrics and inferred 873 that spatial distributions were not represented by conventional dose metrics. They applied a cluster-874 based approach to model xerostomia [START_REF] Chao | Percolation Based Cluster Models Fully 1126 Incorporating Spatial Dose Distribution in Assessment of Parotid Gland Radiation Induced 1127 Complication in Head and Neck Cancer Treatment[END_REF]. The metrics included mean cluster size and 875 largest cluster size normalised to the volume of the gland which were incorporated into LKB models. 876

Although no conventional (DVH-based) LKB model was derived from the cohort a comparison was 877
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The concept of spatial cluster models can be expanded using percolation theory, which has origins in 880 statistical physics and considers how clusters are connected. Originally proposed at a similar time to 881 Thames' [START_REF] Thames | Cluster models of dose-volume 1598 effects[END_REF] work on cluster models, [START_REF] Myers | Percolation-based cluster models of dose-volume effects[END_REF] presented the 882 use of percolation theory for predicting NTCP from clusters. [START_REF] Gale | Using percolation networks to incorporate spatial-dose 1247 information for assessment of complication probability in radiotherapy[END_REF] describe how the 883 concept can be applied to geometric arrangements of FSUs to predict toxicity for both parallel and 884 serial organs. 885

Several studies considered the clusters of organ voxel 𝐿 𝑝 -whose dose-toxicity association exceeded 886 some statistical significance threshold 𝑝. They showed that the mean dose in such clusters could be 887 a more powerful predictor of toxicity than traditional metrics associated to the organ considered as 888 a whole structure. Hence, an NTCP model can be proficiently trained as a logistic regression of the 889 patients' outcomes as a function of simple dose metrics in the cluster 𝐿 𝑝 -propagated from the 890 common coordinate system of the voxel-wise analysis (see Section 5.2) to each individual native 891 space. In this way, sub-regions have been identified in different locations such as the lungs (Palma et 892 al., 2016), the heart [START_REF] Mcwilliam | Radiation 1396 dose to heart base linked with poorer survival in lung cancer patients[END_REF], head and neck [START_REF] Monti | Voxel-based analysis unveils regional dose differences associated with 1420 radiation-induced morbidity in head and neck cancer patients[END_REF], the rectum (Acosta 893 et al., 2013;Drean et al., 2016b) and the bladder [START_REF] Mylona | Voxel-based analysis for 1444 identification of urethro-vesical subregions predicting urinary toxicity after prostate cancer 1445 radiotherapy[END_REF]. 894 6 Ongoing Endeavours 895

Model development and validation

896

As for other approaches to radiotherapy complication modelling, a major issue is represented by the 897 quantity and quality of data available to researchers. Relative to DVH-based models, spatial methods 898 require more comprehensive data (see Section 3). Despite the abundance of relevant data 899 generated continuously around the world and the technical capability to collect it, and despite 900 decades of pleas (e.g. [START_REF] Deasy | Improving normal tissue complication probability models: the need to adopt a "data-1180 pooling[END_REF]), remarkably little data has become available to progress 901 this type of analysis. Based on legislative constraints (i.e., ownership, privacy and patient consent 902 needs) it is likely, at least in the next few years, that data will prevalently come from clinical trials 903 where their recovery, storage and access are already planned. 904

The implementation of innovative trials including large cohorts of clinical data (Baumann et al., 905 2016) could rapidly change the landscape. Such trials could multiply the opportunities for developing 906 models, provide opportunities for validating models, and enable the merging of different large 907 cohorts to increase feature diversity. A specific issue may concern the possibility of introducing 908
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A c c e p t e d M a n u s c r i p t unpredictable biases if pooling together cohorts of patients treated, for instance, at different dose 909 levels with largely different spatial locations of the high-dose volumes. Uncontrolled voxel-wise 910 comparisons could lead to "false" spatial effects due, for instance, to the higher incidence or 911 prevalence of side effects in cohorts delivering systematically higher doses and/or treating larger 912 volumes. Ideally, the availability of large cohorts should be accompanied by a proper grouping of 913 patients to make the different patient groups comparable. 914

Model generalisation and extension

915 Apart from the critical issues related to generalizability of NTCP models such as technical, temporal 916 or geographical variabilities (van der Schaaf et al., 2015), a few specific points deserve discussion. 917

The interplay between the spatial patterns of a certain modality/technique and the inter-individual 918 variability is a challenging issue: well driven studies may help in quantifying the real impact of a 919 modality with respect to another. The generalizability of models across different modalities need 920 high-quality studies and extensive validation. One confounding problem is that the patterns of dose 921 delivered today already reflect the existing knowledge based on dose volume metrics. As these 922 models mature, there is the potential for radiobiological predictions that consider the spatial pattern 923 of dose that can drive the optimization of treatment plans towards more favourable dose patterns 924 beyond that of the traditional dose-volume metrics. 925

Another important field of investigation regarding model generalisation is represented by the 926 challenge of combined therapies. Data from studies testing radiotherapy-only vs combined therapy 927 (for instance chemotherapy, immunotherapy) could help in assessing spatial dosimetry correlations 928 specifically linked to the action, for instance, of a drug and making possible local dose corrections 929 incorporating its effect. Similarly, highly non-conventional dose and dose-rate distributions, such as 930 from ultra-fast irradiation [START_REF] Esplen | Physics and biology of ultrahigh dose-rate 1226 (FLASH) radiotherapy: a topical review[END_REF] or molecular radiotherapy [START_REF] Stokke | Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 1587[END_REF] will 931 offer new data sources with which to generalise derived models. 932

Including intra and inter-fraction changes 933

In many situations, both intra and inter-fraction anatomical and geometrical changes may have a 934 significant impact in modifying the delivered dose with respect to the planned one. In particular, the 935 prevalence of systematic over random changes may potentially blur (or even hide) the correlation 936 with toxicities; consequently, investigations quantifying these effects are needed. As an example, 937 the impact of variable bladder filling on bladder DSM can be assessed from daily cone-beam CT 938 imaging: one recent study showed a relatively small impact of variable filling on bladder DSM during 939 image-guided radiotherapy of prostate cancer (Palorini et al., 2016a). A statistical approach based on 940
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Gaussian-like variations of local doses likely works in several situations but is expected to fail in 941 others, such as when the phenomenon itself is prevalently non-Gaussian. [START_REF] Shelley | Delivered dose can be a better 1569 predictor of rectal toxicity than planned dose in prostate radiotherapy[END_REF] 942 demonstrated superiority in toxicity prediction from rectal DSMs formed from estimated delivered 943 rather than planned dose. 944

When the toxicity rate is small (say, <10%), those few patients with large systematic changes 945 resulting in a relevant increase of dose to proximal OARs may jeopardise results. Greater efforts may 946 especially be expected in trying to incorporate individually-assessed anatomical modifications in 947 stereotactic body radiation therapy (SBRT) [START_REF] Magallon-Baro | Modeling daily changes in organ-at-risk anatomy in a cohort of pancreatic cancer 1368 patients[END_REF], looking to the 3D dose-of-948 the-day and/or to the accumulated dose instead of the planned dose distribution. SBRT is also prone 949 to be associated with larger effects due to both the reduced margins and the high dose per fraction, 950 dealing with an enhanced impact on critical regions even with small anatomical/geometrical 951 changes. Relevant effects due to systematic deviations between the planned and the delivered dose 952 may occur even in unexpected situations and the availability of in-room imaging information is of 953 paramount importance to identify them. The recently reported correlation between shift toward the 954 heart of field isocentre during delivery and poorer survival in lung cancer patients treated with SBRT 955 is a highly paradigmatic example [START_REF] Price | Residual Setup Errors 1319 Towards the Heart After Image Guidance Linked With Poorer Survival in Lung Cancer 1320 Patients: Do We Need Stricter IGRT Protocols[END_REF]. 956

Similarly, intra-fraction changes are known to significantly affect the delivered dose in specific sites. 957 Breathing-induced motion can be highly anisotropic and variable between patients in the different 958 thoracic and abdominal areas. Although, to our knowledge, no studies have reported on the impact 959 of intra-fraction motion on spatial models, more relevant research in this area is needed. 960

Potential applications of artificial intelligence 961

The rise of deep learning approaches for image segmentation, pattern recognition and patient 962 classification adds many opportunities to extend this field [START_REF] Naqa | The role of machine and deep learning in modern medical physics[END_REF]. Ready access to 963 advanced deep learning tools is making this kind of analysis more popular (with examples given in 964 Section 5.3). A merit of these methods is the opportunity to consider features mostly "hidden" to 965 the human eye and to find complex correlations in a multi-layer approach. On the other hand, this 966 same merit may also constitute a disadvantage from the point of view of interpretability of the 967 results and consequent confidence in clinically applying them; in fact, any attempt to maintain some 968 causality to explain any correlation is largely lost. A major issue regarding artificial intelligence 969 models is their intrinsically higher difficulty in being validated. [START_REF] Valdes | Comment on 'Deep convolutional neural network with transfer 1626 learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study[END_REF] provide a 970 timely summary of the potential for mis-interpretation in such complex approaches. Keeping the 971 models as simple and interpretable as possible should be considered valuable: the benefit of the 972 

6.5

Understanding pathophysiology 975 An intriguing and relevant field of investigation related to NTCP models based on 3D/2D similarity 976 comparisons concerns the meaning of the resulting regions whose dose differences are predictive of 977 toxicity. As already underlined, the information resulting from these analyses cannot be 978 automatically associated to a specific cause, being intrinsically a phenomenological finding (i.e.: 979 simply reflecting some statistical correlation). Moreover, the assessment of specific 980 volumes/surfaces within the body/OARs apparently more "sensitive" to radiation can be biased by 981 unknown factors or just due to geometrical or technical issues. Any hypothetical causality has to be 982 considered as a strength of such models, in case the found results are consistent with known 983 physiological processes/functionalities. As examples, identification of the bladder trigone as a 984 structure likely to be highly sensitive [START_REF] Rancati | Understanding urinary toxicity after 1531 radiotherapy for prostate cancer: first steps forward[END_REF][START_REF] Henderson | An 1284 Investigation of Dosimetric Correlates of Acute Toxicity in Prostate Stereotactic Body 1285 Radiotherapy: Dose to Urinary Trigone is Associated with Acute Urinary Toxicity[END_REF][START_REF] Yahya | Modeling 1689 Urinary Dysfunction After External Beam Radiation Therapy of the Prostate Using Bladder 1690 Dose-Surface Maps: Evidence of Spatially Variable Response of the Bladder Surface[END_REF]) 985 is consistent with the involvement of the trigone in the physiology of urination, and the physiological 986 connection between the heart and lungs [START_REF] Ghobadi | Physiological interaction of heart and lung in thoracic irradiation[END_REF] adds validity to correlation of heart 987 dose with lung toxicity (Palma et al., 2019c;Palma et al., 2019d). Any hypothesis generated by such 988 models would deserve to be tested in pre-clinical and clinical studies. Animal models may be well 989 used to verify the existence of spatial effects. Conversely, pre-clinical research may first explain 990 specific patterns of toxicity that may be confirmed later by studies dealing with dose similarity 991 comparison. An interesting example is the evidence of spatial dosimetry effects within parotids 992 impacting xerostomia, due to the sparing (or not) of stem cells contained in the ductal region. Such 993 observations have been reported in animal experiments [START_REF] Van Luijk | Sparing the region of the salivary gland containing stem cells 1637 preserves saliva production after radiotherapy for head and neck cancer[END_REF] and confirmed by a 994 3D dose comparison investigation on data from a large patient cohort treated for head-neck cancer 995 [START_REF] Jiang | Machine Learning Methods Uncover Radiomorphologic Dose 1316 Patterns in Salivary Glands that Predict Xerostomia in Patients with Head and Neck[END_REF]. 996

6.6

Model application

997

Although examples of practical applications of NTCP models incorporating spatial dosimetric 998 features are rare, it is likely that a few of the most robust results will increasingly influence planning 999 optimization. When a causal relationship between a spatial effect and the pattern of the 1000 corresponding side effects is apparent, changes may be easily implemented in clinical practice. Two 1001 examples are the previously-cited cases of the bladder trigone for prostate cancer and the ductal 1002 region of the parotid glands. The latter, cited above as originating in pre-clinical studies, is being 1003 assessed within a clinical trial [START_REF] Van Luijk | Sparing the region of the salivary gland containing stem cells 1637 preserves saliva production after radiotherapy for head and neck cancer[END_REF], which is probably the first example of a trial 1004 A likely progression will be the incorporation of spatial models into tools to evaluate the planned 3D 1007 dose distribution and for generating NTCP and risk estimates. This could be accomplished, for 1008 instance, within clinical trials or as an additional tool for plan quality assurance, in complement with 1009 conventional DVH-based EUD/NTCP estimates. The propagation of identified sensitive sub-regions to 1010 an individual would facilitate toxicity-minimised planning, without the need to modify current 1011 optimisation methods [START_REF] Acosta | Modelling Radiotherapy Side Effects -Practical Applications for 1052 Planning Optimisation[END_REF]. This has been demonstrated by Lafond et al. 1012[START_REF] Lafond | Planning With Patient-Specific Rectal Sub-Region Constraints 1344 Decreases Probability of Toxicity in Prostate[END_REF]. A subsequent natural extension would be the possibility to implement these models directly 1013 into the optimization engine. However, the general adoption of spatial models is greatly inhibited by 1014 the prior evolution of the planning process and optimisation engines in the context of dose-volume 1015 approaches. For spatial models that cannot be formulated via dose-volume terminology, research 1016 planning systems are required to enable inclusion of the relevant predicted complication models in 1017 optimisation constraints and objectives or via scripting capabilities of commercial planning systems 1018 (e.g. [START_REF] Voutilainen | Spatial Objectives in Radiation Therapy Treatment Planning[END_REF]). With the growth of artificial intelligence based planning systems, there is 1019 considerable scope for building automated planning algorithms that directly incorporate spatial 1020 models to augment or replace dose-volume based optimisation [START_REF] Wang | Artificial Intelligence in Radiotherapy Treatment 1652[END_REF]. 1021 Intriguingly, for models which are agnostic to segmented structures, plan optimisation could in 1022 principle be feasible without the incorporation of dose-volume data for OARs. This would permit a 1023 segmentation-free plan optimization. In the same direction, this kind of approach could also find 1024 applications in overall treatment optimization, directly considering patient outcome as the goal and 1025 incorporating possible "systemic" effects due to the irradiation of multiple organs and to the 1026 interaction with the immune system (for instance through the implicit consideration of the 1027 incidental irradiation of nodes and of the vascular system). Similarly, one could hypothesize 1028 applications in combined treatments to include the effect of modifying agents at the voxel-level, and 1029

to "virtual human" simulation in the optimisation of patient-specific treatments. 1030

Conclusion 1031

The field reviewed in in this paper is still in its infancy. However, models which consider the spatial 1032 characteristics of radiotherapy dose will permit the expansion, or at least fine-graining, of the 1033 solution space for radiotherapy treatment planning and improving the prediction of treatment 1034 complications. The potential for large-scale relevant applications in treatment personalization, plan 1035
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 3 Figure 3: Construction of a dose surface map (DSM) for the rectum by establishment of a direct relationship between the

223

  The development of spatial response models places specific demands on the nature of technical data 224 collected for their construction. When interpreting, utilising or publishing a spatial complication 225 model, factors impacting the underlying technical data should be considered and appropriately 226 reported and accommodated (see section 4.2.3). The relevance and quality of patient outcome data 227 is of similar or even greater importance for the derivation of useful models. Additional data types 228 can constitute modifying and stratifying co-variates, such as patient demographics and co-229 morbidities, disease staging, treatment characteristics (techniques, timing, adjuvant treatments)computational nature of spatial models, it is assumed that required data will be available 233 in digital form which could be arbitrary in-house, native or proprietary formats, or more generally in 234 prescribed formats such as Digital Imaging and Communications in Medicine (DICOM) (NEMA), 235 Neuroimaging Informatics Technology Initiative (NIfTI) (NIfTI, 2020) or Nearly Raw Raster Data 236 (NRRD) (SourceForge, 2020). The three principal technical data ingredients for model development
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Figure 4 :

 4 Figure 4: Example of voxel (pixel)-wise assessment of a dose-complication relationship for a change in international

  557 a summary of some previously published analyses where a comparison has been made between 558 histogram-based toxicity models and those incorporating various forms of spatial dose information. 559 Page 26 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1 A c c e p t e d M a n u s c r i p t 23 560

Figure 5 Figure 5 :(

 55 Figure5illustrates the progression from dose-volume to spatial models of varying complexity, using 564 the relationship of pelvic radiotherapy dose to gastrointestinal complications as an example. 565References describing studies are provided, grouped according to the complexity of anatomical 566 information used and by the spatial dose features used in the investigations. Many of the cited 567 studies are discussed in more detail below. 568

Figure 6 :

 6 Figure 6: Flowchart for 3D voxel-wise analysis of dosimetric association with lung toxicity following stereotactic body

  demonstrated prediction of 713 xerostomia induced by the irradiation of the salivary glands in head-and-neck cancer patients using a 714 ridge logistic regression model directly dealing with the local dose delivered to each voxel of the 715 organ at risk. The framework was naturally able to include non-dosimetric predictors in the NTCP 716 model. 717 Palma et al. (2019a) established a new formalism, called PACE (Probabilistic Atlas for normal tissue 718 Complication Estimation in radiation therapy), which incorporates regional dose information coming 719 Page 35 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1

  finding parameters derived 749 Page 36 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1 A c c e p t e d M a n u s c r i p t from DSMs for accumulated dose being more predictive than those from planned dose, as also 750 found by Casares-Magaz et al. (2019) at the pixel-level. 751 Casares-Magaz et al. (2017) demonstrated that parameterised DSMs performed slightly better than 752

  informed 799 machine learning algorithms with combinations of dose-volume, radiomics and dosiomics features, 800 together with clinical co-variates. Resulting predictive models of weight loss in lung cancer 801 radiotherapy with greater accuracy than models based on dose-volume and clinical co-variates 802 alone, though still with a relatively modest AUC of 0.71. 803 Liang et al. (2019) compared conventional dosimetric models with models derived from dosiomic 804 features to predict radiation pneumonitis. It was demonstrated that a multivariate NTCP model 805 including the Grey Level Co-occurence Matrix (GLCM) contrast and Grey Level Run Length Matrix 806 (GLRLM) (which has similarities to lateral and longitudinal extent described previously) 807 outperformed models based on dose-volume parameters and conventional NTCP model parameters. 808 Rossi et al. (2018) included texture analysis features in a study to predict genitourinary and 809 gastrointestinal toxicity following prostate radiotherapy. The 3D texture analysis features for the 810 rectum and bladder were derived from standard radiomics and used alongside non-treatment 811 related features (such as age, staging and comorbidities) and DVH-based metrics to build 812 multivariate logistic regression NTCP models. It was demonstrated that for gastrointestinal 813 endpoints inclusion of texture features improved the AUC compared to models containing only 814 Page 38 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1 A c c e p t e d M a n u s c r i p t clinical and DVH-based features. Results for genitourinary toxicity were generally not improved by 815 any dosimetric features. 816 Unsupervised broad spatial descriptors 817 An alternative to utilising crafted dosiomic descriptors of broad distributions is to apply neural 818 networks. For example, Buettner et al. (2009a) used DSMs derived by the rectum unfolding as input 819 for a rectal bleeding model based on locally-connected neural networks able to account for the 820 topology of the dose distribution. The higher performance achieved by such models, compared to 821 the more traditional fully-connected conventional neural nets based on DSHs, suggested that 822 morphological aspects of the dose distributions play a relevant role in the development of radiation 823 induced morbidity. Zhen et al. (2017) utilised a convolutional neural network (CNN) to distinguish 824 rectal DSMs indicative of toxicity, incorporating transfer learning to compensate limited patient 825 data. 826

  utilised CNNs incorporating the 3D 840 dose distribution for predicting pneumonitis following volumetric-modulated radiotherapy. A 841 superior prediction (AUC 0.842) was achieved relative to regression models incorporating 842 dosimetric, NTCP and dosiomics features (AUC < 0.782). Class activation maps were used to identify 843 lung regions associated with increased or reduced high-grade toxicity. 844 In head and neck cancer radiotherapy, Men et al. (2019) used CNNs which incorporated one or more 845 of the planning CT images, planned 3D dose and segmented anatomy, for prediction of grade ≥ 2 846 Page 39 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1A c c e p t e d M a n u s c r i p t xerostomia, and compared prediction against regression models incorporating dose with or without 847 clinical co-variates. The CNNs provided greater accuracy (AUC < 0.84), compared to the regression 848 models, for all combinations of 3D information except for when 3D dose was removed. 849

  learning based spatial signatures should always be demonstrated and quantified in 973 validation cohorts. 974

  Page 44 of 60 AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1 A c c e p t e d M a n u s c r i p t specifically looking to the possibility to exploit information regarding the spatial dose distribution 1005 within an OAR to reduce toxicity. 1006

Table 1 : Potential sources of data for spatial models and their ability to meet desirable criteria for forming 378 statistically-powerful, generalisable models that meet current standards for validation and translation. 379

 1 A central aim of using spatial dose descriptors to model dose-complication is to reduce the impact of 386 degeneracy relative to dose-volume approaches. It is important that the process utilised maintains 387 the principles associated with robust, unambiguous statistical analysis and interpretation. Here we 388
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	Source Single institution studies Multicentre clinical trials Public data pooling and publication Private data pooling Federated data access a Including dosimetric accuracy. Technical data quality High High Variable Variable Low b A data source will have a high ability to satisfy this criterion if it meets the FAIR principles Outcome data quality Variability/ diversity Sample size FAIR Facilitates validation High Low Low Low Low High Medium Medium High Medium Variable Medium Medium High High Low Medium High Medium Variable Low High High Variable High (Wilkinson et al., 2016) defined by the FORCE 11 (Future of Research Communications and e-Scholarship) community, of data being findable, accessible, interoperable and re-usable. c e.g., Treatment planning system manufacturer-facilitated knowledge base consortia. 4 Statistical and Modelling Considerations A c c e p t e d M 380 381 382 383 384 385 a n u s c r i p t

Table 2 : A selection of published studies comparing histogram-based toxicity modelling to models incorporating spatial information. Note that some studies incorporated multiple 561 approaches to spatial feature extraction.

 2 

	562 Page 27 of 60 A c c e p t e d M Reference Tumour site Evaluated region Toxicity endpoint Heemsbergen et al. (2005) Prostate Rectum Various Peeters et al. (2005) Prostate Rectum Acute rectal ≥ G2 Peeters et al. (2006b) Prostate Anorectum Various Acosta et al. (2013) Prostate Rectum Rectal bleeding Drean et al. (2016b) Prostate Rectum Rectal bleeding Casares-Magaz et al. (2017) Prostate Rectum Various Rossi et al. (2018) Prostate Rectum Rectal bleeding Faecal leakage Buettner et al. (2009a) Prostate Rectum Rectal bleeding Buettner et al. (2011) Prostate Rectum Various Zhen et al. (2017) Cervix Rectum General toxicity Wilkins et al. (2020) Prostate Anorectum Various AUTHOR SUBMITTED MANUSCRIPT -PMB-111626.R1 Spatial method Comparison Pixel-wise, DSM sub-regions Total rectum DSH vs sub-regions alone Dose-length parameters Total rectum DVH and DSH vs addition of spatial features DVHs for sub-regions (rectum, anus) Total anorectum DVH vs sub-regions Voxel-wise dose, DVM Rectum DVH vs voxel-wise Voxel-wise and manually identified sub-region Rectum DVH vs different sub-regions Pixel-wise DSM Rectal DVH and DSH vs pixel-wise 3D texture features Rectal DVH vs addition of spatial features CNN on DSM Rectal DSH vs addition of spatial features Parameterised DSM NTCP based on rectal vs addition of spatial features DSM texture features and CNN (with transfer learning) Peak dose-indices vs texture features vs CNN Parameterised DSM; manual sub-regions Rectal DVH vs sub-region DVH vs DSM a n u s c	Impact on complication prediction Several specific toxicities only associated with spatially-localised dose Most significant DVH and dose-length parameter both improved final model Specific toxicities better predicted by sub-region dosimetry Rectal bleeding only correlates with identified local dose levels, not with total rectum DVH. DVH-based inferior-anterior hemi rectum (voxel-wise identified sub-region) performed best. For all endpoints DSM-based parameters showed better AUCs (mean 0.64) than the best DSH/DSH-based parameters (mean 0.61) Bleeding -AUC increased 0.68 to 0.72; leakage -AUC increased from 0.68 to 0.75 AUC increased from 0.59 to 0.64 AUC increased from 0.59 to 0.63 -0.67 AUC 0.47-0.58 (dose-indices), 0.70 (texture features), 0.89 (CNN) DSM-based parameters did not improve prediction compared to DVH-based parameters;