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1 Introduction

The basic observable of quantum gravity in asymptotically flat spacetimes is the S-matrix.
Celestial Holography purports a duality between gravitational scattering and a codimen-
sion two conformal field theory (CFT) living on the celestial sphere, where the bulk Lorentz
group induces global conformal transformations. When recast in a basis of boost eigen-
states, scattering amplitudes transform as conformal correlators of primary operators in
the dual celestial CFT.

From the CFT perspective 2D is special: the global conformal group gets enhanced
to local conformal symmetries. Remarkably, this infinite dimensional enhancement also
appears in the 4D S-matrix. Even more surprisingly, the symmetry structure is much
larger — every soft factorization theorem gives a dual ‘current’. In particular, in addition
to the enhancement of the 4D Lorentz group to local conformal transformations which
are dual to Virasoro superrotations, translations get enhanced to BMS supertranslations.
We thus expect the quantum gravity S-matrix to be highly constrained. Yet how all
these constraints are organized in the 2D CFT dual is still an open question. Of course,
the underlying motivation is that with a consistent 2D dual in hand, we hope to learn

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
1
4
3

something interesting about quantum gravity in the bulk. A tipping point in the celestial
holography paradigm will occur once an intrinsic description of celestial CFTs is achieved.

A first milestone is to find an intrinsic 2D CFT model of the spontaneous (asymptotic)
symmetry breaking dynamics which is captured by the so-called conformally soft sector. In
celestial CFTs the basic building blocks are conformal primary wavefunctions which have
definite conformal dimension ∆ and spin J under the SL(2,C) Lorentz group. They serve
as the asymptotic states for celestial amplitudes and, for massless particles, can be written
in terms of a Mellin transform in the energy of the usual plane wave scattering basis.
These 4D wavefunctions define 2D primary operators in celestial CFT. While a δ-function
normalizable basis of conformal primary wavefunctions is obtained [1] for ∆ ∈ 1 + iR,
the conformally soft limit involves an analytic continuation [2, 3] to ∆ ∈ 1

2Z. Primary
operators with conformally soft values of the dimension were shown to generate asymptotic
symmetries in gauge theory and gravity. For example, spin-1 primary operators with ∆ = 1
generate a U(1) Kac-Moody symmetry [2], while BMS supertranslations and superrotations
are generated by spin-2 operators picked out by taking ∆ = 1 and 0, respectively [2, 3].

With these ingredients in hand, certain elements of an intrinsic 2D description have
been explored. From the point of view of a hyperbolic foliation of Minkowski space [4], these
have a natural AdS3/CFT2 flavor [5]. The Kac-Moody symmetry associated to the leading
soft theorem in gauge theory has been shown to arise from a Chern-Simons theory [5].
Meanwhile, the sub-leading soft graviton can be described by an Alekseev-Shatashvili action
which governs the spontaneous breaking of Diff(S2) to Virasoro superrotations [6–8], giving
new insight into the extensions of the BMS group [9–11].

This structure should generalize to encompass all conformally soft theorems [12–18]
(which occur for bsc+1 distinct values of the conformal dimension whenever there is a mass-
less particle with bulk spin s). In [19], we showed that celestial CFT primaries and their
descendants organize into ‘celestial diamonds’ which capture the conformally soft physics.
The wavefunction based approach employed there exploited the power of the embedding
space formalism applied to 2D celestial CFT. Here, we push these results forward from
statements about wavefunctions to statements about 2D (and 4D) operators. This lets us
appreciate the extrapolate dictionary in asymptotically flat spacetimes, understand that
soft charges are celestial primary descendants,1 identify conformal dressings for celestial
amplitudes, and speculate about intrinsic 2D descriptions of celestial CFT. This approach
merges and extends the soft charge analysis of [22, 23] and the leading conformally soft
Faddeev-Kulish dressings of [24]. For concreteness we focus on the leading and sub-leading
celestial diamonds in gauge theory and gravity.

Our main results are as follows. Formulating an extrapolate-style dictionary for celes-
tial CFTs, we find that states of definite (∆, J) are prepared with bulk operators integrated
along light rays and pushed to the conformal boundary. For conformally soft values of the
dimension, these light ray integrals pick out soft charges for spontaneously broken asymp-
totic symmetries. Recasting them as celestial sphere integrals of conformally soft operators,
we see that the latter correspond to primary descendants residing at the bottom corners

1This part is very much inspired by the interesting recent work of Banerjee et al. [20–23].
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of celestial diamonds associated to electromagnetic and gravitational memory. Generalized
celestial currents living on the edge of celestial memory diamonds can be understood as
‘ascendants’ of these conformally soft charge operators. This includes the BMS supertrans-
lation current [25] whose operator product involves a shift ∆→ ∆ + 1 that presents one of
the more exotic features of celestial CFT [2].

Celestial diamonds for Goldstone operators provide conformal dressings for celestial
amplitudes. The leading Faddeev-Kulish dressings in gauge theory and gravity rendering
scattering amplitudes infrared finite were shown in [24] to be given by Goldstone boson
insertions in the conformal basis. In the language of celestial diamonds these correspond to
the operators at the top corners which are associated to generalized (s ≤ |J |) rather than
radiative (s = ±J) conformal primary wavefunctions. Here we extend this result to sub-
leading conformally soft dressings building on the results of [26]. In particular, we identify
the sub-leading conformally soft Faddeev-Kulish dressing in gravity as arising from the
operator at the top corner of the sub-leading graviton Goldstone diamond that descends
to the dual stress tensor of [27]. This operator, as well as the celestial stress tensor, give
rise to two point functions which can encode non-trivial central charges.

The operators at the top corners of celestial Goldstone and memory diamonds govern
the spontaneous symmetry breaking dynamics. This should be described by an intrinsically
2D effective theory. We propose a higher derivative Gaussian model that captures the free
limit of the aforementioned examples proposed in the literature. Our toy model repro-
duces several features of celestial diamonds, such as the shortening conditions of conformal
multiplets and the appearance of generalized celestial currents living at their edges.

This paper is organized as follows. We review the 4D bulk wavefunctions relevant for
2D celestial CFT operators in section 2. In section 3 we show that conformally soft charges
at leading and sub-leading order in gauge theory and gravity correspond to conformal pri-
mary descendants at the bottom corners of the corresponding celestial memory diamonds.
We discuss how they are selected by light ray integrals of general bulk fields pushed to
the boundary. We then turn to the Goldstone diamonds in section 4, where we identify
the top corners with conformal Faddeev-Kulish dressings. In section 5, we combine these
ingredients to model the 2D effective theory.

2 From wavefunctions to operators

In section 2.1 we review the construction of conformal primary wavefunctions on R1,3 and
then use them to create local operators on the celestial sphere in section 2.2.

2.1 Bulk wavefunctions

Let us start with the definition of conformal primary wavefunctions. These are functions
of a bulk point X ∈ R1,3 and a boundary point (w, w̄) ∈ C on the celestial sphere. We will
focus on massless fields here.

Definition. A conformal primary wavefunction is a function on R1,3 which transforms
under SL(2,C) as a 2D conformal primary of conformal dimension ∆ and spin J , and a 4D
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(spinor-) tensor field of spin-s, namely:

Φs
∆,J

(
ΛµνXν ; aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)∆+J(c̄w̄ + d̄)∆−JDs(Λ)Φgen,s

∆,J (Xµ;w, w̄) , (2.1)

where Ds(Λ) is the 3+1D spin-s representation of the Lorentz algebra.
We call such a wavefunction a radiative conformal primary if s = |J | and it satisfies the

linearized equations of motion. Meanwhile off-shell wavefunctions and those with |J | < s

go under the umbrella of generalized conformal primaries.

From planes waves to conformal primary wavefunctions. A point (w, w̄) on the
celestial sphere can be embedded into the null cone of R1,3 as follows

qµ = (1 + ww̄,w + w̄, i(w̄ − w), 1− ww̄) . (2.2)

From this we obtain two natural polarization vectors
√

2εµw = ∂wq
µ and

√
2εµw̄ = ∂w̄q

µ.
Massless spin-s particles are labeled by their null momentum four vectors kµ = ωqµ(w, w̄)
and polarization. We can map these momentum eigenstates to boost eigenstates via a
Mellin transform. For a function f(ω) the Mellin transform is defined by

M[f ](∆) =
∫ ∞

0
dωω∆−1f(ω) ≡ φ(∆) , (2.3)

with the inverse transform given by

M−1[φ](ω) = 1
2πi

∫ c+i∞

c−i∞
d∆ω−∆φ(∆) = f(ω) , (2.4)

where, for our purposes, we can take the contour c = 1 [11]. For a scalar plane wave, a
Mellin transform in the energy ω takes us to∫ ∞

0
dωω∆−1e±iωq·X± = Γ(∆)

(±i)∆
1

(−q ·X±)∆ , (2.5)

which has conformal dimension ∆ and spin J = 0. Here Xµ
± = Xµ ∓ iε(1, 0, 0, 0) is a

regulator which makes this integral converge. We will suppress the ± superscripts unless
necessary. Mellin transformed plane waves with s > 0 are obtained by multiplying (2.5)
with εw and εw̄. However, these are only gauge equivalent to conformal primaries (2.1).
To obtain wavepackets for spin-s particles that transform with definite (∆, J) under an
SL(2,C) transformation we use the spacetime dependent polarization vectors

mµ = εµw −
εw ·X
q ·X

qµ , m̄µ = εµw̄ −
εw̄ ·X
q ·X

qµ , (2.6)

which transform with conformal dimension ∆ = 0 and spin J = ±1.
The simplest J = +s bosonic radiative conformal primary wavefunctions take the form

Φs
∆,+s = mµ1 . . .mµsϕ

∆ , (2.7)
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and similarly for J = −s with m 7→ m̄, where we have defined the scalar conformal primary
wavefunction without the normalization factor in (2.5) as

ϕ∆,± = 1
(−q ·X±)∆ . (2.8)

Up to an overall normalization, these are gauge equivalent to Mellin representatives of the
corresponding plane wave solutions, and we note in passing that the spin-0, 1 and 2 cases
obey a classical Kerr-Schild double copy with mµ and m̄µ corresponding to the Kerr-Schild
vectors [3]. Under a shadow transform the wavefunctions in (2.7) get mapped to

Φ̃s
∆,J = ˜Φs

2−∆,−J , (2.9)

where
Φ̃s

∆,+s = (−1)s(−X2)∆−1mµ1 . . .mµsϕ
∆ . (2.10)

As shown in [28], we can capture finite energy scattering states using (2.7) with conformal
dimensions on the principal series

∆ = 1 + iλ , λ ∈ R . (2.11)

An equivalent basis uses the same spectrum but takes a shadow transform of the reference
direction.

Goldstone and memory wavefunctions. Celestial amplitudes are obtained from or-
dinary amplitudes by Mellin transforming the energy of each external particle. They obey
universal factorization theorems, called conformally soft theorems, when one of the con-
formal dimensions is taken to special values of ∆ ∈ Z (for integer bulk spin). This requires
us to analytically continue our radiative wavefunctions to ∆ ∈ C. We will now catalog the
conformally soft modes used in this paper.

For J = +s = +1 the modes which pick out the leading and sub-leading conformally
soft theorems are given by

AG
1,+1;µ = mµϕ

1 , Ag
0,+1;µ = mµ , Ãg

2,+1;µ = X2mµϕ
2 , (2.12)

while for J = +s = +2 they are

hG
1,+2;µν = mµmνϕ

1 , hG
0,+2;µν = mµmν , h̃G

2,+2;µν = −X2mµmνϕ
2 , (2.13)

with similar expressions for J = −s with m 7→ m̄. Here we have adopted the notation
of [19]: the label G denotes Goldstone modes of spontaneously broken asymptotic symme-
tries associated to the leading soft photon theorem and the leading and sub-leading soft
graviton theorem. Meanwhile, the sub-leading soft photon theorem arises from conformal
primaries which are not pure gauge. We denote these with the label g.

In [19] we showed that the radiative conformal primaries associated to non-trivial soft
theorems are connected by descendancy relations to non-radiative generalized conformal
primaries at the top and bottom corners. These are summarized for the spin-1 and spin-2
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Figure 1. Celestial diamonds for the conformally soft (a) photons and (b) gravitons.

cases in figure 1. The leading soft theorems are shown in red, the sub-leading ones in blue
and the subsub-leading ones in grey. For each diamond drawn in figure 1 there are actually
two copies corresponding to symplectically paired modes: one associated to conformal soft
theorems, the other to non-trivial memory effects. In particular, we have for J = +s = +1

Am
2,+1;µ = mµϕ

2 , Ãm
0,+1;µ = X−2mµ , (2.14)

while for J = +s = +2 they are

hM
2,+2;µν = mµmνϕ

2 , h̃M
0,+2;µν = −X−2mµmν . (2.15)

The case ∆ = 1 is more subtle as the radiative wavefunction and its shadow degener-
ate [2]. The symplectic partners of the ∆ = 1 Goldstone modes in (2.12) and (2.13) were
constructed in [2] via a special limiting procedure to produce non-trivial memory effects.
They are given by the ∆ = 1 conformally soft photon and graviton wavefunctions

ACS
1,+1;µ = mµϕ

CS , hCS
1,+2;µν = mµmνϕ

CS , (2.16)

and similarly for J 7→ −J and m 7→ m̄ where, as in [3], we have defined the ∆ = 1
conformally soft scalar wavefunction

ϕCS =
[
Θ(X2) + log(X2)(q ·X)δ(q ·X)

]
ϕ1 ≡ ϕCS′ + ϕCS′′ . (2.17)

The CS′ wavefunctions with ϕCS′ ≡ Θ(X2)ϕ1 describe solutions that are glued across
the lightcone (and will reappear in section 4) while the CS′′ wavefunctions with ϕCS′′ ≡
log(X2)δ(q ·X) correspond to shockwave solutions [3].

2.2 Boundary operators

Given a 4D bulk operator Os(Xµ) of spin-s in the Heisenberg picture, we can define a 2D
operator in the celestial CFT by [11]

Os,±∆,J(w, w̄) ≡ i(Os(Xµ),Φs
∆∗,−J(Xµ

∓;w, w̄)) , (2.18)

where the ± on the operator indicates whether it corresponds to an in or an out state and
this formula uses standard inner products (. , .) computed on a Cauchy slice in the bulk.
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Operators in the bulk. A natural inner product between complex spin-1 wavefunctions
is given by

(A,A′)Σ = −i
∫
dΣρ

[
AνF ′

∗
ρν −A′

∗ν
Fρν

]
, (2.19)

and between complex spin-2 wavefunctions by (see e.g. [29–32])

(h, h′)Σ = −i
∫
dΣρ

[
hµν∇ρh′∗µν−2hµν∇µh′∗ρν+h∇µh′∗ρµ−h∇ρh′∗+hρµ∇µh′∗−(h↔ h′∗)

]
,

(2.20)
where Σ is a Cauchy surface in the bulk, h = hσσ vanishes for radiative wavefunctions
due to the tracelessness condition, and we make note of the complex conjugation in the
definition. These will be used within (2.18). If we want to express the operators (2.18)
in terms of the standard creation and annihilation operators, we will also need the mode
expansion of the bulk field operators. In the momentum basis, we have

Âµ(X) = e

∫
d3k

(2π)3
1

2k0

[
aµe

ik·X + a†µe
−ik·X

]
, (2.21)

for spin-1 and

ĥµν(X) = κ

∫
d3k

(2π)3
1

2k0

[
aµνe

ik·X + a†µνe
−ik·X

]
, (2.22)

for spin-2, where κ =
√

32πG. Here we have defined

aµ =
∑
α∈±

εα∗µ aα, aµν =
∑
α∈±

εα∗µνaα , (2.23)

where εα∗µν = εα∗µ ε
α∗
ν , with α = w(w̄) corresponding to helicity α = +(−). We have left

the spin s of the mode operators implicit since no confusion should arise. We can go from
energies to conformal dimensions with a Mellin transform2

a∆,±s(w, w̄) =
∫ ∞

0
dωω∆−1a±(ω,w, w̄) , a†∆,∓s(w, w̄) =

∫ ∞
0

dωω∆−1a†±(ω,w, w̄) ,
(2.24)

and back again to the momentum basis with an inverse Mellin transform

a±(ω) = 1
2π

∫ 1+i∞

1−i∞
(−id∆)ω−∆a∆,±s , a†∓(ω) = 1

2π

∫ 1+i∞

1−i∞
(−id∆)ω−∆a†∆,±s . (2.25)

Here and in what follows we label both the creation and annihilation Mellin operators with
the ∆ and J of the corresponding state on the celestial sphere, i.e. by a†∆,J we will mean
(a†)∆,J versus (a∆,J)†. This matches the helicity after crossing to an all-out configuration.

2Recall that kµ = ωqµ. In order to go from round Bondi coordinates to a flat celestial sphere the
parameter we Mellin transform is not the energy but rather ω = k0/(1 +ww̄) [2]. To compare to standard
expressions [33] one should keep in mind that we mean a±(E = ω(1 + ww̄);w, w̄).

– 7 –



J
H
E
P
1
1
(
2
0
2
1
)
1
4
3

Operators at the boundary. The 2D operators Os,±∆,J(w, w̄) defined in (2.18) live on
the celestial sphere at the conformal boundary of Minkowski spacetime. At future null
infinity I+ we use retarded Bondi coordinates (u, r, z, z̄) which are related to the Cartesian
coordinates Xµ by the transformation

X0 = u+ r , X i = rX̂i(z, z̄) , X̂i(z, z̄) = 1
1 + zz̄

(z + z̄,−i(z − z̄), 1− zz̄) , (2.26)

which maps the Minkowski line element to

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ with γzz̄ = 2
(1 + zz̄)2 . (2.27)

One reaches future null infinity by holding (u, z, z̄) fixed and going to large r. At I+ we
evaluate the free field mode expansions (2.21)–(2.22) in a large r saddle point approximation
that identifies the point (w, w̄) on the celestial sphere with the position (z, z̄) towards which
a photon or graviton is headed. The I+ operators creating and annihilating these photons
and gravitons are given by

Âz = − ie√
2(2π)2

∫ ∞
0

dω
[
a+(ω, z, z̄)e−iω(1+zz̄)u − a†−(ω, z, z̄)eiω(1+zz̄)u

]
, (2.28)

and

Ĉzz = − iκ

(2π)2
1

(1 + zz̄)

∫ ∞
0

dω
[
a+(ω, z, z̄)e−iω(1+zz̄)u − a†−(ω, z, z̄)eiω(1+zz̄)u

]
, (2.29)

where Czz = lim
r→∞

1
rhzz. Meanwhile Âz̄ and Ĉz̄z̄ are given by the opposite helicity expres-

sions.
Starting from the definition of 2D operators (2.18) via the inner products (2.19)–(2.20)

pushed to null infinity and the conformal primary wavefunctions of section 2.1, we can now
construct the conformally soft operators at the bottom and top corners of the celestial
diamonds that give rise to soft charges in section 3 and conformal dressings in section 4.

Extrapolate-style dictionary. We close this section by writing out an extrapolate-like
dictionary for the external states in celestial CFT. The dual to celestial CFT correlators
is the S-matrix. Equations (2.28) and (2.29) point to an alternative to the LSZ formalism
to extract massless S-matrix elements. Namely, we can prepare the in and out states by
integrating the gauge field or metric along a light ray at future or past null infinity.

This is illustrated in figure 2 (recall the antipodal map across i0 [34]). For example,
the standard momentum eigenstate out state of a positive helicity photon is prepared via

〈p,+| = lim
r→∞

∫
dueiω(1+zz̄)u〈0|Âz (2.30)

where pµ = ωqµ(z, z̄). Let us now define their conformal primary analogs. Using the
following relations∫ ∞

−∞
duu−∆

+

∫ ∞
0

dω
[
a±e

−iω(1+zz̄)u − a†∓eiω(1+zz̄)u
]

= 2π(1 + zz̄)∆−1

(+i)∆Γ(∆) a∆,±s , (2.31)
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i0

i+

i−

I+

I−

Figure 2. The O±
∆,J(w, w̄) correspond to light ray integrals of operator insertions at I±. For fixed

(w, w̄) this is illustrated by the antipodally placed blue (past) and red (future) contours.

and ∫ ∞
−∞

duu−∆
−

∫ ∞
0

dω
[
a±e

−iω(1+zz̄)u − a†∓eiω(1+zz̄)u
]

= −2π(1 + zz̄)∆−1

(−i)∆Γ(∆) a†∆,±s , (2.32)

we see that states of definite conformal dimension are prepared with operators integrated
along a light ray of the form

O1,−
∆,1 ∝ lim

r→∞

∫
duu−∆

+ Âz(u, r, z, z̄), O2,−
∆,2 ∝ lim

r→∞
1
r

∫
duu−∆

+ ĥzz(u, r, z, z̄) , (2.33)

for the + helicity modes, and similarly with the z̄ component for the − helicity modes.
With an appropriate analytic continuation off the real manifold, we see that light ray
operators at future (past) null infinity create the out (in) states from the vacuum. Namely
the analog of (2.30) for a positive helicity outgoing Mellin mode is

〈∆, z, z̄,+| = lim
r→∞

∫
duu−∆

+ 〈0|Âz(u, r, z, z̄) . (2.34)

Correlation functions of the operators (2.33) thus give us S-matrix elements in the confor-
mal basis for any massless theory.

3 Soft charges in celestial diamonds

The soft charge corresponding to a given asymptotic symmetry transformation in 4D can
be written as an integral over the celestial sphere3

Qsoft
ζ =

∫
d2z ζ(z, z̄) · Osoft(z, z̄) , (3.1)

where ζ is the symmetry transformation parameter. We are now going to identify Osoft for
the soft charges of asymptotic symmetries in gauge theory and gravity. We will see that

3This is following the setup of [21–23] where, starting from the Lorentz representation of the field
operators in the free theory, they determine the conformal dimension of the charge.
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Qsoft
ζ s = 1 s = 2

leading 1
e2
∫
d2z
√
γ ε

∫
du∂uD

BÂB − 2
κ2
∫
d2z
√
γf
∫
du∂uD

ADBĈAB

sub-leading − 1
e2
∫
d2z
√
γ

[
yz
∫
duu∂uD

2
zÂ

z + 2
κ2
∫
d2z
√
γ

[
Y z
∫
duu∂uD

3
zĈ

zz

+yz̄
∫
duu∂uD

2
z̄Â

z̄

]
+ Y z̄

∫
duu∂uD

3
z̄Ĉ

z̄z̄

]
Table 1. Soft charge operators for ζ = {ε, f, yA, Y A} where A = {z, z̄}.

they take the form [22, 23] of primary descendants of the conformally soft radiative fields,
i.e. lie at the bottom corners of the corresponding celestial photon and graviton diamonds.4

Recall the Ward identities for these asymptotic symmetries are equivalent to soft the-
orems [34].5 The goal of [2, 11] was to show that the charges as defined in (2.18) match
ordinary momentum space soft charges summarized in table 1. We can see this as follows.
The soft charges Qsoft

ζ expressed as a celestial sphere integral in (3.1) correspond to the
inner products (2.19)–(2.20) with Σ pushed to I+ where A and h are replaced with the field
operators (2.28) and (2.29) while A′ and h′ are the Goldstone modes of the spontaneously
broken asymptotic symmetries. The large-r behavior of these AG/g and hG modes take the
form Dzε and D2

zy
z in gauge theory and to D2

zf and D3
zY

z in gravity. This indeed matches
the expressions for the soft charges summarized in table 1, where we used integration by
parts on the celestial sphere to write them in the form (3.1).

3.1 Soft operators

The operators Osoft read off by comparing table 1 to (3.1) involve u-integral of the cor-
responding bulk fields.6 We will now determine their quantum numbers (∆, J) under
SL(2,C). To do so we use the inverse Mellin transform (2.25) to express the creation and
annihilation operators in (2.28) and (2.29) in terms of a†∆,±s(z, z̄) and a∆,±s(z, z̄) and note
that the ω-integrals take form∫ ∞

0
dωω1−∆e±iω(1+zz̄)u± = (∓i)∆−2Γ(2−∆)u∆−2

± (1 + zz̄)∆−2 , (3.3)

where we analytically continue u 7→ u± = u± iε to guarantee convergence. The u-integrals
in the soft charges Qsoft

ζ in table 1 can then be computed7 using the generalized distribu-
4In gravity, the descendants of the radiative modes that appear in Osoft are related via the constraint

equation to the Bondi mass aspectmB and the angular momentum aspect Nz, which are therefore associated
to the bottom corners of the memory diamonds. The values of ∆ we find for the Osoft are consistent with
those for the ‘super-momentum’ and ‘super-angular momentum’ of [35].

5For the proofs that the momentum space soft theorems give Ward identities for the bulk asymptotic
symmetries see [36–39].

6Using ∫ +∞

−∞
duu1−∆∂uf(u) = (∆− 1)

∫ +∞

−∞
duu−∆f(u) +

∫ +∞

−∞
du∂u

[
u1−∆f(u)

]
, (3.2)

we see that, up to a boundary term, the soft charges can be written in the form (2.33).
7Note that the ±iε regulator picks out a phase e±iπ when performing the u-integrals.
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(∆, J) s = 1 s = 2

leading (2, 0) (3, 0)

sub-leading (2,±1) (3,±1)

Table 2. (∆, J) of the soft operators Osoft defined in table 1.

tion [11] ∫ ∞
0

duu∆−1 = 2πδ(i∆) . (3.4)

This yields for the annihilation operators∫ ∞
0

dωωa±(ω, z, z̄)
∫ +∞

−∞
duun−e

−iω(1+zz̄)u−

= (−i)nπ lim
∆→1−n

(∆− 1 + n)a∆,±s(z, z̄)(1 + zz̄)−1−n ,
(3.5)

and for the creation operators∫ ∞
0

dωωa†∓(ω, z, z̄)
∫ +∞

−∞
duun+e

+iω(1+zz̄)u+

= (+i)nπ lim
∆→1−n

(∆− 1 + n)a†∆,±s(z, z̄)(1 + zz̄)−1−n .
(3.6)

The leading and sub-leading soft charges correspond to n = 0 and n = 1 respectively.
To identify the conformal dimension ∆ and spin J of the operators Osoft we note that
the Dz, Dz̄ derivatives on the round Bondi sphere turn into the ∂z, ∂z̄ derivatives on the
flat celestial sphere (which we have been using throughout this paper recalling that the
reference direction is now (z, z̄)).8 We thus see that the leadingOsoft descend from operators
with ∆ = 1 while the sub-leading Osoft descend from operators which have ∆ = 0. The
dimensions of these descendants are summarized in table 2. Using the primary descendant
classification of [19], the explicit expressions for Osoft in gauge theory and gravity are as
follows.

Leading soft photon. The soft operator is a type II primary descendant operator at
level 1

Osoft
2,0 = − 1√

24πe
lim
∆→1

(∆− 1)
[
∂z̄(a∆,+1 + a†∆,+1) + ∂z(a∆,−1 + a†∆,−1)

]
. (3.7)

We notice the helicity degeneracy of the leading soft photon theorem, with the two terms
related by a shadow transform.

Sub-leading soft photon. The type III primary descendant operator at level 2

Osoft
2,+1 = − i

4
√

2πe
lim
∆→0

∆(1 + zz̄)−1
[
∂2
z (a∆,−1 − a†∆,−1)

]
, (3.8)

is the soft operator for the sub-leading conformally soft photon theorem. Similar expres-
sions hold for the opposite 2D spin.

8Recall that for any rank (m, 0) tensor gz1...zm we have Dn
z̄ gz1...zm = γnzz̄(γzz̄∂z̄)ngz1...zm . Meanwhile

for any function g we have γnzz̄(γzz̄∂z̄)n(1 + zz̄)1−ng(z, z̄) = (1 + zz̄)1−n∂nz̄ g(z, z̄).
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Leading soft graviton. The soft operator is a type II primary descendant operator at
level 2

Osoft
3,0 = 1

4πκ lim
∆→1

(∆− 1)(1 + zz̄)
[
∂2
z̄ (a∆,+2 + a†∆,+2) + ∂2

z (a∆,−2 + a†∆,−2)
]
. (3.9)

The two terms are related by a shadow transform and display the helicity degeneracy of
the leading soft graviton theorem.

Sub-leading soft graviton. The type II primary descendant operator

Osoft
3,+1 = i

4πκ lim
∆→0

∆
[
∂3
z (a∆,−2 − a†∆,−2)

]
, (3.10)

is the soft operator for the sub-leading conformally soft graviton theorem. We will see below
that it corresponds to a level 3 descendant of the ∆ = 0 shadow stress tensor or a level 1
descendant of the ∆ = 2 stress tensor. Similar expressions hold for the opposite 2D spin.

3.2 Memory diamonds

We have just seen that the soft charges Qsoft
ζ can be written as a convolution of operators

with definite (∆, J). From [2, 40–42] we also know that particular choices of the parame-
ters ζ in table 1 yield currents in the celestial CFT. We will now show how this works for
the examples considered in [2] and [11], which encompass all non-degenerate celestial dia-
monds for spin-1 and spin-2. Without loss of generality we will focus on J = +s radiative
primaries, while similar expressions are obtained for J 7→ −J and w 7→ w̄.

Leading conformally soft photon. The conformally soft photon current Jw was de-
fined in [2] as the mode of the bulk field operator Â that is extracted from its inner
products (2.18) with the spin-1 Goldstone wavefunction

Jw = i

e2 (Â, AG
1,−1) . (3.11)

It generates a large U(1) Kac-Moody symmetry

[Jw, Âµ] = iAG
1,+1;µ = i∇µΛ1,+1 , (3.12)

where Λ1,+1 is the potential. At null infinity

Λ1,+1 = 1√
2(z − w)

≡ εw , (3.13)

so that we can express the 2D operator (3.11) as

Jw =
∫
d2zεwOsoft

2,0 . (3.14)
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The current Jw is associated with the right corner of the spin-1 memory diamond as shown
in the following diagram

Jw̄ = ∂w̄J

βOsoft
2,0

Jw = ∂wJ

J

(3.15)

where β = −
√

2π, and the soft operator lies at the bottom corner. We can further write

Jw = ∂wJ , (3.16)

where J is a conformally soft photon operator at the top of the memory diamond that can
be expressed in terms of a J = 0 pure gauge generalized conformal primary vector with
∆ = 0

J = i

e2 (Â, Agen,G
0,0 ) , (3.17)

where the generalized primary Agen,G
0,0 = ∂−1

w̄ AG
1,−1 was studied in [19].

Leading conformally soft graviton. The BMS supertranslation current Pw =
4DwNww was defined in [2] as the descendant of the mode of the bulk field operators
ĥ that is extracted from its inner products (2.18) with the spin-2 Goldstone wavefunction

Nww = − i

κ2 (ĥ, hG
1,−2) . (3.18)

The operator Nww generates a BMS supertranslation symmetry

[Nww, ĥµν ] = ihG
1,+2;µν = i(∇µξ1,+2;ν +∇νξ1,+2;µ) = i∇µ∇νΛ1,+2 , (3.19)

where ξ1,+2;ν is the supertranslation vector field. At null infinity
1
r

Λ1,+2 = z̄ − w̄
2(z − w)(1 + zz̄) ≡ −2fww , (3.20)

so that we can express the 2D operator (3.18) as

Nww =
∫
d2zfwwOsoft

3,0 . (3.21)

The soft operator lies at the bottom of the leading soft graviton memory diamond, conve-
niently captured by the following diagram

Nw̄w̄ = 1
2!∂

2
w̄N Nww = 1

2!∂
2
wN

N

βOsoft
3,0

(3.22)
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where β = −π
4 (1 + ww̄)−1. Here N is a conformally soft graviton operator at the top

of the memory diamond, naturally expressed in terms of a J = 0 pure gauge generalized
conformal primary metric with ∆ = −1

N = − i

κ2 (ĥ, hgen,G
−1,0 ) , (3.23)

where the generalized primary hgen,G
−1,0 = 2!∂−2

w̄ hG
1,−2 was studied in [19].

Sub-leading conformally soft graviton. In celestial CFT, the stress tensor Tww is
extracted from the inner product (2.18) with the ∆ = 2 Goldstone wavefunction [11]

Tww = − i

κ2 (ĥ, h̃G
2,−2) . (3.24)

It generates a Virasoro superrotation symmetry

[Tww, ĥµν ] = ih̃G
2,+2;µν = i (∇µξ2,+2;ν +∇νξ2,+2;µ) , (3.25)

where ξ2,+2 is the superrotation vector field. Similarly, the shadow stress tensor T̃w̄w̄ is
extracted from the inner product (2.18) with the ∆ = 0 Goldstone wavefunction [11]

T̃w̄w̄ = − i

κ2 (ĥ, hG
0,+2) . (3.26)

It generates a Diff(S2) superrotation symmetry

[T̃w̄w̄, ĥµν ] = ihG
0,−2;µν = i (∇µξ0,−2;ν +∇νξ0,−2;µ) , (3.27)

where ξ0,−2 is the shadow superrotation vector field. In harmonic gauge, diffeomorphisms
of the celestial sphere are generated by [11]

ξY = uα∂u −
(
αr + u

(
D2

2 + 2
)
α

)
∂r +

(
Y A + u

2r ((D2 + 1)Y A − 2DAα)
)
∂A + . . . ,

(3.28)
where Y A = Y A(z, z̄) is an arbitrary vector field on the sphere and we introduced
α ≡ 1

2DCY
C . Since Y A has two independent components, we expect two linearly

independent Ward identities for the two polarizations. As in [39], we will look at the
complexification. At null infinity, ξ2,+2 and ξ0,−2 are determined by the vector fields Y A

ww

and Y A
w̄w̄, respectively, where

Y z
ww = 1

3!(z − w) , Y z
w̄w̄ = − (z − w)2

2!(z̄ − w̄) , (3.29)

while Y z̄
ww = 0 = Y z̄

w̄w̄. The 2D operators (3.24) and (3.26) can then be expressed as

Tww =
∫
d2zY z

wwOsoft
3,+1 , T̃w̄w̄ =

∫
d2zY z

w̄w̄Osoft
3,+1 , (3.30)
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This soft operator lies at the bottom of the sub-leading soft graviton memory diamond,
conveniently captured by the following diagram

Tww = − 1
3!∂

3
wT w

βOsoft
3,+1

T̃w̄w̄ = ∂w̄T w

T w

(3.31)

with β = −π
3 along with its opposite helicity counterpart. Here we have used [19] to write

the stress tensor and its shadow as descendants. The operator T w is a generalized primary
operator with conformal dimension ∆ = −1 and spin J = −1 that can be defined directly
via (2.18) as

T w = − i

κ2 (ĥ, hgen,G
−1,+1) , (3.32)

where the generalized primary hgen,G
−1,+1 = −3!∂−3

w̄ h̃G
2,−2 = ∂−1

w hG
0,+2 was studied in [19].

3.3 Descents and ascents in the diamond

The 2D operators Jw, Nww, Tww and T̃w̄w̄ defined in equations (3.11), (3.18), (3.24)
and (3.26), respectively, have been shown in [2, 11] to match the soft charges appearing in
table 1. Moreover, in [11] the debate about the asymptotic symmetry groups of Einstein
gravity at null infinity involving Diff(S2) versus Virasoro was cast into the language of ce-
lestial CFT where their generators are related by the 2D shadow transform. This relation
is naturally built into celestial diamonds. We will now show that these diamonds also offer
a new take on the special symmetry transformation parameters {εw, fww, Y z

ww, Y
z
w̄w̄} picked

out by the conformal basis.
Above we discussed how soft charges of spontaneously broken asymptotic symmetries

are convolutions of descendants of radiative fields. The expressions for the leading soft
photon (3.14)

Jw = − 1
8πe

∫
d2z

1
(z − w) lim

∆→1
(∆− 1)

[
∂z̄(a∆,+1 + a†∆,+1)+∂z(a∆,−1 + a†∆,−1)

]
, (3.33)

the leading soft graviton (3.21)

Nww = − 1
32πκ

∫
d2z

z̄ − w̄
z − w

lim
∆→1

(∆− 1)
[
∂2
z̄ (a∆,+2 + a†∆,+2) + ∂2

z (a∆,−2 + a†∆,−2)
]
, (3.34)

and the sub-leading soft graviton (3.30)

Tww = i

24πκ

∫
d2z

1
z − w

lim
∆→0

∆
[
∂3
z (a∆,−2 − a†∆,−2)

]
,

T̃w̄w̄ = − i

8πκ

∫
d2z

(z − w)2

z̄ − w̄
lim
∆→0

∆
[
∂3
z (a∆,−2 − a†∆,−2)

]
,

(3.35)
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hint that special convolutions take us back up to radiative primary operators. This gives
us an interesting interpretation for the parameters {εw, fww, Y z

ww, Y
z
w̄w̄}: they are Green’s

functions that invert the descendants appearing in the soft charges. This can be seen from9

∂−k̄w̄ Φ(w, w̄) = (−1)k̄

2π(k̄ − 1)!

∫
d2w′

(w̄ − w̄′)k̄−1

w − w′
Φ(w′, w̄′) (3.37)

and similarly for ∂−kw . The meromorphic vector field Y z
ww and the special Diff(S2) vector

field Y z
w̄w̄ of [9, 11] invert the descendant in the definition of the sub-leading soft charge, i.e.

lift the bottom corner of the diamond up to the stress tensor and its shadow, respectively.
Namely, we have

Y z
ww ⇒ ∂−1

z̄ , Y z
w̄w̄ ⇒ ∂−3

z , (3.38)

and by symmetry in z ↔ w, we also have

Y z
ww ⇒ ∂−1

w̄ , Y z
w̄w̄ ⇒ ∂−3

w . (3.39)

The relation (3.38) is the one relevant to the superrotation charge (3.35), while the de-
scendancy relations (3.39) ensure consistency between our expressions for Tww and T̃w̄w̄ in
terms of T w. Similar Green’s functions appear for the other soft theorems. As seen in
section 3.1, the special symmetry parameters {εw, fww, Y z

ww, Y
z
w̄w̄} have precisely the right

factors of (1 + zz̄) to guarantee that this integral kernel matches the appropriate uplifting
Green’s function.

Note that the memory effects [43, 44] are defined up to a kernel for the global sym-
metries [19]. This describes an ambiguity in the corresponding Green’s functions lifting us
from the bottom to the left and right corners of the celestial diamonds. This ambiguity also
applies when the corresponding Green’s functions are used to go from the left and right
corners to the top of the diamond. We leave to future work the question of whether or not
to include the modes {J ,N ,T A}, appearing at the top of the memory diamonds, in the
phase space.10 We will turn to their analogs in the Goldstone diamonds in the next section.

3.4 Generalized celestial currents

Now that we have discussed the corners of the diamond, let us point out that certain
operators which belong to the edges are also relevant to the celestial CFT literature. As
mentioned above, within S-matrix elements the soft operators at the bottom of the mem-
ory diamonds reduce to contact terms. This arises from the fact that memory effects are

9This follows from the relation

∂k̄w̄′
(w̄′ − w̄)k̄−1

(w′ − w)k+1 = 2π(k̄ − 1)! (−1)k

k! ∂kw′δ(2)(w′ − w) , (3.36)

with ∂z
1
z̄

= 2πδ(2)(z) and for k = 0, and similarly for its complex conjugate, which was used in [19] to
prove the shadow relation in the celestial diamond.

10When we formally invert the descendancy relations with these Green’s functions, we smear any contact
term violations or sources. This explains why the gauge fixings can be expected to be more relaxed for the
top corners.
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determined by the constraint equations and the matter distributions in perturbative S-
matrix elements are localized to isolated points on the celestial sphere. The associated soft
charges were expressed above as integrals over the full celestial sphere. However, the origi-
nal motivation for celestial CFT arose from an isomorphism between Ward identities for the
asymptotic symmetries in 4D and ones for holomorphic currents in 2D, and so one would
like to use codimension one charges to describe the symmetry enhancements. Indeed, this
would seem essential to any applications of radial quantization techniques to celestial CFTs.

We have already encountered bona fide holomorphic currents for the leading soft gauge
boson [40] and shadow transformed sub-leading soft graviton [39, 42], namely the soft
photon current Jw and the stress tensor Tww. In addition, two instances of exotic ‘currents’
have been proposed: the supertranslation current [25] associated to the leading soft graviton
and a sub-leading soft photon current [41]. In our language these are just descendants of
the primary operators at the left and right corners of the diamonds. Indeed in [2] it
was observed that the supertranslation current can be written as the level-1 descendant
Pw = 8∂w̄Nww of the operator associated to the ∆ = 1 radiative spin-2 primary. Similarly,
the sub-leading soft photon current can be expressed as the level-1 descendant of the
operator associated to the ∆ = 0 radiative spin-1 primary; this descendent thus lies halfway
between the radiative ∆ = 0 primary and its type III primary descendant given by the
radiative ∆ = 2 shadow primary.

The list of such celestial currents does not stop there. In fact, for any spin-s celestial
memory diamond we can define the associated celestial current as the level-1 ‘ascendant’
of the soft charge operator, i.e. currents j and j̄ such that

∂w̄j = Osoft
∆,J and ∂w j̄ = Osoft

∆,J . (3.40)

Note that the data in these ‘currents’ is of course already contained in their primary
parents at the left or right corners of the diamonds. However j and j̄ have the nice
property of satisfying a canonical ‘first order conservation equations’ instead of the ‘higher
derivative conservation equations’11 of the left and right corner operators. The first is
holomorphic away from sources, the second anti-holomorphic. We can then define Laurent
mode operators

Qn = 1
2πi

∮
dww∆−1+nj(w), j(w) =

∑
n∈Z

w−n−∆Qn. (3.41)

Because the soft operators are contact terms in celestial amplitudes, we expect that the
Qn can be interpreted as charges and that the hard operators are charged.

From figure 9 of [19]12 it follows that these operators have scaling dimension ∆ = s.
Moreover there are 2s such j’s and 2s such j̄’s. For example, the sub-leading soft graviton
diamond tells us that the stress tensor Tww = −π

3∂
−1
w̄ Osoft

3,+1 is joined by the ∆ = 2 celestial
11These already appeared in several contexts, see e.g. [45, 46] and references therein.
12We note that for the finite dimensional multiplets discussed in section 4.1 of [19], there are a series

of (anti-)holomorphic operators, corresponding to the states in the multiplet with largest ∆ for fixed J .
As illustrated in figure 4 of that reference, these each have a level-1 descendant which vanishes. Since the
descendants vanish, the corresponding Ward identities would have no source terms.
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current π∂−1
w Osoft

3,+1 = 1
2!∂

2
wT̃w̄w̄ which is a descendant but not a primary, similarly to the

supertranslation current. We get the following OPE for the Mellin operators of [47]

lim
∆→0

∆∂2
wO∆,−2(w, w̄)O∆j ,Jj (wj , w̄j) ∼

2
w̄ − w̄j

∂wjO∆j ,Jj . (3.42)

4 Conformal dressings in celestial diamonds

Conformal Faddeev-Kulish dressings which render amplitudes infrared finite were found
in [24] to be given by Goldstone boson insertions. As we will show, the latter naturally arise
from the generalized conformal primaries forming the top corners of our celestial diamonds.
While [24] focused on dressings related to the leading conformally soft photon and graviton
theorems, here we identify the sub-leading conformal Faddeev-Kulish dressings in gauge
theory and gravity.

4.1 Conformally soft modes

Leading conformally soft modes. The conformally soft photon and BMS supertrans-
lation currents generate but are invariant under large gauge transformations. We can also
define 2D operators that shift. These Goldstone currents are extracted from the inner
product of the bulk field operators Â and ĥ with the conformally soft photon and graviton
wavefunctions13 [2, 24]

Sw = − i

2
√

2π
(Â, ACS′

1,−1) , Cww = − i

2π (ĥ, hCS′
1,−2) , (4.1)

and analogous expressions for Sw̄ and Cw̄w̄. These 2D operators are associated with the
left and right corners of the celestial Goldstone diamonds for the leading soft photon and
graviton:

Sw̄ = ∂w̄S

∂w∂w̄S

Sw = ∂wS

S

Cw̄w̄ = 1
2!∂

2
w̄C Cww = 1

2!∂
2
wC

C

1
2!∂

2
w

1
2!∂

2
w̄C

(4.2)

The top corners of these diamonds are associated to the Goldstone bosons S and C which
are obtained from an inner product with the non-gauge J = 0 generalized primary vector
and metric from which the CS′ wavefunctions of spin-1 and spin-2 descend:

S = − i

2
√

2π
(Â, Agen,CS′

0,0 ) , C = − i

2π (ĥ, hgen,CS′
−1,0 ) , (4.3)

13With our choice of normalization for the conformal primaries (2.12)–(2.13) and (2.16)–(2.17) we have
i(ACS′

, AG) = i(hCS′
, hG) = (2π)2δ(2)(w − w′).
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where Agen,CS′
0,0 = ∂−1

w̄ ACS′
1,−1 and hgen,CS′

−1,0 = 2!∂−2
w̄ hCS′

1,−2 were defined in [19]. The Goldstone
currents (4.1) are their type I primary descendants as illustrated in the diagram above.

The Goldstone bosons S and C turn out to select conformal dressings for amplitudes [24]
as we will review below. We can thus understand conformal dressings as arising from the
top corners of the celestial photon and graviton diamonds.

Sub-leading conformally soft modes. Conformally soft theorems exist beyond leading
order and we can use the corresponding M and m wavefunctions to define 2D operators
analogous to the Goldstone currents (4.1) which are relevant for sub-leading conformal
dressings.

Indeed, besides the spin-2 wavefunction with ∆ = 2 which corresponds to (Virasoro)
superrotations and gives rise to the celestial stress tensor, there is another spin-2 conformal
primary wavefunctions with ∆ = 2 that is not pure gauge. In [27] its inner product with
the bulk field operator ĥ was defined as a ‘dual stress tensor’

Yww = − i

2π (ĥ, hM
2,−2) , (4.4)

with an analogous expression for Yw̄w̄. These 2D operators are associated with the left and
right corners of the Goldstone diamonds associated to the sub-leading soft graviton:

Yww = 1
3!∂

3
wYw

− 1
3!∂

3
w∂w̄Yw

−∂w̄Yw

Yw

(4.5)

The top corners of the diamond containing (4.4) is associated with the superrotation Gold-
stone mode operator [48] Yw obtained from the J = −1 generalized primary metric with
∆ = −1, namely

Yw = − i

2π (ĥ, hgen,M
−1,+1) , (4.6)

where hgen,M
−1,+1 = 3!∂−3

w̄ hM
2,−2 was defined in [19]. Meanwhile the other diamond is associated

with Yw̄. The dual stress tensor (4.4) is a type I primary descendant of (4.6) as shown in
the diagram.

We can consider analogous statements for the sub-leading soft theorem in gauge theory
arising from the spin-1 wavefunctions with ∆ = 2. The electromagnetic analogue of (4.4)
is the 2D operator

†w = − i

2
√

2π
(Â, Am

2,−1) , (4.7)

and an analogous expression for †w̄. Since the celestial diamonds associated to the sub-
leading soft photon are degenerate with zero area all corners are described by radiative
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spin-1 conformal primary wavefunctions:

†w

†w
(4.8)

The above ∆ = 2 primary descends from a ∆ = 0 primary, which is also its shadow
transform. This parent corresponds to the 2D operator

†w = − i

2
√

2π
(Â, Ãm

0,+1) . (4.9)

Again, an analogous expression exists for †w̄. We thus see that all of these operators are
already in the spectrum of the theory and (4.7) is the type III primary descendant of (4.9)
with

†w = − 1
2!∂

2
w†w , (4.10)

as shown in the diagram.
In the following we will show that Yw and †w select sub-leading conformal dressings for

amplitudes which thus assigns physical significance to the top corners of celestial Goldstone
diamonds.

4.2 Conformally soft dressings

The Faddeev-Kulish dressings for QED and gravity were constructed in [26] up to sub-
leading order in the soft expansion and to leading order in the coupling constants e and
κ as linearized coherent states that respect charge conservation. For a single (charged)
particle j we have the QED dressing14

We,j [φe] = exp
{
−e

∫
d3k

(2π)3
φe(~k)
2k0

Qj
pj · k

[(
pµj − ikνJ

νµ
j

)
aµ −

(
pµj + ikνJ

νµ
j

)
a†µ

]}
, (4.11)

and the gravitational dressing

WG,j [φG] = exp
{
− κ

2

∫
d3k

(2π)3
φg(~k)
2k0

pµj
pj · k

[(
pνj − ikρJ

ρν
j

)
aµν −

(
pνj + ikρJ

ρν
j

)
a†µν

]}
,

(4.12)
where φe(~k) and φG(~k) are arbitrary functions obeying φe(0) = 1 = φG(0). Here Qj is
the charge of the j-th particle while pµj and Jµνj = i(pµj ∂pjν − pνj ∂pjµ) are its momentum
and angular momentum which we parametrize such that pj · k = −2ωηjωj |w −wj |2 where
ηj = ±1 for outgoing (incoming) particles. The dressed asymptotic states for QED and
gravity are then given by

We,j [φe]|pj , Qj〉 , WG,j [φG]|pj〉 . (4.13)
14The leading terms arise from the eikonal limit and exponentiate the soft exchanges. Meanwhile, the sub-

leading terms were written suggestively in the exponential in [26], as (4.11) and (4.12). These sub-leading
terms are valid to leading order in the couplings.
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The special choice of Faddeev-Kulish dressing φe(~k) = 1 = φG(~k) was shown in [24] to yield
the exponentiated Goldstone bosons S and C as the leading conformally soft dressings. This
prescription will furthermore give us the sub-leading conformally soft dressings in gauge
theory and gravity in terms of the operators Yw and †w.

To see this we make use of the fact that the integrands in (4.11) and (4.12) have definite
powers of ω which, as in section 3, turns the creation and annihilation operators in the mo-
mentum basis via the inverse Mellin transform (2.25) into operators with definite conformal
dimension. The contributions to the leading conformally soft dressings are obtained from

[∂w log(pj · q)]Qj = Qj
1

w − wj
, (4.14)

and
[∂w log(pj · q)]2(pj · q) = −2ηjωj

w̄ − w̄j
w − wj

. (4.15)

For the sub-leading conformally soft dressing we note that the angular momentum Jµνj
contracted with the null vector qµ and the polarization vector

√
2εw;ν = ∂wqν can be

expressed in terms of the generators of rotations ~J (j) and boosts ~K(j)

(iqρ∂wqνJρνj ) = −(1− w̄2)(J (j)
1 + iK

(j)
1 )+ i(1+ w̄2)(J (j)

2 + iK
(j)
2 )+2w̄(J (j)

3 + iK
(j)
3 ) . (4.16)

This can be evaluated in terms of a simple action on the reference direction {wj , w̄j} using
the results in appendix B of [19]. We have the following relations between the SL(2,C)
Lorentz generators ~J and ~K and celestial derivatives ∂w and ∂w̄ (momentarily dropping
the j label)

(J3 − iK3 − 2w∂w − 2h) Φ∆,J = 0 ,
(−J1 + iJ2 + iK1 +K2 − 2∂w) Φ∆,J = 0 ,(

−iK1 +K2 + J1 + iJ2 − 2w2∂w − 4hw
)

Φ∆,J = 0 ,
(4.17)

and similar expressions for the barred quantities obtained by taking the complex conjugates
of the differential operators. Using these relations we find

(pj · q)−1Qj(iqν∂wqµJνµj ) = Qj
ηjωj

1
w − wj

[
(w̄ − w̄j)∂w̄j − 2h̄j

]
, (4.18)

and
[∂w log(pj · q)](iqρ∂wqνJρνj ) = −2 w̄ − w̄j

w − wj

[
(w̄ − w̄j)∂w̄j − 2h̄j

]
. (4.19)

From (4.14)–(4.15) and (4.18)–(4.19), and similar expressions for the opposite helicity
terms, we can now infer the conformal Faddeev-Kulish dressings.

The conformally soft QED dressing up to sub-leading order in the soft expansion and
to leading order in e is given by

We,j = exp
{
−iQjS(wj , w̄j) + Qj

ηjωj

(
2hj∂wj†wj + †wj∂wj + 2h̄j∂w̄j†w̄j + †w̄j∂w̄j

)}
, (4.20)

where the leading dressing arises from the Goldstone boson

S(wj , w̄j) = ie

4
√

2π2

∫ ∞
0

dω
[
∂−1
w̄j

(
a− − a†+

)
+ ∂−1

wj

(
a+ − a†−

) ]
, (4.21)
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while the operators responsible for the sub-leading dressing are given by

†wj = e

4
√

2π2

∫ ∞
0

dωω
[
∂−2
wj

(
a+ + a†−

) ]
,

†w̄j = e

4
√

2π2

∫ ∞
0

dωω
[
∂−2
w̄j

(
a− + a†+

) ]
.

(4.22)

Comparing the ω-integrals to the Mellin transform (2.24) we see that the operators in (4.21)
and (4.22) may be interpreted as a smearing of the conformally soft radiative modes of
conformal dimensions ∆ = 1 and ∆ = 2, respectively. The first term in (4.20), given by
the Goldstone boson (4.21), matches [24]. With the remaining terms in (4.20) given by the
operators (4.22) we have extended conformally soft Faddeev-Kulish dressing of [24] to the
sub-leading case.

For gravity we find the conformally soft dressing up to sub-leading order in the soft
expansion and to leading order in κ to be given by

Wg,j = exp
{
−iηjωjC(wj , w̄j) + 2

(
hj∂wjYwj + Ywj∂wj + h̄j∂w̄jYw̄j + Yw̄j∂w̄j

)}
, (4.23)

where the leading dressing arises from the Goldstone boson

C(wj , w̄j) = iκ

8π2

∫ ∞
0

dω
[
∂−2
w̄j

(
a− − a†+

)
+ ∂−2

wj

(
a+ − a†−

) ]
, (4.24)

while the operators responsible for the sub-leading dressing are given by

Ywj = κ

8π2

∫ ∞
0

dωω
[
∂−3
wj

(
a+ + a†−

) ]
,

Yw̄j = κ

8π2

∫ ∞
0

dωω
[
∂−3
w̄j

(
a− + a†+

) ]
.

(4.25)

Comparing to (2.24) we see that the operators in (4.24) and (4.25) are a smearing of the
conformally soft radiative modes of conformal dimension ∆ = 1 and ∆ = 2, respectively.
The first term in (4.23), given by the Goldstone boson (4.24), matches [24] while the
remaining terms in (4.23) given by the operators (4.25) extend their result to the sub-
leading case.

We have written the Green’s functions in a compact form in order to emphasize the fact
that the above expressions are local in terms of the dressing fields. As in [5, 6, 24] one can
write these in terms of the integral kernel (3.37). Moreover, we can replace any appearance
of ωj in the dressings by the appropriate powers of the operator ω̂j , whose action in the
conformal basis is to shift the conformal dimension ∆j of a primary operator15

ω̂jO(pj) = ωjO(pj) ⇒ ω̂jO∆j
(wj , w̄j) = O∆j+1(wj , w̄j) . (4.26)

From (4.20) and (4.23) we thus see that the sub-leading QED dressing incorporates a shift
by ∆j → ∆j−1 while the leading gravitational dressing shifts by ∆j → ∆+1 in agreement
with the operator products between O∆j

and the respective currents [2, 41].
15The operator ω̂ is related to a particular combination of the components of the translation generator

Pµ = qµe∂/∂∆ , given by 1
2 (P 0 + P 3) = e∂/∂∆ in [49] and denoted by P in [24]. Namely, P = ηω̂ where

η = ±1 for outgoing (incoming) particles.
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5 Modeling the conformally soft sector

In this section we combine the ingredients for the conformally soft sector. We speculate
on the implications for non-trivial levels and central charges in celestial CFT in section 5.1
and then discuss 2D effective actions for the conformally soft modes in section 5.2.

5.1 Central extensions

The operator products between the 2D operators {J ,S,N , C, T A,YA} at the top of the
celestial Goldstone and memory diamonds give rise to levels and central extensions when
they are non-vanishing. For the leading soft photon and graviton we have the following
two-point functions [24, 50, 51]16

〈J (wi,w̄i)J (wj ,w̄j)〉=kJJ log|wij |2, 〈N (wi,w̄i)N (wj ,w̄j)〉=
1
4kNN |wij |

2log|wij |2,

〈J (wi,w̄i)iS(wj ,w̄j)〉=kJS log|wij |2, 〈N (wi,w̄i)iC(wj ,w̄j)〉=
1
4kNC |wij |

2log|wij |2, (5.2)

〈iS(wi,w̄i)iS(wj ,w̄j)〉=kSS log|wij |2, 〈iC(wi,w̄i)iC(wj ,w̄j)〉=
1
4kCC |wij |

2log|wij |2,

while for the sub-leading soft graviton we have [6, 27]

〈T wi(wi, w̄i)T wj (wj , w̄j)〉 = 3
2cT T w

2
ij log |wij |2 ,

〈T wi(wi, w̄i)Ywj (wj , w̄j)〉 = 3
2cT Yw

2
ij log |wij |2 ,

〈Ywi(wi, w̄i)Ywj (wj , w̄j)〉 = 3
2cYYw

2
ij log |wij |2 ,

(5.3)

and analogous expressions for the opposite helicity modes. In the above expressions we
have allowed for various constants that are fixed by the dynamics and correspond to levels
and central charges. From multi-soft limits [40, 47] there is evidence that17

kJJ = 0 , kNN = 0 , cT T = 0 , (5.4)

at least at tree-level while canonical normalization implies [24, 27, 50]

kJS = 1 , kNC = 1 , cT Y = 1 . (5.5)
16The definition of 2D operators via the inner product (2.18) between the bulk fields and generalized

conformal primary wavefunctions should guarantee the necessary SL(2,C) transformation properties. While
this may not be obvious from e.g. (5.2) we anticipate that we can use the operator ω̂ defined in (4.26) to
write a two-point function

〈iS(wi, w̄i)iS(wj , w̄j)〉 7→ kSS log
(
|wij |2ω̂iω̂j

)
(5.1)

which is SL(2,C) invariant since ω 7→ ω|cw+d|2 and w−w′ 7→ w−w′

(cw+d)(cw′+d) . Note that the energy operators
are replacing the cutoff µ which appeared in [6], and was interpreted there as signaling a conformal anomaly.

17See [50] for an example where this can get modified when the currents are complexified in the presence
of magnetic monopole sources. Consequences of generalizing this have also been examined in [52].
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Non-trivial levels in the two-point functions for the Goldstone bosons arise from loop effects.
These are cleanly captured in the eikonal approximation where the celestial amplitude
factorizes into a soft and a hard part

A = AsoftAhard , (5.6)

at least at leading order in the soft expansion. The levels for the Goldstone bosons corre-
sponding to the leading conformally soft photon and graviton diamonds are given by the
cusp anomalous dimensions [24]18

kSS = − e2

4π2 log ΛIR , kCC = κ2

2π2 log ΛIR . (5.7)

Dressing the bare hard operators with the Goldstone boson S and C in (4.20) and (4.23)
leads to a cancellation of the IR divergent soft factor Asoft such that the dressed celestial
amplitude is IR finite and given by Ahard. [24]

On the other hand, the sub-leading soft dressings of [26], recast as conformally soft
dressings in (4.20) and (4.23), are only valid up to leading order in the couplings. In
particular, loop corrections mix the leading and sub-leading conformally soft contributions.
Nevertheless, one could try to reverse engineer the sub-leading dressings so as to remove
certain collinear divergences between hard operators and the respective current. For a bare
operator Ohj ,h̄j , its OPE with the stress tensor takes the form [56]

TwwOhj ,h̄j ∼
hjOhj ,h̄j

(w − wj)2 +
∂wjOhj ,h̄j
w − wj

, (5.8)

where we have dropped regular terms. The sub-leading conformally soft dressing we found
in (4.23) is expected to imply the OPE

Tww : e2[hj∂wjY
wj+Ywj ∂wj ]Ohj ,h̄j :∼ regular . (5.9)

The one-loop exact correction to the energy momentum tensor [57] obtained in dimensional
regularization (D = 4− ε) induces the following shift in the parent primaries

1
3!∂

3
z∆T z = 1

πκ2ε

∫
d2w

1
z − w

(3∂2
wN∂w∂2

w̄N + ∂3
wN∂2

w̄N ) . (5.10)

This shift in the charges might be expected given that superrotations and supertranslations
do not commute and that the soft charges should reproduce this algebra [58].

5.2 Effective 2D descriptions

We close this paper with a discussion of the role of the operators at the top of the celestial
diamonds. These modes govern the spontaneous symmetry breaking of asymptotic symme-
tries and should be described by some intrinsically 2D effective theory. Various elements
of this theory have already been explored in the celestial CFT literature. We summarize
them here, then review the simplest example in enough detail to extract what the general
features are for the free limit, before giving a simple toy model of 2D effective actions for
the modes at the top of our celestial diamonds. Its completion into a non-linear model is
an interesting problem which we leave to future work.

18See [53–55] for recent results on the IR structure of celestial loop amplitudes in non-Abelian gauge
theory.
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Leading soft photon/gluon. The spontaneous breaking of large gauge symmetries in
QED is captured by a free boson in 2D [50]. Vertex operators constructed from this boson
give the dressing for charged states. In Yang-Mills this gets promoted to a Lie algebra
valued free boson [54, 55]. The interacting version [5] is described by a Chern-Simons
theory on a hyperbolic slice of Minkowski space [4], which should be dual to a Wess-
Zumino-Witten model.

Leading soft graviton. While an understanding of the soft phase space and eikonal
factorizations have much earlier origins, the main precedent for how we are viewing the
leading gravitational dressings in celestial CFT are the references [24, 51]. There the IR
divergences are captured by correlators of vertex operators built from the supertranslation
Goldstone mode. A higher derivative 2D effective action is given in [59, 60].

Sub-leading soft graviton. An effective action for superrotations was constructed in [7].
As within a wider 2D CFT context [6, 8], the spontaneous breaking of Diff(S2) to Virasoro
is governed by an Alekseev-Shatashvili action [61].

The leading conformally soft photon is the simplest of the above examples. The
claim [5, 50] is that the spontaneous symmetry breaking of large U(1) gauge symmetries
is governed by a free scalar in a 2D CFT. Let us demonstrate how this 2D toy model has
the same structure as the celestial diamond for the leading conformally soft theorem.

For the theory of a free boson S =
∫
d2w∂wφ∂w̄φ. Taking the field φ(w, w̄) to lie at

the top of the diamond, we see that it descends to primary operators at the left and right
corners. These, in turn, descend to an operator at the bottom which encodes a ‘shortening’
condition of the multiplet. In the classification of [19] the fields ∂wφ and ∂w̄φ are type Ia
and Ib primary descendants. They play the role of currents associated to the symmetry
φ→ φ+ const of the action. By taking an extra derivative we obtain the type II primary
descendant ∂w∂w̄φ which is zero by the equations of motion (considered as an operator
equation valid in correlation functions up to contact terms) and defines the conservation
equation for the currents which can, in turn, be integrated to define charges. While φ
does not transform as a primary,19 it is a building block for constructing vertex operators
Vα(w, w̄) =: eiαφ(w,w̄) : which are well defined primaries with conformal dimension α2,
charged under the symmetry generated by ∂wφ and ∂w̄φ. These can be used to ‘dress’ the
vacuum as Vα(0)|0〉 ≡ |α〉, which now carries a charge. Conversely, given a charged state
of the Fock space, we can make it neutral by acting on the vacuum with an opportune Vα.

We thus see that this toy model has circled back to the spontaneous symmetry break-
ing story that initiated our trek into the conformally soft sector. For this example, φ
corresponds to O∞′,′ at the top of the leading conformally soft photon diamond. Let us now

19Note that φ itself is not a conformal primary in the sense that e.g. its two point function takes a
logarithmic form which does not scale covariantly. Indeed, under the state-operator map, φ cannot be
associated to a normalizable state of the Hilbert space. On the other hand the OPE of φ with the stress
tensor is the one characteristic of a primary operator with h = h̄ = 0. Therefore the generators Li and L̄i
act on it as on usual primary fields, e.g. [L1, φ(0)] = 0. This means that the purely algebraic considerations
of section 3 of [19] hold also for φ (as if it were a primary).
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try to construct analogous toy models for the free limit of Os∆,J . The main takeaways are
the shortening conditions, the currents, and the vertex operators.

An interesting toy model that captures these features of the diamond structure can be
formally obtained by considering a higher derivative Gaussian theory with action20

S =
∫
d2w

[
∂kwOs∆,J∂k̄w̄Os∆,J + ∂kw̄Os∆,−J∂k̄wOs∆,−J

]
, (5.11)

where, in order to have a scale invariant action, we choose operators O with dimension
∆ = 1 − k+k̄

2 and spin J = k̄−k
2 where k, k̄ ∈ Z>. Here we have introduced the label s in

order to make contact with the 4D notation of (2.18). It is fixed to k + k̄ = 2s, consistent
with ∆ = 1 − s for operators at the top of the celestial diamonds [19]. The equations of
motion can be written as follows

∂kw∂
k̄
w̄Os∆,J = 0 . (5.12)

We notice this takes us to the bottom corner of the diamond. By asking that the two point
function of O∆J is the corresponding Green’s function we obtain

〈Os∆,J(w, w̄)Os∆,J(0, 0)〉 ∝ wk−1w̄k̄−1 log(ww̄) . (5.13)

This implies that we can define the two operators

JL ≡ ∂k̄w̄Os∆,J , JR ≡ ∂kwOs∆,J , (5.14)

which lie at the left and right corners of the diamond and thus have 2D spin ±s. These
currents have canonical two point functions (without logs)

〈JL(w, w̄)JL(0, 0)〉 ∝ (w)k−1(w̄)−k̄−1 , 〈JR(w, w̄)JR(0, 0)〉 ∝ (w)−k−1(w̄)k̄−1 , (5.15)

while 〈JL(w, w̄)JR(0, 0)〉 reduces to a contact term. The k−1th derivatives in w of JL gives
antiholomorphic generalized currents in the sense of section 3.4 (and similarly for JR).21

We thus see that this toy model gives us shortening conditions and currents, which
replicate the structure of soft charges and generalized celestial currents in section 3. More-
over, we expect the associated vertex operators to match the conformally soft dressings
we constructed in section 4. It would be very interesting to systematically study these
theories and find how to define, from first principles, their vertex operators. In practice,
this task should be straightforward since we are dealing with a special class of generalized
free theories where all correlation functions can be obtained by Wick contractions. It is
worth pointing out though that, while being simple, these theories are of a subtle type.
Besides the fact that the Gaussian fields have logarithmic two point functions (5.13), in

20In the previous sections we have been discussing the Goldstone and memory modes separately. Here
we are sidestepping how they interplay in the 2D picture. In the bulk we know that they are symplectic
partners and inherit Hermiticity conditions from the reality of the gauge field and metric. This might hint
at a single dual field, however our understanding of the 2D Hilbert space is still evolving [62, 63].

21The JL are polynomial in w. In the recent investigations [64, 65] the coefficients of these polynomials
are shown to obey interesting symmetry algebras.
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general these theories do not have a traceless stress tensor (apart from simple cases e.g.
k = k̄ = 1 which corresponds to the free boson theory), therefore they are not Virasoro
invariant but only global conformal invariant (see e.g. [66]).

Our toy model captures the free limit of the examples from celestial CFT discussed
above. Generalizations of this model with operators O that transform under a global
symmetry can be easily considered. Moreover, knowing how the Yang Mills [5] and sub-
leading gravity [7] get completed to interesting non-linear models, invites us to look for
analogs for the other conformally soft modes. While the most sub-leading soft theorems do
not have an obvious spontaneous symmetry breaking interpretation, the associated currents
are powerful enough to fix the OPE [67]. Our investigations into celestial diamonds have
handed us the ingredients for the conformally soft sector, which we expect to be a rich
microcosm of celestial physics.
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