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Purpose: To develop a radiomic model predicting non-response to induction chemotherapy in laryngeal 

cancers, from multicenter pre-therapeutic contrast-enhanced computed tomography (CE-CT) and 

evaluate the benefit of features harmonization in such a context. 

Methods: Patients (n=104) eligible for laryngeal preservation chemotherapy were included in 5 centers. 

Primary tumor was manually delineated on the CE-CT images. The following radiomic features were 

extracted with an in-house software (MIRAS v1.1, LaTIM UMR 1101): intensity, shape and textural 

features derived from Grey Level Co-occurrence Matrix: GLCM; Neighbourhood Grey Tone Difference 

Matrix: NGTDM; Grey Level Run Length Matrix: GLRLM; Grey Level Size Zone Matrix: GLSZM. 

Harmonization was performed using ComBat after unsupervised hierarchical clustering, used to 

determine labels automatically, given the high heterogeneity of imaging characteristics across and within 

centers. Patients with similar features distributions were grouped with unsupervised clustering into an 

optimal number of clusters (2) determined with ‘silhouette scoring’. Statistical harmonization was then 

carried out with ComBat on these two identified 2 clusters. The cohort was split into training/validation 

(n=66) and testing (n=32) sets. Area under the receiver operating characteristics curves (AUC) were used 

to evaluate the ability of radiomic features (before and after harmonization) to predict non-response to 

chemotherapy, and specificity (sp) and sensitivity (se) were used to quantify their performance in the 

testing set.

Results: Without harmonization, none of the features identified as predictive in the training set remained 

significant in the testing set. After ComBat, one textural feature identified in the training set keeps a 

predictive trend in the testing set:  Zone Percentage, derived from the GLSZM, was predictive of non-

response in the training set (AUC=0.62, Se=70%, Sp=64%, p=0.04) and obtained a satisfactory 

performance in the testing set (Se=80%, Sp=67%, p=0.03), although significance was limited by the size of 

the testing set. These results are consistent with previously published findings in head and neck cancers.”

Conclusions: Radiomic features from CE-CT could help in the selection of patients for induction 

chemotherapy in laryngeal cancers, with relatively good sensitivity and specificity in predicting lack of 

response. Statistical harmonization with ComBat and unsupervised clustering seems to improve the 

predictive value of features extracted in such a heterogeneous multicenter setting. 

Keywords: Imaging biomarkers and radiomics; CT; larynx cancer; prediction of treatment response; 

ComBat; unsupervised learning
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, accounting 

for 6% of all cancer cases 1. Laryngeal cancers are among the most common and are mainly caused by 

tobacco and alcohol. The management of locally advanced laryngeal tumours in previously untreated 

patients is mainly based on laryngeal preservation strategies, two of which have been validated so far: 

induction chemotherapy followed by radiotherapy (RT) alone (GORTEC 2000-01 2) and RT with concurrent 

cisplatin (RTOG 91-11 3).

The rationale of the first option is to employ induction chemotherapy to select patients for subsequent 

treatment according to tumor response: either RT in responders or salvage laryngectomy followed by 

adjuvant RT in non responders. The first international phase III trials showed that larynx could be 

preserved in 40% – 60% of the patients with such an approach without compromising survival 4,5.A
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The standard induction chemotherapy regimen is a combination of docetaxel, cisplatin and 5-fluorouracil 

(TPF), which has demonstrated its superiority over cisplatin-5-fluorouracil (PF) in terms of overall 

response and larynx preservation rate in the French 2000-01 GORTEC (Groupe Oncologie Radiothérapie 

Tête Et Cou) trial 2. Nevertheless, the toxicity of the TPF regimen is increased compared to a FP regimen, 

with 31.5% vs. 17.6% of grade 4 neutropenia, respectively. According to the results of the GORTEC 2000-

01 study, 20% of patients do not respond to induction chemotherapy with TPF, and are therefore 

unnecessarily exposed to significant toxicity when they will eventually have to undergo laryngectomy 

anyway. There is currently no established pre-treatment biomarker to identify these patients. 

These patients usually undergo contrast-enhanced computed tomography (CE-CT) as a clinical routine 

diagnostic imaging procedure. Our first goal was to investigate if radiomic features from CE-CT could 

contribute in predicting lack of response to TPF chemotherapy. In order to build a more relevant and 

generalizable model, we aimed for a multicenter recruitment. In that context, it is known that CT radiomic 

features exhibit variable levels of sensitivity on scanner model/manufacturer, as well as acquisition and 

reconstruction settings (including slice thickness, matrix size, tube current, etc.) 6–9. This is particularly 

problematic when CT images come from different centers relying on different machines and protocols. 

Our second goal was therefore to evaluate the benefit of features harmonization in that context.

Methods

Patients

All patients with histologically proven locally advanced laryngeal or hypopharyngeal cancer, who were 

treated with laryngeal preservation using TPF induction chemotherapy from June 2008 to January 2018 at 

5 French institutions (Brest, Nantes, Rennes, La Roche-sur-Yon and Quimper), were retrospectively 

considered. Only patients with a Performance Status (PS) 0-1 were included. The disease had to be 

curable with total (pharyngo)laryngectomy and postoperative radiotherapy. A direct laryngoscopy was 

required to assess laryngeal mobility. Patients were considered for laryngeal preservation in case of T2 

laryngeal tumor not accessible to partial laryngectomy, or T3 tumor without massive infiltration of the 

endolarynx. Nodal status ranged from N0 to N3. Patients with transglottic T3 tumours with massive 

hemilaryngeal infiltration or T4 with massive cartilage invasion or tumours of the retrocricoarythenoidal 

region or posterior hypopharyngeal wall were not included. Patients with a tumour requiring initial 

tracheotomy, or accessible for partial surgery or requiring circular hypopharyngeal surgery, were also 

excluded. A
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This study was approved by the local ethics committee (29BRC19.0006) and all patients gave their consent 

via a non-opposition form.

Treatment and main outcome

Two or three cycles of TPF chemotherapy were planned according to each center’s protocol. Response to 

chemotherapy was assessed after 2 or 3 cycles depending on centers and was based on clinical 

examination (endoscopic evaluation of larynx mobility) and imaging evaluation (computed tomography 

(CT) scan and/or [18F]-Fluoro-Deoxy-Glucose (18F-FDG) Positron Emission Tomography (PET)/CT). Primary 

endpoint was lack of response to chemotherapy, defined as a non-remobilization of the larynx if laryngeal 

mobility was decreased or abolished at diagnosis, or a response of the primary tumor <50% (RECIST 

criteria). Non-responders were referred for a (pharyngo-)laryngectomy followed by postoperative RT, 

whereas responders received conservative RT with or without chemotherapy depending on pathological 

risk factors.

Image acquisition and definition of volume of interests

All patients had a CE-CT at diagnosis. A great variability existed in terms of scanner models, collimation / 

acquisition settings and reconstruction parameters, even within a single centre (details provided in 

Supplemental Table 1). For each patient, the volume of interest (VOI) of the primary tumor was manually 

delineated on the axial slices of the pre-therapeutic CE-CT by one experimented radiation oncologist (IM), 

using the open source software 3D slicer v.4.11 (http://www.slicer.org/). 

Image interpolation

There was a wide variety of voxel sizes and slice thickness in the original images (see Supplemental Table 

1). We chose not to interpolate images to a common voxel size to avoid investigating several different 

interpolation methods and different target dimensions, as each approach could lead to artifacts and 

impact the interpolated images in different ways. All images were therefore processed in their native 

dimensions.

Intensity discretization and features extractionA
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IBSI (image biomarker standardisation initiative) compliant 10 radiomic features (intensity, shape and 

textural) were extracted with an in-house software (MIRAS v1.1, LaTIM UMR 1101). Textural features 

were derived from 4 matrices representing the spatial distribution of voxel intensities at local (GLCM: 

Grey Level Co-occurrence Matrix; NGTDM: Neighbourhood Grey Tone Difference Matrix) and regional 

(GLRLM: Grey Level Run Length Matrix; GLSZM: Grey Level Size Zone Matrix) scales. Texture matrices 

were implemented in 3D following the merging strategy (i.e., considering all 13 directions 

simultaneously). Four different discretization of voxels intensity values were implemented prior to 

textural features extraction through three methods11: fixed bin size (FBS) with either 10 or 25 Hounsfield 

Units (HU) 12,13, fixed  bin number (FBN) with 64 bins 14 and histogram equalization (HE) into 64 bins 15,16. 

These have been described as providing a good compromise between information on image 

heterogeneity and noise. As the various discretization techniques have different advantages and 

drawbacks, we chose to use them all in order to benefit from the texture optimization process (i.e., 

certain features might provide more relevant information using a specific discretization scheme, thus if 

using only one discretization approach, part of the features could not be as informative as they could be) 
16,17. Note that HE is not part of the IBSI standardization yet, so textural features obtained with this 

discretization cannot be considered IBSI-compliant. 

A total of 274 radiomic variables were thus evaluated: 15 shape features, 11 first-order statistical features 

and 62 textural features calculated with the 4 discretization settings mentioned above (Supplemental 

Table 2).  

Harmonization method for multicenter data 

To correct for the high variability of the acquisition settings and reconstruction parameters (Supplemental 

Table 1) and their well-known impact on most radiomic features distributions, we used the statistical 

harmonization method ComBat, initially developed for genomics to correct for batch effects 18. It removes 

inter-site technical variability while preserving biological variability. It has been successfully applied to 

multicenter radiomics on CT 19, magnetic resonance imaging (MRI) 20 and PET 20,21 images. We used the 

ComBat parametric model with its R implementation, available at the following address: 

https://github.com/Jfortin1/ComBatHarmonization/tree/master/R. Harmonization was performed on all 

previously extracted radiomic features. We did not include a biological covariate in our computation given 

the high homogeneity of our population in terms of clinical or histological data. ComBat requires grouping 

patients whose scans have been performed with the same settings and although ComBat was shown to be 

robust for small samples, it is nonetheless recommended that these groups should contain enough A
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patients for the estimation to be performed. Because of the very high heterogeneity in our cohort, using 

ComBat directly would have led to use more than 15 labels, with labels having as few as one or two 

patients. Therefore, we rather chose to first perform unsupervised hierarchical clustering to group 

patients with sufficiently similar features distributions. Hierarchical clustering is a type of unsupervised 

algorithm which groups data by similarity – it classifies objects without any prior knowledge of the class 

they belong to, based on the measure of the Euclidean distance (Figure 1a.) 22. To determine the optimal 

number of clusters to consider before running the hierarchical clustering, we used ‘silhouette’ scoring, a 

tool used to validate the clustering 23. The ‘silhouette’ is then constructed to determine the optimal 

number of cluster with a ratio scale data (as in the case of Euclidean distance) that is suitable for clearly 

separated clusters (Supplemental Figure 1) 23. The assumption made here is that the imaging differences 

have a stronger impact on the distribution of radiomic features compared to the ones we need to capture 

in order to classify patients with respect to lack of response to therapy. As there was an obvious risk that 

the unsupervised clustering could end up grouping patients based on clinical endpoint rather than 

imaging differences, the resulting clusters were checked for consistency regarding their percentage of 

non-responders (Figure 1b.). To increase the confidence in the resulting clusters, the exact same 

technique was also applied to another multicenter dataset (not exploited further here) of 197 cervical 

cancer patients from 3 centers 20,24, where the true labels are known.

Statistical analysis 

Stratified sampling was used: patients were sorted in chronological order according to the date of 

diagnosis and then split into a training/validation set (2/3) and a testing (1/3) set. The comparison of the 

training/validation and testing sets was tested under the null hypothesis H0 with a risk of α = 0.05. The 

discrete quantitative variables (age and BMI) were tested with the Mann-Whitney U test. The qualitative 

variables were tested with the Chi2 parametric test. 

The evaluation and selection of relevant variables, as well as the identification of a threshold value for 

optimizing sensitivity and specificity in identifying lack of response was carried out in the 

training/validation set. No correction for multiple testing was carried out for the discovery of potentially 

predictive features in the training/validation set, as the final evaluation of their statistical significance lies 

in their performance in the testing set. The 274 radiomic features values, 8 clinical variables (sex, age, PS, 

BMI, tumor location, T stage, lymph nodes involvement, pre-therapeutic mobility of the larynx) and 1 

treatment parameter (number of TPF cycles) were tested for their ability to predict lack of response to 

induction chemotherapy, as defined above. The predictive performance was quantified in univariate A
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analysis by the AUC of the ROC curves. Optimal cut-off values for each variable were defined using the 

Youden Index. Selection of radiomic features to be evaluated in the testing set was then performed based 

on 3 criteria: an AUC ≥ 0.60, a minimum specificity of 60% (arbitrary chosen to avoid false positive events) 

and a lack of redundancy between the selected parameters, based on Spearman's rank correlation 

coefficients. Spearman's rank correlation between two features was considered significant (with 0 = no 

correlation; -1 = negative correlation; +1 = positive correlation) at a significance level alpha = 0.05. In case 

of such redundancy, the most predictive feature in the training set was kept for evaluation in the testing 

set. The threshold of 60% specificity was chosen based on a clinical rationale, in order to limit the number 

of patients wrongly classified as non-responders (and for whom the sentence is total laryngectomy), when 

in fact they are responders

The previously selected variables and/or combinations of variables (with their optimal threshold) were 

then evaluated in the testing set. The Bonferroni method was used to correct for significance for multiple 

testing comparisons in the testing set. Significance was defined as a corrected p value below α/n with 

α=0.05 and n=the number of tests performed

The statistical analyses were performed using MedCalc Statistical Software version 15.8 (MedCalc 

Software bvba, Ostend, Belgium; https://www.medcalc.org; 2015). 

Results

Patient characteristics

One hundred and four patients were included between June 2008 and January 2018. Ninety-eight 

patients were analyzed (flow chart in Supplemental Figure 2). Patients in the training/validation (n=66) 

and testing (n=32) sets had similar clinical and pathological characteristics (Table 1). Overall, 10 patients 

(15%) and 5 patients (16%) did not respond to TPF induction chemotherapy in the training/validation and 

testing sets, respectively. 

Without ComBat harmonization

In the training/validation set and in univariate analysis, one clinical variable (gender) and 33 radiomic 

features were significantly correlated with lack of response to chemotherapy (without correction for 

multiple testing). After selection of features according to the criteria defined above, no clinical variable 

(Supplemental Table 3) and only 1 radiomic features was predictive enough and non-redundant to be 

retained for further evaluation in the testing set :  Large Area Low Gray Level Emphasis with discretization A
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using FBS with 25 HU (LALGLE GLSZM, FBS:25HU) (Figure 2) reached AUC 0.680 (p<0.001). The optimal threshold 

for LALGLE GLSZM, FBS:25HU in the training set was ≤12, resulting in 80% sensitivity and 70% specificity.

LALGLE GLSZM, FBS:25HU with its thresholds demonstrated however low predictive power in identifying non-

responders in the testing set with Se and Sp of 80% and 52% (p=0.15), respectively.

With ComBat harmonization

When applied to the 197 cervical cancer patients cohorts with 3 known labels, the unsupervised clustering 

almost perfectly (only 1 patient misclassified) labelled all patients from the 3 different centers 20,24. In the 

present cohort, the unsupervised clustering automatically identified two clusters of 38 and 60 patients 

(Figure 1a.), which exhibited similar proportion of events: 6 non-responders for 38 patients (16%) in the 

first cluster and 9 non-responders for 60 patients (15%) in the other (Figure 1b.). It is thus very unlikely 

that this unsupervised differentiation was based on outcome, rather than on differences of features due 

to imaging. These two clusters were therefore used as labels for the ComBat harmonization.

In the training/validation set and in univariate analysis, 27 radiomic features were significantly correlated 

with lack of response to chemotherapy after this harmonization based on labels determined through 

unsupervised clustering. After selection of features according to the criteria defined above, 3 were kept, 

all derived from GLSZM with discretization using FBS with 25 HU : Zone Percentage (ZP GLSZM, FBS:25HU) with 

AUC = 0.62 and a threshold of 0.07 (Se = 70%, Sp = 64%, p=0.04), Large Area Low Gray Level Emphasis  

(LALGLE GLSZM, FBS:25HU) with AUC = 0.687 and a threshold of ≤-103 (Se = 60%, Sp = 82%, p =  0.01) and Large 

Area High Gray Level Emphasis (LAHGLE GLSZM, FBS:25HU) with AUC = 0.641 and a threshold of ≤9283393 (Se = 70%, 

Sp = 68%, p=0.02). The 3 textural features were not correlated with each other (Figure 3a). 

In the testing set, Zone Percentage with its threshold was the only feature able to predict non-responders 

with Se = 80% and Sp = 67%, CI 95% [55%-88%], p=0.03 (Figure 3b) although this was not significant 

anymore after correction for multiple testing (threshold at p=0.017). LALGLE and LAHGLE with their 

respective thresholds failed to predict non responders in the testing set with Se and Sp of 80%, 41% 

(p=0.4) and 60%, 63% (p=0.4), respectively.

Table 2 is a sample of the differences between the radiomic features values before and after 

harmonization by ComBat in the training set, as well as the optimal cut-off according to the Youden index. 

The textural features with the highest AUCs for the prediction of non-response to chemotherapy are 

compared through DeLong et al., method (1988) in Figure 4. As explained above, 27 radiomic features 

after harmonization were significantly correlated with lack of response to TPF in the training set and in A
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univariate analysis, such as Short run high grey level emphasis (SRHGLE GLRLM, FBS:25HU) and Large Area High 

Gray Level Emphasis (LAHGLE GLSZM, FBS:25HU); but they have not been retained for evaluation in the testing 

set due to insufficient specificity/AUC or to a correlation with other features. The combination of the most 

promising features with the Zone Percentage in the training set also failed to create a superior radiomic 

model, in terms of AUC and specificity, compared to the Zone Percentage alone. No combination of 

radiomic features was therefore evaluated in the testing set.

Performance of radiomics-based models was compared against tumor volume, as recommended by 

Vallieres, et al 17,25. ROC curve for tumor volume did not show any predictive ability of non-response to 

TPF in the training set (AUC 0.52, CI 95% [39%-64%]), therefore tumor volume could not be retained for 

evaluation in the testing set. Tumor volume and Zone Percentage showed a negative moderate 

correlation with a Spearman rank coefficient = -0.23 when considering the entire set of 98 patients 

(p=0.021, CI 95% [-0.41-0.036]).

Discussion

The rate of non-response to induction TPF (15-16%) reported here is very similar to the one of the 

GORTEC 2000-01 trial with 20% of non-responders in the TPF group 2. None of the clinical variables (age, 

gender, PS, BMI, site of tumor, T stage, lymph nodes status, pretherapeutic hemilaryngeal mobility) or 

treatment modalities (2 vs 3 TPF cyles) were found to be statistically significant in identifying non-

responders to chemotherapy. This might be due to the high homogeneity of eligible patients for laryngeal 

preservation protocol. In the literature, only few variables have been reported as predictors of lack of 

response to organ preservation strategy, namely a nonfunctional larynx (extensive T3 or T4a) or tumor 

invasion through cartilage into surrounding soft tissues 2,26,27. The fact that tumor volume and stage did 

not emerge as predictors of lack of response to TPF in our cohort could be related to the small number of 

patients in each subgroup (2 and 1 patients with T4a stage in the training and testing sets, respectively). 

Patients with cartilage invasion or large volume disease are poor candidates for laryngeal preservation 26. 

They may respond to conservative treatment, which is consistent with our study, but have a high local 

early recurrence rate 28. The number of TPF cures (2 vs. 3) also did not emerge as a predictor of lack of 

response. Given the fact that no clinical variable was associated with the endpoint studied, we could not 

compare our radiomic findings with a basic clinical model, nor build a combined radiomic - clinical one, as 

previously done by others 17. 
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The analysis performed on the raw features (i.e., without multicenter harmonization) did not allow for 

features selected in the training/validation set to be successfully evaluated in the testing set. This was 

expected as the features are derived from images exhibiting very high variability in terms of scanner 

models, acquisition protocols and reconstruction parameters. Indeed, in this multicenter study, which was 

extended over 10 years, 26 different machines were used to produce the CE-CT. In addition, for the same 

machine, the acquisition and reconstruction protocols varied. Berenguer, et al. showed that most CT 

radiomic features are not reproducible when changing  the pitch factor or the reconstruction kernel 

(intra-CT analysis) 7. Reproducibility of inter-CT radiomic features was also poor when comparing different 

scanners with the same settings. Shafiq-ul-Hassan, et al. studied the reproducibility of 213 radiomic 

features by changing the slice thickness and pixel size (FOV): 42 out of 213 parameters showed 

significantly better reproducibility after normalizing the voxel size 6. Reconstructed section thickness and 

reconstruction kernel can also infer high variability 29.

In contrast, the selection of a radiomic feature amongst these harmonized with ComBat allowed 

identifying one that met our selection criteria based on AUC, specificity and absence of redundancy, and 

led to some predictive ability (with a trend) in the testing set : Zone Percentage. Two other features 

(LALGLE and LAHGLE) exhibited good performance in the training set, but failed to predict non responders 

in the testing set. The performance of the radiomic model was not improved by combining Zone 

Percentage with these 2 other features. The combinations were tested manually. This prevented us from 

exploring all possible combinations, compared to a more exhaustive machine learning approach. Zone 

percentage is a textural feature derived from the GLSZM that characterizes texture at a regional level 

(groups of voxels). Highly uniform regions of interest produce a low zone percentage 10. These results are 

consistent with the literature. Bogowicz et al. already demonstrated that greater heterogeneity in pre-

treatment CT images of patients with head and neck cancer is associated with poor local tumour control 

after definitive chemoradiotherapy 30. The underlying hypothesis is that this heterogeneity on imaging 

reflects the heterogeneity of the microenvironment (vascularization, necrosis, tumor hypoxia), which is 

known to be associated with a more aggressive tumor phenotype in head neck cancers 31. For the same 

reason, CE-CT might be more informative for radiomics than non-injected CT 32. 

Four different discretization settings of voxel intensities were implemented for each textural feature. The 

selected feature Zone Percentage was predictive when calculated using the fixed bin size method with 25 

HU. This discretization approach has been shown to produce more robust radiomic features compared to 

a fixed number of bins 12,33,34. In addition, most of the textural features identified above as potential A
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predictive factors, including Zone Percentage, were derived from a discretization of intensity values over 

equally spaced 25-HU bins, rather than 10 (Table 2).

In our study, a number of radiomic features (33 before and 27 after harmonization) were correlated with 

lack of response to chemotherapy. It was necessary to carry out a step of features selection since they 

have a variable level of rank intercorrelation. Several strategies exist 15,19,35,36. We have deliberately 

chosen a simple one based on the search for the highest possible specificity to be clinically relevant: a 

high specificity and therefore a low rate of false positives would deprive as few responders as possible of 

an attempt to preserve their larynx.

There are several limitations in our study. First, our cohort is of limited size and retrospective. This is due 

to the restrictive eligibility criteria for the laryngeal preservation strategy 2 in clinical practice. Ideally, a 

larger population, with more events, would improve model training. Second, manual segmentation by a 

single radiation oncologist (IM) was performed, which is time-consuming and is a source of inter-operator 

variability 37. However, manual segmentation is mainly used in head and neck cancers 32,35,38–40 as these 

tumors are less suitable for automatic or semi-automatic segmentation than other tumor locations. 

Moreover, the delineation of the GTV often requires the expertise of a radiation oncologist, as mainly 

based on clinical evaluation. Finally, Geets, et al. did not find significant inter-observer differences 

regarding the delineation of laryngeal tumours on the CT if consistent delineation guidelines are followed 
41. Pavic and al. also found an acceptable stability for inter-observer HNSCC delineation 42. Another

limitation concerns image interpolation. We chose not to interpolate images because it would mean 

evaluating several different methods and voxel target size, which would be extremely time-consuming. 

Interpolating images to a common voxel size may help in reducing the differences between the resulting 

radiomic features (as most of them have been shown to be dependent on voxel size), but has been shown 

to be insufficient, compared to an approach such as ComBat 43. A full comparison of various interpolation 

techniques versus ComBat-type harmonization could be of interest but is out of the scope of the present 

work.  Indeed, one challenge in our study was the lack of standardization in the acquisition and 

reconstruction parameters of CT data, corresponding to the clinical routine practice of the five centers 

where patients were retrospectively recruited. We used ComBat, which is a data harmonization method 

where “batch” effects are estimated a posteriori and removed from the data 18. ComBat works well even 

for small samples, as long as the number of patients in each batch is about the same order of size, which 

is the case in our study. One of the risk of ComBat is that it may confuse biological and technical 

heterogeneity, thus reducing the test's ability to identify differences between responders and non-

responders, as noted by Goh et al 44. A
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Another potential risk is related to the use of unsupervised hierarchical clustering to determine the labels. 

It was especially important to check that the resulting clusters were indeed defined based on differences 

due to imaging variability and not clinical outcome. Because the two obtained clusters had almost the 

same percentage of non-responders, it can be safely assumed that they were indeed the results of 

measured differences due to imaging acquisition and associated processing protocols, rather than 

different outcome profiles. In addition, when performing the same technique to another dataset with 

known labels, it misclassified only one patient out of 197, strengthening further our confidence in the 

resulting clusters 20. However, even by grouping patients through unsupervised hierarchical clustering, it 

was not possible to group patients with a perfect match for all acquisition and reconstruction parameters. 

These limitations may partly explain the inability in our study to obtain textural features with higher AUC 

and specificities. Nevertheless, the variability of the CT protocols in our study is representative of current 

clinical practice and constitutes a major challenge for the possible implementation of radiomics in 

therapeutic decision-making.

Conclusion

Statistical harmonization can help for the development of a multicenter CT based radiomic model 

predictive of non-response to induction chemotherapy in laryngeal cancers. Without harmonization, 

performance for all investigated features failed to reach statistical significance, in a highly heterogeneous 

and multicenter setting. With harmonization one promising feature was identified, although its 

significance level was limited by the size of the testing set. These findings now require evaluation in an 

external cohort, which could then lead to larger, prospective validation.

Figure legends

Figure 1. Unsupervised clustering approach

1.a. Identifying number of patients based on separated clusters

1.b. Distribution of the responders and non-responders in terms of the clustersA
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1.c. Distribution of the responders and non-responders in the training and the testing sets 

respectively

Figure 2. Performance in the task of predicting non response to therapy, in the training set, of the  most 

promising textural feature before harmonization. 

ROC curves of Large Area Low Gray Level Emphasis (LALGLE GLSZM, FBS:25HU) The Youden index is represented 

on the ROC curve by a white dot. The values corresponding to the Youden index (associated criterion, 

sensitivity (Se) and specificity (Sp), significance level p) are also given.

Figure 3.

3a. Correlation matrix (Spearman) between ZP GLSZM, FBS:25HU ; LALGLE GLSZM, FBS:25HU; LAHGLE GLSZM, FBS:25HU

Values in bold were significantly different from 0 at a significance level alpha = 0.05

3b. Performance in the task of predicting non response to therapy, of Zone Percentage after 

harmonization.

ROC curve of Zone Percentage (ZP GLSZM, FBS:25HU). This textural feature was identified as the best biomarker 

for predicting non-responders in the training set and led to some predictive ability in the testing set, 

although it was only a trend failing to reach statistical significance after correction for multiple testing.

Figure 4. Comparison of ROC curves in the training set of the most promising radiomic features in terms 

of AUC, for the prediction of non response to therapy.  DeLong et al., method (1988) was applied. Results 

are presented before (Fig 4a.) and after (Fig 4b.) ComBat harmonization.

Data Sharing and Data Accessibility

Data available on request due to privacy/ethical restrictions. The data that support the findings of this 

study are available on request from the corresponding author, [IM]. The data are not publicly available 

due to privacy and ethical restrictions.
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Table 1. Patient characteristics 

  

Training/validation set 

(n= 66) 
Testing set (n=32) 

  n % n % P value 

Median age in years (interquartile range, range) 59.5 (9, 33) 60.5 (10, 29) 0.417 

Sex 0.792 

H 57 86 27 84 

F 9 14 5 16 

PS 0.425 

0 44 67 18 56 

1 21 32 14 44 

Missing data 1 1 0 0 

BMI 0.236 

< 18.5 5 8 3 9 

18.5-24.9 32 48 10 31 

25-29.9 15 23 14 44 

30-39.9      10 15 4 13 

Missing data 4 6 1 3 

Site of tumor 0.213 

Supra glottic larynx 19 29 13 41 

Glottic larynx 14 21 9 28 

Hypopharynx 33 50 10 31 

Primary tumor stage 0.576 

T2 8 12 2 6 

T3 without cord fixation 22 33 8 25 

T3 with fixed cord involvment 34 52 21 66 

T4a 2 3 1 3 

Larynx mobility 0.684 

Normal 24 36 9 28 

Reduced 13 20 8 25 

Abolished 29 44 15 47 

Nodal stage 0.158 

N0 27 41 13 41 

N1 11 17 3 9 

N2a 7 11 3 9 

N2b 12 18 3 9 

N2c 8 12 5 16 A
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N3 1 2 4 13 

Missing data 0 0 1 3 

Number of TPF chemotherapy cycles 0.692 

1 1 2 1 3 

2 7 10 2 6 

3 58 88 29 91 

PS : Performans Status, BMI : Body Mass Index, TPF : Docetaxel Cisplatin Fluorouracil 
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Table 2. Comparison of textural features before and after ComBat harmonization and their respective performance in predicting non response to 

therapy: Some textural features with their optimal cut-off in the training/validation set, as well as their predictive performance evaluated in the testing set, 

are presented. More features successfully predict non-response to chemotherapy in the testing set after harmonization. Zone percentage (in bold) was the 

only feature that showed a trend towards some predictive ability in the testing set.  

Before harmonization After harmonization 

Training/validation set Testing set Training/validation set Testing set 

cut-off AUC and 95% CI Se Sp p Se Sp p** cut-off AUC and 95% CI Se Sp p Se Sp p** 

sum average GLCM, FBS:10HU >78 0.596 [47%-72%] 90 39 0.0145 * * * >115 0.584 [46%-70%] 80 50 0.0447 * * * 

autocorrelation GLCM, FBS:25HU >256 0.596 [47%-72%] 90 39 0.0145 * * * >609 0.582 [45%-70%] 80 50 0.0447 * * * 

joint average GLCM, FBS:25HU >15 0.596 [47%-72%] 90 39 0.0145 * * * >23 0.584 [46%-70%] 80 50 0.0447 * * * 

sum average GLCM, FBS:25HU >31 0.596 [47%-72%] 90 39 0.0145 * * * >46 0.584 [46%-70%] 80 50 0.0447 * * * 

cluster shade GLCM, FBN:64 >-197 0.609 [48%-73%] 80 61 0.0062 * * * >253 0.546 [42%-67%] 40 87 0.1043 * * * 

SRHGLE GLRLM, FBS:25HU >147 0.596 [47%-72%] 90 41 0.0096 * * * >366 0.577 [45%-70%] 80 55 0.0178 * * * 

HGLRE GLRLM, FBS:25HU >249 0.595 [47%-72%] 90 40 0.0145 * * * >603 0.580 [45%-70%] 80 50 0.0447 * * * 

SAHGLE GLSZM, FBS:25HU >106 0.607 [48%-73%] 90 43 0.0063 * * * >256 0.596 [47%-72%] 80 57 0.0127 * * * 

ZP GLSZM, FBS:25HU >0.07 0.575 [45%-70%] 80 49 0.0589 * * * >0.07 0.620 [51%-74%] 70 64 0.0387 80 67 0.0342 

HGLZE GLSZM, FBS:25HU >237 0.595 [47%-72%] 90 40 0.0145 * * * >583 0.577 [45%-70%] 80 50 0.0447 * * * 

LALGLE GLSZM, FBS:25HU ≤12 0.680 [56%-80%] 80 70 0.0007 80 52 0.1527 ≤-103 0.687 [56%-80%] 60 82 0.0139 80 41 0.3502 

LAHGLE GLSZM, FBS:25HU ≤13810925 0.538[41%-66%] 90 29 0.1127 * * * ≤9283393 0.641[51%-76%] 70 68 0.0219 60 63 0.3819 

SZN GLSZM, FBS:10HU >1744 0.568 [44%-69%] 80 52 0.0334 * * * >1410 0.507 [38%-62%] 100 23 <0,0001 * * * 

* Features not evaluated in the testing set because they did not fulfil the following conditions in the training set:  AUC ≥ 0.60, a specificity ≥ 60% and a lack

of redundancy. 
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** Bonferroni corrected p-values were significant in the testing set below 0.05 (only one feature evaluated) before harmonization and 0.017 after 

harmonization (3 features evaluated) respectively. 
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