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Abstract

Data clustering is an instrumental tool in the area of energy resource management. One problem with conventional
clustering is that it does not take the final use of the clustered data into account, which may lead to a very suboptimal
use of energy or computational resources. When clustered data are used by a decision-making entity, it turns out that
significant gains can be obtained by tailoring the clustering scheme to the final task performed by the decision-making
entity. The key to having good final performance is to automatically extract the important attributes of the data
space that are inherently relevant to the subsequent decision-making entity, and partition the data space based on these
attributes instead of partitioning the data space based on predefined conventional metrics. For this purpose, we formulate
the framework of decision-making oriented clustering and propose an algorithm providing a decision-based partition of
the data space and good representative decisions. By applying this novel framework and algorithm to a typical problem
of real-time pricing and that of power consumption scheduling, we obtain several insightful analytical results such as
the expression of the best representative price profiles for real-time pricing and a very significant reduction in terms of

required clusters to perform power consumption scheduling as shown by our simulations.
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1. Introduction

It is now well-known that future gains in terms of
energy-efficiency will largely rely on the intensive use of
data and algorithms. This will be true at a small scale e.g.,
at the consumer’s scale. For instance, charging an electric
vehicle (EV) efficiently at home will depend on a forecast
of the consumption of the other home appliances. Smart
home heating systems will also rely on the exploitation
of the data recorded by a smart meter. At a larger scale,
transmission operators already have to monitor various en-
ergy sources, energy needs of a country and its neighbors,
use recorded data to try to predict some key parameters.
For all these examples, the number of measurements and
even the dimension of the data is typically large and data
clustering appears to be an instrumental tool to be able to
perform various optimization and decision-making tasks.
Clustering is a method that consists in creating clusters,
groups, or partitions of data and possibly finding a rep-
resentative for each cluster. For example, an electricity
operator or utility may want to determine e.g., a given
number of consumption behaviors and associate a given
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tariff with each behavior, and for this, properly clustering
recorded consumption data is required.

Above examples are among many others in the area of
energy conversion, management, and processing that show
the importance of data clustering. Because of its impor-
tance, data clustering has become an active research area.
Despite of the existence of a quite rich literature, the au-
thors have identified a lack in this area that may make very
suboptimal and even non-suitable existing clustering tech-
niques for some key energy management problems such as
the power consumption scheduling problem.

The current conventional data clustering paradigm con-
sists in creating clusters of data based on some similarity
indices of various forms. It turns out that the used indices
are chosen to be exogenous to the decision-making process
that effectively exploits the clustered data, formed clus-
ters, or formed cluster representatives. As a consequence,
this may make the decision-making task too complex (e.g.,
for a human decision-maker), computationally demanding
or not admissible, too slow, and very suboptimal. From
the physical and technical point of views, adopting the con-
ventional clustering approach may lead to overestimating
the amount of required resources e.g., in terms of needed
energy, required storage space, transmission bandwidth,
or computation capabilities. For instance, an electricity
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provider or a distribution system operator (DSO) may
have no interest in having a very accurate representation
of the data recorded by a monitoring device (such as a
smart meter). The reason for this may be for designing an
implementable pricing policy, for limiting the complexity
involved by the optimization tasks at stake (see [3] for a
very convincing discussion concerning the interest in using
clustering to manage complexity issues in such a scenario),
for limiting the amount of private information revealed to
the system exploiting the data [4], or for improving ro-
bustness towards diverse forms of noise (see e.g.,[5] for the
problem of forecasting noise). Ultimately, what matters
is the quality of the final decision the provider will take
(typically from a large number of smart meters).

To bridge the aforementioned gap between conventional
clustering and decision-making operations that need to be
performed in the area of resource management, we de-
velop a novel framework namely, decision-oriented making
clustering (DMOC). To show how the developed frame-
work can be exploited in practice the authors have chosen
two important case-studies namely, the power consump-
tion scheduling problem (PCS) and the pricing problem.
The PCS problem is a very relevant problem since it ap-
pears at different scales of an energy network: at the con-
sumer’s scale when an EV or a heating system has to sched-
ule the consumed power so that a need in terms of energy
(over a given time window) is filled; at a factory level; at a
country level; at a market level when a buyer has to sched-
ule its consumption based on market prices. To be more
specific about the limitations of the conventional clustering
paradigm, consider the following simplified PCS example.
Assume that, after performing some analysis and simplifi-
cations due to clustering in particular, the consumer (e.g.,
an individual or a factory) has the possibility to consume
at full power P or not consume at all, and has two pe-
riods of time to do this. The power consumption profile
can thus only be the sequence (P,0) and (0,P). Mea-
sured in terms of similarity (say in terms of Euclidean
distance, which would be the case when using the famous
k-means clustering technique), these profiles would be de-
clared to be completely different. However, if one assumes
that the goal of the decision-maker (the scheduler) wants
to minimize the peak-power, these sequences are equiva-
lent. This shows that using a similarity index exogenous
to the decision-making process can lead to markedly dif-
ferent outcomes or conclusions. From now on, the authors
provide a more detailed view of the existing works and the
technical contributions of this article.

In the present paper, the authors’ intent is to revisit the
aforementioned dominant data processing paradigm by as-
sessing the potential benefits from integrating (when avail-
able) the knowledge of the final use of the data in the way
the data are processed e.g., in the decision-making (DM)
process exploiting the data. Because of its importance,
the focus of this work is on the problem of data clustering
but mathematically, the developed approach is perfectly
applicable to signal digitalization and quantization in par-

ticular. The most conventional approach of clustering in
the area of energy networks is to form groups of data so
that the ”approximated” data are sufficiently close to the
original ones. A typical approach is to make use of similar-
ity or clustering indices such as the Davies-Bouldin index
or the Silhouette index (see e.g., [6] for a review of more
than 30 popular indices) to characterize the performance
of clustering. However, all of these indices are exogenous
to the decision-making process, which effectively exploits
the clustered data. One of the goals we pursue in this pa-
per is to revisit the conventional clustering approach by
designing the clustering scheme so that the cluster or rep-
resentative information provides sufficient information to
perform well in the sense of the performance metric of the
decision-maker using the clustered data. An example of
such a decision is to choose in advance a power consump-
tion (PC) profile based on a given clustered day-ahead
forecast of the non-controllable part of the PC (NCPC);
here, clustering may be applied offline to a database of pre-
vious measurements of the NCPC profiles. The problem
of electric vehicle charging (at home) would be a typical
instance of such scenario: the charging power is control-
lable whereas, the consumption power associated with the
other appliances is assumed to be exogenous to the power
control and monitored e.g., through a smart meter.
Below, we review several related works on clustering
but it will be seen that none of them adopts the approach
of decision-making oriented clustering (DMOC), at least
not from the formal point of view developed in this pa-
per. The most famous clustering technique is probably the
k—means clustering (KMC) technique, which amounts to
minimizing a certain Euclidean distance that is clearly in-
dependent of how the data are used. KMC has been used
e.g., in [7] for time-series aggregation, in [8][9] to perform
load estimation, in [10] for electricity generation expansion
planning, or in [11][12] where 365 days are clustered into
few representative days. More elaborate techniques have
been proposed such as Fuzzy C-Means (FCM) clustering
to generate the optimal fuzzy rule for decentralized load
frequency control [13], and hierarchical clustering (HC) to
aggregate periods with similar load and renewable elec-
tricity generation levels [14][15][16]. To exploit the data
features more efficiently, the authors of [17] proposed to
use dynamic time warping instead of the Euclidean dis-
tance to partition the residential electricity profiles into
different clusters, the authors of [18] proposed to use cross
correlation as a measure to cluster data from wind tur-
bine power generator, and the authors of [19] used the
delay coordinate embedding technique to reduce the di-
mensionality of load time series. To find appropriate time-
series aggregation schemes in energy systems, the authors
of [20] compared the k-means clustering, k-medoids clus-
tering, and hierarchical clustering in presence of an op-
timization entity. The underlying problem of high time
resolution has also been addressed in [21] and [3]. In
[21], the focus is on wind and photovoltaic time-series and
a planning problem. In [3] the authors consider general



complex energy systems in which time-varying operations
are performed; they conduct a detailed numerical com-
parison between conventional clustering (k-means cluster-
ing, k-medoids clustering, and hierarchical clustering) and
shape-based clustering (dynamic time warping barycenter
averaging and k-shape). Notice here, as all aforementioned
works, the evaluation is performed ex post, meaning that
each given clustering scheme is evaluated in terms of a
given objective but not adapted to the objective. There
are also many works on clustering in the computer science
literature (even not yet widely applied to energy system
problems), but again the existing contributions are data-
oriented and not decision-oriented (see e.g., [22][23][24] [25]
[26]). The selected references are good representatives of
the dominant clustering paradigm, which is either to clus-
ter the data by considering the approximation quality as
a primary objective or to cluster to meet imposed con-
straints (e.g., in terms of complexity). At last, note that
the authors have produced a preliminary work dedicated
to a specific quantization problem appearing in wireless
communications [27] which is partially related to DMOC.

In contrast with the conventional clustering paradigm,
the data attributes are not predefined; the data attributes
that are relevant to the decision to be made are automati-
cally extracted by DMOC. To demonstrate the efficiency of
the novel approach, the developed framework is applied to
two important problems: the problem of real-time pricing
(RTP) and the problem of PCS.

The main contributions of this paper can be listed as:
(1) we develop a novel data clustering framework in which
the partition and representatives are determined under
the consideration of the subsequent decision-making op-
erations; (2) we propose the first algorithm to be able to
exploit this framework in practice ;(3) we apply this new
approach to two important problems in the area of energy
networks and provide both analytical and numerical re-
sults for these two case-studies; (4) we investigate about
the potential improvement the proposed approach can pro-
vide when compared to existing state-of-the-art clustering
techniques.

The paper proceeds as follows. In Section 2, we intro-
duce the novel framework of DMOC. An alternating opti-
mization algorithm is provided in Section 3 to show how
to exploit this framework in practice. In Section 4, the
developed framework is applied to two concrete and im-
portant problems in the area of energy. Section 5 allows
one to assess the potential of DMOC for the two aforemen-
tioned problems under a typical simulation setting, and we
conclude the article in Section 6.

Notation. Throughout the paper underlined quanti-
ties v, bold quantities M, calligraphic quantities X, and
()T will respectively stand for vectors, matrices, sets, and
the transpose operation.

2. Problem formulation

One considers a database of size N. The data set is
denoted by Gy = {91""79N} where gL € G < RY rep-
resents Data sample n € N, N = {1,... N}, and d is
the dimension of the data space §. For 1nstance for the
problem of PCS, g represents the NCPC profile or vector
and d =T is the number of time-slots of the profile (e.g.,

= 48). Data are clustered in the following sense. The
data space is partitioned into cells or clusters denoted by
Cm, m € {1,..., M}, M being the number of clusters of the
partition. By construction: ¢; U Cy U --- U Cy = G and
Cm N G = & for any m # m/. If Data sample g, fallsin
Gy, then it is represented by the representative r,, € R, R
being the space of representatives. For conventional clus-
tering, we typically have that there is a one-to-one map-
ping between R and G. A key difference between DMOC
and conventional clustering is that R will correspond to
the decision space. A clustering technique or strategy is
thus given by a pair under the form {(Cp,)m, (r,,)m} or
equivalently by the clustering operator I" with I'(g) =
when g € €,,,, g being a generic data sample. a

The (most) conventional approach consists in choos-
ing (offline) T' that minimizes the sum of the Euclidean
distances between Data sample g, and its representative

I'(g,):

n

7m

(1)

N 2
Teonv € argmrin Zl Hf(gn) -9 ‘

n

A way of solving the above minimization problem is to
use a (genrally) suboptimal but (generally) implementable
technique such as KMC (see e.g., [8]). One of the main
advantages of such an approach is that it may be possible
to obtain explicitly the corresponding partition clusters
and the representatives. But this way of clustering data
is obviously independent of the final use of the data. For
example, if the ultimate goal is to answer a question such
as knowing about the absence or presence of a given feature
or pattern in the data sample, partitioning the data space
in two clusters only may be sufficient and, the way to split
the space has to be made according to the considered final
feature detection performance metric. More generally, if
the task performed by the DM entity is known, it seems
to be possible to improve the clustering technique (e.g.,
by decreasing the number of clusters or by improving its
approximation quality). This is precisely the approach
adopted in this paper.

Formally, the proposed approach (see Fig. 1) con-
sists in assuming that the (online) task to be performed by
the DM entity (e.g., a power consumption scheduler) can
be represented by a standard OP, that is, a given function
has to be maximized under some constraints. Therefore,
the goal is to maximize a certain function or performance
metric f(z;g) (e.g., some profit or revenue function) with
respect to the decision variable z € X, X € R”, D > 1
given some measurement of the parameters g under some
constraints under the form d;(z) < 0,i€eJ, I = {1,..., I},



and e;(z) =0, j € d, d = {1,...,J}. This mathematically
writes as the following standard form online OP:

minimize — f (z;9)
st. di(z)<0,i€T- (2)
ej(z) =0,j€d

By denoting z*(g) an optimal solution of the above OP,
the problem of finding a DMOC scheme therefore amounts
to solving the following offline problem:

N
Tuew € argmax ) f(z"(I(g,)):g,)- (3)

n=1

At this point, the difference between the conventional
clustering paradigm and the DMOC paradigm appears
very clearly:

e The conventional clustering paradigm: 1. exploits,
in an offline manner, the data set G to compute the
partition of the data space G and the representative
data points (e.g., with KMC); 2. uses, in an online
manner, clustering to find the representative g of the
current data sample g; 3. solves, based on the knowl-
edge of §, the OP which determines the best decision
z (namely, maximizing f under some constraints).

e The DMOC paradigm: 1. exploits, in an offline man-
ner, the data set G to compute (via solving OP (7))
the partition of the decision space X and the repre-
sentative decision points; 2. uses, in an online man-
ner, DMOC to directly find the representative (final)
decision Z associated with the current data sample

g.

It can be checked that the conventional clustering ap-
proach given by (1) can be obtained from (3) by making
the following specific choices: R = G; f(x;9) = —||z — g|?,
di(z) = —oo, and e;(z) = 0 for all (4,7) € I x J. In its
full generality, solving the problem associated with (3) is
difficult. Indeed, finding the best clusters and the best
representatives jointly may be hard both from the ana-
lytical and computational point of view. This is one of
our motivations for proposing an alternating optimization
algorithm in the next section.

Remark 1. In this paper, we have selected as case
studies the problem of RTP and PCS. For RTP, the decision-
maker is the provider, its decision consists in choosing
electricity price profiles or tariffs, and the measured data
consists of the various satisfaction parameters of the con-
sumers. For PCS; the decision-maker is a consumer (e.g., a
factory or an electric vehicle), its decision consists in choos-
ing a power consumption profile, and the measured data
consists of the non-controllable power consumption pro-
files. Many other problems of the modern power grid are
concerned by the newly developed framework and would
need to be studied from the proposed perspective. For ex-
ample, electricity market price profiles may be clustered

Performance metric f(z; g)

l Partition of Gy = U C;,
Database Gn | DMOC "
| (Offline)
Representative decisions z7,, € X'
Given data g DeC|s_|on- Decision z € X
—— 5| making >
(Online)

Figure 1: The DMOC approach. As key points notice that: 1. An
arbitrary DM performance metric can be considered (f); 2. The
representatives of the clusters are in the decision space X; 3. What
matters for a DM entity aiming at maximizing f(z;g) w.r.t. the
decision z given g (clustered /imperfect/noisy version of g is not the
similarity between g and § but the average of the final optimality
loss measured by |f(z*(g); 9) — f(z*(9); 9)|-

for a given purpose and the (distribution/transmission)
network states may be clustered to be able to charac-
terize its behavior (e.g., the absence/presence of a global
anomaly).

3. Proposed algorithm

As mentioned in the previous section, solving the OP
associated with (3) is not an easy task in general. In fact,
even for a specific performance metric f(z;g) = —|z — g
which is used for k—mean like algorithms, it is known that
some degree of suboptimality has to be accepted. In the
present section, we propose an algorithm which applies to
any performance metric f and relies on two key ingredi-
ents. First, by providing an appropriate equivalence ar-
gument, the problem of finding the representatives of the
data is converted into a problem of finding the represen-
tative decision points. Second, since the joint determi-
nation of the optimal clusters and representative decision
points is difficult in general, we resort to an iterative (and
suboptimal) algorithm which operates in two steps.

When inspecting (3), it is seen that the optimal DM
function z*(g) is needed. Although there are well-known
examples for which such a function can be found (e.g.,
the valley-filling solution [28]), this knowledge is not al-
ways available. This is one of the reasons why we re-
formulate the problem of finding the data representatives
ry,...,r s into that of finding representative decision points
Zi,...,25. The equivalence between these two problems
is the purpose of the proposition below. Before stating
this proposition, a few notations are in order. The set
of data indices is assumed to be partitioned as follows:
N=N;yuNsu---UNy. For me{l1,..., M}, the set N,,
represents the set of indices of the data samples which be-
longs to Cluster C,,, i.e., g, € C,, implies n € N,,, and vice
versa. Therefore, the set N,,, completely characterizes the
cluster C,, and conversely. For g € C,,, the representative



decision point is denoted by z,,. Using these notations,

the following result can be stated.

Proposition 3.1. The offline OP associated with (3) is
equivalent to the following offline OP:

=3 flamig,)

minimize
(va---vNJWvElv“-vE]u M=1neNm. (4)
st. di(z,,) <0,i€]
ej(z,,)=0,j€d
Proof. See Appendix. O

Prop. I1I. 1 allows one to characterize the optimal DMOC
strategies. But, for classical complexity arguments, we
resort to an alternating optimization algorithm to find
(N1,..,Ny) and (24, ...,z,,) in an iterative manner. For
this, it is first assumed that a set of representative deci-
sion points is given. It can then be checked that the best
clusters (given a set of representative decision points) are
given by:

Cr, {gnES f@mig,) = f(@nig,) Ym', 1<m/
(

or equivalently,

Nk = {neN: f(@mig,) = f@msg,) vm/, 1<m’ < M}

(6)
For the sake of clarity, we will mainly use the notation
C,, to refer to Cluster m. The above formula character-
izes the optimal clusters for given representative decision
points. To know more about the ”"geometry” of the clus-
ters, a specific choice for f has to be made. For instance,
for f(x;9) = —|z — g|? and N large, the best clusters cor-
respond to the famous Voronoi regions. Now, as a second
step, we now assume that some choice for the clusters is
made and want to characterize the representative decision
points which maximize the considered performance met-
ric. It can be checked that for m € {1,..., M}, the best
representative decision (given a set of clusters) is obtained
by solving the following OP:

z¥ € —argmin f(zs9,)
" xeX Z "

NneEN 7
st. di(z,,) <0,ie€d (7)
ej(z,) =0,j€4d.

Equations (5) and (7) precisely constitute the two steps
of Algorithm 1, which is the iterative algorithm proposed
to determine the clusters and representative decision points
to solve the original OP given by (3). These two steps are
performed at each iteration of the algorithm until conver-
gence is reached. At each iteration, the function to be
maximized in (7) can only increase or stay constant. Since
functions of practical interest are generally bounded, con-
vergence is guaranteed. Similarly to iterative algorithms

<M}.
5)

such as KMC, convergence to a global minimum is not
guaranteed in general. Maximizing jointly a function w.r.t.
the set of clusters and the set of representatives is known
to be an NP-hard problem (See [29][30]). This is the rea-
son why we resort to an alternating optimization algo-
rithm. In general, the proposed DMOC algorithm guaran-
tees convergence to a local maximum. In the scalar case
(namely, g € R as it is the case for the RTP case) suffi-
cient conditions under which convergence to a global maxi-
mum may be exhibited. For instance, this is the case when
f(x;9) = —(z — g)? and the probability distribution func-
tion ¢(g) is log-concave [31]. In particular, if g is normally
distributed, global convergence is available. Another in-
teresting case is when the function verifies the following
property f(z;g) = f(xz — g;g). Then, reference [32] allows
one to claim that the maximum point is unique, which
guarantees global convergence. In the vector case (as in
the PCS case), the problem becomes more complicated. In
particular, finding a general way to determine the optimal
tesselation structure of the clusters is known to be an open
problem [33]. Notice that the proposed iterative algorithm
can always be initialized with the best state-of-the-art so-
lution. This guarantees a positive performance gain over
any state-of-art solution. This value of this positive gain
will be assessed thanks to the detailed numerical perfor-
mance analysis conducted in Sec. 5. To conclude on the
proposed algorithm, note that to run the algorithm, only
the data set Gy and a given initial choice of the represen-
tative decision points are required. The maximum number
of iterations @ is fixed.

Inputs: Data set G ; initial representative

decisions {ggo), ...,gg&)}; number of clusters M;

number of iterations @)

Outputs: {z7,....z%,}, {CF,...,C%,}

Initialization: Set iteration index g = 0. Initialize

the representatives by {ggo), (0)} Set

performance evaluation quantlty Ag =0 and

A_1 = —100. Set the tolerance as Tjy.

while ¢ < Q and A; — A;—1 > Ty do

Update the iteration index: q « q + 1.

For all m € {1, ..., M}, update (‘35,‘{) from gﬁ,‘{_l)
using (5).

For all m € {1,.., M}, update 28 for each
cluster €2 by solvmg OP (7).

Compute A, = Z Z f( g,’{),g g, el
n=1m=1 "
end
vme {1,.., M}, ¥ =z, ek = e

Algorithm 1: Algorithm to obtain a DMOC strategy

In the next section, we show how to exploit this general
algorithm for specific performance metrics.

Remark 2. We will not conduct here the complexity
analysis of Algorithm 1, the main objectives of this paper
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A_q
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A_g-A_{q-1}|>T_d

Obtain the DMOC

Figure 2: Flowchart of the proposed algorithm

being to introduce the DMOC approach, to provide one
possible algorithm to implement it, and to assess the per-
formance gains (measured in terms of a given utility func-
tion) for the two applications of interest. Nonetheless, we
would like to make some useful comments on this issue.
As illustrated through Fig. 1, offline operations have to be
distinguished from online operations. Algorithm 1 only re-
lies on offline operations namely, computing the partition
{C* ¥M_. and the representative decisions {x* }*_,. This
means that these operations can be made once and for all
by powerful computers. In fact, even for the most com-
putationally demanding scenario studied in Sec. V, the
total computation time has never exceeded 10 min with
a standard personal computer. As for the online opera-
tion, given g, it consists in selecting the element in the set
{z# }M_, that maximizes f(z7,; g). The complexity of this
operation is in O(M). -

4. Applying DMOC to Real-time Pricing and Power
Consumption Scheduling

In this section, we make specific choices for the perfor-
mance metric f(z; g). We have selected the two considered
corresponding metrics because they concern quite a large
number of works in the literature of smart grids and also
because they allow us to clearly illustrate the new point of
view developed in this paper. The first metric corresponds
to a largely used performance criterion which is derived
from [34]. Tt consists in mixing the social welfare of a
group of consumers and the total production cost; other
relevant pricing problems (e.g., [35]) might be considered
as extensions of this work. The decision for the provider
corresponds to a price profile, pricing strategy, or tariff
policy and the function parameters to the satisfaction pa-
rameters for the consumers. The second performance met-
ric corresponds to the Lp norm, which in particular allows
one to include as a special case the peak power minimiza-
tion problem. Here, the decision is a power consumption
profile and the parameters correspond to the non-flexible
part of the power consumption.

4.1. Pricing problems

The first step taken in this section is to study pricing
problems with clustering. Since operating at high time
resolution over a long period of time generally leads to in-
tractable optimization problems [3, 20, 21], we resort to
clustering. Clustering is applied here to obtain a small
number of representative time profiles (e.g., cluster the
365 days into 5 representative time profiles) and to de-
sign a corresponding tariff for each representative. We de-
rive the performance metric given by (10) from the largely
used RTP setting proposed in [34]. For this model, we
are able to calculate the optimal tariff z from consumers’
loads/demands time-series g. We consider a provider and
a set of consumers X = {1,..., K}. Our goal is to cluster
the corresponding time-series and associate with each clus-
ter a representative tariff, the association being performed
by using the DMOC algorithm of Sec. III. The considered
performance metric for the provider implements a trade-
off between the sum of the consumer’s utility functions
and the total energy procurement cost (10). The action
of the provider at time ¢ is denoted by x(¢) = 0 and con-
sists in choosing the price of electricity at time ¢t € T,
T = {1,..,T}, T being the number of time-slots of the
time period under consideration (For instance, a time pe-
riod can consiste of a day and a time-slot can consist of an
hour if T' = 24). Time-varying prices are natural when the
consumers correspond to large entities such as states or
big companies but are also well motivated for future grids
when they correspond to individuals (see e.g., [34][36])..
To take his decision, the provider has some knowledge
about the satisfaction parameters of the consumers (see
[34] for more details) at the current time-slot. The sat-
isfaction parameter for Consumer k € X at time t € T is
denoted by gi(t) = 0. It is defined through the generic
benefit or utility function u for the consumers:

gl— 92 if 0<l< 4
Cg)=| - 8
u(l; g) g it 0> 2 (8)

where ¢ > 0 represents the load or consumption level, g
the satisfaction parameter, and a > 0 is a constant. This
means that the benefit of the consumer increases quadrat-
ically with the load level but reaches a saturation point
determined by the parameters g and «. To make this
generic utility consumer-specific and time-dependent, one
just has to replace g with gi(¢) and ¢ with x(¢). As in
[34], it is assumed that Consumer k has a cost for con-
suming under the form z(t)¢;(t) where x(t) represents the
price of electricity at a given time ¢. The generic com-
bined utility for the consumer thus writes as the difference
u(lr(t); g (t)) — x(t)€x(t). For a given price of electricity
chosen by the provider at time ¢, the combined utility is
assumed to determine the best response in terms of con-



sumption, which is to consume at a load level given by:
0 it x(t) > gr(t)

0 (x(t) = (9)

M if x(t) < gn(t)

Of course, when the price is higher than the satisfaction
parameter, £} is not an interior solution and reaches the
minimal consumption level allowed and therefore has to
be replaced with the corresponding value. For the sake of
clarity, we assume no over-pricing for the case study un-
der consideration, i.e., £} (z(t)) = M. To design its
DMOC strategy, the provider is assumed to pursue (pos-
sibly by using a learning algorithm which only exploits
partial or indirect information e.g., about gi(t)) the max-
imization of the average welfare of all its customers over
time minus the cost of energy procurement (quadratic cost
model) as follows :

filwg) = D7 | X wlli(@(®); gu(t) — a(L*(8))* = bL* (1) — ¢
t=1 | k=1

(10)
where z = (z(1),...,2(T)) (i.e., d = T) is the sequence
of prices chosen by the provider;
s g1 (T‘)7 e

g=(9(1),--,9x(1),. .. w9 (T)) (1)

is a vector which comprises all the consumer satisfaction
parameters in one time period; L*(t) = Zszl 05 (t) is the
total load induced by the K consumers for time-slot ¢ and
(a,b,c) is a triplet of constants to model the (quadratic)
procurement cost for the provider. The constraint on RTP
is the positivity of price, namely,

xz(d) >0, Vvde{l,...,D}. (12)
Our target is to cluster the set § = {g,..., g, } consisting
of N time period vectors with

g @), (D), (D) (13)

into M representative time periods, and find the corre-
sponding tariff for each representative time period. For
the performance metric f1, it turns out that the clusters
and representatives respectively obtained by the general
equations (5) and (7) express in an elegant manner. Be-
fore providing the corresponding proposition, let us in-
troduce some auxiliary quantities. Notice that the pa-
rameters K, «, a, b, and ¢ have all been defined in the
current subsection. We introduce three scalar quantities:
a = %(a+%); K = (‘;‘TI%; g = %. From this and
by denoting 1, the column vector of K ones, we define
the two following quantities: 8 = Blp; A = klr ®l};,
the operator ® standing for the Kronecker tensor product
[37].

Proposition 4.1 (DMOC for RTP). For a given sequence
of representative price profiles x,, the best way of cluster-

ing (in the sense of f1) the consumer’s satisfaction param-
eter space is given by the following clusters:

Ch=1{9¢9 : |[Ag+8—2z,[3 <[Ag+5—zml]3,
Vm' # m}.
(14)
Now, for a given partition of the satisfaction parameter
space into a set of clusters C,,, the best representative price
profiles are given by:

ag,(t) + 5%
a+ 5%
N K

Din=12k=1 gl(cn) (t)Lg e,

N
KZnZI ]lgneem
erage satisfaction parameter of Cluster m at time-slot t
and 1 being the indicator function.

T (t) = (15)

whereg,, (t) =

represents the av-

Proof. See Appendix. O

The above proposition is particularly interesting since
it allows clear interpretations to be made. Indeed, for a
fixed sequence of prices, it is seen that the best clusters
form the famous ”Voronoi cells” in a space which results
from an affine transformation of the initial parameter or
data space. Through the Kronecker product operation,
one can also see that a quantity which matters for obtain-
ing the best clusters is given by the sum of satisfaction pa-
rameters, which contrasts with KMC. On the other hand,
if the clusters are fixed, the best decisions, which are given
by the best representative price profiles have very appeal-
ing expressions. The best price is seen to be related to
the average satisfaction parameter in an affine manner.
When a is small, the procurement cost becomes almost
linear and the best price becomes time-independent and
equal to ili% x) (t) = b. Additionally, when K — o0, the

optimal price profile is given by z*,(t) ~ g (t), which cor-
responds, at any time, to the spatial average (i.e., over the
consumers) of the satisfaction parameters. Therefore, if
the provider has access to the spatial average of the sat-
isfaction parameters, it immediately obtains a good ap-

proximation of the optimal pricing strategy in the sense of

9).

4.2. Power consumption scheduling

In this section, the decision-maker is a scheduler. The
task of the scheduler is to choose in advance a sequence
of consumption power levels, z = (z(1),...,z(T)) given
some knowledge (e.g., a day-ahead forecast) about the
non-controllable part of the consumption (g(1),...,g(T")).
The problem of electric vehicle battery charging [5] given
a forecast of the consumption profile associated with the
other electric home appliances and the problem of PCS
under price uncertainty [38] typically fall in the setting un-
der consideration. Even in scenarios where the (possibly
central) decision entity which computes the consumption
profiles, it may be beneficial to cluster the non-controllable



profiles {g e d N} into M groups and find the represen-
tative consumption profile for each cluster. This might
be typically motivated by complexity issues or for having
more robustness regarding the measurement or forecasting
noise present in the available non-controllable profiles. A
simple but very relevant choice for the performance metric
for the scheduler consists in choosing the following func-
tion:

fa(zig) = =IW(z+ g)lp (16)

where W is a diagonal matrix with non-negative entries
and the Lp-norm of a generic vector v of size T is given by
|vlp, = (Jva|P + -+ + |up|P)Y/P. The matrix is a weighting
matrix which may model situations where the price is time-
varying. When p = 1 and W = Iy the problem amounts
to minimizing the total energy consumption. When p = 2,
the problem is simple since the electricity price depends on
the power consumption in a linear manner. For p — o0,
minimizing the Lp-norm amounts to minimizing the peak
power. Here, we also assume some (classical) constraints
on the consumption power:

0< I(t) < Tmax

i z(t) > E (a7)

where E > 0 is the energy need. With the notations of
Sec. III, this means that the inequality constraint func-
tions write as: Vt € {1,...,T}, dor—1(z) = —x(t), dot(z) =
2(t) = Tmax, and dary 1 (z) = E— Y, 2(t). Note that for
p = 1, the problem is trivial for positive prices and pow-
ers. The best decision is obtained by choosing z(t) = E
for the time index associated with the lowest coefficient
of the diagonal of W. For p > 2, the clustering strategy
matters and designing a DMOC strategy will be seen to be
very beneficial for the performance. The next proposition
characterizes the best clusters and representative profiles.

Proposition 4.2 (DMOC for PCS). Let G < R” be the
data set. For a given sequence of representative PC profiles
x,, the best way of clustering (in the sense of fa) the NCPC
profile space is given by the following clusters:

Cr.={9€S : Wz, +9)lp < [W(z, +g)lp, Ym' #m}.

(18)
Now, for a given partition of the NCPC profile space into
a set of clusters C,,, the best representative PC profiles are
given by solving the following convex OP:

minimize Y [W(z,, +9,)ls
m neN,,
s.t. —Tp(t) <0 vt
T (t) — Tmax < 0 Vi (19)

T
E— ) am(t)<0
t=1

where Ny, as defined in Sec. III, represent the set of in-
dices of the data which belongs to the cluster C,,.

Proof. See Appendix. O

It is seen that the best clusters (for fixed representa-
tives) have a relatively simple ”geometry” since they are
generalized Voronoi cells that is, the Euclidean norm is
replaced with the general distance given by the Lp-norm
(they coincide for p = 2). As for the best representa-
tives, here we don’t provide an explicit formula. But the
OP to be solved (19) to find them numerically is convex,
which strongly facilitates the task of determining them. If
complexity to solve this OP or to determine the clusters
given by (18) occurred to be an issue, one may resort to
approximating the DMOC procedure. Indeed, whatever
the actual values for p, it is always possible to force p to
be equal to 2 in (18). As a consequence, clusters become
Voronoi regions. By doing so, one obtains an approxi-
mated version of DMOC. The virtue of this approximate
version is that it allows one to reduce the complexity as
the tesselation/geometry of Voronoi regions is known. The
induced performance loss is assessed in the numerical part
in a typical scenario (see Fig. 2).

Remark: Both RTP and PCS problems are convex.
Due to the quadratic structure of the utility functions in
RTP, we can provide the expression of the solutions (ac-
cording to Proposition 4.1.) However, in the PCS problem
with Lp norm optimization problem, it is very difficult to
express the solution and thus we resort to numerically ef-
ficient algorithms (Interior point algorithms) to compute
the solution of the optimization problem. In terms of com-
putational complexity, solving the PCS problem is more
demanding.

5. Numerical performance analysis

In the preceding section, several interpretable analyt-
ical results have been derived, especially for RTP. To get
more insights on the problem of PCS for which less ana-
lytical results are available, we dedicate here more space
to this case. All the provided numerical results have been
performed by using the Matlab software. In particular, the
k—means clustering (KMC) technique is executed by using
the Matlab routine ”"kmeans”.

5.1. Influence of the clustering scheme on the performance
of PCS

For all the numerical results concerning the problem of
PCS, we consider the peak power minimization problem
that is, p = o0 in (16). For simplicity reasons, the weight-
ing matrix is chosen as W = Ip. The database under
consideration is the Pecan Street database [39]. The used
database corresponds to Year 2013 and comprises N = 365
(non-flexible) household power consumption vectors of size
T = 24 (with the specific approval by PecanStreet, these
consumption profiles are shared in [40]). This database
is used to feed Algorithm 1. Algorithm 1 is initialized
with randomly chosen representative decision points. The
maximum number of iterations is set as = 10. The



tolerance is set to T; = 1073. The considered DMOC is
given by the set of clusters and representative decisions at
convergence. For each household, the DM operation con-
sists in finding a controllable consumption vector x min-
imizing the peak power given a (perfect) day-ahead fore-
cast of the NCPC vector g (the case of imperfect forecast
can be treated by extending our results). Precisely, what
is known for taking the decision is to which cluster the
NCPC vector belongs. The numerical determination of the
PC vector is performed by using the dense quasi-Newton
Hessian approximation-based interior point technique (im-
plemented by the Matlab FMINCON function). The perfor-
mance of the conventional k—means clustering technique
and the proposed DMOC technique are measured in terms
of the function fy (see (16)); more precisely, unless stated
otherwise, the latter is averaged over several randomly se-
lected household profiles namely, Households 4998, 6910,
9499, and 9609. The energy need in terms of PC for a
household is set to £ = 30 kWh.

First, we want to assess the loss induced by clustering
(namely, by using a fixed number of possible decisions z in-
stead of using the optimal solution z*(g) for every g). For
this, we define the relative optimality loss of the generic
clustering scheme C with respect to the ideal case as fol-

erfect C
lows po.c(%) = % x 100 where F is obtained by
2

averaging fo over several realizations of the NCPC vector
and the performance of the ideal case is attained by as-
suming that the optimal PC vector z* is available (this
amounts to having an infinite number of clusters). The
natural relevance of the notion of relative optimality loss
stems from the fact the decision-making entity process is
represented by the maximization of the function fs. There-
fore, what matters is that the decision taken is as close as
possible to the ideal situation which is obtained by maxi-
mizing fo(z; g) with an absolutely perfect knowledge of the
parameters ¢g. Here, F intervenes instead of fo because
the performance is averaged. Fig. 3 represents po (%) as
a function of the number of clusters for 4 different cluster-
ing schemes when F5 is obtained by averaging over the 365
daily NCPC profiles of Household 9499. Indeed, DMOC
is compared to four popular clustering schemes namely,
KMC, hierarchical clustering (HC), fuzzy C-means clus-
tering (FCMC), and symbolic aggregate approximation
(SAX) based clustering [41][42]. For HC, the squared Eu-
clidean distance and weighted pair group method with
arithmetic mean are used. For FCMC, the fuzzifier ex-
ponent parameter is set to 2. For SAX based clustering,
the window size is set to 4 and the alphabet size is fixed
to 8. Regarding the performance, for 15 — 20 clusters,
the optimality loss for KMC, HC, FCMC and SAX based
clustering are seen to be around 20%. With the proposed
approach (DMOC), it is seen that the optimality loss is
as low as 2 — 3% for the same number of clusters, which
represents a very significant improvement. Additionally,
by approximating the clusters by Voronol regions, the ap-
proximated DMOC allows one to reduce complexity while

only inducing a reasonable performance loss w.r.t. the
original DMOC. To better illustrate the other potential
benefits from using DMOC, we mainly show the compari-
son between DMOC and KMC in the following figures. In
Fig. 4, the desired maximum peak power level is fixed to
a given value in the range [3.8,4.4] kW. Then, one com-
putes the number of clusters which allows one to guaran-
tee that the total power will not exceed this value. Fig. 4
shows, in particular, that the required number of clusters
can be very high when the constraint on the maximum
power level is strong (e.g., when it equals 3.8 kW). On
the other hand, using DMOC allows one to adapt in an
ideal manner the shape of the clusters and the representa-
tive decisions, which explains why the number of required
clusters can be made very small. To better understand
how DMOC operates in terms of shaping the clusters and
selecting the representative decisions, we consider in the
next subsection special cases allowing to make interpreta-
tions.
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Figure 3: Relative optimality loss induced by the finiteness of the
number of clusters.

5.2. About the shape of DMOC clusters and DMOC rep-
resentative decisions (PCS)

To be able to represent the clusters geometrically, we
fix the dimension of the data space to T' = 2. This means
that the consumption profile g comprises 2 phases with
constant power; here, it corresponds to the average power
from 6 am to 6 pm and that from 6 pm to 6 am, al-
ways for the Pecan street database. As a consequence,
the number of clusters is also small. It is set as M = 4.
For this setting, Fig. 5 shows the clusters obtained when
using DMOC (left subfigure) and KMC (right subfigure).
With KMC, the obtained clusters correspond to Voronoi
cells. With DMOC, the obtained clusters are markedly
different. The latter are tailored to the L, —norm. These
clusters are much more suited to manage the peak power
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Figure 4: Required number of clusters to reach a given target in
terms of maximum peak power.

reduction problem. Roughly, data samples are grouped
into regions in which the difference in terms of power be-
tween the two consumption phases (namely, the quantity
(lgn(1) — gn(2)]) is small. Now, let us turn our attention
to the shape of representative PC profiles. In this case,
any value for the data space dimension can be assumed.
Therefore, we assume the typical value T" = 24 and that
the data are clustered in three groups that is, M = 3. The
rationale behind this choice is to make apparent the main
features of interest that are automatically extracted by the
DMOC technique. As far as the decision to be taken aims
at minimizing the peak power, the main feature is found
to be the time information associated with the occurrence
of the most likely dominant peak power. Fig. 6 depicts the
three PC profiles (in red dash line) of KMC and DMOC,
respectively. As a side information, for each of the clus-
tering approaches (KMC/DMOC), the empirical mean of
the NCPC profiles (in solid blue line) over the cluster un-
der consideration is given for each cluster. Notice that,
since the clusters provided by the two approaches differ,
the means also differ. It can be seen that DMOC classi-
fies the NCPC g according to the peak power occurrence
time. The peak of the first NCPC profile (called Type
I) occurs in the afternoon while the peaks of the second
and the third type occurs in the early evening and late
evening, respectively. The representative PC profiles nat-
urally comprise higher values over off-peak periods of its
corresponding NCPC profiles. By contrast, KMC provides
less suited PC profiles by considering the Lo—norm of the
NCPC profiles instead of adapting to the decision perfor-
mance metric, here an L,—norm. Fig. 7 allows one to be
able to compare the representative profile of a cluster with
the rest of the cluster members. Interestingly, the time-
slot of the representative peak (right figures) corresponds
to the time-slot which has the highest probability of peak
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Figure 5: Geometry of the cluster shape.

5.8. Influence of the data on the performance gains (PCS)

In the previous subsections, results were averaged over
four randomly selected households. Here, we look at the
performance for each household, in particular, our goal
being to see to what extent the nature of the data influ-
ences the outcome in terms of gains brought by DMOC
over KMC. Fig. 8 represents the relative optimality loss
pa,c for given realizations of the NCPC profile with dif-
ferent households. The four curves correspond to the ran-
domly selected households. It is seen that the loss induced
by clustering (here only DMOC is considered) clearly de-
pends on the household but is always as low as 5% when
the number of clusters exceeds 10. Interestingly, we have
seen that the entropy of a non-flexible consumption pro-
file can be used as a measure to know whether DMOC will
bring a significant performance gain. Indeed, by denoting
p(t) the empirical probability that the non flexible peak

Z Ly, (H)=maxg

the entropy of an NCPC profile merely expresseﬁ as

power occurs at time-slot ¢ by p(t

t) log, pl(t (20)

uMﬂ

For Households 6910, 4998, 9609, and 9499, the value of
the entropy is respectively given by 3.45, 3.82, 3.91, and
4.19. This shows here that entropy may reflect well the
optimality loss obtained when using DMOC.

5.4. Potential benefits from using DMOC for RTP

Here, we consider the problem of RTP. The simula-
tion setting we choose is very close to [34]. We consider
a system with a unique provider and K = 5 or K = 10
consumers. For each day, the consumer satisfaction pa-
rameter gi(t) is assumed to be constant for a period of
6 hours, which means that g, (96 (1), ..., gi(T)) with
T = 4. Additionally, the satisfaction parameters gy(¢)
are assumed to be realizations that are i.i.d. over the
consumers and time. FEach g is uniformly distributed



DMOC Type |
(30% load profiles belonging to it)

KMC Type |

==+ Controllable consumption x

(52% load profiles ing to it)
T T T
|
i
|
]

— Non-controllable consumption g
-+ Controllable consumption x

Load (kW)

Load (|

KMC Type Il
(16% load profiles belonging to it)
[— Non-controllable consumption g |

DMOC Type Il

(38% load profiles belonging to it)
[=—Non-controllable consumption g T
=+ Controllable consumption x

T 9
==+ Controllable consumption x

KMC Type Il
(32% load profiles

DMOC Type Il

(32% load profiles belonging to it)

ontrollable consumption g
« === Controllable tion x

0 5 10 15
Time (h)
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average NCPC profiles are represented.

over the interval [2,3] and we choose o« = 0.5, a = 0.1,
b = 0, and ¢ = 10 for the parameters of the function f;
(see (10)). Fig. 9 represents the relative optimality loss

pperfect _ pC
p1,0(%) = L—amat x 100, Ce {KMC,DMOC} as a

j— 1

function of the2 number of clusters for KMC and DMOC
where Fj corresponds to an average of f; over N = 365
draws for the vector of satisfaction parameters. The gain
brought by DMOC over KMC is globally less significant
than for the peak power minimization problem; this can
be explained by the quadratic structure of the problem,
which implies that the DMOC representatives are also ob-
tained by using the Euclidean distance just as KMC does.
However, as it can be seen from (15), exploiting an affine
transformation of the initial parameters, DMOC considers
the sum of all the consumers’ demand levels as a single
parameter. By classifying the dataset according to this
automatically extracted feature, the optimality loss can
be made significantly lower compared to the conventional
approach such as KMC. If one wants to guarantee small
optimality losses (say < 10%) it is even seen that it may be
impossible for KMC to reach the corresponding accuracy
level, making the use of DMOC necessary.

Fperfect

6. Conclusion

In this paper, we have provided a new approach to
clustering that allows one to extract ex ante and in an
automatic manner, for any performance metric, the fea-
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Figure 8: Relative optimality loss against the number of clusters.

tures relevant to the decision maker using the data. By
doing so, one can minimize the impact of the finiteness of
the number of clusters on the final performance. For in-
stance, for the peak power problem, we have seen that the
number of required clusters to perform the corresponding
power scheduling task can be divided by a factor as high
as 30 compared to conventional clustering. The analyti-
cal results provided for the problem of real-time pricing
and power consumption scheduling illustrate very well the
effects of the adopted point of view compared to the con-
ventional point of view. The numerical analysis clearly
illustrates the benefits of decision-making oriented clus-
tering e.g., in terms of required number of clusters or opti-
mality loss for the decision making process. The proposed
approach might be refined. For instance, an interesting
and deepened discussion of the complexity issue might
be conducted. For a given complexity level for the clus-
tering plus decision operation, the conventional approach
might be compared to the proposed approach. For this,
approximation-based low-complexity decision-making ori-
ented clustering schemes may be considered. Also, the im-
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Figure 9: Relative optimality loss against the number of clusters for
the problem of RTP.

pact of the choice of the performance metric on the perfor-
mance gain of decision-making oriented clustering should
be investigated more; we provide the answer for two fa-
mous performance metrics but a deeper problem would
be to mathematically characterize functions for which the
gain is large, intermediate, or small. The extension to
the case where the data used by the decision-maker are
noisy would be very relevant; possible paths would be to
generalize the proposed algorithm the way the Lloyd-Max
quantization algorithm has been generalized to noisy in-
puts or to exploit reinforcement learning algorithms with
noisy measurements.

7. Appendix*

7.1. Proof of Prop. 3.1
Proof. The OP associated with (3) can be rewritten as:

- D D f@ta)ig,)

m=1neN,,

di(z*(r,,)) <0
ej(z*(r,)) =0

By replacing z*(r,,,) with z,,, the equivalence is proved.
O

minimize
(Nl,...,NNhfp“'vtM (21)

s.t.

7.2. Proof of Prop. 4.1

Proof. By plugging ¢} (z(t)) %ﬂ(t) into (10), the
function f1(z;g) can be rewritten as:

fi(z; 9)

T 1 K
= Z —a(z(t) — %602
= aa

(abK +2aK )" gk(1))* + ce(g)

k=1 (22)

T
ilAg+ B —z|3+ ) cilg)
t=1

12

where ¢;(g) = ZkK=1 — bg’;(t)

202
of z and thus irrelevant for the choice of C,,. By combin-
ing (22) and (5), for given representatives, the optimum
regions can be written as (14).

For given clusters (Cy,...,Cps), the best representative
is obtained by solving the following OP:

I:(a72a)gz(t) ] is independent

*

Lo

€ —argmin Z f(Z9,)- (23)

zeX neN,,

In the RTP case, the sum-utility expresses as:

> fizn,ig)

neNm

T 1 K .
Sha? (abK + 2aK Z g’(:L)(t))) + ct(gn)]

k=1

g

[*&(wm(t) -

i
5
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2
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(abK +2aK Y gt ()% + Ct(gn)}
k=1

)+ c;<gn>>} :

Therefore, maximizing >}, f1(2n,;9,) is equivalent to
@ (D F 55
oK

2aa?
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a+ gk

Il
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I
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3
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(24)

2. the solution can be ob-
O

minimizing (2, (t) —

tained and written as (15).

7.3. Proof of Prop. 4.2

Proof. The result follows from replacing f with the L,—norm
function f, and by noticing that the problem is convex
since ||z[, is convex w.r.t. z. O
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