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LLR Approximation for Fading Channels Using a Bayesian Approach

Lorenzo Ortega Espluga , Marion Aubault-Roudier, Charly Poulliat , Member, EEE,

Marie Laure Boucheret , Hanaa Al-Bitar, and Pau Closas , Senior Member, IEEE

Abstract— This letter investigates on the derivation of good log
likelihood ratio (LLR) approximations under uncorrelated fading
channels with partial statistical channel state information (CSI)
at the receiver. While previous works focused mainly on solutions
exploiting full statistical CSI over the normalized Rayleigh fading
channel, in this letter, a Bayesian approach based on conjugate
prior analysis is proposed to derive LLR values that only uses
moments of order one and two associated with the random fading
coefficients. The proposed approach is shown to be a more robust
method compared to the best existing approximations, since it can
be performed independently of the fading channel distribution
and, in most cases, at a lower complexity. Results are validated for
both binary and M -ary modulations over different uncorrelated
fading channels.

Index Terms— LLR values, fading channel, channel uncer-
tainty, M -ary modulations, best linear approximation.

I. INTRODUCTION

I
N MODERN error correcting algorithms, the input of the

associated soft input decoding algorithms mainly relies on

the so-called log likelihood ratio (LLR) values [1], [2]. These
LLR values can be shown to be sufficient statistics for the 
decoding and detection process. Typically, in order to compute

a closed-form of these LLR values, the knowledge of the
propagation channel, referred to as complete channel state
information (CSI) is assumed, i.e. the channel is perfectly
known. However, this assumption can be untrue in real appli-
cations since the complete CSI might be not fully available at
the receiver [3]. In this work, we focus on uncorrelated fading 
channels with binary and non-binary inputs, modeled with a
fading gain h and an additive Gaussian noise wn ∼ N (0, σ2). 
If h and σ2 are known at the receiver (complete CSI case) 
and a binary modulation is used, the LLRs can be computed

as a linear function of the channel output [4], [5]. However 
for non-binary modulations, LLRs are non linear functions
of the channel output [6], increasing the receiver complexity. 
In order to handle this complexity, approximate LLRs have
been previously proposed in the literature (e.g. [7]). If h cannot 
be precisely known and only full statistical CSI is avail-
able (i.e. we have the knowledge of the probability density
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function (pdf) associated with the fading coefficients), one is

still able to derive a closed-form for LLR values, which is in

general a non linear function of the channel output. To lower

the complexity, several authors (see for example [8], [9] for

binary-phase shift-keying (BPSK) modulation and [6], [9]

for M -ary modulations) have proposed LLR approximations.

Regarding to the BSPK case, [8] proposed an efficient method

for which the best linear approximation can be shown to

maximize an approximate mutual information based functional

assuming that full statistical CSI is available, i.e. we can have

access to the (conditional) pdf of the estimated LLRs. This

work has been then extended to non-binary modulations

in [6]. Another approach to compute analytically closed-

form LLR approximations through the Taylor series was

proposed in [9]. Thanks to this approach, it was possible to

reduce the complexity issue for the method presented in [6].

However, those approximations are only available for the

normalized Rayleigh/Rice distribution, for which an easy-to-

handle closed-form of the derivative is available, which is not

always possible in the general case.

In this letter, we propose a different method following a

Bayesian approximation based approach using conjugate prior

analysis [10]. This method allows to derive simple analytical

closed-form expressions of the LLR values, considering that

only a partial statistical CSI (first and second moments of

the fading gain) is available at the receiver. Since a conjugate

prior is selected as a prior distribution for the fading gain,

this method can be applied independently of the channel

fading distribution p(h). Moreover, considering that a learning

sequence is available at the receiver, the first and the second

statistical moments can be easily estimated based on state-of-

the-art estimation techniques.

This letter is organized as follows: Section II reviews

LLR expressions under complete CSI and full statistical CSI.

In Section III, we present a novel Bayesian approach for the

derivation of the LLR values when only partial statistical CSI

is available. Moreover, we briefly present the online estimation

of the parameters µh and σ2
h considering that a learning

sequence is available at the receiver. Results are analyzed

for two kinds of uncorrelated fading channels in Section IV.

Conclusions and perspectives are finally drawn in Section V.

II. LLR UNDER COMPLETE AND FULL STATISTICAL CSI

Following [9], we consider an uncorrelated fading channel

where the received signal is expressed as :

yn = hn · xn + wn (1)

where xn and yn represent the channel input and output at

symbol time n, respectively; wn is a zero mean (possibly com-

plex) additive white Gaussian noise (AWGN) with variance σ2



(2σ2 for bi-dimensional constellations), and hn are the channel

gains that are independent and identically distributed (i.i.d.)

random variables with associated probability density function

(pdf) given by p(h), i.e. hn ∼ p(h). We further assume that

xn and wn are i.i.d. random variables (r.v.).

At the transmitter, we assume a bit-interleaved coded modu-

lation (BICM) scheme where the binary information sequence

u = [u1, . . . , uK ] is first encoded using a binary error

correcting code of rate R = K/N , yielding a binary codeword

c = [c1, . . . , cN ] of length N > K . Then, c is bit interleaved

and divided into Ns blocks of m bits. ∀k = 1, . . . , Ns, each

block bk = [b1
k, . . . , bm

k ] is mapped into a symbol xk from an

M -ary signal constellation X of size |X | = 2m. We further

assume that Gray mapping is used. At the receiver, LLRs are

computed for each interleaved bit and then used to feed the

input of the soft channel decoder. For the case of complete

CSI (i.e. hn is perfectly known), the LLR associated with the

i-th transmitted bit bi
n(xn), i = 1, . . . , m, associated with the

n-th transmitted symbol xn ∈ X is given by

L(i)
n = ln

(

P (yn|bi
n(xn) = 0, hn)

P (yn|bi
n(xn) = 1, hn)

)

= ln

(
∑

xn∈X0(i)
P (yn|xn, hn)

∑

xn∈X1(i) P (yn|xn, hn)

)

(2)

where Xj (i) is the subset of symbols of X where bi
n(xn) =

j, j ∈ {0, 1}. When hn cannot be perfectly known at the

receiver, but p(h) is known (full statistical CSI case) as a prior

knowledge, the LLR expression can be computed as

L(i)
n = ln

(
∑

xn∈X0(i)

∫∞

−∞
P (yn|xn, h)p(h) dh

∑

xn∈X1(i)

∫∞

−∞
P (yn|xn, h)p(h) dh

)

. (3)

One useful low-complexity approximation proposed in [7] is

obtained by the log-sum approximation. With complete CSI,

the approximation leads to

L̂(i)
n = ln

(

maxxn∈X0(i) P (yn|xn, hn)

maxxn∈X1(i) P (yn|xn, hn)

)

, (4)

and with full statistical CSI, this leads to

L̂(i)
n = ln

(

maxxn∈X0(i)

∫∞

−∞
P (yn|xn, h)p(h) dh

maxxn∈X1(i)

∫∞

−∞
P (yn|xn, h)p(h) dh

)

. (5)

Note that the log-sum approximation is particularly useful

under complete CSI assumption since a linear LLR approxi-

mation can be implemented [7].

III. A BAYESIAN APPROACH FOR LLR CALCULATION

USING PARTIAL STATISTICAL CSI

Prior works such as [9] provided LLR closed-form expres-

sions considering full statistical CSI over a normalized

Rayleigh fading channel for the BSPK, pulse and quadrature

amplitude modulations (denoted as PAM and QAM respec-

tively). Then, to address complexity issues, LLR approx-

imations based on Taylor series have been proposed [9].

If the proposed solution provides an interesting framework

for the derivation of non linear LLR approximations, it still

comes with some limitations. First, this solution considers full

statistical CSI (full knowledge of p(h)), which is unlikely to

be available at the receiver. Moreover, complete derivation of

useful expressions is only available for channels for which a

convenient analytical expression is available, which is the case

for the normalized Rayleigh fading channel scenarios that have

been considered, but it will be not that easy to generalize it

to any kind of fading channels.

In this letter, we consider a rather different approach

considering that only partial statistical CSI (i.e. only first

and second order statistics of h) are available at the

receiver. Moreover, the proposed method can be implemented

independently of the fading channel distribution p(h). Then,
whereas σ2 is assumed to be known or accurately estimated,

hn is considered as an unknown random variable whose first

and second statistical moments are well characterized.

The problem of computing LLR values turns out to be the

derivation of a closed-form expression of the integral in (3),

for which we have to select a suitable prior distribution for

the r.v. h, enabling both a good approximation of the true

prior distribution and the ease of a closed-form derivation.

A common approach in Bayesian analysis, when possible, is to

select a prior distribution to be the conjugate of the likelihood

distribution, which results in a posterior distribution that is of

the same family as the a priori distribution [11]. Given that the

likelihood distribution is a Gaussian distribution, the conjugate

prior distribution for the r.v. hn is also a Gaussian one [10],

i.e. hn ∼ N (µh, σ2
h), where the parameters µh and σ2

h are

considered to be known or well estimated. As an example,

if the scale factor a of the unnormalized Rayleigh distribution

is known, the first and second moments of h can be computed

as µh = a
√

π
2 and σ2

h = 4−π
2 a2.

A. M -Ary PAM and QAM Modulations

Based on the selected prior, a closed-form expression for

equation (3) can be derived for M -ary PAM modulations, for

which xn ∈ {±1,±3, · · · ± (M − 1)}. The LLR in (3) can be

written as

L(i)
n =ln









∑

xn∈X0(i)

∫∞

−∞
e−

(yn−hxn)2

2σ2 e
−

(h−µh)2

2σ2
h dh

∑

xn∈X1(i)

∫∞

−∞
e−

(yn−hxn)2

2σ2 e
−

(h−µh)2

2σ2
h dh









. (6)

which can be shown to be (cf. Appendix A):

L(i)
n = ln





∑

xn∈X0(i)

e
−

(yn−xnµh)2

2(σ2+x2
nσ2

h)





− ln





∑

xn∈X1(i)

e
−

(yn−xnµh)2

2(σ2+x2
nσ2

h)



. (7)

In order to reduce the complexity, the log-sum approximation

can be used following (5). Considering M -ary QAM modula-

tions built as a direct product of two orthogonal Gray encoded

PAM constellations, the LLR values can be directly computed

by the previous method (i.e. equation (7)) considering indepen-

dently the two dimensions of the signal. Then, the combined

LLR values can be computed as the sum of the LLR values

obtained for each of the signal components.



B. BPSK Modulation: A Particular Case

The BPSK modulation can be seen as a particular case of

the M -ary PAM modulation where the posterior distribution

becomes the product of two Gaussian distributions, and the

marginal distribution can be shown to be another Gaussian dis-

tribution of the form p(xn|yn) ∝ N (yn/µh,
(

σ2 + σ2
h

)

/µ2
h).

From the previous distribution, the LLR can be directly

computed as

Ln = −µ2
h

(

1 − yn

µh

)2

2 (σ2 + σ2
h)

+ µ2
h

(

−1 − yn

µh

)2

2 (σ2 + σ2
h)

=
2µh

(σ2 + σ2
h)

yn .

(8)

given that xn ∈ X0(i) = 1 and xn ∈ X1(i) = −1. The

resulting LLR value is a linear function of yn.

This result can be linked to previous work by [8], where

the authors aim to estimate the linear coefficient α ∈ R
+ that

provides the best linear approximation of the LLR written as

L̂n = αyn. To this end, [8] proposed to compute the scaling

factor α by maximizing an approximate mutual information

based quantity, referred to as Î
(

L̂; X
)

, between the trans-

mitted symbol X and the detector input L̂. The proposed

optimization problem can be stated as:

α = arg max
α′∈R+

Î
(

L̂; X
)

= arg max
α′∈R+

1 −

∫ ∞

−∞

log2

(

1 + e−L̂

)

p
(

L̂|X = +1
)

dL .

(9)

Originally, the optimization method proposed in [8] assumes

the knowledge of the linearly approximated LLRs conditional

pdf. In some specific cases, as for example the normalized

Rayleigh fading channel, an exact analytical expression of

LLRs can be derived [8, eq. (17)]. Apart from these spe-

cific cases, one has to resort to a numerical optimization

method, that can be computationally demanding. It can be

done by applying one-dimensional search method [12] based

on the objective function of equation (9). To evaluate this

integral, as previously stated, one needs the integrand kernel

p
(

L̂|X = +1
)

, which is not an easy task to evaluate online.

To overcome this difficulty, one can resort to the corresponding

empirical mean estimator as done in [13], [14]. But, one

still has to resort to iterative one-dimensional search methods

with a cost function involving log/exp function evaluations.

With the proposed method, we rather need to evaluate both

first and second order moments of the random variable h.
This shows that for a first order approximation of the LLR,

minimizing a functional involving a complete statistical pdf

characterization is not a necessary condition to get a good

approximation. When full statistical CSI is available, the pro-

posed approach enables to circumvent the above optimization

procedure by a direct parametric estimation of the scaling

factor α using the first and second order moments, which

are easily handled in this case. If full statistical CSI is not

available, in order to compute an estimation for the scaling

parameter α, we have to estimate online the parameters

(µh, σ2
h) from the data at the receiver. Additionally, we can

notice that, under an AWGN channel assumption for which

µh = 1 and σ2
h = 0, the result obtained in equation (8)

corresponds to the classical Gaussian LLR expression with

Ln = 2 yn/σ2.

C. On the Estimation of the Parameters µh and σ2
h

In the previous section, we addressed the issue of computing

LLR values considering partial statistical CSI, i.e. the first

(µh) and the second (σ2
h) orders of the p(h) are considered

known. However, in real scenarios these parameters might not

be available at the receiver and should be estimated online.

As a simple example, assuming that a binary learning sequence

is available at the receiver, and considering the output signal

model in (1), i.e. yn ∼ N (µhxn, σ2
h + σ2), we can compute

the log-likelihood function Λ(yn; µh, σ2
h) as

log (Λ) = −
N
∑

n=1

1

2
log
(

2π
(

σ2
h + σ2

))

−
N
∑

n=1

(yn − µhxn)
2

2 (σ2
h+σ2)

.

(10)

Then, we can derive maximum likelihood estimates of µh and

σ2
h as the roots of the partial derivatives of (10) with respect

to µh and σ2
h.

µ̂h =
1

N

N
∑

n=1

ynxn , σ̂2
h =

1

N

N
∑

n=1

(yn − µ̂h)
2 − σ2 . (11)

Other types of estimation strategies can be also considered,

but they are out-of scope of this letter.

IV. RESULTS

In Fig. 1, we compare LLR values obtained as a func-

tion of the channel output yn for a 8-PAM signal set with

Gray labeling for a normalized Rayleigh fading channel at

SNR = 7.91 dB and for the following scenarios : (a) full

statistical CSI [9, eq. (9)], (b) their Taylor approximation

[9, eqs. (24),(26),(27)]; and (c) the Bayesian approach pro-

posed in (7) (perfect partial statistical CSI). Note that a

normalized Rayleigh distribution was used in [9] to compute

the LLR values, since a derivable closed-form conditional

pdfs is required. From the plots, we note that the proposed

Bayesian method exhibits the same behavior as the Taylor

approximations for low amplitude values and differs when

amplitudes increase. In Fig. 3, we compare Frame Error Rate

(FER) between the LLR computed with (a) full statistical CSI

[9, eq. (9)], (b) the proposed Bayesian approach, and (c) the

Bayesian approach with the log-max approximation. We con-

sider a data frame encoded by an irregular LDPC of rate 1/4
as defined in the norm DVB-S.2 [15] (N = 64800) following

the coding rate considered in [9]. For the LDPC decoding,

we consider the belief propagation (BP) algorithm [2] with 100
decoding iterations. The proposed Bayesian approach achieves

performance with a gap 0.4 dB with respect to the LLR values

computed considering full statistical CSI. Note that when

the log-sum approximation is used, a gap 0.8 dB is found.

We underline that the Bayesian approach only needs partial

statistical CSI and not full statistical CSI as in previous works.

In this section we also compare soft decoding performance

for a BPSK modulation corresponding to the LLR consid-

ering complete CSI (1), the LLR considering full statistical



Fig. 1. LLR values L
(1)
n (a), L

(2)
n (b) and L

(3)
n (c) as functions of the channel

output yn for 8-PAM modulation under a normalized Rayleigh channel at
SNR = 7.91 dB.

CSI [9, eq. (8)], the best linear approximation of the LLR

proposed in [8] (full statistical CSI) and the Bayesian approach

to compute LLR (8) considering partial statistical CSI. In par-

ticular, as an example, we provide (FER) performance for

the GPS L1C subframe 2 [16], [17] (N = 1200), which is

based on an irregular LDPC code of rate 1/2 and decoded by

the BP algorithm. We consider a normalized Rayleigh fading

channel (since an analytical expression of the LLRs pdf is

necessary to compute both: the LLR expression in [9, eq. (8)]

and the best linear approximation method). In Fig. 2, we plot

the LLRs as a function of the observation yn at Eb/N0 =
4.5 dB. Note from Fig. 2 that the Bayesian approach (8) (when

partial statistical CSI is assumed) converges to the same LLR

values than the best linear approximation approach, whereas

the proposed method does not involves full statistical CSI.

Moreover, considering the same fading channel distribution

Fig. 2. GPS L1C frame error rate under a Rayleigh channel with a = 0.2.

Fig. 3. GPS L1C frame error rate under a normalized Rayleigh channel.

and the same methods to compute LLRs, the FER for the

previous methods exhibit again similar behaviors as shown

in Fig. 3. This illustrates the fact that the proposed method

does not suffer from any loss of information compared to

other methods. When µh and σ2
h are estimated from a learning

sequence of length Np = 60 symbols, a small degradation

of 0.2dB for the FER is observed. Note that for the particular

case of GPS, a pilot component is transmitted in parallel to the

data component, a larger Np could be considered to estimate

µh and σ2
h). This degradation increases when the number of

symbols to estimate µh and σ2
h is reduced. The method used

to estimate µh and σ2
h is provided in subsection III-C. Note

that the method in [9] (not reported in the figure) has similar

performance to the full statistical CSI method.

Finally, we consider the case of an unnormalized Rayleigh

channel with a scale factor of a = 0.2. Fig. 4 shows the

corresponding FER performance. Note that, for this experi-

ment, no analytical expression for the LLRs pdf is available.

Therefore, the LLR considering full statistical CSI [9, eq. (8)]

cannot be computed. In order to compute the best linear

approximation method, since no analytical expression for the

LLRs pdf is available, the empirical estimator proposed in [13]

is used in order to provide an estimation of the coefficient α,
defined in (8). Similar conclusions to the previous case can

be drawn for the FER performance. We underline, that thanks

to the Bayesian approach, full statistical CSI is not required.

Then, the complexity of the method consist on estimating µh

and σ2
h, i.e. to compute (10).



Fig. 4. GPS L1C frame error rate under a Rayleigh channel with a = 0.2.

V. CONCLUSION

In this letter, we have addressed the problem of the deriva-

tion of LLR values approximations for uncorrelated fading

channels using partial statistical CSI. To this end, we have

proposed a different method following a Bayesian approach

using conjugate prior analysis. Under this framework, we are

able to derive a simple closed-form solution of the conditional

pdf. Then, we can obtain an analytical closed-form expression

of the LLR values, which are independent of the fading gain

distribution p(h). Moreover, this solution can be shown to

be only dependent on the first and second order moments

associated with the random variable h. As a consequence,

based on this analysis, it appeared that full statistical CSI is not

a sole condition to derive accurate LLR functions, but partial

statistical CSI based on statistics of order 1 and 2 can also

lead to accurate and robust approximations. Finally, we have

presented a simple method to compute online estimation of

statistics of order 1 and 2 when a learning sequence is available

at the receiver, showing that the proposed method can be

implemented with a reasonable complexity.

APPENDIX A

In this appendix, we solve the integral in (6):

p(xn|yn) ∝

∫ ∞

−∞

e−
(yn−hxn)2

2σ2 e
−

(h−µh)2

2σ2
h dh

=

∫ ∞

−∞

e−β1(y2
n−2hxnyn+h2xn

2)e−β2(h2
−2hµh+µ2

h)dh,

(12)

where β1 =
σ2

h

2σ2σ2
h

and β2 = σ2

2σ2σ2
h

. Since the product of two

Gaussian distributions is a Gaussian distribution, we proceed

by finding the mean µa and variance σ2
a of the resulting

Gaussian distribution as

(h − µa)
2

σ2
a

+ κ = β1

(

y2
n − 2hxnyn + h2xn

2
)

+β2

(

h2 − 2hµh + µ2
h

)

(13)

where κ is an auxiliary constant. Expanding the expressions

h2

σ2
a

−
2hµa

σ2
a

+
µ2

a

σ2
a

+ κ

= β1y
2
n + β2µ

2
h − 2h (xnynβ1 + µhβ2)+h2

n

(

β1xn
2 + β2

)

,

(14)

it follows that 1
σ2

a
=
(

β1xn
2 + β2

)

, µa

σ2
a

= (xnynβ1 + µhβ2)

and
µ2

a

σ2
a

= (xnynβ1+µhβ2)
2

(β1xn
2+β2)

after identifying terms on both

sides of equation (14). The constant κ can be computed

as

κ=
β1β2

β1xn
2 + β2

(

y2
n−2xnynµh + µ2

hxn
2
)

=
(yn−xnµh)

2

2 (σ2 + xn
2σ2

h)
,

where β1β2

β1xn
2+β2

= 1

2(σ2+xn
2σ2

h)
. Reporting these equations,

equation (12) can be re-written as

∫ ∞

−∞

e
−

(h−µa)2

σ2
a e

−
(yn−xnµh)2

2(σ2+xn
2σ2

h) dh = e
−

(yn−xnµh)2

2(σ2+xn
2σ2

h) (15)

where by definition we have
∫∞

−∞
e
−

(h−µa)2

σ2
a dh = 1,

yielding to equation (7) after inserting equation (15) into

equation (6).
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