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Algorithm Selection Framework for Legalization Using Deep Convolutional Neural Networks and Transfer Learning *

Machine learning models have been used to improve the quality of different physical design steps, such as timing analysis, clock tree synthesis and routing. However, so far very few works have addressed the problem of algorithm selection during physical design, which can drastically reduce the computational effort of some steps. This work proposes a legalization algorithm selection framework using deep convolutional neural networks. To extract features, we used snapshots of circuit placements and used transfer learning to train the models using pre-trained weights of the Squeezenet architecture. By doing so we can greatly reduce the training time and required data even though the pre-trained weights come from a different problem. We performed extensive experimental analysis of machine learning models, providing details on how we chose the parameters of our model, such as convolutional neural network architecture, learning rate and number of epochs. We evaluated the proposed framework by training a model to select between different legalization algorithms according to cell displacement and wirelength variation. The trained models achieved an average F-score of 0.98 when predicting cell displacement and 0.83 when predicting wirelength variation. When integrated into the physical design flow, the cell displacement model achieved the best results on 15 out of 16 designs, while the wirelength variation model achieved that for 10 out of 16 designs, being better than any individual legalization algorithm. Finally, using the proposed machine learning model for algorithm selection resulted in a speedup of up to 10x compared to running all the algorithms separately.

Introduction

Machine Learning (ML) models have been used in physical design for predicting different metrics, such as the result of clock tree synthesis (CTS) algorithms [START_REF] Andrew B Kahng | High-dimensional metamodeling for prediction of clock tree synthesis outcomes[END_REF], circuit timing [START_REF] Han | A deep learning methodology to proliferate golden signoff timing[END_REF][START_REF] Andrew B Kahng | Si for free: machine learning of interconnect coupling delay and transition effects[END_REF][START_REF] Andrew B Kahng | Using machine learning to predict path-based slack from graph-based timing analysis[END_REF][START_REF] Carvajal Barboza | Machine learningbased pre-routing timing prediction with reduced pessimism[END_REF] and routing violations [START_REF] Zhou | An accurate detailed routing routability prediction model in placement[END_REF][START_REF] Chan | Routability optimization for industrial designs at sub-14nm process nodes using machine learning[END_REF][START_REF] Fakheri Tabrizi | A machine learning framework to identify detailed routing short violations from a placed netlist[END_REF][START_REF] Xie | Routenet: routability prediction for mixed-size designs using convolutional neural network[END_REF][START_REF] Yu | Pin accessibility prediction and optimization with deep learning-based pin pattern recognition[END_REF][START_REF] Zhou | Congestion-aware global routing using deep convolutional generative adversarial networks[END_REF][START_REF] Gandhi | A reinforcement learningbased framework for solving physical design routing problem in the absence of large test sets[END_REF][START_REF] Liang | Drc hotspot prediction at sub-10nm process nodes using customized convolutional network[END_REF][START_REF] Yu | Lookahead placement optimization with cell librarybased pin accessibility prediction via active learning[END_REF][START_REF] Hung | Transforming global routing report into drc violation map with convolutional neural network[END_REF]. The aim of these algorithms has been to improve the quality of a given synthesis or optimization step and/or speeding up execution. The predicted metrics may be used to anticipate the result of a given step, thus allowing for [START_REF]Opendp: Open source detailed placement engine[END_REF] guiding an earlier optimization step to reduce the impact on the latter steps, (2) choosing the most appropriate parameters to configure the employed algorithm or [START_REF] Carvajal Barboza | Machine learningbased pre-routing timing prediction with reduced pessimism[END_REF] selecting between the available algorithms the one that leads to the best quality results. The selection between the algorithms is usually referred to as algorithm selection.

One of the steps where algorithm selection can be important is legalization. The complexities of modern circuits force legalization algorithms to handle complex design challenges, such as physical floorplan complexity, routability issues and presence of multi-row cells. Therefore, it is hard to choose a single algorithm that outperforms others in every metric and for all circuit types. Different algorithms perform better in different scenarios. On the other hand, running different legalization algorithms just to be able to choose the best one for a given circuit can lead to overly long execution times, especially for incremental placement where multiple candidate solutions are tried. In this work, we have developed a framework to select a legalization algorithm that best fits a given placement, thus increasing the quality of the outcome and avoiding prohibitively long execution times. The main contributions of this work are:

A Convolutional Neural Network (CNN)-based algorithm selection model for legalization. Since CNNs use only images as input features, the proposed model can use the same set of features to predict different metrics.

Development of a feature extraction method for legalization that is independent of the metrics being predicted.

Extensive experimentation and analysis for training deep CNN using transfer learning, including which pre-trained architecture to use.

Experimental validation of the proposed algorithm selection framework using state-of-theart legalization algorithms.

The remaining sections are organized as follows. In Section 2 the related work and background are discussed. Section 3 presents the proposed algorithm selection framework, providing details on feature extraction, CNN training process and the framework integration with the physical design flow. In Section 4, the experimental results are given. Finally, concluding remarks are provided in Section 5.

Related work and Background

Legalization Problem

Legalization is a step in the placement stage where cells are slightly moved to be in legal locations, i.e. no overlap, in rows and aligned with power rails. In multi-row legalization, the cells may have different heights. Figure 1 (a) shows an example of the input to a legalization problem is shown. In this figure, cells are shown as blue rectangles and a fixed macroblock appears as a gray rectangle. A legalization algorithm must produce a legal placement as the one in Figure 1 (b) while moving the cells as least as possible.

A legal placement can be produced by using greedy heuristics [START_REF] Chow | Legalization algorithm for multiple-row height standard cell design[END_REF][START_REF] Zhu | Mixed-cell-height legalization considering technology and region constraints[END_REF][START_REF] Do | Fence-region-aware mixed-height standard cell legalization[END_REF], dynamic programming [START_REF] Wang | An effective legalization algorithm for mixed-cell-height standard cells[END_REF], Integer Linear Programming (ILP) [START_REF] Hung | Mixed-cell-height standard cell placement legalization[END_REF] or modeling the problem as a Linear Complementarity Problem (LCP) [START_REF] Chen | Toward optimal legalization for mixed-cell-height circuit designs[END_REF][START_REF] Li | Routability-driven and fence-aware legalization for mixed-cell-height circuits[END_REF]. During legalization, it is important to observe the spatial characteristics of the problem. For example, when a large group of cells are close to each other, it becomes more difficult for the algorithm to legalize the circuit without moving many cells. CNN models achieve good results with spatial data because they identify patterns in objects that are spatially close to each other in the input data. When predicting the outcome of legalization algorithms, the model needs to identify patterns in the cells locations and, therefore, we claim that CNN is the appropriate model for that.

Machine Learning in Physical Design Applications

Table 1 presents a summary of the related work using ML grouped by their targeted physical design step, alongside the type of ML model used. These works can be grouped into four categories according to the physical design step they are intended to: clock tree networks, timing analysis, routing and legalization.

Kahng et al. have presented one of the first works to use ML models in physical design [START_REF] Andrew B Kahng | High-dimensional metamodeling for prediction of clock tree synthesis outcomes[END_REF]. In this work, trained regression models are developed to predict the outcome of CTS engines. These models are used for two different purposes: choosing between two CTS engines for a given set of parameters and choosing the best set of parameters for a single CTS engine.

There are a number of papers using ML for timing analysis. Han et al. [START_REF] Han | A deep learning methodology to proliferate golden signoff timing[END_REF] use regression models to fix miscorrelations between different commercial signoff timing engines and between a signoff tool and a commercial design implementation tool. The work in [START_REF] Andrew B Kahng | Si for free: machine learning of interconnect coupling delay and transition effects[END_REF] focuses on predicting timing in signal integrity (SI) mode based on timing reports from non-SI mode. In [START_REF] Andrew B Kahng | Using machine learning to predict path-based slack from graph-based timing analysis[END_REF] random forests and regression trees were used to predict path-based slack from graph-based timing analysis. In [START_REF] Carvajal Barboza | Machine learningbased pre-routing timing prediction with reduced pessimism[END_REF] different non-convolutional models are used to predict signoff timing from the circuit features.

Several works explored ML models to prevent routing violations [START_REF] Zhou | An accurate detailed routing routability prediction model in placement[END_REF][START_REF] Chan | Routability optimization for industrial designs at sub-14nm process nodes using machine learning[END_REF][START_REF] Fakheri Tabrizi | A machine learning framework to identify detailed routing short violations from a placed netlist[END_REF][START_REF] Xie | Routenet: routability prediction for mixed-size designs using convolutional neural network[END_REF][START_REF] Yu | Pin accessibility prediction and optimization with deep learning-based pin pattern recognition[END_REF][START_REF] Zhou | Congestion-aware global routing using deep convolutional generative adversarial networks[END_REF][START_REF] Gandhi | A reinforcement learningbased framework for solving physical design routing problem in the absence of large test sets[END_REF][START_REF] Liang | Drc hotspot prediction at sub-10nm process nodes using customized convolutional network[END_REF][START_REF] Yu | Lookahead placement optimization with cell librarybased pin accessibility prediction via active learning[END_REF][START_REF] Hung | Transforming global routing report into drc violation map with convolutional neural network[END_REF] using different strategies. In [START_REF] Zhou | An accurate detailed routing routability prediction model in placement[END_REF] and [START_REF] Chan | Routability optimization for industrial designs at sub-14nm process nodes using machine learning[END_REF] circuit layout features such as pin distribution and density parameters are extracted to train non-convolutional models. The main difference between these two works is that [START_REF] Zhou | An accurate detailed routing routability prediction model in placement[END_REF] identifies only the number of detailed routing violations, whereas [START_REF] Chan | Routability optimization for industrial designs at sub-14nm process nodes using machine learning[END_REF] also finds their locations.

Other works on routing explored convolutional models. In [START_REF] Fakheri Tabrizi | A machine learning framework to identify detailed routing short violations from a placed netlist[END_REF], [START_REF] Xie | Routenet: routability prediction for mixed-size designs using convolutional neural network[END_REF] and [START_REF] Hung | Transforming global routing report into drc violation map with convolutional neural network[END_REF] placement and global routing features are used to predict where routing violations will happen. In [START_REF] Yu | Pin accessibility prediction and optimization with deep learning-based pin pattern recognition[END_REF][START_REF] Yu | Lookahead placement optimization with cell librarybased pin accessibility prediction via active learning[END_REF], a model that identifies pin patterns that would likely lead to violations is trained. In [START_REF] Zhou | Congestion-aware global routing using deep convolutional generative adversarial networks[END_REF] and [START_REF] Liang | Drc hotspot prediction at sub-10nm process nodes using customized convolutional network[END_REF], circuit placement is used to generate violation hotspot maps. In [START_REF] Gandhi | A reinforcement learningbased framework for solving physical design routing problem in the absence of large test sets[END_REF], a reinforcement learning approach is developed. This approach is based on AlphaGo Zero and models the routing problem 
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as a two-player game, where one player tries to route the circuit and the other one tries to remove the violations.

The only related work that focuses on predicting the quality of legalization algorithms is our previous work [START_REF] Netto | How deep learning can drive physical synthesis towards more predictable legalization[END_REF]. In that work, we trained an ML model to identify circuit regions that would result in large displacement after legalization. Then, the trained model was used as a pruning mechanism in a circuit partitioning strategy, in order to avoid partitions which would lead to large displacement. Since legalization is called many times during the optimization process, improving the legalization solution consequently improves the quality of those optimizations.

At this point, it is worth noting four characteristics of the related work: (1) most of the latest works use convolutional models since they use spatial features such as cell and interconnection locations that seem to be captured properly by those models; (2) only Kahng et al. [START_REF] Andrew B Kahng | High-dimensional metamodeling for prediction of clock tree synthesis outcomes[END_REF] make use of ML to perform algorithm selection in a physical design flow. However, since their work focuses specifically on CTS, and uses only clock tree features to train the models, their methodology cannot be easily adapted to other physical design steps. Algorithm selection has been successfully applied to different application domains, such as in [START_REF] Guo | Algorithm selection for sorting and probabilistic inference: a machine learning-based approach[END_REF][START_REF] Smith-Miles | Cross-disciplinary perspectives on meta-learning for algorithm selection[END_REF][START_REF] Kotthoff | An evaluation of machine learning in algorithm selection for search problems[END_REF][START_REF] Kerschke | Automated algorithm selection on continuous blackbox problems by combining exploratory landscape analysis and machine learning[END_REF], and can be used in other physical design steps as well; (3) most related work target timing analysis and routing, while only a few address other steps like CTS and legalization, leaving much room for investigating the application of ML to other physical design steps; (4) no related work explored transfer learning to use pre-trained weights and hence, reduce the training runtime. A shorter training time allows a wider parameter exploration, as it takes shorter time to evaluate different configurations.

Supervised learning concepts

Supervised machine learning (SML) is the process of mapping a set of features, X, to a set of labels, Y . In SML, a function f : X → Y that maps each feature x ∈ X to a label y ∈ Y as accurately as possible is determined [START_REF] Stuart | Artificial intelligence: a modern approach[END_REF]. To that purpose, data is divided into two sets, the training set and the validation set. The training set is used to develop the model and the validation set is used to examine its efficacy.

Different models can be used for SML, such as: Decision Trees, Artificial Neural Networks, Support Vector Machines, Random Forests, and Convolutional Neural Networks (CNNs). CNNs are capable of identifying patterns in images, making them suitable for problems that have spatial data [START_REF] Christopher | Pattern recognition and machine learning[END_REF][START_REF] Goodfellow | Deep learning[END_REF] such as the legalization problem.

In CNN, the training is done using the back propagation method which initializes the network weights, then feeds the model with training data adjusting the weights to fit the data to their corresponding labels [START_REF] Goodfellow | Deep learning[END_REF]. Since CNNs typically have several hidden layers (constituting a deep learning model), training them requires a large amount of data and time. Two techniques can be used to reduce the complexity of the training process: transfer learning and data augmentation. Transfer learning consists in using weights from a previous training process instead of initializing the network with random weights. This reduces the training time, as it is not necessary to train the network from scratch, but rather adjust the weights to fit the current data. Data augmentation aims to improve the model quality without requiring a large amount of training data. Since convolutional models use image data, it is possible to apply image transformations (such as scaling or rotation) on the available data to artificially generate more data, improving the model quality. Data augmentation is also useful in handling imbalanced data sets where the number of positive and negative instances are vastly different, as it enables the generation of more data of a given underrepresented class.

To evaluate the quality of a model, several metrics are available. The confusion matrix is a table that presents the performance of the model with four metrics: True positive (TP): number of positive instances correctly classified as positive.

True negative (TN): number of negative instances correctly classified as negative.

False positive (FP): number of negative instances incorrectly classified as positive.

False negative (FN): number of positive instances incorrectly classified as negative.

Given a confusion matrix, it is possible to measure more sophisticated metrics for models with imbalanced data [START_REF] Sasaki | The truth of the f-measure[END_REF]:

Accuracy (A),
T P +T N T P +T N +F P +F N : is the number of correctly classified samples divided by the total number of samples. Precision (P), T P T P +F P : is the number of positive classified samples divided by the number of positive samples.

Recall (R), T P

T P +F N : is the proportion of positives identified correctly.

F-score, 2 × P ×R P +R : is the harmonic mean of precision and recall. Two other important concepts in SML are over-fitting and under-fitting. These are concepts used to evaluate how well the model fits the data [START_REF] Christopher | Pattern recognition and machine learning[END_REF]. A model is under-fitting the data when it has a high error on the training data. This typically means that the model is too simple to fit the data. Under-fitting can usually be solved by increasing the model complexity. A model is over-fitting the data when it has high error on the validation data, although presenting low training error. This means the model is too biased to the training data, thus it is not able to generalize to instances that were not seen during training. There are different ways of avoiding over-fitting such as increasing the amount of training data (possibly through data augmentation), adding dropout layers (when using neural networks), or using regularization technique [START_REF] Everitt | The Cambridge dictionary of statistics[END_REF].

Proposed Algorithm Selection Framework

In this work, we apply SML to the outcomes of the legalization during placement. Our proposed model is a classification problem where a list of legalization algorithms L, a placement defined by a set of cells C and their locations, and a set of nets N are given. The output of the model is an integer variable y ∈ {1, 2, ..., |L|}, indicating which algorithm results in the best legalization for a specific metric. The goal of the model is to select the algorithm that results in the best solution without having to run all legalization algorithms, thus saving execution time. Figure 2 shows the flowchart of our proposed algorithm selection framework, which is made of two main parts: CNN training and validation, and integration with the physical design flow. The former part has a few steps. First, we generate illegal placements from the input circuits to increase the amount of training and validation data. We extract features from the training data by saving the images of each placement and we label the data according to the score achieved by each legalization algorithm. Given that, we train the CNN model. The whole training process is executed outside the physical design flow, and the CNN model is saved. The algorithm selection step itself is integrated in the physical design flow. In this step we use the CNN model to predict the best legalization algorithm to use for each illegal placement. Then, we legalize the placement using the selected algorithm.

Circuits

Proposed data generation strategy

Algorithm 1 presents the proposed data generation strategy to train and validate the CNN model. This algorithm corresponds to steps "Generate illegal placements" and "Extract features" The cell c i information includes a location l(c i ) = {x(c i ), y(c i )} which can be illegal, and the cell dimensions d(c i ) = {w(c i ), h(c i )}. In the end, the algorithm outputs data from illegal placements to train the CNN model.

The algorithm starts by saving the initial locations of the cells (lines 1-3) and specifying the number of samples to generate for the circuit (line 4). To generate each sample, we apply a perturbation to the circuit placement by moving the cells (line 6). Details on the cell movement will be given in Algorithm 2. After perturbing the circuit, we save the placement image with the new locations (line 7). Then, the legalization algorithm L i is used to find legal locations to the perturbed placement (line 8). It is worth remarking that the legalization algorithm only returns the legal locations for the cells, it does not actually move the cells. With the legal locations, the solution is evaluated and both the placement image I and the legalization result are added to the set of input features F (lines 9-10). Then, the cells are moved back to their original locations, so that they can be moved again in the next iteration (lines 11-13). At the end, Algorithm 1 returns the set of features for this specific circuit and legalization algorithm. This process is repeated for all the circuits and all the legalization algorithms used to train the CNN model.

It is important to note a few aspects of Algorithm 1. The first one is that it is possible that the legalization algorithm fails to legalize a given placement. Hence, the return of the legalization algorithm can be the outcome of the legalization algorithm (if it was successful or not). This outcome is also saved in the data features, since it is important to know when the legalization failed. The second observation is that the EVALUATE SOLUTION function is generic, and can be used to evaluate different metrics. Due to the flexibility of CNN models, we can use the same set of features to classify data according to different metrics, as long as the metric is related to the locations of cells and nets. Therefore, the EVALUATE SOLUTION function can be changed to evaluate the metric the designer is more interested in, such as cell displacement, wirelength, density, or timing.

The MOVE CELLS function, which is responsible for perturbing the placement by moving the cells on each sample iteration, is shown in Algorithm 2. It receives as input the set of cells Algorithm 2: MOVE CELLS(C, R)

Input : Set of cells C and circuit region R Output: Set of moved cells C 1 foreach ci ∈ C do 2 if IS MOVABLE(ci) then 3 rx ←RANDOM(-10000, 10000); 4 ry ←RANDOM(-10000, 10000); 5 x(ci) ← x(ci) + rx; 6 y(ci) ← y(ci) + ry; 7 x(ci) ←min(X right -w(ci), max(X lef t , x(ci))); 8 y(ci) ←min(Ytop -h(ci), max(Y bottom , y(ci))); 9 end 10 end
C and the circuit region R, and randomly moves the movable cells in the circuit. Some cells, such as blockages, are fixed and cannot be moved while generating a new illegal placement. The Algorithm starts by picking a cell and checking if it is movable (line 2). If the cell is movable, the function generates a random amount of movement in x and y directions (lines 3-4). The movements range from -10, 000 to 10, 000 placement units. The cell is moved to the new location while ensuring it remains inside the circuit bounds (lines 5-8). The benchmarks evaluated in this work have dimensions ranging from 342,000 to 900,000 placement units. Hence, the amount of random movement applied to each cell represents at most only 3% of the circuit dimensions, resulting in a small perturbations of the initial placement. We believe that this amount of movement is enough to generate placements with diverse characteristics to put in evidence the efficacy of the distinct legalization algorithms, without being too different from the original global placement, as the movement is not big enough to separate clustered regions.

Feature extraction

Features with spatial properties are better suited for CNN models. Therefore, we generate snapshot images of the circuit illegal placements. However, we need to generate the images in a way that the model can identify four essential features on them: [START_REF]Opendp: Open source detailed placement engine[END_REF] the difference between fixed and movable cells; [START_REF]Ophidian: an open source library for physical design research and teaching[END_REF] the difference between cells in different fence regions; (3) the existence of cell overlaps; (4) the nets connecting the cells. Therefore, our images are generated as follows:

(1) fixed cells are gray; (2) movable cells have colors according to which fence region they belong to; (3) all objects have lower opacity, so that it is possible to detect overlaps between them; (4) The nets are black to differentiate from cells. Since the circuit was not routed yet, we represent the nets by their Steiner trees. Once an image is generated, it is flipped in the x and y axes to quadruple the number of available images. Examples of generated images for a sample circuit are illustrated in Figure 3. Observe that, even though the circuit has a lot of nets, many local nets are too short to be visible in the image. For the benchmarks that we use in this work, each pixel can cover up to 9 sites. If the net length is smaller than this, it will not be visible in the image. However, we observed that the CNN could still extract useful information from the visible nets.

We further investigate the impact of the image size in the CNN accuracy in Section 4.4. Each image must also be labeled based on the results of the legalization. Then, before training the model, an additional labeling step is executed where we iterate through all the images, and add labels to tell the CNN model which legalization algorithm achieved the best performance for the metric that is under evaluation. This allows us to train models for different metrics without having to generate different images for each model. For example, if we want to train CNN models for cell displacement and circuit wirelength, we just need to change the function EVALUATE SOLUTION in Algorithm 1 to measure each metric and use the same placement images for both of them. Then, the next step for feature extraction is the same as for any legalization algorithms, since the CNN model is independent of the semantics of the metric being predicted. 

(a) (b) (c) (d)

Data augmentation

Freeze

Convolutional neural network training process

In order to reduce the training time, we use a transfer learning model with pre-trained weights. The available CNN models were usually pre-trained using the ImageNet dataset, which contains over 14 million images. We chose the SqueezeNet model [START_REF] Forrest N Iandola | Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size[END_REF] as it presented the best results on our experimental evaluation (more details are given in Section 4.2). In addition, we applied the data augmentation method for training the model, as described in Section 2.3. The data augmentation process consists in applying transformations on the images generated by Algorithm 1 to artificially generate more data. This way, we can reduce over-fitting during the training process.

Figure 4 shows the flowchart of the training process we used for the CNN models. The first step is data augmentation. We performed the following transformations on the images:

(1) flipping the image horizontally and vertically; (2) applying image zoom of up to 5% (the exact percentage is chosen randomly for each image). We did not apply rotation and image distortions, as those transformations will generate images that are not realistic in the frame of circuit legalization. Figure 3 shows examples of these transformations.

The augmented data is then used to provide batches of the model in the back-propagation process. The training process is then divided into two stages. In the first stage, we freeze the weights of all convolutional layers and adjust only the weights of the last (fully connected) layer. This first step was executed for 10 epochs with a learning rate of 0.01. In the second stage, we unfreeze the convolutional layers and adjust all weights for 5 more epochs. This is necessary because our training data is very different from the ImageNet benchmarks, so we need to finetune the weights of the convolutional layers to reflect the differences. However, the early layers of the model identify more general patterns that are not specific to the image semantics, so we only need to perform small changes on those weights. For this reason, we employ different learning rates for different sections of the neural network, as follows: we equally divide the neural network layers into sections, then we use learning rates ranging from 0.00001 to 0.002 on those sections. This strategy is called discriminative fine tuning. It allows for a better tuning in the latter layers, where the model becomes more specialized for our problem [START_REF] Howard | Fine-tuned language models for text classification[END_REF]. Details of how we chose the training parameters are provided in Section 4.3.

Integration with the physical design flow

After training and validating the CNN model, we integrated it in the legalization flow. Given an illegal placement, we use the CNN model to select which algorithm is the best one to legalize it.

The proposed CNN-based algorithm selector runs only one of the legalization algorithms, as described in Algorithm 3. The CNN algorithm selection receives as input the set of cells and nets C and N , and a CNN model M, which will select the best legalization algorithm L best ∈ L (line 1). Based on the CNN model output, it executes the appropriate legalization algorithm (line 2) and moves the cells to their legal locations found by L best (line 4-6) if the placement was successfully legalized. It is possible that the chosen algorithm or all algorithms fail to legalize the placement. In this case, the placement needs to be redone. However, in our experiments this did not happen.

In order to evaluate the efficiency and impact of our algorithm selection strategy (CNN), we compare it to a reference version (LEG) that selects the best algorithm by actually executing all

Algorithm 3: ALGORITHM SELECTOR-CNN (C, N , M) Input : Set of cells C, set of nets N and CNN model M Output: Legalized circuit 1 L best ← M(C, N ); 2 Λ best , result best ← L best (C, N ); 3 if result best then 4 foreach c i ∈ C do 5 l(c i ) ← λ best (c i ); 6 end 7 end
the legalization algorithms and comparing the results. In Algorithm 4, the implementation of the LEG selector is given. The LEG selector receives as input a set of cells C, a set of nets N , circuit region R and a set of legalization algorithms L. It iterates through L to select the best one (lines 3-12) based on a specific performance measure. For each legalization algorithm, it legalizes the placement (line 4), evaluates the quality (line 6) and updates the best one so far (lines 7-10). As in line 8 of Algorithm 1, the legalization algorithm does not actually move the cells to the legal locations. Instead, it returns a set of legal locations Λ i and a Boolean variable result i specifying if the placement was successfully legalized. The legal locations Λ i are used to evaluate the solution quality, and if the quality (δ i ) is better than the best solution, they are saved. After evaluating all the legalization algorithms, cells are moved to the best locations saved in Λ best (lines [START_REF] Guo | Algorithm selection for sorting and probabilistic inference: a machine learning-based approach[END_REF][START_REF] Han | A deep learning methodology to proliferate golden signoff timing[END_REF][START_REF] Howard | Fine-tuned language models for text classification[END_REF][START_REF] Howard | fast.ai -Making neural networks uncool again[END_REF][START_REF] Hung | Mixed-cell-height standard cell placement legalization[END_REF].

Algorithm 4: ALGORITHM SELECTOR-LEG (C, N , L) Input : Set of cells C, set of nets N , circuit region R and list of legalization algorithms L Output: Legalized circuit 1 δmin ← ∞; 2 Λ best ← ∅; 3 foreach Li ∈ L do 4 Λi, resulti ← Li(C, N, R); 5 if resulti then 6 δi ← EVALUATE SOLUTION(Λi, C, N ); 7 if δi < δmin then 8 δmin ← δi; 9 Λ best ← Λi;
Similarly to Algorithm 1, the EVALUATE SOLUTION function (line 6) may compute any desired quality metric. Therefore, it is possible to use Algorithm 4 for different metrics or even combining multiple metrics by only changing one function. In this work, we used two metrics for solution quality: cell displacement and wirelength variation.

It is important to highlight that, while the LEG selector needs to run all the legalization algorithms, the CNN-based selector needs to run one algorithm, and the CNN model inference. As a consequence, the complexity of Algorithm 4 is proportional to the number of legalization algorithms available, while the complexity of Algorithm 3 is proportional, in the worst case, to the slowest legalization algorithm. Even though the CNN-based selector still needs to run the CNN model, in Section 4 we show that the inference time is much shorter than the execution time of any legalization algorithm. Therefore, using CNN allows a speedup of the algorithm selection process roughly proportional to the number of legalization algorithms to evaluate. For the evaluation with the physical design flow, an Ubuntu 18.04 workstation with an Intel ® Core ® i7-3537U processor with 4 cores at 2.00 GHz and 6GB DDR3 1600 MHz RAM was used. We used the fast.ai 1.0.61 library [START_REF] Howard | fast.ai -Making neural networks uncool again[END_REF] for training and the SqueezeNet architecture for transfer learning [START_REF] Forrest N Iandola | Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size[END_REF]. All experiments are available under public domain [START_REF]Ophidian: an open source library for physical design research and teaching[END_REF].

Benchmarks

The CNN model was trained and evaluated using ICCAD 2017 CAD Contest benchmarks [START_REF] Karimpour Darav | Iccad-2017 cad contest in multi-deck standard cell legalization and benchmarks[END_REF]. The benchmark set is presented in Table 2 and consists of 16 circuits with sizes ranging from 29k to 130k cells. It is ideal for testing our framework as it includes challenges of advanced technology nodes, such as multi-row cells (up to 4 rows) and physical floorplan complexity such as fence regions and multiple macroblocks. The table also shows the area of each circuit in sites and rows as well as placement units, where each site width and each row height contains 200 and 2000 placement units, respectively. Given the number of sites, we can calculate how many sites are represented by each pixel1 (shown in the rightmost column of the table).

Legalization algorithms

Among the legalization algorithms available in the literature, HAO [START_REF] Li | Routability-driven and fence-aware legalization for mixed-cell-height circuits[END_REF], ZIR [START_REF] Zhu | Mixed-cell-height legalization considering technology and region constraints[END_REF] and ODP (from OpenDP) [START_REF] Do | Fence-region-aware mixed-height standard cell legalization[END_REF] are the only ones adapted to the ICCAD 2017 benchmark. While all three bring improvements over previous works and incorporate routability and technology constraints to the problem formulation, none of them is clearly the best one for all the circuits in the benchmarks. Such particularity makes them a very interesting choice for our experiments. The binaries of the first two algorithms were provided by their respective authors, whereas OpenDP was compiled from its source code publicly available [START_REF]Opendp: Open source detailed placement engine[END_REF].

Evaluation metrics

In order to investigate if the proposed framework is robust enough to be useful for different physical design metrics, we trained models to classify the data using two different metrics, giving rise to two versions of CNN model: one that selects the legalization algorithm that results in the lowest cell displacement for a given placement, and another that selects the algorithm resulting in the largest wirelength improvements (or the smallest wirelength degradation). Hereafter, these models are denoted by Disp-CNN and WL-CNN.

ML setup

To increase the number of available legalization samples, we generate random illegal placements for each circuit to increase the amount of input data. In our experiments, for each benchmark circuit, one thousand placements were generated2 , resulting in a total of 16 thousand placements. We used 13 circuits for training and the remaining 3 for validation, resulting in about 20% of the data being used for validation. We selected the validation circuits in a way that the three classes have a similar representation in the validation set. Since the distribution of classes among the circuits is different for each metric, we used a different validation set for each model. For Disp-CNN we used des perf b md2, edit dist a md2 and fft 2 md2 as the validation set. For WL-CNN we used edit dist 1 md1, fft a md3 and des perf a md1 as the validation set. By separating the circuits this way we can verify if the CNN model can generalize its prediction to circuits that were not seen during training. Finally, we re-scaled all images to have the same size (500 × 500 pixels), even though we are using circuits of different sizes. Figures 5 and6 show the distribution of the algorithms leading to the best results for each placement in terms of cell displacement and wirelength variation, respectively. Based on these figures, one can notice that there is no clear best algorithm, as the best algorithm changes not only from circuit to circuit but also for different placement instances of a given circuit and a given metric. For example, when using wirelength variation as the evaluation metric for f f t a md2, about 50% of the placements are best legalized using HAO, but 30% of them should use ZIR and 20% should use ODP. We also observed that when an algorithm is not the best option for a given placement, in most cases there is a relevant difference in quality when compared to the best solution. For both cell displacement and wirelength variation, when HAO was not the best, it was at least 7% worse than the best algorithm in more than half of the cases. When analyzing ZIR and ODP for both cell displacement and wirelength variation as well, we observe that they were at least 10% and 16% worse, respectively, than the best solution in more than half of the cases. Those results show that if we use only one of the three algorithms, we may lose in legalization quality.

CNN architecture selection

The first parameter that can impact the model's quality is the CNN architecture. The fast.ai library provides variations of the following architectures: AlexNet, DenseNet, ResNet, SqueezeNet, VGGNet. We evaluated only ResNet, SqueezeNet, and AlexNet because the other two architectures were too big to fit in the NVIDIA Tesla V100 GPU's memory. Table 3 shows the F-score (see Section 2.3) of each CNN architecture (columns) for each class (rows). We focus on the WL-CNN model because it showed the lowest F-scores, making it the main model to be optimized for the moment.

The three architectures in Table 3 reach similar F-scores on average. However, Squeezenet achieved a slightly better F-score for all three classes when compared to the other two architectures. In addition, the Squeezenet architecture requires 50x fewer parameters than AlexNet and is smaller than Resnet and therefore, has a smaller inference time [START_REF] Forrest N Iandola | Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size[END_REF]. Because of that, we chose SqueezeNet for the experiments in this work. 

CNN training parameters

The next step in training the CNN model is defining the learning rate to be used in order to have the smallest training loss possible. On the one hand, if the learning rate is too small, the training process may take too long. On the other hand, if the learning rate is too high, the training may not converge to a good solution. We illustrate this phenomenon in Figure 7 where we show the training loss achieved for different learning rates executed for a few iterations of the WL-CNN training. The training loss decreases as the learning rate increases until around 0.1. After this point, the training loss starts to increase, meaning that the training process is not converging anymore. As we want to choose a learning rate where the training loss is still clearly decreasing but not too close to the point where it starts diverging, we chose the learning rate of 0.01 for training both Disp-CNN and WL-CNN models.

The number of epochs is another parameter to train. As the number of epochs increases, the training loss becomes lower, but the training process takes longer and the model is more prone to over-fitting. Typically, it is beneficial to stop at the point where increasing the number of epochs does not significantly reduce the training loss, and before the validation loss starts increasing. As we divided the training process in two stages (Section 3.3), we need to choose the number of epochs for each training stage.

In Figure 8 much between epochs 10 and 20. Given this situation, we chose to run the first stage of the training process for 10 epochs only, as the time it takes to train this stage for longer is not compensated by a significant loss reduction.

The second stage of the training process happens after the first stage was executed for 10 epochs and saved. As this stage is intended only for fine tuning the weights of the intermediate layers with a lower learning rate, we executed it only for 10 epochs. The measured training and validation losses, as well as training time are presented in Figure 9. We can see that the training loss slowly decreases, while the validation loss reaches its minimum value at epoch 5. This suggests that the model may be over-fitting after the fifth epoch, and that we may need more data to train this model for more epochs. As a consequence, we chose to run the second stage of training for 5 epochs only as to avoid over-fitting the network. 

Epoch

CNN image size

To investigate how much the image size impacts in the quality of the CNN models, we retrained the models with smaller images and using the same data as before. By reducing the image size, the number of sites being represented by each pixel increases, and that reduces the amount of information that the CNN model is capable of identifying. Figure 10 shows the F-score of both CNN models for 4 different image sizes: 500x500 (9 sites per pixel), 250x250 (18 sites per pixel), 150x150 (30 sites per pixel) and 50x50 (90 sites per pixel).

We observed that the Disp-CNN model is accurate until 30 sites per pixel, but degrades at 90 sites per pixel. This shows that when predicting displacement, the CNN model does not need too much information about individual sites, as it was able to correctly identify the best algorithm using only the overall layout of parts of the circuit. For the WL-CNN model, the results degrade a little at 18 sites per pixel, but they become significantly worse with 30 sites per pixel and 90 sites per pixel. This shows that the CNN model cannot correctly predict the best legalization algorithm in terms of wirelength variation with smaller images.

Those results also allow us to estimate which size of circuit we can successfully use for training given the image size the CNN supports. For example, the ICCAD 2015 CAD contest benchmark set [START_REF] Kim | ICCAD-2015 CAD contest in incremental timing-driven placement and benchmark suite[END_REF] contains circuits with up to 51k sites. To use images that have at most 18 sites per pixel with those benchmarks, we need an image size of around 2800x2800 for the CNN. It is important to observe that the GPU we used in our experiments does not have enough memory to handle this image size. Therefore, to train CNN models with larger circuits, we either need a more powerful GPU or we would need to divide the circuit into smaller partitions. 

Epoch

Validation of the CNN models

The trained CNN models do not have a true class which we are looking for. Instead, there are three classes and we want the models to identify as accurately as possible instances of each class. Hence, we analyzed the confusion matrices of both CNN models alongside their F-scores in Figure 11. In each confusion matrix, the green squares represent correctly classified instances.

We can see that the Disp-CNN model is capable of correctly classifying almost all of the instances, achieving F-scores of 0.99 for the three classes. Meanwhile, the WL-CNN model achieves lower F-scores (0.83 on average) and shows more variation among the three classes. This comes from an imbalance in the data, as about half of the instances for WL-CNN belong to the class with the highest F-score (HAO). Due to this imbalance, the model has more difficulty in classifying instances of the other classes correctly. These results expose the ability of transfer learning to properly train deep models with limited data and computing resources. Even in the case of WL-CNN where data is more imbalanced, it achieved high F-scores with just a few epochs of training. Another positive aspect is that we are able to successfully train a deep CNN model with only 13k instances (Section 4.1), with many of the CNN weights remaining stable due to the transfer learning process. If we had not used pre-trained weights, we would need to train the network for more epochs to achieve low training and validation losses. This would require longer training time, and more data to avoid over-fitting the network. By using transfer learning, the training time was less than 50 minutes, allowing us to experiment with different parameters to improve the results. This training time was the same for both Disp-CNN and WL-CNN as both used the same training methodology. 

Comparison with a related non-convolutional model

This section presents a comparison with a related non-convolutional model from the state of the art [START_REF] Netto | How deep learning can drive physical synthesis towards more predictable legalization[END_REF]. This comparison is performed to ensure that our claim that CNNs provide better results than non-convolutional models is correct. In order to perform this comparison, we trained artificial neural networks (ANNs) for legalization outcome prediction using the same features from our previous work [START_REF] Netto | How deep learning can drive physical synthesis towards more predictable legalization[END_REF]. For fairness, we used as input data the same placements generated for the CNN results and the same training and validation sets, but used the feature extraction strategy from [START_REF] Netto | How deep learning can drive physical synthesis towards more predictable legalization[END_REF] instead of using the placement images. In addition, we trained the ANNs for 15 epochs (the same total number of epochs as the CNNs). We trained models for both cell displacement and wirelength variation, and we denote them as Disp-ANN and WL-ANN, respectively. The confusion matrices and F-scores of both ANN models are presented in Figure 12.

When comparing them to the equivalent results of the Disp-CNN and WL-CNN (Figure 11 in Section 4.5), we can observe that the F-scores of the ANN models are much lower than their CNN counterparts. For Disp-ANN the F-score ranged from 0.65 to 0.82. Meanwhile, Disp-CNN achieved F-scores of at least 0.99 for all classes of the same problem. When analyzing WL-ANN, we can see that it had more difficulty than WL-CNN to handle the data imbalance of this problem. It achieved an F-score of 0.67 for HAO, and only 0.52 for ODP and 0.47 for ZIR. In comparison, WL-CNN lowest F-score was 0.81 for ZIR, which is far superior to what we see for the ANN models. Furthermore, even the least accurate of the CNN architectures tested in Section 4.2, ResNet, showed better F-scores than the ANN models (see Table 3). Finally, ANN models require more feature engineering in order to select an appropriate set of features that represent the problem, making it harder to achieve accurate results with them. Therefore, we can conclude that the CNN models are more capable of extracting important patterns from the data for these problems, and that they provide better results than non-convolutional models. 

Quality evaluation with the physical design flow

After training the Disp-CNN, WL-CNN, Disp-ANN, and WL-ANN models, we integrated them into the physical design flow as described in Figure 2. To evaluate the CNN models, we trained them using 16-fold cross validation and the same 16 thousand placements that were generated as described in Section 4.1.5. By adopting 16-fold cross validation, the models were trained using all circuits except the one being legalized, and this procedure was repeated for each of the 16 circuits. We also generated five new random placements for each circuit, so as to ensure that the models are evaluated on unseen placements. We chose five as the number of new placements to simulate a physical design flow where the legalization is applied a few times3 . We used Algorithms 4 and 3 to implement two approaches for the algorithm selection, resulting in six legalization flow variants:

Disp-LEG: for each placement, runs the three legalization algorithms and selects the one with the lowest cell displacement. Table 4 shows, for each circuit, the cell displacement after legalizing only with HAO, ZIR or ODP, as well as, when Disp-LEG, Disp-CNN or Disp-ANN is used to select the legalization algorithm. Since we used 16-fold cross validation, the results for each circuit were obtained from the model trained without seeing this circuit data. It is worth remarking that in this table each row brings the sum of the results of five random placements for a benchmark circuit. All the results are normalized with respect to Disp-LEG, as this encompasses the best result for each circuit. It is also important to notice that in all cases where the Disp-CNN model result is 1.00, it was because it selected the best algorithm for each of the five random placements. We did not observe cases in which the CNN model selected a slightly worse legalization algorithm, and that resulted in 1.00 due to rounding error.

Disp

The first observation is that, for each one of the three algorithms (HAO, ZIR and ODP), there is at least one case where it performs significantly worse than the best algorithm does. For instance, HAO is the best algorithm for six circuits, but also the worst for fft a md2 and fft a md3, resulting in placements that are 6% worse than Disp-LEG, on average. Similar results are seen for ZIR and ODP. This shows that there is no clear individual algorithm that is always superior to the others, which in turn emphasizes the need for a mechanism to choose the best algorithm for a given placement.

When analyzing the results of Disp-CNN, we can see that the framework achieved the same results as Disp-LEG for all circuits except pci bridge32 b md1. Even when choosing an incorrect legalization algorithm, the result of Disp-CNN was only 3% worse than Disp-LEG. This shows that even though the model classified some instances wrongly, it did not choose a much worse Table 4: Results of the algorithm selection framework when using cell displacement as the evaluation metric. Each row shows the sum of cell displacement of the five random placements for each one of the benchmarks. Best results are highlighted in bold.

Circuit

Cell When comparing the results of Disp-CNN to Disp-ANN, we can see that using a nonconvolutional model leads to large degradation in a few circuits. The most notable examples are fft a md2, fft a md3 and pci bridge32 a md2, where the cell displacement was approximately 20% worse than the best result. It is also important to observe that those bad results come from circuits used in the training set. So, the Disp-ANN was not able to generalize the prediction to different placements of the same circuit.

Table 5 shows the results of evaluation with the physical design flow when using the wirelength variation as evaluation metric 4 . For each circuit, the results are normalized with respect to WL-LEG, as it always provides the best result. As for Disp-CNN (Table 4), the results for each circuit were obtained from the model trained without seeing the circuit data, and in all cases where the WL-CNN model result is 1.00, it was because the model selected the best algorithm for each of the five random placements. We can notice in the table that there are some circuits where none of the direct algorithms (HAO, ZIR, and ODP) achieves a score of 1.00 (e.g., des perf b md1 and des perf a md1). This comes from the fact that each score is computed over five new random placements for each circuit, and the best legalization algorithm can change from one random placement to the other. Table 5: Results of the algorithm selection framework when using wirelength variation as the evaluation metric. Each row shows the sum of wirelength variation of the five random placements for each one of the benchmarks. Best results are highlighted in bold.

Circuit

Wirelength We can observe in Table 5 that HAO achieves better average and median scores for the wirelength metric, which was not the case for cell displacement. However, if we were to use only HAO to legalize all the circuits, we would still lose on legalization quality for some circuits (such as edit dist 1 md1 and f f t a md3), as HAO delivers the best solution for only 5 out of 16 circuits.

Although ZIR and ODP performed the best for some circuits, there were also cases where they performed very poorly. For example, ODP is more than 6 times worse than WL-LEG for des perf a md1 and des perf a md2. When using the framework to predict which algorithm to use, it is especially important for the model to be able to avoid these extreme situations so as not to compromise the solution quality.

Shifting our focus to the results with WL-CNN, we can see that it chose the best legalization algorithms for 10 out of the 16 circuits, and it performed as well as any individual direct algorithm in 13 of these cases. Among the other 3 benchmarks, the results for edit dist a md2 are very similar among the three legalization algorithms, which makes it harder for the model to identify the best option during execution. For fft a md2, we observe that the model chose correctly for few of the random placements, but chose incorrectly for others, which left it with a score different to the other algorithms. Finally, pci bridge32 b md1 is the same circuit that Disp-CNN classified incorrectly. This indicates that the CNN model is having some difficulty extracting the necessary features to predict for this circuit. Nevertheless, WL-CNN provided results that were better than any individual legalization algorithm with an average result that was only 1% worse than WL-LEG.

When comparing WL-CNN to the WL-ANN model, the non-convolutional model achieved the best result only in 3 out of 16 circuits, and it was significantly worse in a few circuits. For example, for des perf a md2 it resulted in 75% of wirelength degradation whereas for pci bridge32 a md2 the wirelength was more than two times worse than the best. As a result, the WL-ANN option was worse than just running HAO for all circuits.

All these results demonstrate that the CNN models are accurate and effective predictors, being much better than the non-convolutional model. They also show that the proposed algorithm selection framework is robust and can predict the best algorithm not only for cell displacement metric, but also for minimizing wirelength variation. This is a great advantage of using CNNs for prediction, as we did not need to perform specific feature engineering to handle different metrics. By using the same input features (placement images), the CNN was able to extract the patterns that are important for each metric, and to achieve an accuracy close to the optimal one.

Speedup of the proposed CNN models

The main advantage of using our framework is not having to run all legalization algorithms every time to choose the best one. This is important because physical design is usually constrained by the execution time of its underlying algorithms, which can make running multiple algorithms for a single step infeasible. The difference between using the CNN model and running all legalization algorithms is depicted in Figure 13 and Tables 6 and7. The figure illustrates the speedup as the average execution time ratio of LEG and CNN algorithms for each metric (cell displacement and wirelength variation) and each circuit. A speedup greater than 1 means that the CNN-based approach is faster than the baseline (LEG selector). The tables present the runtime in seconds of each algorithm and each algorithm selector for cell displacement and wirelength variation, respectively. The runtimes and speedups were measured as the mean of 10 executions for each one of the five random placements of each circuit.

The variation in speedup among the circuits is very noticeable in Figure 13, with some circuits having a speedup close to 2x, while the speedup of WL-CNN for edit dist a md3 is over 10. This variation comes from the different execution time of each possible legalization algorithm. In some situations, the best algorithm to use is also the slowest, which constrains the performance gain. But in other situations, the best algorithm is also the fastest. For example, ODP is faster than the other two algorithms for almost all circuits. For those cases, whenever ODP is chosen because it is the best algorithm, the speedup will be higher as the algorithm selection framework does not need to run the slower algorithms. However, if ODP is not the best algorithm, running only ODP would be faster than running the algorithm selection framework, but this will result in worse legalization quality.

This also explains the difference in speedup between Disp-CNN and WL-CNN for some circuits, as the models can choose different algorithms for the different metrics. A notable case is edit dist a md3, for which the best algorithm for cell displacement was mostly ZIR, that is more than ten times slower than the other two algorithms for this circuit, resulting in a small speedup for Disp-CNN. On the other hand, the best algorithm for wirelength in this circuit was mostly HAO, resulting in the large speedup of WL-CNN.

We also observed that the execution time of the CNN model's inference itself is very small compared to the execution time of the legalization algorithms. to run the CNN model inference, while it might take a few minutes to run the legalization model. The inference runtime ranges from 25% of the total runtime when the best algorithm is fast for the circuit (such as edit dist 1 md1), to less than 1% when the best algorithm is slow (such as edit dist a md3). As the inference process is faster than even the fastest legalization algorithm, the framework always provides a better performance than running all three legalization algorithms. It is important to observe that the speedup achieved by using the framework scales with the number of legalization algorithms. For example, if we were to double the number of legalization algorithms considered (and the new algorithms had roughly the same total execution times as the algorithms already considered), we could expect the execution time of the LEG versions of the algorithm selection to double, while the execution time of the CNN version would remain mostly constant. Therefore, the speedup would double as well.

Finally, even though we could reduce the runtime of the LEG versions by running the algorithms in parallel, this would not result in a great benefit for the circuits with large speedup. This is because for those circuits the runtime of LEG is dominated by the slowest legalization algorithm, which is much slower than the other two. Since the ML model only has to run one of the algorithms, it would still speed up the algorithm selection process. 

Conclusions

In this work, we proposed a legalization algorithm selection framework using CNN. We proposed both feature extraction and training methodology that adapt the training of deep CNNs to a physical design problem. We provided details of the training process and choice of parameters so that the proposed framework can be used by other researchers in applications that rely on placement data. We evaluated the proposed framework by training a model to decide between three state-of-the-art legalization algorithms for different circuit placements. The CNN model was integrated in a physical design flow to evaluate how such predictions can improve the legalization quality according to cell displacement and wirelength variation. The proposed CNN model achieved an F-score of 0.98 when predicting cell displacement and at least 0.70 when predicting wirelength variation. The proposed algorithm selection framework achieved the best results in 15 out of 16 designs when evaluating cell displacement and 10 out of 16 when evaluating wirelength variation, being better than running each one of the legalization algorithms separately and being better than a related non-convolutional model. In addition, using the framework significantly reduced the execution time up to 10x compared to running all three algorithms to select the best one.

As future work, regression models can be used to predict the actual results of the algorithms being compared. This would allow the CNN model to be used in more physical design applications. The proposed framework can also be extended to perform algorithm selection according 
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 1 Figure 1: Example of the legalization problem. Blue rectangles represent circuit cells, while the gray rectangle represents a macroblock. (a) Input of the problem. (b) Possible solution of a legalization algorithm.
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 2 Figure 2: Flowchart of the proposed algorithm selection framework.

Algorithm 1 : 2 l 7 I 10 F

 12710 GENERATE DATA(C, N , L i , R) Input : Set of cells C, set of nets N , legalization algorithm Li and circuit region R Output: Training data 1 for ci ∈ C do (ci) ← l(ci); 3 end 4 n samples ← 1000, F ← ∅; 5 for num sample ← 1 to n samples do 6 MOVE CELLS(C, R); ← SAVE IMAGE(C, N , R); 8 Λi, resulti ← Li(C, N , R); 9 δi ← EVALUATE SOLUTION(Λi, C, N ); ← F ∪ (I, δi, resulti); 11 for ci ∈ C do 12 l(ci) ← l (ci); 13 end 14 end 15 return F; from Figure 2. It receives as input the placement information (C and N ), a set of legalization algorithms L i , and the rectangular region of the entire circuit R = (X lef t , X right , Y top , Y bottom ).
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 3 Figure 3: Examples of images of a circuit. (a) Original image. (b) image flipped in the y axis. (c) image flipped in the x axis. (d) image flipped in x and y axes.
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 4 Figure 4: Flowchart of the proposed CNN training process.

  [START_REF] Guo | Algorithm selection for sorting and probabilistic inference: a machine learning-based approach[END_REF] if Λ best = ∅ then 14 foreach ci ∈ C do 15 l(ci) ← Λ best (ci); 16 end 17 end
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 1 Equipment and implementation detailsFor training the proposed CNN model, a CentOS workstation with an Intel ® Xeon ® Gold 6148 processor with 20 cores at 2.4 GHz, 750GB RAM and an NVIDIA Tesla V100 GPU was used.
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 5 Figure 5: Distribution of best legalization algorithm in terms of cell displacement (y axis) for each placement generated from the benchmark set (x axis).
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 6 Figure 6: Distribution of best legalization algorithm in terms of wirelength variation (y axis) for each placement generated from the benchmark (x axis).

  , the training and validation losses, as well as training time for 20 epochs during the first stage of the training process of WL-CNN are shown. Although the training loss keeps decreasing with the epochs, the validation loss does not show the same steady decrease. Besides the spike in the validation loss at epoch 12, we can see that the validation loss does not change
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 7 Figure 7: Training loss (x axis) for different learning rates (y axis) after a few iterations of training the WL-CNN model.
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 8 Figure 8: Training loss, validation loss and training time (y axis) at each epoch (x axis) during the first stage of the training process of WL-CNN model.
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 9 Figure 9: Training loss, validation loss and training time (y axis) at each epoch (x axis) during the second stage of the training process of WL-CNN model.
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 10 Figure 10: F-score (y axis) of the CNN models for different image sizes (x axis).
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 11 Figure 11: Confusion matrices of CNN models when cell displacement and wirelength variation as evaluation metrics. Green squares represent correct predictions, whereas red squares represent incorrect predictions.
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 12 Figure12: Confusion matrices of ANN models when using cell displacement and wirelength variation as evaluation metrics. Green squares represent correct predictions, whereas red squares represent incorrect predictions.
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 13 Figure 13: Speedup when using the algorithm selection framework (y axis) for each circuit (x axis). Results for the cell displacement model are shown in blue, and results for the wirelength model are shown in red.

Table 1 :

 1 Summary of related work on the use of machine learning for physical design applications

	Physical design step	Work	ML model
	CTS	Kahng et al. (2013) [20]	non-convolutional
		Han et al. (2014) [14]	
	Timing analysis	Kahng et al. (2015) [21] Kahng et al. (2018) [22]	non-convolutional
		Barboza et al. (2019) [3]	
		Zhou et al. (2015) [37] Chan et al. (2017) [5]	non-convolutional
		Tabrizi et al. (2018) [32]	
		Xie et al. (2018) [34]	
	Routing	Yu et al. (2019) [35]	
		Zhou et al. (2019) [38] Gandhi et al. (2019) [11]	convolutional
		Liang et al. (2020) [27]	
		Yu et al. (2020) [36]	
		Hung et al. (2020) [18]	
	Legalization	Netto et al. (2019) [28]	non-convolutional, convolutional

Table 2 :

 2 Number of cells, nets, area and number of sites per pixel of each circuit in the ICCAD 2017 CAD Contest benchmark set.

	Circuit	# cells # nets	sites x rows	area (plac. units) # sites/pixel
	des perf b md1	113K	113K	3K x 0.3K	600K x 600K	6
	des perf b md2	113K	113K	3K x 0.3K	600K x 600K	6
	edit dist 1 md1	131K	133K	3.61K x 0.36K	722K x 722K	7
	edit dist a md2	127K	131K	4K x 0.4K	800K x 800K	8
	fft 2 md2	32K	33K	1.71K x 0.17K	342K x 342K	3
	fft a md2	31K	32K	4K x 0.4K	800K x 800K	8
	fft a md3	31K	32K	4K x 0.4K	800K x 800K	8
	pci bridge32 a md1	30K	30K	2K x 0.2K	400K x 400K	4
	des perf 1	113K	113K	2.23K x 0.22K	445K x 445K	4
	des perf a md1	109K	110K	4.5K x 0.45K	900K x 900K	9
	des perf a md2	109K	110K	4.5K x 0.45K	900K x 900K	9
	edit dist a md3	127K	131K	4K x 0.4K	800K x 800K	8
	pci bridge32 a md2	30K	30K	2K x 0.2K	400K x 400K	4
	pci bridge32 b md1	29K	29K	4K x 0.4K	800K x 800K	8
	pci bridge32 b md2	29K	29K	4K x 0.4K	800K x 800K	8
	pci bridge32 b md3	29K	29K	4K x 0.4K	800K x 800K	8

Table 3 :

 3 F-scores of different CNN architectures (columns) for each class (rows) for the WL-CNN model.

		ResNet SqueezeNet AlexNet
	HAO	0.83	0.84	0.82
	ZIR	0.80	0.81	0.78
	ODP	0.82	0.83	0.80
	Average	0.82	0.83	0.80

Table 6 :

 6 Runtime in seconds of each legalization algorithm and algorithm selector for cell displacement. Best results are highlighted in bold.

	Circuit				Runtime (s)		
		HAO ZIR ODP Disp-LEG Disp-CNN Disp-ANN
	des perf b md1	51	35	27	113	56	64
	des perf b md2	60	30	25	116	65	76
	edit dist 1 md1	60	32	20	112	25	32
	edit dist a md2	67	37	20	124	42	77
	fft 2 md2	20	10	5	35	5	5
	fft a md2	15	5	5	25	5	7
	fft a md3	15	5	5	25	5	8
	pci bridge32 a md1	15	8	5	28	8	20
	des perf 1	80	222	25	327	226	206
	des perf a md1	65	40	48	153	71	79
	des perf a md2	65	50	35	150	70	50
	edit dist a md3	74	773	20	867	762	172
	pci bridge32 a md2	15	20	5	40	20	5
	pci bridge32 b md1	17	31	10	58	31	19
	pci bridge32 b md2	29	10	10	49	10	10
	pci bridge32 b md3	20	17	12	49	19	15
	Average	42	83	17	142	89	53
	Median	40	31	16	85	28	26

Table 7 :

 7 Runtime in seconds of each legalization algorithm and algorithm selector for wirelength variation. Best results are highlighted in bold.

	Circuit				Runtime (s)		
		HAO ZIR ODP Disp-LEG Disp-CNN Disp-ANN
	des perf b md1	52	35	27	114	57	60
	des perf b md2	60	31	25	116	66	70
	edit dist 1 md1	60	32	20	112	25	70
	edit dist a md2	67	37	20	124	25	77
	fft 2 md2	20	10	5	35	5	21
	fft a md2	15	5	5	25	13	15
	fft a md3	15	5	5	25	5	17
	pci bridge32 a md1	15	8	5	28	8	19
	des perf 1	80	251	25	356	251	272
	des perf a md1	66	40	48	154	71	100
	des perf a md2	65	50	35	150	70	55
	edit dist a md3	74	762	20	856	79	239
	pci bridge32 a md2	15	20	5	40	15	6
	pci bridge32 b md1	16	31	10	58	17	30
	pci bridge32 b md2	29	10	10	49	10	43
	pci bridge32 b md3	19	18	12	49	19	32
	Average	42	84	17	143	46	70
	Median	40	31	16	85	22	49

to other metrics, or in the context of other physical design steps, such as global routing.

We used images with size of 500x500 pixels, as stated in Section 4.1.5. Hence, the number of sites per pixel is calculated as the number of sites divided by 500.

Each placement was generated by applying random movements on the initial placement benchmarks provided by the ICCAD 2017 CAD Contest.

We also evaluated how the models perform when using 10 and 20 new random placements for each circuit. The difference was of only 1% on average for the wirelength variation CNN model, and no difference was observed for the displacement model.

The wirelength variation was measured as the difference between the Steiner tree wirelength (STWL) after and before the legalization. Thus, a positive value means that the wirelength has increased.
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