
HAL Id: hal-03245660
https://hal.science/hal-03245660

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Characterization of an Asynchronous Fixed
Priority Tree Arbiter for SPAD Array Readout
Enagnon Aguenounon, Safa Razavinejad, Jean-Baptiste Schell,

Mohammadreza Dolatpoor Lakeh, Wassim Khaddour, Foudil Dadouche,
Jean-Baptiste Kammerer, Laurent Fesquet, Wilfried Uhring

To cite this version:
Enagnon Aguenounon, Safa Razavinejad, Jean-Baptiste Schell, Mohammadreza Dolatpoor Lakeh,
Wassim Khaddour, et al.. Design and Characterization of an Asynchronous Fixed Priority Tree Arbiter
for SPAD Array Readout. Sensors, 2021, 21 (12), pp.3949. �10.3390/s21123949�. �hal-03245660�

https://hal.science/hal-03245660
https://hal.archives-ouvertes.fr

sensors

Article

Design and Characterization of an Asynchronous Fixed Priority
Tree Arbiter for SPAD Array Readout

Enagnon Aguénounon 1 , Safa Razavinejad 2 , Jean-Baptiste Schell 1, Mohammadreza Dolatpoor Lakeh 1,
Wassim Khaddour 1, Foudil Dadouche 1 , Jean-Baptiste Kammerer 1, Laurent Fesquet 3 and Wilfried Uhring 1,*

����������
�������

Citation: Aguénounon, E.;

Razavinejad, S.; Schell, J.-B.;

Dolatpoor Lakeh, M.; Khaddour, W.;

Dadouche, F.; Kammerer, J.-B.;

Fesquet, L.; Uhring, W. Design and

Characterization of an Asynchronous

Fixed Priority Tree Arbiter for SPAD

Array Readout. Sensors 2021, 21, 3949.

https://doi.org/10.3390/s21123949

Academic Editors: Lucio Pancheri

and Matteo Perenzoni

Received: 30 April 2021

Accepted: 3 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ICube Research Institute, University of Strasbourg, 23 Rue du Loess, CEDEX, 67037 Strasbourg, France;
faguenounon@unistra.fr (E.A.); jbschell@unistra.fr (J.-B.S.); dolatpoorlakeh@unistra.fr (M.D.L.);
wkhaddour@unistra.fr (W.K.); dadouche@unistra.fr (F.D.); jb.kammerer@unistra.fr (J.-B.K.)

2 Electronics Laboratory, Faculty of Engineering, University of Guilan, Khalij Fars Highway,
Rasht 4199613776, Iran; safa.razavinejad@gmail.com

3 TIMA, Grenoble INP, CNRS, University of Grenoble Alpes, 46 Avenue Félix Viallet, 38000 Grenoble, France;
laurent.fesquet@univ-grenoble-alpes.fr

* Correspondence: wilfried.uhring@unistra.fr; Tel.: +33-38-8106-827

Abstract: The usage of single-photon avalanche diode arrays is becoming increasingly common in
various domains such as medical imaging, automotive vision systems, and optical communications.
Nowadays, thanks to the development of microelectronics technologies, the SPAD arrays designed
for these applications has been drastically well-facilitated, allowing for the manufacturing of large
matrices. However, there are growing challenges for the design of readout circuits with the needs of
reducing their energy consumption (linked to the usage cost) and data rate. Indeed, the design of
the readout circuit for the SPAD array is generally based on synchronous logic; the latter requires
synchronization that may increase the dead time of the SPADs and clock trees management that are
known to increase power consumption. With these limitations, the long-neglected asynchronous
(clockless) logic proved to be a better alternative because of its ability to operate without a clock. In
this paper, we presented the design of a 16-to-1 fixed-priority tree arbiter readout circuit for a SPAD
array based on asynchronous logic principles. The design of this circuit was explained in detail and
supported by simulation results. The manufactured chip was tested, and the experimental results
showed that it is possible to record up to 333 million events per second; no reading errors were
detected during the data extraction test.

Keywords: SPAD; asynchronous logic; readout; micropipeline; fixed priority arbiter

1. Introduction

The single-photon avalanche diode (SPAD) is a photodetector component that is used
for its ability to detect a single photon. It is commonly used in systems that measure
sub-nanosecond time intervals [1–4]. In recent decades, they have been increasingly used
as imaging array sensors [2,5] for various applications such as automotive advanced driver-
assistance systems [6,7], biophotonics [3,8], and telecom transmission [9,10], among others.

The design of such sensors requires taking into account several aspects [3,4], such
as the structure of the SPAD itself, the physical technology of the components, and the
associated electronic circuits. The last point ranges from simple detection and quenching
systems to more sophisticated ones incorporating photon counting, or integrating the
ability to measure temporal resolution [11,12] and whether they integrate memory or not.
These electronics can be built as close as possible to the SPAD cell or shifted to the end
of the SPAD array. Regardless of the chosen options, the architecture of the SPAD-based
sensor must be carefully thought out according to the application’s aim. Furthermore,
integrating a readout system or/and a processing unit into the sensor is another important
point to consider when designing such a sensor [13]. Indeed, integrating such systems

Sensors 2021, 21, 3949. https://doi.org/10.3390/s21123949 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5709-6539
https://orcid.org/0000-0002-0699-6780
https://orcid.org/0000-0002-6781-7547
https://orcid.org/0000-0002-6318-4500
https://doi.org/10.3390/s21123949
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21123949
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21123949?type=check_update&version=1

Sensors 2021, 21, 3949 2 of 16

has a direct influence on the amount of data that can be extracted from the sensor and the
timing aperture.

A readout circuit for the SPAD array is of particular importance for real-time im-
plementations. In general, existing readout systems can be grouped into two categories:
sequential readout circuits and event-driven ones. The first category is based on syn-
chronous logic and refers to the serial reading of each pixel of the matrix or one pixel
column at a time. They have the advantage of being simpler to implement but do not allow
for a fine chronological extraction of the data because of the need of synchronization to the
clock; moreover, the use of clock trees makes the system more energy consuming [3]. In
event-driven readout, however, a pixel is read only when an event is produced. By means
of electronic circuits using asynchronous logic, the pixel output is applied to the controller,
which starts its reading procedure. It is common for these systems to use a shared data bus
with separate addressing lines. Such systems are more complicated to achieve but offer
the advantage of reducing temporal aperture and energy consumption. A well-known
system is the address-event representation (AER) readout method, which makes it possible
to identify the pixel at which an event occurs as quickly as possible [14–17].

On event-driven readout systems, the release of the pixel so that it can perform a
new measurement, and therefore the reduction of the temporal aperture, depends on the
reaction time and read time of the controller. Indeed, photon detection being a purely
asynchronous phenomenon, it is mandatory to have the ability to read and store this
information immediately or at least release the SPAD as quickly as possible so that it can
make a new measurement.

In this article, we proposed a readout circuit for a SPAD array-based imaging system.
The studied circuit was inspired by the Network on Chip technology [18]. The principal
aim of this work was to use a priority arbiter based on asynchronous logic to maintain
the benefits of the event-driven method. The arbiter we proposed should handle both
the address and the pixel data which leads to the release of the pixel as early as possi-
ble. Asynchronous reading of the data produced by the SPADs offered the advantage of
reading without a clock tree, synchronization of clocks, and speed limitations inherent
in synchronous logic and reduced the overall circuit power consumption. The structure
we proposed in this work should allow reading from any type of SPAD pixel and SPAD
array architecture (1D or 2D). The FPA circuit that we proposed aimed to transmit the data
generated by the SPAD pixel. The data can be a timestamp of a Time Digital Converter
(TDC), the intensity of the pixel, or just the hot pixel address, for instance.

The design and the characterization of this system are presented as follows. Section 2
describes our idea of the readout system based on the priority arbiter for SPAD imaging
circuits. Section 3 presents an asynchronous logic principle needed for understanding
the system operation. The design of specific asynchronous components required for the
implementation of the studied system is reported in Section 4. In Section 5, we describe the
priority arbiter we designed, starting with its structure, then discussing simulation results,
and ending with its physical implementation. Section 6 shows the experimental validation
we performed on the chip and discusses the advantages and the current limitations of the
proposed method. Finally, a conclusion of this work is given in Section 7.

2. Asynchronous Priority-Based Arbiter Readout System

Priority arbitration involves the resolution of two or more competing signals request-
ing a shared resource from blocks running concurrently, such as SPAD pixels. Several
arbitration methods are proposed in the literature to solve the problem of accessing re-
sources for many applications [19,20]. In our case, that resource could have been a final
readout system or processing unit. Priority arbiters can be classified according to the
characteristics of their corresponding hardware implementation.

In a synchronous logic design using a clock signal, each request can be examined and
one of them granted as the winner depending on the priority state machine. Nevertheless,

Sensors 2021, 21, 3949 3 of 16

a large array of SPAD can generate a high data rate that imposes the use of a high clock
frequency, which considerably increases the power consumption.

In an asynchronous logic design, however, since there is no clock signal, the design
must be able to handle a request signal at any time, and the grant must be guaranteed
to be clean and safe, regardless of the signal arrival times. Such event-driven arbitration
structures come with a minimal electrical activity that is proportional to access rates and
without clock tree distribution issues [21]. Therefore, we chose asynchronous logic for the
design of our priority arbiter.

Priority arbiters can be classified into two categories: fixed-priority arbiters (FPA) and
dynamic ones. In fixed-based systems, the FPA has to choose between input requests with
predefined hardware-coded priority values. In other words, the FPA compares the priority
of an event that occurs in one of the FPA’s inputs with all the other events happening or that
have already happened and then sends each event to the output based on its predefined
priority until the last of them has been processed. In contrast to FPA, dynamic priority
arbiters (DPA) are able to dynamically change input priority. Consequently, DPAs have
lower speeds and are more complex to design and implement.

In this work, in order to avoid the speed limitation inherent to DPAs, we decided to
design and use a fixed-priority tree which is presented in the following sections [22].

To illustrate the concept, Figure 1 illustrates a block diagram of a SPAD-based imaging
sensor integrating an asynchronous FPA data path tree before the final readout or process-
ing unit. In the case of a SPAD sensor array, the data can be a single bit indicating that a
pixel has detected a photon, or the value delivered by a time to digital converter (TDC), or
any kind of timestamp or intensity-related value transmitted by the pixel. To understand
the operation mode of such a system, the asynchronous logic principles are detailed in the
next section.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16

In a synchronous logic design using a clock signal, each request can be examined and

one of them granted as the winner depending on the priority state machine. Nevertheless,

a large array of SPAD can generate a high data rate that imposes the use of a high clock

frequency, which considerably increases the power consumption.

In an asynchronous logic design, however, since there is no clock signal, the design

must be able to handle a request signal at any time, and the grant must be guaranteed to

be clean and safe, regardless of the signal arrival times. Such event-driven arbitration

structures come with a minimal electrical activity that is proportional to access rates and

without clock tree distribution issues [21]. Therefore, we chose asynchronous logic for the

design of our priority arbiter.

Priority arbiters can be classified into two categories: fixed-priority arbiters (FPA)

and dynamic ones. In fixed-based systems, the FPA has to choose between input requests

with predefined hardware-coded priority values. In other words, the FPA compares the

priority of an event that occurs in one of the FPA’s inputs with all the other events hap-

pening or that have already happened and then sends each event to the output based on

its predefined priority until the last of them has been processed. In contrast to FPA, dy-

namic priority arbiters (DPA) are able to dynamically change input priority. Conse-

quently, DPAs have lower speeds and are more complex to design and implement.

In this work, in order to avoid the speed limitation inherent to DPAs, we decided to

design and use a fixed-priority tree which is presented in the following sections [22].

To illustrate the concept, Figure 1 illustrates a block diagram of a SPAD-based imag-

ing sensor integrating an asynchronous FPA data path tree before the final readout or

processing unit. In the case of a SPAD sensor array, the data can be a single bit indicating

that a pixel has detected a photon, or the value delivered by a time to digital converter

(TDC), or any kind of timestamp or intensity-related value transmitted by the pixel. To

understand the operation mode of such a system, the asynchronous logic principles are

detailed in the next section.

Figure 1. Synoptic of a possible SPAD array readout system using the proposed asynchronous

FPA tree. The SPAD pixels generate some data that are extracted from the array thanks to the FPA.

To highlight how such a circuit can be implemented with a SPAD sensor, two sce-

narios are proposed and presented in Figure 2. In each case, the SPADs and their associ-

ated electronics are connected to the input of the FPA tree, but a different type of data can

be generated by the SPAD pixel. In case 1, the SPAD array is used as an event-based sensor

Figure 1. Synoptic of a possible SPAD array readout system using the proposed asynchronous FPA
tree. The SPAD pixels generate some data that are extracted from the array thanks to the FPA.

To highlight how such a circuit can be implemented with a SPAD sensor, two scenarios
are proposed and presented in Figure 2. In each case, the SPADs and their associated
electronics are connected to the input of the FPA tree, but a different type of data can
be generated by the SPAD pixel. In case 1, the SPAD array is used as an event-based
sensor [23] for low-light level imaging. The SPAD pixel detecting a photon provides, at
the input of the FPA tree, the column address X of the activated SPAD within the row.

Sensors 2021, 21, 3949 4 of 16

The FPA tree extracts the data presented at it input and encodes the row address Y. As
a consequence, the system identifies the SPAD that detected a photon and provides its
addresses X and Y at its output. In this case, the fast data extraction allows for the easy
generation of a sequence of images at a classic video rate.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16

[23] for low-light level imaging. The SPAD pixel detecting a photon provides, at the input

of the FPA tree, the column address X of the activated SPAD within the row. The FPA tree

extracts the data presented at it input and encodes the row address Y. As a consequence,

the system identifies the SPAD that detected a photon and provides its addresses X and Y

at its output. In this case, the fast data extraction allows for the easy generation of a se-

quence of images at a classic video rate.

In case 2, the SPAD is used to provide the temporal information on detected events

in regards of a laser trigger, i.e., a laser pulse, thanks to a time to digital converter. In this

way, the system can be seen as a parallelized time-correlated photon counting system

(TCSPC) [12] with a few tens of temporal resolution. Additionally, the row and column

addresses X and Y can also be added with the same scheme as in case 1 in order to have a

time-resolved image sensor [24]. In this case, the fast data extraction allows for a high

photon count rate TCSPC.

Figure 2. Application examples of the FPA tree implementation within SPAD-based systems. Case

1: an event-based sensor for low light imaging. Case 2: a time-correlated single-photon counting

image sensor.

3. Asynchronous Logic Principle

Asynchronous logic constitutes a clockless circuit. Since there is no clock in the cir-

cuit, techniques and protocols were developed to ensure good data transfer between the

different components and stages of the asynchronous circuit. In this section, we intro-

duced the essential ones for our fixed-priority arbiter tree design. The latter covers the

micropipeline circuit, the handshake protocols, and the data encoding and the fixed-pri-

ority arbiter basic operation aspects.

3.1. Micropipeline Circuit

Pipelining is a fundamental technique to increase concurrency and boost throughput

in high-performance digital systems. In an asynchronous system, the word micropipeline

was introduced by Ivan E. Sutherland [25], referring to a particularly simple circuitry form

of event-driven elastic pipelines with or one without internal processing. Figure 3 shows

a basic micropipeline structure [26] in which the data moves between the pipeline stages

according to an established request-acknowledge mechanism. Typically, after data moves

Figure 2. Application examples of the FPA tree implementation within SPAD-based systems. Case 1:
an event-based sensor for low light imaging. Case 2: a time-correlated single-photon counting image
sensor.

In case 2, the SPAD is used to provide the temporal information on detected events
in regards of a laser trigger, i.e., a laser pulse, thanks to a time to digital converter. In
this way, the system can be seen as a parallelized time-correlated photon counting system
(TCSPC) [12] with a few tens of temporal resolution. Additionally, the row and column
addresses X and Y can also be added with the same scheme as in case 1 in order to have
a time-resolved image sensor [24]. In this case, the fast data extraction allows for a high
photon count rate TCSPC.

3. Asynchronous Logic Principle

Asynchronous logic constitutes a clockless circuit. Since there is no clock in the circuit,
techniques and protocols were developed to ensure good data transfer between the different
components and stages of the asynchronous circuit. In this section, we introduced the
essential ones for our fixed-priority arbiter tree design. The latter covers the micropipeline
circuit, the handshake protocols, and the data encoding and the fixed-priority arbiter basic
operation aspects.

3.1. Micropipeline Circuit

Pipelining is a fundamental technique to increase concurrency and boost throughput
in high-performance digital systems. In an asynchronous system, the word micropipeline
was introduced by Ivan E. Sutherland [25], referring to a particularly simple circuitry form
of event-driven elastic pipelines with or one without internal processing. Figure 3 shows
a basic micropipeline structure [26] in which the data moves between the pipeline stages
according to an established request-acknowledge mechanism. Typically, after data moves
through an individual stage’s memory (N), the corresponding controller unit (N) requests,
by means of its request signal (Req), the next control input (N + 1) to store the data in its

Sensors 2021, 21, 3949 5 of 16

memory (N + 1). Once the data moves through the next stage’s memory (N + 2) to be
stored again, a transition on the acknowledge signal (Ack) of that stage (N + 2) makes
the current stage’s memory (N + 1) available, thus completing an entire cycle. Briefly, a
stage (N) cannot consider a new request signal (data) if it does not receive the acknowledge
signal from its previous transfer. The interaction of neighboring stages is coordinated by
using the handshaking protocol and data encoding schemes wherein the request signal is
going forward and the acknowledge signal is going backward.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16

through an individual stage’s memory (N), the corresponding controller unit (N) requests,

by means of its request signal (Req), the next control input (N + 1) to store the data in its

memory (N + 1). Once the data moves through the next stage’s memory (N + 2) to be stored

again, a transition on the acknowledge signal (Ack) of that stage (N + 2) makes the current

stage’s memory (N + 1) available, thus completing an entire cycle. Briefly, a stage (N) can-

not consider a new request signal (data) if it does not receive the acknowledge signal from

its previous transfer. The interaction of neighboring stages is coordinated by using the

handshaking protocol and data encoding schemes wherein the request signal is going for-

ward and the acknowledge signal is going backward.

Figure 3. Basic micropipeline circuit. Each stage consists of a control unit and a process unit. The communication protocol

between two stages is ensured by request and acknowledge signals.

3.2. Handshake Protocols and Data Encoding

Handshaking protocol and data encoding techniques are largely described in the lit-

erature [25,26]. In this section, we only provided a brief recall of their principles.

3.2.1. Handshaking Protocols

There are two protocols frequently used to manage data transfer between a sender

unit and a receiver one: (i) non-return-to-zero handshake protocol (2-phase handshaking)

and (ii) return-to-zero handshake protocol (4-phase handshaking).

In 2-phase handshaking (Figure 4a), a single toggle (low-to-high or high-to-low) on

the Req signal followed by a toggle-on Ack signal completes one transaction. The main

advantage of this technique is its high throughput, but its hardware design is more com-

plex.

Figure 4. (a) Non-return-to-zero handshake protocol. (b) Return-to-zero handshake protocol. (c)

Dual-rail data encoding. (d) Single-rail data encoding [26].

Figure 3. Basic micropipeline circuit. Each stage consists of a control unit and a process unit. The communication protocol
between two stages is ensured by request and acknowledge signals.

3.2. Handshake Protocols and Data Encoding

Handshaking protocol and data encoding techniques are largely described in the
literature [25,26]. In this section, we only provided a brief recall of their principles.

3.2.1. Handshaking Protocols

There are two protocols frequently used to manage data transfer between a sender
unit and a receiver one: (i) non-return-to-zero handshake protocol (2-phase handshaking)
and (ii) return-to-zero handshake protocol (4-phase handshaking).

In 2-phase handshaking (Figure 4a), a single toggle (low-to-high or high-to-low) on
the Req signal followed by a toggle-on Ack signal completes one transaction. The main
advantage of this technique is its high throughput, but its hardware design is more complex.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16

through an individual stage’s memory (N), the corresponding controller unit (N) requests,

by means of its request signal (Req), the next control input (N + 1) to store the data in its

memory (N + 1). Once the data moves through the next stage’s memory (N + 2) to be stored

again, a transition on the acknowledge signal (Ack) of that stage (N + 2) makes the current

stage’s memory (N + 1) available, thus completing an entire cycle. Briefly, a stage (N) can-

not consider a new request signal (data) if it does not receive the acknowledge signal from

its previous transfer. The interaction of neighboring stages is coordinated by using the

handshaking protocol and data encoding schemes wherein the request signal is going for-

ward and the acknowledge signal is going backward.

Figure 3. Basic micropipeline circuit. Each stage consists of a control unit and a process unit. The communication protocol

between two stages is ensured by request and acknowledge signals.

3.2. Handshake Protocols and Data Encoding

Handshaking protocol and data encoding techniques are largely described in the lit-

erature [25,26]. In this section, we only provided a brief recall of their principles.

3.2.1. Handshaking Protocols

There are two protocols frequently used to manage data transfer between a sender

unit and a receiver one: (i) non-return-to-zero handshake protocol (2-phase handshaking)

and (ii) return-to-zero handshake protocol (4-phase handshaking).

In 2-phase handshaking (Figure 4a), a single toggle (low-to-high or high-to-low) on

the Req signal followed by a toggle-on Ack signal completes one transaction. The main

advantage of this technique is its high throughput, but its hardware design is more com-

plex.

Figure 4. (a) Non-return-to-zero handshake protocol. (b) Return-to-zero handshake protocol. (c)

Dual-rail data encoding. (d) Single-rail data encoding [26].

Figure 4. (a) Non-return-to-zero handshake protocol. (b) Return-to-zero handshake protocol.
(c) Dual-rail data encoding. (d) Single-rail data encoding [26].

In 4-phase handshaking, illustrated by Figure 4b, the hardware design is easier. The
functioning principle involves four steps defined by the control signals Req and Ack.

Sensors 2021, 21, 3949 6 of 16

Initially, Req and Ack are both low, and then the Req signal is asserted which causes, in
turn, the assertion of the Ack signal. To complete a full transaction, this step is followed by
returning the Req as well as the Ack signals to their initial state.

In this paper, we used a 4-phase handshaking protocol due to its simple design. The
only difference in our protocol compared with that shown in Figure 4b is that its Ack signal
was initially set to the high-level state.

3.2.2. Data Encoding Schemes

There are two data encoding categories for asynchronous communication: (i) the
delay-insensitive data encoding method, and (ii) the single-rail bundled-data method. In
delay-insensitive encoding, there is no dedicated wire for the Req signal. Instead, the
data bus is encoded, and each stage integrates a combinatorial circuit which checks the
input-data code and generates a data valid signal. This signal is used as the request signal.
Dual-rail code, illustrated in Figure 4c, or other m-of-n codes can be used [27]. In single-rail
bundled-data encoding schemes (Figure 4d), a natural data bus is used. In this paper,
single-rail bundled-data encoding was used due to its higher coding efficiency and low
area occupancy.

3.3. Fixed Priority Arbiter

The basic FPA module is a 2-input arbiter which is shown in Figure 5a. If there is only
one request in the inputs, then the FPA sends the related data to the output. This means
that the request signal and the data propagate through the arbiter and the sending unit
is acknowledged after the data transfer is achieved. However, if both requests activate
simultaneously, the arbiter should allow just one of the input signals to be conveyed to
the output according to its priority. In the case of two input requests at the same time, the
proposed FPA in our work always allowed the first channel (Req 1, Ack 1, Data 1). This is
shown in Figure 5b. After granting the first input signal, the second input can be granted
as soon as the next block acknowledges the current block with the Ack out signal. When
Req out is sent to the next component, the previous blocks (1 and 2) are acknowledged
with Ack 1 and Ack 2 signals, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16

In 4-phase handshaking, illustrated by Figure 4b, the hardware design is easier. The

functioning principle involves four steps defined by the control signals Req and Ack. Ini-

tially, Req and Ack are both low, and then the Req signal is asserted which causes, in turn,

the assertion of the Ack signal. To complete a full transaction, this step is followed by

returning the Req as well as the Ack signals to their initial state.

In this paper, we used a 4-phase handshaking protocol due to its simple design. The

only difference in our protocol compared with that shown in Figure 4b is that its Ack

signal was initially set to the high-level state.

3.2.2. Data Encoding Schemes

There are two data encoding categories for asynchronous communication: (i) the de-

lay-insensitive data encoding method, and (ii) the single-rail bundled-data method. In de-

lay-insensitive encoding, there is no dedicated wire for the Req signal. Instead, the data

bus is encoded, and each stage integrates a combinatorial circuit which checks the input-

data code and generates a data valid signal. This signal is used as the request signal. Dual-

rail code, illustrated in Figure 4c, or other m-of-n codes can be used [27]. In single-rail

bundled-data encoding schemes (Figure 4d), a natural data bus is used. In this paper, sin-

gle-rail bundled-data encoding was used due to its higher coding efficiency and low area

occupancy.

3.3. Fixed Priority Arbiter

The basic FPA module is a 2-input arbiter which is shown in Figure 5a. If there is only

one request in the inputs, then the FPA sends the related data to the output. This means

that the request signal and the data propagate through the arbiter and the sending unit is

acknowledged after the data transfer is achieved. However, if both requests activate sim-

ultaneously, the arbiter should allow just one of the input signals to be conveyed to the

output according to its priority. In the case of two input requests at the same time, the

proposed FPA in our work always allowed the first channel (Req 1, Ack 1, Data 1). This

is shown in Figure 5b. After granting the first input signal, the second input can be granted

as soon as the next block acknowledges the current block with the Ack out signal. When

Req out is sent to the next component, the previous blocks (1 and 2) are acknowledged

with Ack 1 and Ack 2 signals, respectively.

Figure 5. (a) Fixed-priority two-to-one arbiter managing to extract the data generated by two different units connected at

its input. (b) Functioning principle illustration of the two-to-one arbiter when the two input data are presented at the same

time. The first data are extracted followed by the second.

In more detail, the two-sender units of this example request and present valid data

on the data bus simultaneously. The data remain stable as long as the request is active at

the high level. Req 1 has the highest priority, Ack 1, for which we have chosen to set the

Figure 5. (a) Fixed-priority two-to-one arbiter managing to extract the data generated by two different units connected at its
input. (b) Functioning principle illustration of the two-to-one arbiter when the two input data are presented at the same
time. The first data are extracted followed by the second.

In more detail, the two-sender units of this example request and present valid data on
the data bus simultaneously. The data remain stable as long as the request is active at the
high level. Req 1 has the highest priority, Ack 1, for which we have chosen to set the zero
level to the high state in our design, goes to the low state, and, after a delay, Req 1 returns
to the low state followed by the return of Ack 1 to the high state. Req 2 has the lowest

Sensors 2021, 21, 3949 7 of 16

priority, and its level remains high at the time that the valid Data 1 is transmitted to the
next stage by a cycle (Req out, Ack out). Finally, once unoccupied, the FPA can transmit
the valid Data 2.

4. Design of the Studied System

The implementation of asynchronous systems requires the design of specific com-
ponents. More particularly, in our system, to implement the fixed-priority tree, we used
2-input static Muller C-elements. This section covers the design of the Muller C-element as
well as the full design of our 2-input fixed-priority arbiter.

4.1. Muller C-Element (C-Muller)

A Muller C-element is a commonly used component in the design of asynchronous
circuits. It is used for joining signal transitions (events) or completion time detection.
Figure 6a illustrates a static implementation of the Muller C-element using complementary
metal oxide semiconductor (CMOS) technology. This element uses three PMOS transistors,
two NMOS transistors, and two inverters (a normal one and a weak one). When both
inputs A and B are 0, the pull-up network changes the output state Out of the C-element
to 0 through the normal inverter. When both inputs A and B are 1, the pull-down network
changes the output state Out of the C-element to 1 through the normal inverter. In the
other cases, the output Out of the C-element is not connected to either Vdd or Gnd, and
the weak inverter (shown here with a smaller symbol) performs with the normal one an
internal storage to retain the previous state on the output Out. In addition to the two inputs
A and B, we added an active low Reset input that allows the assertion of the output Out to
0. These different operation modes are summarized by the timing diagram and the truth
table respectively shown in Figure 6b,c.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

zero level to the high state in our design, goes to the low state, and, after a delay, Req 1

returns to the low state followed by the return of Ack 1 to the high state. Req 2 has the

lowest priority, and its level remains high at the time that the valid Data 1 is transmitted

to the next stage by a cycle (Req out, Ack out). Finally, once unoccupied, the FPA can

transmit the valid Data 2.

4. Design of the Studied System

The implementation of asynchronous systems requires the design of specific compo-

nents. More particularly, in our system, to implement the fixed-priority tree, we used 2-

input static Muller C-elements. This section covers the design of the Muller C-element as

well as the full design of our 2-input fixed-priority arbiter.

4.1. Muller C-Element (C-Muller)

A Muller C-element is a commonly used component in the design of asynchronous

circuits. It is used for joining signal transitions (events) or completion time detection. Fig-

ure 6a illustrates a static implementation of the Muller C-element using complementary

metal oxide semiconductor (CMOS) technology. This element uses three PMOS transis-

tors, two NMOS transistors, and two inverters (a normal one and a weak one). When both

inputs A and B are 0, the pull-up network changes the output state Out of the C-element

to 0 through the normal inverter. When both inputs A and B are 1, the pull-down network

changes the output state Out of the C-element to 1 through the normal inverter. In the

other cases, the output Out of the C-element is not connected to either Vdd or Gnd, and

the weak inverter (shown here with a smaller symbol) performs with the normal one an

internal storage to retain the previous state on the output Out. In addition to the two in-

puts A and B, we added an active low Reset input that allows the assertion of the output

Out to 0. These different operation modes are summarized by the timing diagram and the

truth table respectively shown in Figure 6b,c.

Figure 6. (a) Transistor-level design of the muller gate. (b) Timing diagram. (c) Truth table.

4.2. Fixed Priority Arbiter Unit

The principle of the 2-input fixed-priority arbiter architecture is schematically pre-

sented in Figure 7. This architecture consists of two parts: a control unit and a data path

(for memory storage).

Figure 6. (a) Transistor-level design of the muller gate. (b) Timing diagram. (c) Truth table.

4.2. Fixed Priority Arbiter Unit

The principle of the 2-input fixed-priority arbiter architecture is schematically pre-
sented in Figure 7. This architecture consists of two parts: a control unit and a data path
(for memory storage).

Control unit: The control unit has, at its entrance, three AND gates which serve to
determine which request signal will be granted. If Req 1 is active and t Req 2 is not, the
output of the gate AND1 is set to 1; If Req 1 and Req 2 happen simultaneously, the output
of the gate AND2 is set to 1. These two configurations are grouped in one by the gate
OR1; its output is then set to 1, meaning that Req 1 is granted. When Req 2 is active and
Req 1 is not, the output of the gate AND3 is set to 1, meaning that Req 2 is granted. This
gate output is also guiding related data to the output by setting the selection pin of the
two-to-one multiplexer. The control unit also has a Reset input, which acts on the three
AND gates and on the two Muller C-element to reset the FPA.

Sensors 2021, 21, 3949 8 of 16
Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

Figure 7. The proposed two-to-one FPA schematic. The upper part is the control unit that manages

the priority and the Request/Acknowledge protocol. The lower part is the process unit that selects

the good data to be stored in the flip-flop register according to the requested input Req1 or Req2.

Control unit: The control unit has, at its entrance, three AND gates which serve to

determine which request signal will be granted. If Req 1 is active and t Req 2 is not, the

output of the gate AND1 is set to 1; If Req 1 and Req 2 happen simultaneously, the output

of the gate AND2 is set to 1. These two configurations are grouped in one by the gate OR1;

its output is then set to 1, meaning that Req 1 is granted. When Req 2 is active and Req 1

is not, the output of the gate AND3 is set to 1, meaning that Req 2 is granted. This gate

output is also guiding related data to the output by setting the selection pin of the two-to-
one multiplexer. The control unit also has a Reset input, which acts on the three AND

gates and on the two Muller C-element to reset the FPA.

The two trios (AND4, C1 and inverter) and (AND5, C2 and inverter) execute the 4-

phase handshaking protocol with the granted access request, and the mutual exclusion

ensures only one sequence at a time. Assuming that the outputs Ack 1 and Ack 2 are

initially set to 1 (i.e., the unit is free and no transfer is in progress), and the input Ack FPA

is set to 1 (i.e., the next stage is also free), and Reset is set to 1, when the Req 1 is granted,

the output of AND4 changes to 1, the output of the Muller C-element becomes 1, and the

output of Ack 1 changes to 0. This signal is fed back for mutual exclusion on the competing

trio and forces the Ack 2 output to be maintained at 1. The output signals of the two Muller

C-elements pass through the OR2 gate and are then delayed by (∆T) to generate the FPA

Req signal that triggers a request to the next stage. Furthermore, the rising edge of this

signal allows for the storing of the data in the memory. Once the Ack 1 signal is received

by the previous stage, the Req 1 becomes 0 and thus the output of the AND4 gate. As soon

as the next stage changes the Ack FPA signal to 0, the output of the Muller C-element

changes to 0 and Ack 1 returns to 1 again, ready for a new cycle.

Data path: On the data path, a two-to-one multiplexer was used to choose one of the

two data inputs related to the request signals. The selection input of this multiplexer is

connected to the output of the AND3 gate. When the latter is set to 0 (Req 1 is granted),

Data 1 is transmitted to the storage unit. In the other case, when Req 2 is granted, Data 2

will be selected. The FPA Req signal that comes from the output of the OR2 gate delayed

by (∆T) acts as a local clock for the memory unit. A rising edge of this signal stores the

selected data in the memory and makes this data available on the output Data Out. To

ensure the correct operation of the data path, the data should be stable at the memory

input before the FPA Req signal transition. Furthermore, once the data enter a stage, they

must be securely stored before new data are sent by the previous stage as explained in
Section 3.1. Theses constraints were satisfied by adding a delay module (∆T) of 1 ns which

ensures the local timing of the FPA.

Figure 7. The proposed two-to-one FPA schematic. The upper part is the control unit that manages
the priority and the Request/Acknowledge protocol. The lower part is the process unit that selects
the good data to be stored in the flip-flop register according to the requested input Req1 or Req2.

The two trios (AND4, C1 and inverter) and (AND5, C2 and inverter) execute the
4-phase handshaking protocol with the granted access request, and the mutual exclusion
ensures only one sequence at a time. Assuming that the outputs Ack 1 and Ack 2 are
initially set to 1 (i.e., the unit is free and no transfer is in progress), and the input Ack FPA
is set to 1 (i.e., the next stage is also free), and Reset is set to 1, when the Req 1 is granted,
the output of AND4 changes to 1, the output of the Muller C-element becomes 1, and the
output of Ack 1 changes to 0. This signal is fed back for mutual exclusion on the competing
trio and forces the Ack 2 output to be maintained at 1. The output signals of the two Muller
C-elements pass through the OR2 gate and are then delayed by (∆T) to generate the FPA
Req signal that triggers a request to the next stage. Furthermore, the rising edge of this
signal allows for the storing of the data in the memory. Once the Ack 1 signal is received
by the previous stage, the Req 1 becomes 0 and thus the output of the AND4 gate. As
soon as the next stage changes the Ack FPA signal to 0, the output of the Muller C-element
changes to 0 and Ack 1 returns to 1 again, ready for a new cycle.

Data path: On the data path, a two-to-one multiplexer was used to choose one of the
two data inputs related to the request signals. The selection input of this multiplexer is
connected to the output of the AND3 gate. When the latter is set to 0 (Req 1 is granted),
Data 1 is transmitted to the storage unit. In the other case, when Req 2 is granted, Data 2
will be selected. The FPA Req signal that comes from the output of the OR2 gate delayed
by (∆T) acts as a local clock for the memory unit. A rising edge of this signal stores the
selected data in the memory and makes this data available on the output Data Out. To
ensure the correct operation of the data path, the data should be stable at the memory
input before the FPA Req signal transition. Furthermore, once the data enter a stage, they
must be securely stored before new data are sent by the previous stage as explained in
Section 3.1. Theses constraints were satisfied by adding a delay module (∆T) of 1 ns which
ensures the local timing of the FPA.

5. VLSI Implementation of the Proposed 16 to 1 Fixed Priority Arbiter
5.1. Tree-Structure of the Proposed 16 to 1 FPA

N-way arbiter structures have been widely discussed in the literature [28,29]. The
N-way tree arbiter is one of them; it is typically made by cascading several 2-input arbiters
which are used for each arbitration node on the tree. The schematic view of our proposed
16-way fixed-priority tree arbiter is shown in Figure 8. Each input client of this tree will be
attached to a designated lowest-level FPA two-to-one unit. To be read out, a client must
have the arbitration priority at each level until the top level. The last stage of the arbiter
tree can be then connected to the readout circuit of an eventual processing unit.

Sensors 2021, 21, 3949 9 of 16

Sensors 2021, 21, x FOR PEER REVIEW 9 of 16

5. VLSI Implementation of the Proposed 16 to 1 Fixed Priority Arbiter

5.1. Tree-Structure of the Proposed 16 to 1 FPA

N-way arbiter structures have been widely discussed in the literature [28,29]. The N-

way tree arbiter is one of them; it is typically made by cascading several 2-input arbiters

which are used for each arbitration node on the tree. The schematic view of our proposed

16-way fixed-priority tree arbiter is shown in Figure 8. Each input client of this tree will

be attached to a designated lowest-level FPA two-to-one unit. To be read out, a client must

have the arbitration priority at each level until the top level. The last stage of the arbiter

tree can be then connected to the readout circuit of an eventual processing unit.

Figure 8. FPA 16-to-1 tree connected to 16 send units for testing purposes. The first column of the tree is named L0, the

second one L1, and etc. The send units consist of a simple counter to generate well-controlled data and a flip flop is used

to handle the asynchronous communication protocol. The receiver unit allows for the extraction of the data out of the chip

thanks to its high-speed LVDS driver.

In some applications, it is mandatory to know the location of the pixel. Obviously,

the pixel itself can transmit its location in addition to its generated data. Then, the FPA

tree transmits the data flow from the input node of the tree to its output node with a fixed

data bus. The drawback of this technique is that wide data width memories are needed all

along the data path, which consumes a large silicon area. Indeed, in order to minimize the

used area of silicon, another addressing method was proposed. The main idea is explained

as follows: at each two-to-one FPA node, an additional bit is added to the data to encode
the origin of the request signal. This bit will be “0” if the origin is the Req 1 and “1” if the

origin is Req 2. This is created by adding the select signal of the multiplexer (the output

signal of the AND3 gate) as the least-significant bit (LSB) for the MUX output data bus.

Each path from the input nodes can then be encoded with a specific address. This address

encoding method requires a specific two-to-one FPA for each level of the arbitration tree,

and the memory of each level should be 1 bit larger than the memory of the previous one.

5.2. Send Units

In order to test the designed FPA tree, 16 send units were built to feed the lowest-

level two-to-one FPAs (L0-j, with j [0;7]) with 4-bit data (Figure 8). All the send units

were similar, and each unit consisted of a 4-bit counter and included a request signal gen-

eration unit with asynchronous acknowledgement signal reception. These counters were

synchronous and worked on the Geni falling edges, and the request signals were gener-

Figure 8. FPA 16-to-1 tree connected to 16 send units for testing purposes. The first column of the tree is named L0, the
second one L1, and etc. The send units consist of a simple counter to generate well-controlled data and a flip flop is used to
handle the asynchronous communication protocol. The receiver unit allows for the extraction of the data out of the chip
thanks to its high-speed LVDS driver.

In some applications, it is mandatory to know the location of the pixel. Obviously,
the pixel itself can transmit its location in addition to its generated data. Then, the FPA
tree transmits the data flow from the input node of the tree to its output node with a fixed
data bus. The drawback of this technique is that wide data width memories are needed all
along the data path, which consumes a large silicon area. Indeed, in order to minimize the
used area of silicon, another addressing method was proposed. The main idea is explained
as follows: at each two-to-one FPA node, an additional bit is added to the data to encode
the origin of the request signal. This bit will be “0” if the origin is the Req 1 and “1” if the
origin is Req 2. This is created by adding the select signal of the multiplexer (the output
signal of the AND3 gate) as the least-significant bit (LSB) for the MUX output data bus.
Each path from the input nodes can then be encoded with a specific address. This address
encoding method requires a specific two-to-one FPA for each level of the arbitration tree,
and the memory of each level should be 1 bit larger than the memory of the previous one.

5.2. Send Units

In order to test the designed FPA tree, 16 send units were built to feed the lowest-
level two-to-one FPAs (L0-j, with j ∈ [0;7]) with 4-bit data (Figure 8). All the send units
were similar, and each unit consisted of a 4-bit counter and included a request signal
generation unit with asynchronous acknowledgement signal reception. These counters
were synchronous and worked on the Geni falling edges, and the request signals were
generated on the Geni rising edges. The 16 send units were fed by four different signals
configured as follows: a common signal for units 1 to 8 (i.e., Gen1 to Gen8 are connected
together), one for unit 9, one for unit 10, and finally one common signal for units 11 to 16
(i.e., Gen11 to Gen16 are connected together). This configuration made it possible to excite
the send units differently: (i) the first 8 units together at the same time, (ii) the units 9 and
10 independently, and (iii) the last set of units (11 to 16) also at the same time.

At the output of the FPA tree, we have a receiver unit which outputs the data out
of the chip for the highest-level two-to-one arbiter (L3-0) node to a bus of an 8-bit low-
voltage differential signaling (LVDS) driver. The FPA Req signal of the last node is also
available on an LVDS link. Finally, this unit integrates a multiplexer to operate in two
acknowledgement modes (internal and external acknowledgement modes). In the internal

Sensors 2021, 21, 3949 10 of 16

mode, the multiplexer transmits the internal Ack signal generated by the chip itself. In the
external mode, the external Ack generated by an FPGA is selected.

5.3. Simulation Results

The FPA tree was simulated using the “Cadence Virtuoso Analog Design Environ-
ment”. The results of the worst-possible case (when all the 16 send units requested simulta-
neously) are presented below. Figure 9 shows the output of all FPAs and demonstrates the
functionality of the FPA tree as well as the priority of one branch of the tree over the other
ones. The timing diagram showed that the FPA L0-0 sent two request pulses to the FPA
L1-0 to transfer the data from the two send units 1 and 2. It also showed that the output of
the last FPA L3-0 generated 16 request pulses indicating that the data of the 16 send units
had been transferred to the receiver unit.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

ated on the Geni rising edges. The 16 send units were fed by four different signals config-

ured as follows: a common signal for units 1 to 8 (i.e., Gen1 to Gen8 are connected together),

one for unit 9, one for unit 10, and finally one common signal for units 11 to 16 (i.e., Gen11

to Gen16 are connected together). This configuration made it possible to excite the send

units differently: (i) the first 8 units together at the same time, (ii) the units 9 and 10 inde-

pendently, and (iii) the last set of units (11 to 16) also at the same time.

At the output of the FPA tree, we have a receiver unit which outputs the data out of

the chip for the highest-level two-to-one arbiter (L3-0) node to a bus of an 8-bit low-voltage

differential signaling (LVDS) driver. The FPA Req signal of the last node is also available

on an LVDS link. Finally, this unit integrates a multiplexer to operate in two acknowl-

edgement modes (internal and external acknowledgement modes). In the internal mode,

the multiplexer transmits the internal Ack signal generated by the chip itself. In the exter-

nal mode, the external Ack generated by an FPGA is selected.

5.3. Simulation Results

The FPA tree was simulated using the “Cadence Virtuoso Analog Design Environ-

ment”. The results of the worst-possible case (when all the 16 send units requested simul-

taneously) are presented below. Figure 9 shows the output of all FPAs and demonstrates

the functionality of the FPA tree as well as the priority of one branch of the tree over the

other ones. The timing diagram showed that the FPA L0-0 sent two request pulses to the

FPA L1-0 to transfer the data from the two send units 1 and 2. It also showed that the

output of the last FPA L3-0 generated 16 request pulses indicating that the data of the 16

send units had been transferred to the receiver unit.

Figure 9. FPA tree Cadence simulation results. The effect of the priority path is highlighted with the
output of the second row of the FPA the request signal L1-0 and L1-1. The L1-0 data are extracted
first by the next L2-0 FPA unit.

Two cases were highlighted by two dotted rectangles in order to illustrate the effect of
the priority. In the first case, since FPA L1-0 had priority over FPA L1-1, and the FPA Req
L1-1 signal (indicated in gray color) waited longer before being granted. This allowed the
FPA L1-0 to prioritize the outputs of the FPA L0-0 and FPA L0-1. The same behavior was
observed between FPA L1-2 and FPA L1-3.

Figure 10 compares the time taken for a request to be considered and handled by the
last FPA of the tree. Observing the latency of the request signal for some units (for example
unit 1, 2, 9 and unit 16), the shortest latency was reported for Req 1 (or Req 9) and equal to

Sensors 2021, 21, 3949 11 of 16

4.5 ns, and Req 16 had the worst latency which equaled to 30 ns. The simulation results
also revealed that a full cycle on the last FPA of the tree took 1.75 ns.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

Figure 9. FPA tree Cadence simulation results. The effect of the priority path is highlighted with the

output of the second row of the FPA the request signal L1-0 and L1-1. The L1-0 data are extracted

first by the next L2-0 FPA unit.

Two cases were highlighted by two dotted rectangles in order to illustrate the effect

of the priority. In the first case, since FPA L1-0 had priority over FPA L1-1, and the FPA

Req L1-1 signal (indicated in gray color) waited longer before being granted. This allowed

the FPA L1-0 to prioritize the outputs of the FPA L0-0 and FPA L0-1. The same behavior

was observed between FPA L1-2 and FPA L1-3.

Figure 10 compares the time taken for a request to be considered and handled by the

last FPA of the tree. Observing the latency of the request signal for some units (for example

unit 1, 2, 9 and unit 16), the shortest latency was reported for Req 1 (or Req 9) and equal

to 4.5 ns, and Req 16 had the worst latency which equaled to 30 ns. The simulation results

also revealed that a full cycle on the last FPA of the tree took 1.75 ns.

Figure 10. Best- and worst-case latencies simulation results in the case where all the 16 send units

are triggered simultaneously. The highest priority datum, the Req1 signal, is extracted first with a

latency of only 4.5 ns and the lowest priority datum, the Req16 signal, is extracted after all the other

ones with a latency of 30 ns.

5.4. Physical Implementation

The circuit was designed with 180 nm CMOS process technology. Figure 11a illus-

trates the core of the FPA tree layout with the test purpose unit. The occupied silicon area

of the FPA tree was 196 µm × 180 µm, 260 µm × 180 µm with the send units included.

Figure 11b shows a microphotograph of the manufactured chip. The total size of the chip

was 1785 µm × 1500 µm.

Figure 10. Best- and worst-case latencies simulation results in the case where all the 16 send units
are triggered simultaneously. The highest priority datum, the Req1 signal, is extracted first with a
latency of only 4.5 ns and the lowest priority datum, the Req16 signal, is extracted after all the other
ones with a latency of 30 ns.

5.4. Physical Implementation

The circuit was designed with 180 nm CMOS process technology. Figure 11a illustrates
the core of the FPA tree layout with the test purpose unit. The occupied silicon area of
the FPA tree was 196 µm × 180 µm, 260 µm × 180 µm with the send units included.
Figure 11b shows a microphotograph of the manufactured chip. The total size of the chip
was 1785 µm × 1500 µm.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

Figure 11. (a) FPA tree layout. (b) The full device front view by microphotography.

6. Experimental Environment, Results and Discussion

6.1. Experimental Setup

In order to characterize the prototype, a testing platform based on Field Programma-

ble Gate-Array (FPGA) DE10NANO (Terasic Inc., Hsinchu City, Taiwan) board was de-

veloped as shown in Figure 12. The test chip was mounted on a daughter board plugged

into a motherboard. The motherboard integrated (i) the power supply for the chip, (ii)

circuits for the configuration of the chip (i.e., the bit stream sent by the FPGA), (iii) high-

speed differential receivers to enable the FPGA to read the LVDS signals, and (iv) a USB2

controller for the communication with a custom LabVIEW interface. The LabVIEW inter-

face controlled the system and read the output data. It configured the FPGA (a) to send

the configuration bits to the chip, (b) to provide the excitation signals for the send units,

and (c) to read the output data stream of the tree (when operating in external mode). The

configuration bits stream activated the LVDS link and selected the acknowledgement

mode. Finally, a 13 GHz wideband oscilloscope and a 6 GHz differential probe were used

to measure the LVDS signals.

Figure 11. (a) FPA tree layout. (b) The full device front view by microphotography.

6. Experimental Environment, Results and Discussion
6.1. Experimental Setup

In order to characterize the prototype, a testing platform based on Field Programmable
Gate-Array (FPGA) DE10NANO (Terasic Inc., Hsinchu City, Taiwan) board was developed
as shown in Figure 12. The test chip was mounted on a daughter board plugged into a
motherboard. The motherboard integrated (i) the power supply for the chip, (ii) circuits for
the configuration of the chip (i.e., the bit stream sent by the FPGA), (iii) high-speed differ-

Sensors 2021, 21, 3949 12 of 16

ential receivers to enable the FPGA to read the LVDS signals, and (iv) a USB2 controller for
the communication with a custom LabVIEW interface. The LabVIEW interface controlled
the system and read the output data. It configured the FPGA (a) to send the configuration
bits to the chip, (b) to provide the excitation signals for the send units, and (c) to read
the output data stream of the tree (when operating in external mode). The configuration
bits stream activated the LVDS link and selected the acknowledgement mode. Finally, a
13 GHz wideband oscilloscope and a 6 GHz differential probe were used to measure the
LVDS signals.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

Figure 11. (a) FPA tree layout. (b) The full device front view by microphotography.

6. Experimental Environment, Results and Discussion

6.1. Experimental Setup

In order to characterize the prototype, a testing platform based on Field Programma-

ble Gate-Array (FPGA) DE10NANO (Terasic Inc., Hsinchu City, Taiwan) board was de-

veloped as shown in Figure 12. The test chip was mounted on a daughter board plugged

into a motherboard. The motherboard integrated (i) the power supply for the chip, (ii)

circuits for the configuration of the chip (i.e., the bit stream sent by the FPGA), (iii) high-

speed differential receivers to enable the FPGA to read the LVDS signals, and (iv) a USB2

controller for the communication with a custom LabVIEW interface. The LabVIEW inter-

face controlled the system and read the output data. It configured the FPGA (a) to send

the configuration bits to the chip, (b) to provide the excitation signals for the send units,

and (c) to read the output data stream of the tree (when operating in external mode). The

configuration bits stream activated the LVDS link and selected the acknowledgement

mode. Finally, a 13 GHz wideband oscilloscope and a 6 GHz differential probe were used

to measure the LVDS signals.

Figure 12. (a) Block diagram of the experimental setup which consists of a stack of three boards: a daughter board with the
design CHIP, a motherboard which meanly provides the power supply, and the USB2 interface and a commercial FPGA
design kit. (b) Picture of the experimental setup.

6.2. Results and Discussion

The developed test bench was used for the experimental validation of the FPA tree
by carrying out a set of experiments. In the first experiment (in the case of a simultaneous
requests from the first eight send units in the internal acknowledgement mode) we mea-
sured the timing of the LVDS Req signal output of the last stage of the FPA tree using the
differential probe. Figure 13a presents the obtained timing measurements and shows that it
took 3 ns to complete an output cycle (i.e., 24 ns for the 8 cycles). The maximal data rate of
the FPA tree was then estimated to 333 MHz. It is worth noting that the delay of the internal
acknowledge signal was chosen to be 1 ns, which is a safe delay in the used technology to
ensure the functionality of the device. A shorter delay (<1 ns) can be chosen to increase the
total throughput. The same experiment (eight simultaneous requests signals) was repeated
in the external acknowledgement mode and the results are presented in Figure 13b. In this
mode, the throughput was limited by the FPGA acknowledgment signal generation rate
and a single cycle was completed in 56 ns. Hence, this mode was slower than the internal
acknowledgement mode, but it allowed for the recording of the data by the FPGA.

In the next experiment, we recorded the data readout at the output of the FPA tree for
two different configurations: (case A) all the 16 units started simultaneously so that the
counter value was the same for all of them, and (case B) units 1 to 8 and units 9 to 16 started
with an offset, so they had different counter values. In both configurations, 187 million
events were recorded. Figure 14 presents a section of the recorded data in a hexadecimal
format that allows assessing the result in both cases with the arriving order of the data.
The lower nibble stands for the send unit address (i.e., the related number of the send

Sensors 2021, 21, 3949 13 of 16

unit), and the upper nibble stands for the counter value of the send unit. In this figure, the
link between the number of the units and their addresses is listed in the upper table. The
addresses are also highlighted by the red color in the displayed frames (case A and case
B). In case A, all the 16 recorded values were equal. In case B, the values received from
the send unit 1 to 8 were different than the ones received from the send unit 9 to 16, as
expected. In both cases, all the collected data were analyzed, and no transmission error
was detected for the 187 million measured events.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

Figure 12. (a) Block diagram of the experimental setup which consists of a stack of three boards: a daughter board with

the design CHIP, a motherboard which meanly provides the power supply, and the USB2 interface and a commercial

FPGA design kit. (b) Picture of the experimental setup.

6.2. Results and Discussion

The developed test bench was used for the experimental validation of the FPA tree

by carrying out a set of experiments. In the first experiment (in the case of a simultaneous

requests from the first eight send units in the internal acknowledgement mode) we meas-

ured the timing of the LVDS Req signal output of the last stage of the FPA tree using the

differential probe. Figure 13a presents the obtained timing measurements and shows that

it took 3 ns to complete an output cycle (i.e., 24 ns for the 8 cycles). The maximal data rate

of the FPA tree was then estimated to 333 MHz. It is worth noting that the delay of the

internal acknowledge signal was chosen to be 1 ns, which is a safe delay in the used tech-

nology to ensure the functionality of the device. A shorter delay (<1 ns) can be chosen to

increase the total throughput.

Figure 13. Last FPA request timing measurement. (a) Internal acknowledge mode with an output cycle of only 3 ns. (b)

External acknowledge mode with an output cycle of 56 ns limited by the FPGA operating frequency.

The same experiment (eight simultaneous requests signals) was repeated in the ex-

ternal acknowledgement mode and the results are presented in Figure 13b. In this mode,

the throughput was limited by the FPGA acknowledgment signal generation rate and a

single cycle was completed in 56 ns. Hence, this mode was slower than the internal

acknowledgement mode, but it allowed for the recording of the data by the FPGA.

In the next experiment, we recorded the data readout at the output of the FPA tree

for two different configurations: (case A) all the 16 units started simultaneously so that

the counter value was the same for all of them, and (case B) units 1 to 8 and units 9 to 16

started with an offset, so they had different counter values. In both configurations, 187

million events were recorded. Figure 14 presents a section of the recorded data in a hexa-

decimal format that allows assessing the result in both cases with the arriving order of the

data. The lower nibble stands for the send unit address (i.e., the related number of the

send unit), and the upper nibble stands for the counter value of the send unit. In this fig-

ure, the link between the number of the units and their addresses is listed in the upper

table. The addresses are also highlighted by the red color in the displayed frames (case A

and case B). In case A, all the 16 recorded values were equal. In case B, the values received

from the send unit 1 to 8 were different than the ones received from the send unit 9 to 16,

as expected. In both cases, all the collected data were analyzed, and no transmission error

was detected for the 187 million measured events.

Figure 13. Last FPA request timing measurement. (a) Internal acknowledge mode with an output cycle of only 3 ns.
(b) External acknowledge mode with an output cycle of 56 ns limited by the FPGA operating frequency.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 16

Figure 14. Readout experience data obtained in case A and in case B. The order in which the data are extracted from the

sensor is related to the priority imposed by the FPA tree.

In the last experiment, we measured the power consumption (volts, amperes) of the

proposed FPA tree while all the LVDS drivers were disabled in two states: (1) the idle

state wherein the global reset signal was activated, and (2) the fully loaded operating state

where request signals were generated on the 16 sender units at a rate of 25 MHz (at this

request rate, the FPA tree was fully loaded leading to the maximum event rate of 333

million events per second). Comparing the power consumption for the two states indi-

cated an estimated average power consumption of 1.8 milliwatts (1.8 V, 1 mA) for the FPA

tree which can be reported as 5.4 picojoules per complete event readout (i.e., the power

needed to transmit data from a send unit up to the last FPA stage).

These experiments allowed us to validate and demonstrate the good functionality of

the proposed FPA tree structure. However, we have noted some observations and some

points that can be improved in this design. Fixed-priority arbiters always select the re-

quest input port of the highest priority, and the input ports with lower priority may rarely

be granted when requiring conflicts happen. To ensure that, it is necessary to be very pre-

cise during the layout design. In our design, we saw that some Req signals which should

have had a lower priority came out first, but this issue did not influence the logic behind

our project. For example, the send unit 9 came first in both the simulation and the experi-

mental measurement. Practically, it is very improbable that all the SPADs of an array are

triggered at the same instant. However, even if that happens, the integrity of data will still

be valid, but only the order in which the data are collected will be different.

Overall, in this work we demonstrated that asynchronous 16-to-1 FPA trees can be

used to design a reliable readout circuit with low power consumption, high supported

event rate (up to 333 Million events per second), and low cost (small silicon area). Based

on the obtained results, the designed circuit could be extended to support ultra-fast phe-

nomena measurements using larger SPAD matrix sensors (>16 SPADs). To achieve this,

several FPA trees should be implemented to run in parallel. For example, with a 16 × 4

SPAD matrix, four 16-to-1 FPA trees would be required in addition to a final readout unit

or a processing unit. We could be able to measure up to 1.3 giga-events per second with a

worst latency of 48 ns (for the last request signal in the case in which all the SPADs of the

matrix are activated at the same time). Such a circuit would require a final readout unit

which should be capable of handling a high-speed data rate (up to 15.6 Gbps for a 12-bit

data path [8-bit SPAD + 4-bit address] and 26 Gbps for a 20-bit data path [16-bit SPAD +

4-bit address]) such as CoaXPress technology. Another solution could be the integration

of the processing unit in the sensor to reduce the amount of data.

This circuit is also intrinsically well suited to handle asynchronous and Poissonian

processes such as that of a SPAD array. Indeed, when a burst of photons is detected, the

data will be immediately collected and stored inside the FPA tree. Then, the send units

(i.e., the pixels electronic) will be released as soon as possible. The FPA tree itself acts as a

buffer memory that allows for handling the inherent peak of activity at its input due to

the quantic behavior of the SPAD array. As reported in [30], the use of a memory buffer

such as a FIFO enables the SPAD array sensors to detect and read out a photon rate equal

to the system’s maximum readout data rate with a high efficiency of more than 90% (i.e.,

Figure 14. Readout experience data obtained in case A and in case B. The order in which the data are extracted from the
sensor is related to the priority imposed by the FPA tree.

In the last experiment, we measured the power consumption (volts, amperes) of the
proposed FPA tree while all the LVDS drivers were disabled in two states: (1) the idle state
wherein the global reset signal was activated, and (2) the fully loaded operating state where
request signals were generated on the 16 sender units at a rate of 25 MHz (at this request
rate, the FPA tree was fully loaded leading to the maximum event rate of 333 million events
per second). Comparing the power consumption for the two states indicated an estimated
average power consumption of 1.8 milliwatts (1.8 V, 1 mA) for the FPA tree which can be
reported as 5.4 picojoules per complete event readout (i.e., the power needed to transmit
data from a send unit up to the last FPA stage).

These experiments allowed us to validate and demonstrate the good functionality of
the proposed FPA tree structure. However, we have noted some observations and some
points that can be improved in this design. Fixed-priority arbiters always select the request
input port of the highest priority, and the input ports with lower priority may rarely be
granted when requiring conflicts happen. To ensure that, it is necessary to be very precise
during the layout design. In our design, we saw that some Req signals which should have
had a lower priority came out first, but this issue did not influence the logic behind our
project. For example, the send unit 9 came first in both the simulation and the experimental
measurement. Practically, it is very improbable that all the SPADs of an array are triggered

Sensors 2021, 21, 3949 14 of 16

at the same instant. However, even if that happens, the integrity of data will still be valid,
but only the order in which the data are collected will be different.

Overall, in this work we demonstrated that asynchronous 16-to-1 FPA trees can be
used to design a reliable readout circuit with low power consumption, high supported event
rate (up to 333 Million events per second), and low cost (small silicon area). Based on the
obtained results, the designed circuit could be extended to support ultra-fast phenomena
measurements using larger SPAD matrix sensors (>16 SPADs). To achieve this, several FPA
trees should be implemented to run in parallel. For example, with a 16 × 4 SPAD matrix,
four 16-to-1 FPA trees would be required in addition to a final readout unit or a processing
unit. We could be able to measure up to 1.3 giga-events per second with a worst latency
of 48 ns (for the last request signal in the case in which all the SPADs of the matrix are
activated at the same time). Such a circuit would require a final readout unit which should
be capable of handling a high-speed data rate (up to 15.6 Gbps for a 12-bit data path [8-bit
SPAD + 4-bit address] and 26 Gbps for a 20-bit data path [16-bit SPAD + 4-bit address])
such as CoaXPress technology. Another solution could be the integration of the processing
unit in the sensor to reduce the amount of data.

This circuit is also intrinsically well suited to handle asynchronous and Poissonian
processes such as that of a SPAD array. Indeed, when a burst of photons is detected, the
data will be immediately collected and stored inside the FPA tree. Then, the send units
(i.e., the pixels electronic) will be released as soon as possible. The FPA tree itself acts as a
buffer memory that allows for handling the inherent peak of activity at its input due to
the quantic behavior of the SPAD array. As reported in [30], the use of a memory buffer
such as a FIFO enables the SPAD array sensors to detect and read out a photon rate equal
to the system’s maximum readout data rate with a high efficiency of more than 90% (i.e.,
less than 10% of missed photons), whereas the efficiency of a bufferless system is only 50%
in the same conditions.

In summary, there is no doubt for us that such a structure will pave the way for the
development of fully asynchronous photon counting systems operating at a high photon
rate with a low latency and a low power consumption.

7. Conclusions

A new design for asynchronous FPA was presented and used to build an event-driven
FPA 16-to-1 data path tree for SPAD-array readout. This design was implemented in a
180 nm CMOS technology. The good functioning of the design circuit was validated in
simulations and by performing experimental measurements. In particular, the performed
experiments showed that, with such a readout circuit, it is possible to read up to 333 million
events per second. Furthermore, this design is simple to implement and requires no clock
distribution tree. It is also compact, occupies a low silicon area, and benefits from low
power consumption. In future work, the 16-to-1 FPA tree should be integrated in the
readout circuit for our SPAD-array-based sensor that will be used in the development of
our future SPAD-based streak camera.

Author Contributions: Conceptualization, L.F., W.U. and F.D.; methodology, L.F., W.U., F.D.; soft-
ware, E.A., W.K.; validation, E.A., S.R., J.-B.S., M.D.L., W.K., F.D. and W.U.; formal analysis, E.A.,
S.R., M.D.L., W.K.; investigation, E.A., S.R., J.-B.S.; writing—original draft preparation, E.A., S.R.,
W.K., F.D., W.U.; writing—review and editing, all authors; supervision, F.D., J.-B.K., W.U.; project
administration, W.U.; funding acquisition, W.U. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by French National Research Agency (ANR-15-CE11-0006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Sensors 2021, 21, 3949 15 of 16

Acknowledgments: The authors would like to thank the French National Research Agency (ANR-
15-CE11-0006) for funding the project and Nicolas Collin for his technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bronzi, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging

Applications: A Review. IEEE Sens. J. 2016, 16, 3–12. [CrossRef]
2. Charbon, E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos. Trans. R. Soc. A Math. Phys.

Eng. Sci. 2014, 372, 20130100. [CrossRef] [PubMed]
3. Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review

and outlook. Light Sci. Appl. 2019, 8, 1–28. [CrossRef]
4. Palubiak, D.P.; Deen, M.J. CMOS SPADs: Design Issues and Research Challenges for Detectors, Circuits, and Arrays. IEEE J. Sel.

Top. Quantum Electron. 2014, 20, 409–426. [CrossRef]
5. Zappa, F.; Tisa, S.; Tosi, A.; Cova, S. Principles and features of single-photon avalanche diode arrays. Sens. Actuators A Phys. 2007,

140, 103–112. [CrossRef]
6. Takai, I.; Matsubara, H.; Soga, M.; Ohta, M.; Ogawa, M.; Yamashita, T. Single-Photon Avalanche Diode with Enhanced NIR-

Sensitivity for Automotive LIDAR Systems. Sensors 2016, 16, 459. [CrossRef] [PubMed]
7. Chen, G.; Wiede, C.; Kokozinski, R. Data Processing Approaches on SPAD-Based d-TOF LiDAR Systems: A Review. IEEE Sens. J.

2021, 21, 5656–5667. [CrossRef]
8. Caccia, M.; Nardo, L.; Santoro, R.; Schaffhauser, D. Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and

perspectives. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 926, 101–117. [CrossRef]
9. Hiskett, P.A.; Bonfrate, G.; Buller, G.S.; Townsend, P.D. Eighty kilometre transmission experiment using an InGaAs/InP SPAD-

based quantum cryptography receiver operating at 1.55 µm. J. Mod. Opt. 2001, 48, 1957–1966. [CrossRef]
10. Li, Y.; Safari, M.; Henderson, R.; Haas, H. Nonlinear Distortion in SPAD-Based Optical OFDM Systems. In Proceedings of the

2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; Institute of Electrical and Electronics
Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1–6.

11. Malass, I.; Uhring, W.; Le Normand, J.-P.; Dumas, N.; Dadouche, F. 10-ps Resolution hybrid time to digital converter in a 0.18
µm CMOS technology. In Proceedings of the 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS),
Trois-Rivieres, QC, Canada, 22–25 June 2014; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2014;
pp. 105–108.

12. Malass, I.; Uhring, W.; Le Normand, J.-P.; Dumas, N.; Dadouche, F. Parallelized Integrated Time-Correlated Photon Counting
System for High Photon Counting Rate Applications. Photon Count. Fundam. Appl. 2018. [CrossRef]

13. Della Rocca, F.M.; Mai, H.; Hutchings, S.W.; Al Abbas, T.; Buckbee, K.; Tsiamis, A.; Lomax, P.; Gyongy, I.; Dutton, N.A.W.;
Henderson, R.K. A 128× 128 SPAD Motion-Triggered Time-of- Flight Image Sensor with In-Pixel Histogram and Column-Parallel
Vision Processor. IEEE J. Solid-State Circuits 2020, 55, 1. [CrossRef]

14. Shawkat, M.S.A.; Mcfarlane, N. A Digital CMOS Silicon Photomultiplier Using Perimeter Gated Single Photon Avalanche Diodes
with Asynchronous AER Readout. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4818–4828. [CrossRef]

15. Lin, J.; Andreou, A.G. A 32 × 32 single photon avalanche diode imager with delay-insensitive address-event readout. 2011 IEEE
Int. Symp. Circuits Syst. 2011, 1824–1827. [CrossRef]

16. Linn, A.M.T.; Tuan, D.A.; Shoushun, C.; Seng, Y.K. Adaptive priority toggle asynchronous tree arbiter for AER-based image
sensor. In Proceedings of the 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip, Hong Kong, China,
3–5 October 2011; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 66–71.

17. Shoushun, C.; Bermak, A.; Martinez, D. A CMOS vision sensor with on-the-fly histogram equalization using TFS encoding and
AER read-out. In Proceedings of the 2005 IEEE Asian Solid-State Circuits Conference, Hsinchu, Taiwan, 1–3 November 2005;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2005; pp. 433–436.

18. Ghiribaldi, A.; Bertozzi, D.; Nowick, S.M.; Alberto, G. A Transition-Signaling Bundled Data NoC Switch Architecture for
Cost-effective GALS Multicore Systems. Des. Autom. Test Eur. Conf. Exhib. 2013, 332–337. [CrossRef]

19. Rigaud, J.-B.; Quartana, J.; Fesquet, L.; Renaudin, M. Modeling and Design of Asynchronous Priority Arbiters for On-Chip
Com-munication Systems. In Proceedings of the IFIP TC10/WG10.5 Eleventh International Conference on Very Large Scale
Integration of Systems-on/Chip: SOC Design Methodologies, Montpellier, France, 3–5 December 2001; pp. 313–324.

20. Bystrov, A.; Kinniment, D.; Yakovlev, A. Priority arbiters. In Proceedings of the 6th International Symposium on Advanced
Research in Asynchronous Circuits and Systems (ASYNC 2000), Eilat, Israel, 2–6 April 2000; pp. 128–137. [CrossRef]

21. Beerel, P.A.; Roncken, M.E. Low Power and Energy Efficient Asynchronous Design. J. Low Power Electron. 2007, 3, 234–253.
[CrossRef]

22. Turko, T.; Uhring, W.; Dadouche, F.; Fesquet, L. An Asynchronous Fixed Priority Arbiter for High througput Time Correlated
Single Photon Counting Systems. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 765–768.

23. Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 128 120 dB 15 µs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J.
Solid-State Circuits 2008, 43, 566–576. [CrossRef]

http://doi.org/10.1109/JSEN.2015.2483565
http://doi.org/10.1098/rsta.2013.0100
http://www.ncbi.nlm.nih.gov/pubmed/24567470
http://doi.org/10.1038/s41377-019-0191-5
http://doi.org/10.1109/JSTQE.2014.2344034
http://doi.org/10.1016/j.sna.2007.06.021
http://doi.org/10.3390/s16040459
http://www.ncbi.nlm.nih.gov/pubmed/27043569
http://doi.org/10.1109/JSEN.2020.3038487
http://doi.org/10.1016/j.nima.2018.10.204
http://doi.org/10.1080/09500340108240899
http://doi.org/10.5772/intechopen.72273
http://doi.org/10.1109/jssc.2020.2993722
http://doi.org/10.1109/TCSI.2020.2997358
http://doi.org/10.1109/iscas.2011.5937940
http://doi.org/10.7873/date.2013.079
http://doi.org/10.1109/async.2000.836990
http://doi.org/10.1166/jolpe.2007.138
http://doi.org/10.1109/JSSC.2007.914337

Sensors 2021, 21, 3949 16 of 16

24. Niclass, C.; Favi, C.; Kluter, T.; Gersbach, M.; Charbon, E. A 128 × 128 Single-Photon Image Sensor With Column-Level 10-Bit
Time-to-Digital Converter Array. IEEE J. Solid-State Circuits 2008, 43, 2977–2989. [CrossRef]

25. Sutherland, I.E. Micropipelines. Commun. ACM 1989, 32, 720–738. [CrossRef]
26. Nowick, S.M.; Singh, M. High-Performance Asynchronous Pipelines: An Overview. IEEE Des. Test Comput. 2011, 28, 8–22.

[CrossRef]
27. McGee, P.B.; Agyekum, M.Y.; Mohamed, M.A.; Nowick, S.M. A Level-Encoded Transition Signaling Protocol for High-Throughput

Asynchronous Global Communication. In Proceedings of the 2008 14th IEEE International Symposium on Asynchronous Circuits
and Systems, Newcastle Upon Tyne, UK, 7–10 April 2008; pp. 116–127.

28. Naqvi, S.R.; Steininger, A. A Tree Arbiter Cell for High Speed Resource Sharing in Asynchronous Environments. In Proceedings
of the Conference on Design, Automation & Test in Europe; European Design and Automation Association, Leuven, Belgium, 24
March 2014; pp. 1–6.

29. Miorandi, G.; Bertozzi, D.; Nowick, S.M. Increasing Impartiality and Robustness in High-Performance N-Way Asynchronous
Arbiters. In Proceedings of the 2015 21st IEEE International Symposium on Asynchronous Circuits and Systems, Mountain View,
CA, USA, 4–6 May 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 108–115.

30. Malass, I.; Uhring, W.; Le Normand, J.-P.; Dumas, N.; Dadouche, F. Efficiency improvement of high rate integrated time correlated
single photon counting systems by incorporating an embedded FIFO. In Proceedings of the 2015 IEEE 13th International New
Circuits and Systems Conference (NEWCAS), Grenoble, France, 7–10 June 2015; pp. 1–4.

http://doi.org/10.1109/JSSC.2008.2006445
http://doi.org/10.1145/63526.63532
http://doi.org/10.1109/MDT.2011.71

	Introduction
	Asynchronous Priority-Based Arbiter Readout System
	Asynchronous Logic Principle
	Micropipeline Circuit
	Handshake Protocols and Data Encoding
	Handshaking Protocols
	Data Encoding Schemes

	Fixed Priority Arbiter

	Design of the Studied System
	Muller C-Element (C-Muller)
	Fixed Priority Arbiter Unit

	VLSI Implementation of the Proposed 16 to 1 Fixed Priority Arbiter
	Tree-Structure of the Proposed 16 to 1 FPA
	Send Units
	Simulation Results
	Physical Implementation

	Experimental Environment, Results and Discussion
	Experimental Setup
	Results and Discussion

	Conclusions
	References

