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Abstract

Omics analyses are powerful methods to obtain an integrated view of complex biological processes,
disease progression or therapy efficiency. However, few studies have compared different disease forms
and different therapy strategies to define the common molecular signatures representing the most
significant implicated pathways. Here, we used RNA sequencing and mass spectrometry data to profile
the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNM),
untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of
dynamin 2 (DNM2), or following modulation of dynamin 2 or amphiphysin 2 (BIN1) through genetic
crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve
CNM molecular signatures. Longitudinal studies before, at and after disease onset highlighted potential
disease causes and consequences. Main pathways in the common CNM disease signature include muscle
contraction, regeneration and inflammation. The common therapy signature revealed novel potential
therapeutic targets including the calcium regulator sarcolipin. We identified several novel biomarkers
validated in muscle and/or plasma through RNA quantification, western blotting and ELISA assays,
including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to

identify molecular signatures common to different disease forms and therapeutic strategies.

Keywords: genetic disease, congenital myopathy, centronuclear myopathy, myotubular myopathy,

XLMTM, MTM1, myotubularin, omics, biomarker, myostatin, RNA interference
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In recent years, omics strategies (e.g. transcriptome, proteome etc.) have become powerful methods to
obtain an unbiased and integrated view of complex biological processes, disease progression or therapy
efficiency 2. Most previous studies focused on a single disease or therapeutic approach. However, omics
have the potential to identify molecular signatures common to different disease forms or to several
therapeutic strategies. Here, we performed omics analyses in mouse models faithfully mimicking
different forms of centronuclear and myotubular myopathies treated or not with different therapeutic
strategies to identify common disease and therapy signatures.

Centronuclear and myotubular myopathies (CNM) are a sub-group of congenital myopathies whose
clinical signs develop around birth. They are rare genetic diseases appearing around birth and with a
strong medical impact on patient survival and quality of life >*. CNM are characterized by generalized
muscle weakness and hypotonia impairing breathing capacity °. Histological hallmarks of patients’
muscle include the presence of internal or central nuclei that are normally at the fiber periphery,
aggregation of oxidative staining, hypotrophy of myofibers that also present with a rounder shape,
predominance of oxidative type I fiber, and structural disorganization of sarcomeres and triads °. Several
genes were found mutated in different forms of CNM. The most common and severe form, X-linked
CNM which is also called myotubular myopathy (MIM#310400), is due to loss-of-function mutations in
MTMI coding for the lipid phosphatase myotubularin 7. Dominant forms are linked to mutations in
DNM?2 (MIM#160150) coding the large GTPase dynamin 2 implicated in membrane trafficking and
fission 3. Some DNM?2 mutations lead to a neonatal form, such as the Ser619Leu missense mutation,
while others are associated with later onset > '°. Recessive and dominant forms are also due to mutations
in BINI (MIM#255200), coding for the membrane curvature remodeling protein amphiphysin 2 ' 12,
These three forms represent the main forms of CNM. Nevertheless, additional genes are implicated in
phenotypes overlapping with CNM such as RYR1, TTN, SPEG, CACNAILS or PYROXDI >3-4, SPEG is
linked to CNM with cardiomyopathy, while the histopathology associated with the other genes combines

internal nuclei with additional defects such as cores or protein inclusions.
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Previous studies in cellular and animal models and in patients” muscle biopsies for the canonical CNM
forms suggested several pathomechanisms in skeletal muscle, including defects in triad structure and
deficient excitation-contraction coupling, altered organelle positioning and function, abnormal

neuromuscular junction (NMJ), deficient satellite cells, and dysregulation of autophagy * 1317,

Defects in the genes implicated in the three canonical CNM forms were modelled in vivo in different

1718 In addition,

organisms, ranging from yeast, C. elegans, drosophila, zebrafish and mouse
spontaneous mutations in either MTMI or BINI were found in dogs developing CNM %2, In mice, the
MtmI™ knockout mouse develops a progressive myopathy with a histopathology mimicking patient
hallmarks 2. Additional M#m1 knockout lines were generated and showed a similar phenotype, while the
MtmIRY knock-in led to a milder phenotype 2*2°. Concerning Dnm2, knock-in mice for the most

common mutations in the mildest form (Argd65Trp; Dnm2RW"

) or the severe neonatal form
(Ser619Leu ; Dnm2%Y*") were generated and reproduce a mild or severe muscle weakness, respectively,
with CNM-like histopathology without centralized nuclei >”-2%. For Bin1, full loss of BIN1 in Binl”" mice
is perinatally lethal, preventing the comparison with the other CNM models > *°. We recently created a
mouse model with a skeletal muscle specific Bin/ deletion that is viable and faithfully reproduces the
decreased muscle force and most histopathological hallmarks of CNM (Bini™~; unpublished). Here,
we focus on omics analysis of MtmI1™, Binl™*", Dnm25“" mice, since they represent faithful models

for the three canonical CNM forms and the mice share a similar skeletal muscle organization with
patients.

Several therapeutic proof-of-concepts were recently validated in different CNM models, including the
three CNM mice investigated here !7. Adeno-associated virus (AAV) transduction of MTM1 or its closer
homolog MTMR?2 rescued the MtmI™Y mouse, and AAV-MTM1 was further validated in the MTM1
Labrador model and recently injected in patients in a clinical trial 3!*3. Downregulation of DNM2 level

were found increased at least in MtmI™Y mice and MTM1 patients, whereas normalization of DNM2



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

level rescued the Mtm 1™ mouse, the Binl”" and Binl"*" mice, and both Dnm2®V'"* and Dnm2%Y" mice
28,3436 DNM2 was reduced through three methods : genetic cross with a Dnm2" mouse, shRNA, or
antisense oligonucleotides 3* 3738, Overexpression of BIN1 through genetic cross with a TgBINI mouse
or AAV-BINI expressing human BINI rescued MtmI™¥ and Binl”" mice *°. In addition, treatment with
tamoxifen, an estrogen modulator already used in clinic for breast cancer, partially rescued the MtmI™
mouse, potentially representing a drug repurposing strategy ** #!. Additional potential therapies have
been tested in mice and other CNM models, and include Dnm?2 allele-specific silencing or trans-splicing,

Pik3c2b downregulation, mTOR or acetylcholine esterase inhibitors 7.

To identify the main pathomechanisms, potential biomarkers and novel therapeutic targets for different
forms of CNM, we performed transcriptome and proteome analyses of muscles from Mtm 1™, Binl"*"

and Dnm2SY*

mice either developing the disease or treated with 3 different therapies including two
methodological approaches for one of the targets. We identified disease and therapeutic molecular

signatures common to the three main forms of CNM.

Results

Animal models, treatments and omics strategies

In mice, muscle embryonic development proceeds from E10.5 to birth that happens at about E19 *?. Then,
muscle growth during postnatal maturation follows 2 phases: one based on satellite cells fusion up to 2-
3 weeks (w) and a second based on growth factor signaling from weaning (around 3 w of age) to
adulthood at 7 w (Figure 1a) *>*. Mtm 1™ mice develop a progressive myopathy from 2-3 w leading to
a strong muscle hypotrophy and decreased locomotor activity, and death by about 8 w. BinI™*" mice
have near normal locomotor activity and decreased muscle force at 8 w. Dnm25Y" mice have some
feeding defects at birth correlating with decreased body weight, strong muscle atrophy and decreased

locomotor activity, and survive in adulthood. All these mice have CNM-like histopathology by 7-8 w.
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Based on the key steps of muscle maturation and on the disease progression in the different models, we
performed RNAseq for transcriptome analysis in tibialis anterior (TA) muscle from the 3 CNM mice at
7 w. In addition, RNAseq was done at E18.5 and 2 w for a longitudinal follow-up of M#m1™ mice. Mass
spectrometry for proteome analysis was performed in TA at E18.5, 2 w and 7 w for a longitudinal follow-
up in Mtm1~" mice (Table S1).

Several therapeutic approaches were applied to MtmI™ mice and consisted of either BINI
overexpression by crossing with TgBINI mice (Mtm1*TgBIN1), tamoxifen supplementation in food, or
DNM2 downregulation by crossing with Dnm2*" mice (Mtm1*Dnm2*")(Figure 1b; Table S1). DNM2
was also downregulated with another method, systemic injection of antisense oligonucleotides (ASO
Dnm?2), in Binl™*" and Dnm2%“* mice and compared to injection of PBS or control ASO. All these
treated cohorts were analyzed by RNAseq in TA at 7 w and compared to the above untreated mice. In
addition, RNAseq and mass spectrometry of TA from MtmI7*Dnm2""- mice was performed at E18.5, 2

w and 7 w. Muscle samples were obtained from our previous studies reporting therapeutic efficacy 2% 3

39,40
In addition, in order to identify dysregulated muscle proteins that are potentially circulating, mass
spectrometry was performed in sera from WT mice at 7 w and compared with the above muscle

transcriptome and proteome data.

Influence of the genetic and environment backgrounds

To assess the impact of the genetic background and animal housing on the transcriptome, we analyzed
different RNAseq data from different cohorts of the same M#mI™ mouse line on different genetic
backgrounds and raised in different animal houses. Four different cohorts were evaluated (Table 1):
cohort MTM1-a was crossed on the 129Pas background and bred in France, cohort MTM1-b was on a

50% 129Pas and 50% C57BL/6N background and raised in the same animal facility in France, cohort
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MTMI1-c was raised in Switzerland on the 129Pas background, and cohort MTM1-d was bred in Canada
on a C57BL/6J background. Muscles used for transcriptomics for the first three cohorts were TA analyzed
at 7 w. The transcriptome for cohort MTM1-d was previously published and done from quadriceps at 5
w . We compared differentially expressed genes between MtmI™ and WT mice for the different
cohorts. The threshold used to define dysregulated genes was set at Log2FC+/-1 and p-value <0.05. The
number of dysregulated genes in MtmI™¥ mice ranged from 1275 to 1981 (Figure 2a). A total of 287
genes were found commonly dysregulated across the different cohorts. These genes correspond to the
disease signature following MTMI loss, and their expression is not impacted by any environmental or
housing parameters, the genetic background, or the muscle analyzed (Table S2). As expected, the most
divergent transcriptome was from cohort 4 that differs from the other cohorts by both the genetic
background and the muscle, as 56% of dysregulated genes are specific to this cohort versus 23 to 33%

for the other cohorts.

All the common dysregulated genes followed the same trend in the different cohorts. We found 67
common genes were downregulated and 220 common genes upregulated. Gene ontology (GO) analysis
revealed an enrichment for muscle development and contraction, cell adhesion and immune cells (Figure
2b). The most upregulated protein coding genes were Sox11, Krt18, Mt3, Msin, Hsf2bp and Fosli, and
the most downregulated were Mstn, Cdh4, Edn3, Mtml, Ighm, Faml9a4, Nt5cla and Amdl (Table 2).
We thus report the disease signature for MTMI1-CNM that is independent of the genetic and

environmental backgrounds in mice.

Conserved disease signatures linked to MTM1 mutations among species
We next explored the conservation of the disease signature linked to MTMI1 loss in different species. In
human (Biceps brachii or quadriceps), Noguchi et al. performed microarray analysis on a set of 4200

genes previously known to be expressed in skeletal muscle from 8 patients with different MTM]I
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mutations *°. 183 genes were significantly dysregulated compared to unaffected individuals. Of note,
MTM]I was not reported dysregulated in this study. In dog, Dupont et al. used RNAseq to analyze two
hindlimb muscles from Labradors lacking MTM1 #¢. They found 824 and 1122 genes differentially
expressed in the Biceps femoris and the Vastus lateralis respectively, with 400 genes dysregulated in both
muscles. Here, we used the 632 genes that we identified in the RNAseq analyses conducted in Mtm1™
mouse cohorts MTM1-a, MTM1-b and MTM1-c at 7 w (Figure 2a and Table S3).

Interspecies analysis revealed 5 differentially expressed genes shared by mouse, dog and human (Figure
2¢). Among them, CHRND and CHRNA1 coding for two subunits of the acetylcholine receptor in the
NMJ were upregulated (Figure 2d). MYOG (myogenin), coding for a transcription factor key in muscle
differentiation was upregulated in dog and mouse and downregulated in human. POPDC3 was
upregulated in human and mouse and downregulated in dog, is also implicated in muscle development,
and was found mutated in limb-girdle muscular dystrophy *’. The majority of the dysregulated genes
were specific to each species, therefore we analyzed them by GO enrichment and it revealed a few
processes that might be species dependent, as hemostasis dysregulation in human or specific impact on
kinase pathways in dog (Figure S1 and Table S4).

As the human data was based on microarray analysis of only a subset of genes, additional comparisons
were done between dogs and mice and identified 63 additional genes dysregulated (Vastus Lateralis vs
Tibialis anterior) (Figure 2c and Table S5), or 49 genes (Biceps Femoris vs Tibialis anterior)(Figure S1;
Table S6). GO terms related to these genes were highly enriched in muscle development (Figure 2e).
Among these genes, Chrnal, Chrnd and Chrng highlight the NMJ, and Myog and Pax7 the
transcriptional regulation of muscle differentiation and regeneration. Other examples confirmed by RT-
qPCR included downregulation of Mstn (myostatin), a ligand of TGF receptor involved in muscle
growth, and upregulation of Fist (follistatin), coding for an inhibitor of myostatin (Figure 2f). We found

upregulation of Igfbp2, coding an insulin-like growth factor-binding protein potentially involved in
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muscle differentiation and hypertrophy. Cilp was upregulated and codes for a regulator of IGF1 (insulin-
like growth factor type 1) and TGFp signaling. Genes coding for potential regulators of the Racl-actin
pathway, Tiam2 and Arhgap36, were also upregulated.

Overall, defects in muscle development and the NMJ appear conserved in mouse, dog and human with
MTMI1-CNM. The more detailed investigations in mouse and dog highlighted additional pathways of
interest such as muscle growth and repair.

Longitudinal molecular profiling of Mtm I~ mice through disease progression

Several pathways were identified in the MTM1-CNM disease signatures at an age when mice, dogs and
patients are strongly affected. To define the primary molecular causes versus consequences of the disease,
we performed longitudinal analyses of the transcriptome and proteome of TA muscles from Mtm 1™ mice
at pre-symptomatic age (E18.5), early (2 w) and late (7 w) disease stages (Figure 1a). We used the cohort
MTM1-a, including untreated MtmI™ mice, MtmI1™ mice rescued by Dnm2 genetic downregulation,
treated and healthy Mtm 1Y Dnm2*" mice, and their WT littermates (Table S1).

Principal component analysis (PCA) on transcriptome data showed that age explains most of the variance
between the mouse groups as underlined by the first principal component (PC1 58%, PC2 13%, PC3 5%
variance; Figure 3a and Figure S2). Separation of the genotypes appeared at PC4 (4% variance).
Interestingly, this separation appeared at 2 w and increased at 7 w. No genes were significantly
dysregulated at E18.5, indicating no difference between genotypes at late embryonic stage. A total of
1175 genes were dysregulated at 2 w and 1981 at 7 w (Figure 3b and Table S7). Potential disease causes
found at 2 w are defects of muscle contraction, sarcomere organization and cell adhesion (GO term
analysis; Figure 3b; Figure S3). Disease consequences found only at 7 w highlighted activation of the
inflammation pathway, suggesting infiltration of affected muscles by immune cells. Volcano plots display
the most dysregulated genes at 2 and 7 w (Figure 3c,d). As examples, the three most upregulated genes

at both ages were Sin (sarcolipin), Krt§ and Krt18 (keratins)(Figure 3c-d). Dysregulation of these and
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other genes was confirmed by RT-qPCR (Figure S4, S5). The downregulation of Mstn, observed in late
disease stage in dogs and mice, was already apparent at the 2 w early stage in mice (Figure 3¢). An
example for sarcomere organization is Ahnak2, whose protein product (AHNAK 2) localizes to Z-line.
Tnnt2 (cardiac troponin) and Myl4 (cardiac myosin light chain) are implicated in muscle contraction,
expressed in embryonic but not adult skeletal muscle and in adult cardiac muscle under normal
conditions, and found upregulated in this myopathy. The cell adhesion was represented for example by
Itga3 (integrin). Genes underlying the activation of the inflammation pathway at 7 w include Cxcll
(chemokine) and 77r2 (Toll-like receptor).

In parallel, PCA was also performed on proteome data and showed that the variance between the mouse
groups is first explained by age (PC1; 39% variance; Figure 4a) followed by genotypes (PC2; 7%).
Similarly to the transcriptome data, the genotype separation appeared at 2 w and increased at 7 w,
indicating no difference at E18.5. Out of 1462 proteins consistently detected in each of the muscle
samples, 168 proteins were dysregulated at 2 w and 496 at 7 w in the Mtm1™” mice compared to WT
(Figure 4b and Table S8). Potential disease causes found at 2 w were related mainly to muscle sarcomere
and contraction (GO terms analysis; Figure S6). At 7 w, defects of muscle contraction pathway were
persistent, and at this late disease stage dysregulation of ribosomal biogenesis (translation) appeared. The
transcriptome and proteome data analysis consistently highlighted muscle contraction defects as a main
early sign of the disease. The late dysregulation of ribosomal biogenesis may reflect a compensatory
mechanism following alteration of protein homeostasis correlated with the strong fiber hypotrophy in
MTMI1-CNM. Examples of dysregulated proteins implicated in muscle contraction include MYH?2
(myosin heavy chain) mutated in a proximal myopathy with ophtalmoplegia (MIM#605337), and
TNNCI (troponin) mutated in dilated cardiomyopathy (MIM#611879)(Figure 4c-e). These proteins
strongly correlate pathways and gene families found through the above transcriptome analysis: MYH2
and MYL4 are myosin heavy and light chains, respectively and TNNT2 and TNNC1 are troponins. All

four proteins are implicated in muscle contraction. Pearson correlation analysis did not underline a high
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correlation between specific genes and proteins at 2 and 7 w (Figure S7), as generally reported in the
literature *%. In conclusion, while the same dysregulated genes/proteins are not necessarily highlighted
by the transcriptome and proteome analyses, the same pathways and functions are consistently defective
in early and late disease stages. Dysregulation in muscle contraction appears to be an early defect in the

MTM1-CNM pathology in mice.

Disease signature common to several CNM forms

Next, we explored whether a common disease signature can unify the different CNM forms linked to
either MTM1, BINI or DNM?2 mutations. First, we compared the levels of these genes/proteins in the
different corresponding models: the Mtm 177, Bin1™*" and Dnm25“* mice (Table 3 and Figure S8). Apart
from the lack of MTM1 and BIN1 proteins in their respective knockout mice, DNM2 was found slightly
elevated (2.2 fold; p=0.057; 2%) in the Dnm25"* mouse. No strong alteration of the level of their RNA
was detected in the corresponding RNAseq data. A slight increase in both BIN1 and DNM2 proteins was

found in the Mm 1™ mice, and DNM2 protein was slightly increased in Binl™*",

Then, dysregulated genes were extracted from each individual cohort at 7 w: cohorts MTM1-a, MTM 1-
b, MTM1-c, cohort BIN1 (BinI”*") and cohort DNM2 (Dnm25“*), and compared to their respective
WT littermates. For each cohort, disease models were well separated from the WT controls on the
principal component 1 of the PCA (Figures 3a, 5a; Figure S9). The number of dysregulated genes
correlated with the severity of the related models at this age: more than 1200 genes for the most severe

MimI™ mouse that does not survive beyond 9 w, 780 genes for the Dnm25“*

mouse with strong
locomotor deficiency, and 308 for the BinI™*"- mouse with a conserved locomotor function. Among the
25494 genes detected in all the different transcriptomes, 155 common dysregulated genes were identified

(Figure 5b and Tables S7, S9, S10, S11, S12, S13). The main cellular component GO terms highlighted

the NMJ, basement membrane, sarcomere and activation of the inflammation pathway, previously

11
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identified as the main pathways dysregulated in the MtmI1™" cohorts (Figure 5c). Thus, the main disease
signature common to the three CNM models underlines defects in sarcomere maturation and function,
and in NMJ maturation as main causes of muscle weakness, and alteration in cell adhesion and basement
membrane as a potential explanation for the altered fiber shape. As previously noted for the MtmI1™
cohorts, a potential increase in the inflammation transcriptome supports the infiltration of immune cells
in the different models. Several genes associated with inflammation were shared between the different
CNM forms as indicated by GO terms linked with macrophages (Figure 5¢). Since inflammation was not
previously demonstrated in CNM models, we labelled macrophages with an anti-CD68 antibody on TA
muscle sections. We found a significant increase in macrophage infiltration in the 3 CNM mouse models
(Figure 5 d,e).

RT-gqPCR analyses confirmed the dysregulation of all the 14 genes tested in the three different mouse
models (Figures S10, S11, S12). In particular, the common CNM disease signature encompassed genes
coding for myosin (MYL4) and troponin (TNNT2) for sarcomere organization and contraction,
acetylcholine receptor subunits (CHRNA1, CHRNA9, CHRND), the SOX11 and MYOG transcription
factors, the calcium regulator sarcolipin (SLN), myostatin and follistatin, and several proteins further
studied below (ANXA2, SI00A4, CILP, FETUB, SERPINBIA, IGFBP2)(Figure 5f). Genes specifically
dysregulated in each CNM forms have been analyzed by GO enrichment and revealed some specific
features as hemostasis defect in the BIN1 cohort, or cardiac and lipid metabolism for the DNM2 cohort,

which remain to be further explored (Figure S13 and Table S14).

It is interesting to note that orthologs of several genes in the common disease signature were previously
associated with neuromuscular diseases: LMNA in Emery-Dreifuss muscular dystrophy and KLHL40 in
nemaline myopathy, CHRNA 1 and CHRNAD for myasthenic syndrome, HSPB1 and PDK3 for Charcot-

Marie-Tooth peripheral neuropathy. Overall, the main defective pathways found in the MTM1-CNM

12
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models are also altered in the BINI-CNM and DNM2-CNM models, revealing the existence of a
pathomechanism common to most CNM forms.

Therapy signature common to several rescuing approaches for different CNM forms

The transcriptome responses to different treatments of these three CNM mouse models was assessed in
TA muscle at 7 w. Mtm1™ mice were treated with the drug tamoxifen (cohort MTM1-c), or following
genetic crosses with mice either overexpressing human BIN1 (cohort MTM 1-b; Mtm1¥TgBINI) or with
Dnm2 downregulation (cohort MTM 1-a; Mtm 1™ Dnm2*")(Figure 1b). A different methodology to reduce
DNM2, systemic injection of ASO Dnm2, was used to treat Bin1™*"~ (cohort BIN1) and Dnm25Y* (cohort
DNM2) mice. All these therapies improved the phenotypes of the different disease models (3334340 and
unpublished for BinI™*"). In each cohort, 4 groups were studied: treated (=rescued) and untreated CNM

disease models and treated and untreated WT controls.

PCA showed that untreated and treated WT controls cluster together, suggesting treatments had no
general effects on WT mice (Figures 6a,3a and Figure S9). For example, only 112 genes were
dysregulated in tamoxifen-treated WT mice, while Dnm2 was indeed found downregulated together with
15 other genes in WT treated with ASO Dnm?2 (Table S12). The transcriptome of tamoxifen treated
Mitm1™" mice was similar to that of diseased M¢mI1™" mice, suggesting that tamoxifen did not have a
strong transcriptional effect. Genetic downregulation of Drm2 in Mtm1™Dnm2*" led to a partial rescue
of the transcriptome of Mm 1™ mice. Analyzing in Mtm1™ Dnm2*" mice over time, we found a partial
rescue of 255 genes over 1175 genes dysregulated in MtmI™ mice at 2 w, and 725 genes over 1981
dysregulated genes at 7 w disease stage (Figure 6b and Table S7). Myh3, Myh8 and Sin are among the
best normalized genes at 2 w. Acute downregulation of Dnm2 with ASO Dnm?2 in both Binl"™* and
Dnm25Y* mice also partially rescued their transcriptomes (Figure 6a). Genetic overexpression of BIN]
in MtmI17¥TgBINI normalized the transcriptome to a WT level. As a metric to compare the molecular

efficacy of the different therapies, we calculated the ratio of the number of genes dysregulated in the
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rescued group versus the disease group over the number of genes dysregulated in the disease group versus
the WT control; in other words, the ratio of the therapy signature over the disease signature. The
percentage of rescued genes was 0.5% for the MTM1-c cohort (tamoxifen), 36% for the MTM1-a cohort,
43% for the DNM2 cohort and 47% for the BINI cohort (Dnm2 downregulation), and 96% for the
MTM1-b cohort (BIN1 overexpression; 1680 genes on 1745). Overall, BIN1 overexpression appears to

be the most efficient therapy to normalize the transcriptome defects of CNM in mice.

To determine the common therapy signature, we compared the transcriptome of the rescued mice versus
the transcriptome of the diseased mice for all cohorts except the MTM1-c cohort as tamoxifen treatment
had no strong transcriptomic impact. We found 42 genes defining the therapy signature common to all
therapies in all CNM forms and that were retrieved in the disease signature for most of them (Figure 6b
and Tables S9, S15). Comparison of the rescued versus WT transcriptomes identified no genes in
common that were resistant to all different therapies tested. The expression levels of several of these 42
genes was confirmed by RT-qPCR (Figure 6¢ and Figures S4, S5, S10, S11, S12). Depending on the
cohorts, expression of these genes was partially or fully rescued upon treatment. For example, Anxa2
expression was not rescued in the MTM 1-a cohort (Mtm1™" Dnm2*), while Cilp, Fetub and Igfbp2 were
all dysregulated in the different diseased models and their expression rescued to WT level following any

treatments.

The proteins corresponding to these 42 genes of the common therapy signature could represent novel
therapeutic targets. To help pre-selecting the best candidates, we retrieved the 35 corresponding human
orthologs and interrogated a drug database (http://drugcentral.org)(Figure 6d). Two proteins (SCNS5SA,
SBK3) appeared directly targeted by several drugs, like the antiarrhythmic quinidine for the SCN5A
sodium channel, or nintedanib, an inhibitor of SBK3 and tyrosine kinases used for pulmonary fibrosis

and cancer. Other therapeutic targets that were dysregulated in a majority of cohorts include myosins,
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troponins, myostatin or acetylcholine receptor subunits, for which in vivo modulation methods were

already validated for other diseases.

Taken together, comparison of the three CNM models and several therapies underlined a common disease
signature and a common therapy signature indicating potential therapeutic targets and biomarkers to

follow disease severity or progression and therapy efficacy.

Identification of muscle and circulating biomarkers correlating with disease and therapy

To identify potential circulating biomarkers of disease state and therapy efficacy, we compared the list
of genes in the disease signature and the therapy signature with proteins detected by mass spectrometry
on the serum of WT mice at 8§ w (Table S16), with public databases listing proteins detected in different
fluids in human and mouse (GTEx, BioGPS, Illumina, GXD), and with the literature (Figure 7a). The
following proteins were selected: ANXA2, CILP, FETUB, IGFBP2 and MSTN. To identify the best
biomarkers, they were further screened by RT-qPCR, western blotting and ELISA in muscle and in
plasma. The levels of all these RNAs were altered in the disease state and responded to the therapies in
the 3 CNM mouse models, as validated by RT-qPCR in muscle (Figure 6c¢; Figures S4, S5, S10, S11,
S12). ANXA2, FETUB and CILP proteins were found dysregulated in muscle from some or all CNM
models by western blot (Figure 7b and Figure S14). For example, Anxa2 (ANXA2) was significantly
upregulated in muscles from 7 w old Mtm1™", BinI™*" and Dnm25“* mice at both RNA and protein
levels, and its RNA was found already upregulated, albeit to a lesser extent, at 2 w in MtmI™ mice (2

fold at 2 w and 2.46 fold at 7 w).

Concerning circulating biomarkers, ELISA assays confirmed the presence of ANXA2, CILP, IGFBP2
and MSTN in the plasma from WT mice, as previously detected in serum by mass spectrometry (Figure
7c¢). Unlike in muscle, CILP levels in plasma were not changed in any CNM mouse models. Interestingly,

the plasma level of IGFBP2 was significantly increased in MtmI™ mice. The alteration of Igfbp2 RNA
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levels in the Mtm 1™ muscle increased with age and disease progression, from 6 fold at 2 w (early disease
stage) to 17 fold at 7 w (late disease stage). To assess if circulating IGFBP2 is a biomarker common to

several CNM forms, ELISA assays were performed in Binl™*"- and Dnm25"*

plasma at 7 w. The level
of IGFBP2 was changed only in M#m 1™ mice, suggesting it could be a biomarker specific to the MTM1-
CNM form. Similarly, dysregulation of plasma protein content of ANXA2 and MSTN was revealed by
ELISA, specifically for the BINI-CNM or MTM1-CNM models respectively. In both cases, these
biomarkers responded to the therapies. The increase in ANXA2 plasma protein content in BinI™*" mice

was normalized upon DNM2 decrease with ASO DnmZ2. The strong decrease in MSTN plasma protein

content in Mtm 1™ mice was normalized upon BIN1 overexpression.

Overall this screening strategy, from RNAseq based discovery, to RT-qPCR and western blot in muscle,
and to ELISA in plasma, discovered ANXA?2 as a muscle biomarker for several CNM forms and CILP
and FETUB for specific CNM forms. IGFBP2, ANXA2 and MSTN were found as circulating biomarkers

for specific CNM forms, and ANXA2 and MSTN plasma levels responded to the therapies.

Discussion

We performed a multi-omics meta-analysis of centronuclear myopathies through the comparison of
mouse models for the three main CNM forms and the comparison of three therapies with different targets.
We identified disease signatures for MTM1-CNM conserved in different genetic and environmental
backgrounds and in different species (mouse, dog, human). Longitudinal transcriptome and proteome
analysis of MtmI™ mice suggested early causal pathomechanisms and late compensatory adjustments.
A disease signature common to the three CNM forms was defined, suggesting a common
pathomechanism for CNM independent of the mutated genes. Comparison of the molecular effect of the
different therapies revealed a correlation between the molecular normalization and the phenotypic rescue.

In addition, novel potential therapeutic targets were suggested. Further molecular and biochemical
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investigations identified several biomarkers for disease state and therapy efficacy in muscle (RNA,

proteins) and in plasma.

Pathomechanism of centronuclear myopathies

We compared the muscle transcriptomes of the MtmI™, Binl™*" and Dnm25Y" mice faithfully
reproducing the muscle weakness and histological hallmarks of the three main CNM forms 2% %°. The
overall transcriptomes easily distinguished the CNM models from their WT littermates.

For MTM1-CNM, to identify the specific disease signature independent from the genetic backgrounds
or environment, we increased data heterogeneity by characterizing several MtmI™ groups on 129Pas,
C57BL/6J or mixed backgrounds bred in different animal houses, and then focused on the common
transcriptome dysregulation. Next, this signature was compared to available transcriptome data from one
MTMI canine model and to a partial microarray analysis (4200 genes) of patient muscle biopsies ** 6.
Our conclusions were supported by previous findings. Dysregulation of NMJ components (CHRNAI,
CHRND, CHRNG) were recently reported in the MTM1 dog and alteration of NMJ function was
suggested in a mtm I knockdown zebrafish and in Mtm I mouse models **3% 5!, We found a high increase
in Sln expression in the three CNM mouse models, and upregulation of SIn was previously reported
following microarray analysis of the Mtm ™Y mouse *°. In addition, longitudinal analyses of the muscle
transcriptome and proteome of MtmI™ mice at pre-symptomatic (E18.5), early (2 w) and late (7 w)
disease stages highlighted the same dysregulated pathways, although the same dysregulated
genes/proteins were not necessarily found (Figures 3, 4). These ages were chosen to potentially
distinguish between early causes of the disease and late consequences or compensatory mechanisms.
Further functional investigations are needed to confirm their causality. In addition, the proteome analysis
only covered the most abundant proteins. For example, BIN1 and DNM2 were not detected in the muscle
proteomes. However, BINI and DNM2 proteins were both increased in M#m1™ mice using specific

antibodies by western blot (Table 3)** % Interestingly, we recently showed that the M#m 1™ mice can be
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rescued by either decreasing DNM2 or increasing BIN1 37-%°

, strongly supporting the idea that DNM2
increase is a disease cause while BIN1 increase is a compensatory mechanism.

The comparison of the Mtml1™”, Binl™*" and Dnm25Y" muscle transcriptomes revealed a common
disease signature, encompassing sarcomere organization, muscle contraction, muscle development and
cell adhesion. All these pathways were already the main ones found dysregulated at 2 w in M¢m 1~ mice,
supporting the hypothesis that their dysregulation represents the main pathomechanism for all CNM
forms (Figures 3, 4, 5). In addition to these pathways, inflammation activation (transcriptome) and
ribosomal biogenesis (proteome) were found only at 7 w suggesting that their dysregulation is a
consequence or a response to the disease state. Based on these data and on the knowledge that the three
CNM proteins regulate membrane remodeling, we propose a model for the pathomechanism of CNM.
Alteration of the triad membrane structure would lead to impaired calcium signaling and defective
muscle contraction, explaining the strong muscle weakness and hypotonia seen in patients. The myofiber
hypotrophy seen in patients and mouse models correlates with alteration of muscle development and
regeneration RNA markers, and may be related to dysregulation of IGF modulators as IGFBP2 or/and to
the reported decrease in satellite cells in patients 2. The strong myofiber hypotrophy would then trigger
a later adaptation on protein homeostasis, as underlined by the increase of the ribosome biogenesis genes
found only at 7 w. Indeed, defects of protein homeostasis correlate with the alteration of autophagy and
the ubiquitin-proteasome pathways found in M#m 1™ mice 2* 3> 5%, In parallel, a primary defect in cell
adhesion would impact the basement membrane and mechanotransduction and may explain defects in
muscle contraction and also the altered fiber shape found in patients and mice. This is in agreement with
the accumulation of integrins in Mtml™ mouse and patient myofibers, and with the proposed link
between MTM 1 and beta integrin recycling *-3% 36, The observed increased in interfiber space, together
with the alteration of muscle regeneration, would cause the late increase in genes implicated in
inflammation activation. As we detected a significant increase in RNA markers of inflammatory cells

while performing whole tissue RNAseq, we conclude there is a significant infiltration of inflammatory
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cells that was confirmed by immunofluorescence labelling and quantification (Figure 5d-e). An
inflammatory component was not previously reported for CNM but is common in dystrophies >’.
Furthermore, the dysregulated pathways found here were barely underlined previously in the other CNM
forms linked to BINI or DNM. Overall, although some of these pathways were previously found altered
in MTM1-CNM, these omics analyses allowed to obtain a more complete and detailed overview of the
pathomechanisms and extend it to several other CNMs. The GO term analysis of the common disease
signature identified here for different CNM forms mostly reflects general muscle dysfunction and
compensatory mechanisms put in place by the myofibers to cope with these defects, and thus highlights
pathways also dysregulated in a large number of muscle diseases. However, differences appear when
looking at the gene level that may reveal plasticity to impact or compensate the main muscle pathways
depending on the sub-class of myopathies and on the primary genetic defect.

To a greater extent, we found several genes mutated in different neuromuscular diseases in the common
CNM disease signature. Notably, LMNA is mutated in Emery-Dreifuss muscular dystrophy and the
encoded protein lamin A/C regulates nuclear envelope stability (MIM#181350, 616516) . Of note,
lamin A/C and BIN1 both bind the LINC complex that regulates nuclear shape and positioning and BIN1 -
CNM patients have an altered nuclear envelope structure *°. KLHL40 is mutated in another congenital
myopathy and is a substrate adaptor for the E3-ubiquitin ligase Cullin-3 (MIM#615348) %% 6!_ Similarly,
MTMI1 binds the Cullin-3 partner UBQLN2 and MTM1-CNM is linked to defects in the ubiquitin-
proteasome pathway >*. Several dysregulated genes in all CNM models are mutated in cardiomyopathy :
SCN5A (MIM#601154), TNNT2 (MIM#601494) and MYL4 (MIM#617280). In addition, MYH2 and
TNNCI1 found upregulated in the proteome of 2 w Mtm 1™ mice are also mutated in a proximal myopathy
(MIM#605637) or a cardiomyopathy (MIM#611879), respectively. Such findings are commonly
observed in myopathies where upregulation of genes usually expressed in embryonic muscle or adult

cardiac muscle are re-expressed in the affected skeletal muscle. Finally, CHRNAI (MIM#601462) and
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CHRND (MIM#616322) are mutated in congenital myasthenic syndromes, correlating with the defect in

NMJ found in MTM1-CNM models >% 3% 62,

Common therapeutic targets for centronuclear myopathies

We compared here three therapies involving three different targets in MTM1-CNM models, BIN1
overexpression, tamoxifen treatment and DNM?2 regulation, and two methodologies for the latter target.
For the first time, this allows a molecular comparison of the different therapies for CNM. BIN1
overexpression appears to be the most efficient therapy to normalize the molecular defects. The
percentage of rescued genes varies greatly with 96% for BIN1 overexpression, 36% for DNM?2
downregulation and 0.5% for tamoxifen in the MTM1-CNM mouse model. In the AAV-MTMI treated
dogs, the percentage of rescued genes was 52% and 43% depending on the muscles analyzed “¢. These
findings highlight a correlation between the phenotypic and molecular rescue, as modulations of either
MTMI, BIN1 or DNM2 improved the lifespan, locomotor and histological phenotypes very efficiently,
while tamoxifen treatment resulted in a partial increase in lifespan and a significant amelioration of the
histopathology, although to a lesser extent than with genetic crosses !7-3!: 3% 373941 " Ag a potential
explanation to the different rescue efficiency of the transcriptome dysregulation, BIN1 may directly
modulate the general transcription program in a disease context, while MTM1 and DNM2 may directly
impact on the cellular (proteins, membrane) defects. Indeed, BIN1 binds the transcription factor MYC
and can shuttle between the cytoplasm and the nucleus in muscle cells %% Of note, BIN1 overexpression
was achieved through genetic cross and is thus chronic from embryogenesis, while AAV-MTMI1 and
tamoxifen treatments are postnatal. However, transcriptomes comparison between chronic (Dnm2*
genetic cross for MTM1-a) and acute DNM2 downregulation (ASO Dnm2 injection for DNM2 and BIN1
cohorts) showed similar percentages of rescued genes: 36% in MTMI1-a, 43% in DNM2 and 47% in
BIN1 cohorts (Figure 6). The rescuing effect of tamoxifen treatment is not based on transcriptome

remodeling but might directly involve membrane and protein functions.
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We evaluated the toxicity of the different therapies used in this study by comparing the WT treated versus
WT mice. Treatment of WT mice did not show a strong impact on the transcriptomes, while it was not
reported in AAV-MTMI treated dogs. For example, injection of ASO Dnm?2 decreased Dnm?2 expression
but had few off-targets. No detectable phenotypic toxicity were observed in the treated WT mice.
However, in human, even if the same gene will be targeted (either BIN1 or DNM2), the therapeutic
compound and formulation may differ and the delivery method and corresponding dose will change.
Here, for BIN1 overexpression we used the human cDNA while for DNM2 downregulation we used
antisense oligonucleotides specific to the mouse Dnm2 gene. We also detected the expected
overexpression of the human BIN/ gene in the MTM1-b cohort. BIN1 overexpression only changed the
expression of three genes in the treated WT mice (Figure S9), while rescuing most transcriptome
dysregulation in the MtmI™ mice, suggesting this therapy modulates the transcriptome mainly in a
disease context (i.e. normalization).

The present data revealed several potential targets that were not directly targeted in the experiments (i.e.
not MTMI1, BIN1 nor DNM2). Genes of interest are expected to be dysregulated in disease and
normalized upon efficient therapies, i.e. part of the therapy signature. In addition, known drugs targeting
these gene products may be an asset, as it will allow drug repurposing and a faster clinical development.
Several genes coding for subunits of the acetylcholine receptor are dysregulated. In particular
acetylcholine esterase inhibitors used in clinical trial to treat myasthenic syndromes were tested with
some success in different CNM forms ®2. Scn3a is also found upregulated in the disease signature and
normalized in the therapy signature, and encodes a subunit of the sodium channel that can be inhibited
by quinidine, a stereoisomer of quinine. Mstn encoding the myokine myostatin, an inhibitor of muscle
growth, is significantly decreased in disease models of all cohorts except the Binl"*" mouse (Log2FC
= -0.6 while our threshold was -1). Inhibitors of myostatin are being tested in the clinic for other muscle
diseases, and one of them (ActRIIB-mFc) showed only a very mild amelioration of the Mtm IR knock-

in mouse %. The mild amelioration can be explained by the fact that myostatin is already strongly
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decreased in the disease state and thus could hardly be better suppressed ®’. Sin encoding the calcium
regulator sarcolipin is strongly upregulated in disease models of all cohorts except the MTM1-c cohort.
Reducing sarcolipin expression through genetic cross or shRNA improved Duchenne muscular
dystrophy phenotypes in mice °%. As a last example, myosins and troponins also meet these criteria and
are targeted by several pharmacological regulators that may improve the muscle contraction defects of
CNM. Indeed, all discussed modulations should be first validated in laboratory models, as it is unclear if

dysregulation of some pathways are disease causing or compensatory.

Potential biomarkers for disease progression and therapy efficacy

We developed a strategy to identify potential biomarkers, combining RNAseq, RT-qPCR and western
blotting in muscle with mass spectrometry and ELISA assays in blood, supported by database and
literature mining. The validity of these biomarkers for monitoring disease progression and therapy
efficacy has to be confirmed in human samples. This will require muscle and blood sampling of untreated
and treated patients with different CNM forms together with adequate aged-matched controls. We found
that Mstn RNA level is strongly decreased in Mtm 1™ and Dnm25Y* mice and to a lesser extent in Bin1"*
” (Log2FC=-0.6), and was normalized upon modulation of MTM1, BINI and Dnm2 (Figures S5, S9, S10,
S11) #. In agreement, MSTN was recently found decreased in plasma from MTM1- and DNM2-CNM
patients and responded to ASO Dnm2 treatment in Mtm 1™ mice *°. In addition, MSTN plasma level was
also normalized upon BIN1 overexpression (Figure 7c). ANXA2 is a calcium-dependent phospholipid-
binding protein that has a role in muscle repair ’°, and was validated here as a muscle biomarker for all
the CNM forms that we have tested. ANXA2 was detected in plasma, increased in the Bin"* mouse
model, and normalized upon ASO Dnm?2 injection. Moreover, several reports cited ANXA2 to be a
valuable biomarker in different cancers "> 72,

In particular, these potential biomarkers could be used in clinical trials to monitor the

progression/reversion of the disease or/and efficacy of the therapy. Currently, there are two clinical trials
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ongoing to treat CNM. Firstly, the clinical trial (NCT03199469) for X-linked myotubular/centronuclear
myopathy in patient under 5 years old based on MTM 1 gene replacement using AAV. Secondly, a clinical
trial based on the decrease/normalization of DNM2 with ASO (DYN101) is ongoing in patients with
mutations in MTM1 and DNM?2 over 16 years old (NCT04033159) and is planned for patients between

2 and 17 years old (NCT04743557).

Conclusions

Here, we report the first multi-omics analysis of animal models for several CNM forms, and of the effect
of different therapies allowing to reveal a common disease signature and a common therapy signature.
We determined the global pathological mechanism and deciphered the molecular impact of therapies.
Longitudinal analyses of the treated and untreated MTM1-CNM model highlight potential causes and
consequences of the pathology. In addition, we identified several novel biomarkers detectable in muscle
and/or plasma through different validated methodologies. These findings and the associated data should
be an asset to the community for further investigations. More generally, this study validates the concept
of using omics to identify molecular signatures common to different disease forms or to several

therapeutic strategies.

Materials and Methods

Animals

In this study we used different cohorts of mice. The sample size is given in Table S1. The cohort MTM1-
a (WT, Dnm2" Mtm1™, and Mtml1"Dnm2"") was previously phenotyped on a 129Pas genetic
background **. The cohort MTM1-b (WT, TgBINI, Mtm1™”, and Mtm1 TgBINI) was previously
phenotyped on a 50% 129Pas and 50% C57BL/6N genetic background **. Both cohorts MTM1-a and
MTM1-b were bred in IGBMC animal house in France. The cohort MTM1-c (WT, WT + tamoxifen,

MtmI™”, and MtmI™ + tamoxifen) was previously treated and phenotyped on a 129Pas genetic
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background #°. Tamoxifen was administered via supplement pellets of diet (30mg/kg of tamoxifen). This
cohort was bred in the animal house of the School of Pharmaceutical Sciences of the University of
Geneva, Switzerland. The cohort DNM2 (WT + ASO Ctrl, WT + ASO Dnm2, Dnm25%* + ASO Ctrl,
Dnm2%Y* + ASO Dnm?2) was previously treated and phenotyped on a C57BL/6N genetic background 2%,
The cohort BIN1 (WT + PBS, WT + ASO Dnm2, Binl"™*- + PBS, Binl"*" + ASO Dnm2) was
previously treated and phenotyped on a C57BL/6N genetic background (unpublished). Both DNM?2 and
BIN1 cohorts were bred in IGBMC animal house in France. DNM2 and BIN1 cohorts were treated
weekly from 3 to 7 weeks of age with intraperitoneal injections of 25mg/kg of ASO (IONIS
Pharmaceuticals) targeting Dnm2. Only males were analyzed in this study as only M#m /™" males but not
Mitml1"" females are affected. TA muscles were dissected at E18.5, 2w or 7w and obtained from the
previous studies. Data from MTM1-d cohort (WT, MtmI™) was retrieved from Maani et al. *'. This
cohort was analyzed on a C57BL/6J genetic background and bred in University of Toronto animal house

in Canada. Quadriceps muscle from 5 w old animals were considered.

Blood collection

To collect plasma, blood samples were collected on EDTA-coated tubes (Microvette 500 K3E, Sarstedt)
by mandibular puncture. Samples were then centrifuged at +4°C during 10 min at 2,000 x g. To collect
serum, mandibular puncture was performed on mice. Blood was collected in a sterile empty tube and
kept for 30 min. After coagulation, only the supernatant (serum) was kept for further analysis. Plasma

and serum samples were stored at -80°C.

RNA extraction and RNAseq

RNA was extracted from Tibialis anterior muscles using TRI Reagent (Molecular Research Center,

Cincinnati, USA). RNA sequencing libraries were prepared using the TruSeq Stranded mRNA Sample

24



584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

Preparation Kit and polyA selection and sequenced on a Hiseq4000 as single-end 50 bp reads for cohort

MTM1-a, MTM1-b, MTMT 1-c, cohort DNM2 and cohort BIN1.

Transcriptome analysis

Reads were preprocessed using cutadapt (version 1.10) in order to remove adapter, polyA and low-quality
sequences (Phred quality score below 20). Reads shorter than 40 bases were excluded from further
analysis. Reads were mapped to ERCC spike sequences (External RNA Controls Consortium) using
bowtie version 2.2.8 and reads mapping to spike sequences were excluded from further analysis. Reads
were mapped onto the mm10 assembly of Mus musculus genome using STAR version 2.5.3. Gene
expression quantification was performed from uniquely aligned reads using htseq-count version 0.6.1p1,
with annotations from Ensembl version 96 and union mode. Count tables were analyzed by the open-
source RStudio environment for R and the Bioconductor software. DESeq2 package (version 1.16.1) was
used to normalize, fit and compare the data between groups. Cutoft values for differential expressed
genes determination were as follows: adjusted p-value < 0.05 and absolute value of Log 2 Fold Change >
1. This pipeline was used for cohort MTM1-a, MTM1-b, MTM1-c, DNM2, and BINI.

To determine rescued genes, we developed a metric that quantifies the status of a diseased gene after the
therapy. A diseased gene is defined as dysregulated in the comparison Disease versus WT (absolute value
of Log 2 Fold Change > 1 & adjusted p-value < 0.05). The metric is calculated as the ratio between the
Log 2 Fold Change of the two comparisons: Rescues versus Disease over Disease versus WT. We
stratified the rescued genes into different categories: excessive rescue (metric > 120), not rescued (0 <
metric < 30), partially rescued ( 30 < metric < 80) , rescued (80 < metric < 120) and worsened (metric <
0) (Figure S15).

Quantitative RT-PCR

Synthesis of cDNA was performed with SuperscriptTM 1V Transcriptase (ThermoFischer Scientific,

Whaltham, USA). Quantitative PCR was done in a Lightcycler® 480 (Roche Diagnostics, Basel,
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Switzerland) with SYBR Green Master Mix I (Roche Diagnostics, Basel, Switzerland), and 0.5 uM of
forward and reverse primers. Primers were validated by amplicon sequencing and melting curve analysis
and listed in Table S17. Staul, Rpsil and Rp/27 were used as housekeeping genes to normalize gene

expression.

Protein extraction and Liquid digestion

TA muscles were lysed in RIPA buffer supplemented with 1 mM PMSF, 1 mM DTT and complete mini-
EDTA-free protease inhibitor cocktail (Roche Diagnostics, Basel, Switzerland). DC Protein Assay Kit
(BioRad, Hercules, USA) was used to determine protein concentration. For serum analysis, most
abundant serum proteins were depleted with the Proteome purify 2 kit (MIDR002-020, R&D Systems)
according to manufacturer instructions before analysis by LC-MS/MS.

Protein mixtures were TCA-precipitated overnight at 4°C. Samples were then centrifuged at 14000 rpm
for 30 min at 4°C. Pellet were washed twice with 1 mL cold acetone and centrifuged at 14000 rpm for
10 min at 4°C. Washed pellets were then urea-denatured with 8 M urea in Tris-HCI 0.1 mM, reduced
with 5 mM TCEP for 30 min, and then alkylated with 10 mM iodoacetamide for 30 min in the dark. Both
reduction and alkylation were performed at room temperature and under agitation (850 rpm). Double
digestion was performed with endoproteinase Lys-C (Wako) at a ratio 1/100 (enzyme/proteins) in 8 M
urea for 4h, followed by an overnight modified trypsin digestion (Promega) at a ratio 1/100
(enzyme/proteins) in 2 M urea. Both Lys-C and Trypsin digestions were performed at 37°C. Peptide
mixtures were then desalted on CI18 spin-column and dried on Speed-Vacuum before LC-MS/MS

analysis.

LC-MS/MS Analysis
Samples were analyzed using an Ultimate 3000 nano-RSLC (Thermo Scientific, San Jose California)

coupled in line with a LTQ-Orbitrap ELITE mass spectrometer via a nano-electrospray ionization source
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(Thermo Scientific, San Jose California). Peptide mixtures were loaded on a C18 Acclaim PepMap100
trap-column (75 pm ID x 2 ¢m, 3 um, 100A, Thermo Fisher Scientific) for 3.5 min at 5 pL/min with 2%
ACN, 0.1% FA in H20 and then separated on a C18 Accucore nano-column (75 pm ID x 50 cm, 2.6 pm,
150A, Thermo Fisher Scientific) with a 90 min linear gradient from 5% to 35% buffer B (A: 0.1% FA in
H20/B:99% ACN, 0.1% FA in H20), then a 20 min linear gradient from 35% to 80% buffer B, followed
with 5 min at 99% B and 5 min of regeneration at 5% B. The total duration was set to 120 min at a flow
rate of 200 nL/min. The oven temperature was kept constant at 38°C.

The mass spectrometer was operated in positive ionization mode, in data-dependent mode with survey
scans from m/z 350-1500 acquired in the Orbitrap at a resolution of 120,000 at m/z 400. The 20 most
intense peaks (TOP20) from survey scans were selected for further fragmentation in the Linear Ion Trap
with an isolation window of 2.0 Da and were fragmented by CID with normalized collision energy of
35%. Unassigned and single charged states were rejected.

The lon Target Value for the survey scans (in the Orbitrap) and the MS2 mode (in the Linear lon Trap)
were set to 1E6 and SE3 respectively and the maximum injection time was set to 100 msec for both scan
modes. Dynamic exclusion was used. Exclusion duration was set to 20 sec, repeat count was set to 1 and

exclusion mass width was + 10 ppm.

Proteome analysis

Proteins were identified by database searching using Maxquant 1.6.6.0 and Mus musculus database
(Uniprot Proteome database). Oxidation (M) was set as variable modification, and
Carbamidomethylation (C) as fixed modification. Peptides were filtered with a false discovery rate
(FDR) at 1%, the label-free quantitative values were processed using Perseus 1.6.6.0. 3521 proteins were
identified. Statistical analyses were conducted in R-bioconductor (R-3.6.3). wrMisc, wrProteo packages

were used to normalize, and to impute missing data with default parameters. Cutoft values for differential
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expressed protein determination were as follows: adjusted p-value < 0.05 and absolute value Log 2 Fold

Change > 1.

Western Blotting

Denaturation was performed on samples during 5 min at 95 °C with 5X Lane Reducing Buffer
(ThermoFischer Scientific, Whaltham, USA) and loaded on 10% SDS-PAGE gel (161-0173, TGX Fast
Cast Acrylamide kit, BioRad). Proteins were transferred to a nitrocellulose membrane using Transblot®
TurboTM RTA Transfer Kit (BioRad, Hercules, USA). Loading was controlled by Ponceau S (P7170,
Sigma-Aldrich) staining and Cy5 dye fluorophore (RPN4000, QuickStain). Membranes were blocked
Lhr with 5% non-fat dry milk in 0.1% TBS Tween 20 prior to incubations with primary and secondary
antibodies. The primary and secondary antibodies used were: ANXA2 (Mouse, 1:1000, sc-28385),
CILP-1 (Rabbit, 1:1000, orb182643), FETUB (Rabbit, 1:500, orb252830), MTM1 (2827, 1:700,
homemade [34]), BIN1 (R2405, 1:700, homemade [39]), DNM2 (DNM2-R2865, 1:500, homemade
[34]), B-Actin (Mouse, 1:5000, homemade), peroxidase-coupled goat anti-rabbit (Goat, 1:10000, 112-

036-062) and peroxidase-coupled goat anti-mouse (Goat, 1:10000, 115-036-068).

ELISA assays

Plasma proteins were quantified by Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Proteins
(ANXA2, IGFBP2, CILP, MSTN) were quantified, using ANXA2 ELISA Kit (LS-F5798, LSBio),
IGFBP2 ELISA Kit (ab207615, Abcam), CILP ELISA Kit (ABIN5591836, Antibodies-online), MSTN

ELISA Kit (DGDF80, RD Systems) respectively, according to the manufacturer’s instructions.

Muscle immunofluorescence
Transverse cryosections of TA muscles (8um) were permeabilized with Triton 0.5%, blocked in BSA 5%

and incubated overnight at +4°C with anti-CD68 (MCA1957GA BioRad, 1:100) for identifying
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macrophages, DAPI for staining nuclei and wheat germ agglutinin (WGA) conjugated to alexa fluor AF-
647 for labeling the extracellular matrix. Slides were incubated with an anti-mouse secondary antibodies
for 1h at room temperature (A-11007 Thermo Fisher Scientific, 1:250), observed and photographed in

Leica DM 4000 Bx microscope. The images were analyzed using Image J software (n = 3 mice per

group).

Orthologues retrieval and gene ontology analysis

Orthologues between mice and dogs, human and mice were retrieved by bitr function in ClusterProfiler
package. Gene ontology analyses were performed with ClusterProfiler package (version 3.12.0) using
the overrepresentation test and the Benjamini—Hochberg correction for multiple testing. Enrichments

with a corrected p-value lower than 0.05 were considered significant 7>,

Data representation and statistical analyses

PCA, volcano plot, qPCR results were generated in R-bioconductor (R-3.6.3). PCA was generated from
DESeq2 package (version 1.24.0) with variance stabilizing transformation. All genes were used to
generate the PCA from figures 3a and 4a. Disease signature genes (Table S9) were used to generate the
PCA from figure 5a. Therapy signature genes (Table S15) were used to generate the PCA from figure 6b.
Statistical analyses for RT-qPCR were performed by Dunn’s multiple comparison test. Western blot and
ELISA results were analyzed in GraphPad Prism (v.9), using Student test. Venn diagrams were obtained

from InteractiVenn website (www.interactivenn.net)’”.

Data availability
The R script used to process the data has been deposited in GitLab and is freely available at
http://git.lbgi.fr/djeddi/Myomics. RNA-sequencing data were deposited in NCBI GEO with the

accession code GSE160084. The mass spectrometry proteomics data have been deposited to the
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ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD021725.
The mass spectrometry proteomics data from the circulating proteins in serum, have been deposited to

the ProteomeXchange Consortium via the PRIDE partner repository with the dataset

identifier PXD021765.
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Figure Legends

Figure 1. Experimental design. (a) Timeline of the different steps occurring during muscle development

in mice. The green arrow represents the normal lifespan of control mice (WT). The phenotype of the

three mouse models (Mtm17™”, Binl1™*", Dnm25"") used in this study is illustrated by the colored arrows

with a color gradient ranging from green for non-affected mice, yellow for the onset of myopathy and

red for affected mice. (b) Molecular analyses were performed on different mouse models, MtmI™,
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Bin1™*- Dnm25Y* untreated or treated by different therapeutic approaches (overexpression of BINI,
tamoxifen supplementation or downregulation of Dnm?2 either by genetic cross or by ASO injection).
Disease signature refers to the common dysregulated genes in the three mouse models compared to WT
littermates, while the therapy signature refers to the common genes rescued following the different

treatments.

Figure 2. MTM1-CNM signature in different species. (a) Venn diagram illustrating the shared
dysregulated genes based on the Mtm 1™ vs WT comparison of four mouse cohorts. The percentages of
uniquely dysregulated genes and the number of differentially expressed genes in each cohort are
indicated in brackets. (b) Gene Ontology (GO) enrichment analysis of differentially expressed genes
common to the four Mtm 1Y mouse cohorts. The 20 GO biological process terms with the lowest p-value
are displayed. (¢) Venn diagram illustrating the shared dysregulated genes based on MTM1 vs control
comparison in three different species: human, mice (TA) and dog (Vastus lateralis). (d) mRNA
log2foldchange expression of differentially expressed genes common to the three species. (¢) GO
enrichment analysis of differentially expressed genes common to mice and dog. The 20 GO biological
process terms with the lowest p-value are displayed. (f) mRNA log2foldchange expression of
differentially expressed genes common between mice and dog determined by RNAseq (dog, mice) and

RT-qPCR (mice).

Figure 3. Longitudinal mRNA profiling of M#m1™Y mice. (a) Principal component analysis of RNAseq
data. The first and fourth axes are represented. Colored symbols represent genotypes and shapes represent
ages for each mouse. (b) Venn diagram illustrating the shared and specific dysregulated genes based on
the MtmI”™ vs WT comparison at 2 and 7 weeks. The most enriched GO biological processes are
represented by dashed boxes. (¢) Volcano plots representing the differentially expressed genes at 2w and

(d) at 7w. Up-regulated genes are in red and down-regulated genes are in blue. (e) Gene expression data
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(log normalized counts) determined by RNASeq for Mstn (muscle growth), Sin (calcium homeostasis),
Ahnak?2 (sarcomere organization), Myl4 and Tnnt2 (muscle contraction), /zga3 (cell adhesion), Cxc3cll
and7/r2 (inflammation pathway) across time. Each dot represents an individual mouse, the shaded area

represents the confidence interval at 0.95.

Figure 4. Longitudinal protein profiling of M#m 17 mice. (a) Principal component analysis of mass
spectrometry data. Colored symbols represent genotypes and shapes represent ages for each mouse.
Technical and biological replicates are shown. (b) Venn diagram illustrating the shared and specific
dysregulated proteins based on the MtmI” vs WT comparison at 2 and 7 weeks; the most enriched GO
biological processes are represented by dashed boxes. (¢) Volcano plots displaying the differentially
expressed proteins at 2w and (d) at 7w. Up-regulated proteins are in red and down-regulated proteins are
in blue. (¢) MYH2 and TNNC1 (muscle contraction), and RPL3 (ribosomal biogenesis) expression data
obtained by mass spectrometry across time. Each dot represents technical and biological replicates, the

shaded areas represent the confidence interval at 0.95.

Figure 5. CNM disease signature in mouse. (a) PCA on RNAseq data on the 155 genes commonly
differentially expressed between the five cohorts, each dot represents a mouse. The three different CNM
mouse models are represented by red, orange, yellow dots and the WT controls by green dots. (b) Venn
diagram illustrating the shared and specific dysregulated genes between the five CNM cohorts. (¢) GO
enrichment analysis for biological processes (BP), cellular component (CC) and molecular function (MF)
of'the 155 common differentially expressed genes between the five CNM cohorts. GO terms with highest
ratio and lowest g-value are represented. The ratio represents the number of genes dysregulated divided
by the total number of genes in the category. The color scale is based on the g-value, dark colors indicate
most significantly over-represented terms, while lighter colors indicate the least significant terms. (d)

Macrophage localization by immunofluorescence in transversal section from TA muscle at 7 w in
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Mtml1™?, Binl™*" and Dnm2%“" mice. Nuclei: DAPI (blue), macrophages (red), plasma membrane
(WGA, yellow). Arrowheads point to macrophages. Scale bar = 100 pm. (e) Quantification of
macrophages. T-test; *p < 0.05, **p <0.01. (f) Transcriptomic expression changes between diseased and
WT mice for the 5 cohorts. The log2foldchange expression of Anxa2, Cilp, Fetub, Fgfr4, Fst, Igfbp2,

Mstn, Myl4, Runxli, S100a4, Serpinbla, Sin, Sox11, Tnnt2 are represented by the bars.

Figure 6. Common therapy signature in CNM mice treated with different therapies. (a) PCA on RNAseq
data of the 42 genes commonly rescued in the four cohorts. Each symbol represents a mouse. The three
different CNM mouse models are represented by red, orange and yellow colors and the WT controls are
represented in green. Treatments are represented by different symbols: squares for the downregulation
of Dnm2, either by ASO injection (full square) or by genetic cross (boxed +), the triangle represents the
overexpression of human BINI, the cross represents the administration of tamoxifen. (b) Venn diagram
illustrating the shared and specific dysregulated genes between rescued and diseased mice in each mouse
cohort. (¢) mRNA expression levels of Anxa2, Cilp, Fetub, Igfbp2 in CNM mice either diseased or
rescued upon therapy, and in untreated and treated controls. Boxplots displaying normalized Ct values.
Pairwise significance with p-value < 0.05 calculated by Dunn’s Test are represented in bold. (d) Among
the 42 genes identified in the therapy signature, 35 have human orthologs and 2 (Scn5a and Sbk3) encode

proteins targeted by known drugs.

Figure 7. Muscle and circulating biomarkers for disease and rescue states. (a) Venn diagram illustrating
the strategy to extract biomarkers from the comparison of disease and therapy signatures, proteins
detected by mass spectrometry in the sera of WT mice, public databases (GTEx, BioGPS, Illumina,
GXD), and literature. (b) Protein levels of ANXA2, FETUB and CILP in Gastrocnemius with
standardization by rouge Ponceau red staining in MtmI™¥ (Cohort MTM1-a), Binl”*" and Dnm25%"*

mouse models at 7 w. Protein levels are represented as the fold difference from the average of the WT
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(4 <n <9). Student test; *p < 0.05, **p < 0.01, ***p < 0.001. (¢) Plasma levels of IGFBP2, ANXA2,
CILP and MSTN (ng/mg or pg/mg protein total) from untreated and treated MtmI™, Binl"*" and
Dnm25Y" mouse models and WT controls (3 < n < 12). Student test for untreated cohorts; **p < 0.01.

Tukey’s test for treated cohorts; *p < 0.05, **p <0.01, ***p <0.001.

Table 1: Description of the mouse cohorts used in the study. Country, age, background, muscle and
sequencer used.

Table 2: List of the most dysregulated genes in MTM1-CNM mice.

Table 3: RNA and protein levels of Mtm1 (MTM1), Binl (BIN1) and Dnm2 (DNM2) in Mtm1™",

Bin1"*" Dnm25%* and Dnm2®""" mice.

Supplementary information:

Table S1. Number of mice included in the different cohorts for transcriptomic and proteomic
experiments.

Table S2. List of the 287 genes commonly differentially expressed in MTM1-CNM cohorts (Fig 2a).
Table S3. List of the 632 genes differentially expressed in common for MTM1-a, MTM1-b and MTM1 -
¢ cohorts.

Table S4. List of the specific dysregulated genes expressed in MTM 1-CNM cohorts (Fig 2c).

Table SS. List of the 68 differentially expressed genes common between mice (Tibialis anterior) and
dogs (Vastus Lateralis).

Table S6. List of the 53 differentially expressed genes common between mice (Tibialis anterior) and
dogs (Biceps Femoris).

Table S7. List of DEGs in cohort MTM 1 -a.

Table S8. List of DEP Mtm1—/y vs WT (Cohort MTM1-a)
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Table S9. List of the 155 common differentially expressed genes for the MTM1-a, MTM1-b, MTM 1-c,
DNM2 and BIN1 cohorts.

Table S10. List of DEGs in cohort MTM1-b.

Table S11. List of DEGs in cohort MTM1-c.

Table S12. List of DEGs in cohort DNM2.

Table S13. List of DEGs in cohort BINT.

Table S14. List of the specific dysregulated genes expressed in MTM1, DNM2 and BIN1 cohorts (Fig
5b).

Table S15. List of the 42 common differentially expressed genes for the MTM1-a, MTM1-b, DNM2 and
BIN1 cohorts.

Table S16. List of proteins retrieved by mass spectrometry in serum of WT mice at 8 w.

Table S17. List of primers used for RT-qPCR.

Figure S1. (a)Venn diagram illustrating the common dysregulated genes based on the MTM1 vs controls
comparison in three different species: human, mice and dog (Biceps femoris). (b-¢) Gene Ontology (GO)
enrichment analysis of the specific differentially expressed genes in (b) Human cohort and (c¢) in Dog

cohort. The 20 GO biological process terms with the lowest p-value are displayed.

Figure S2. PCA related to Fig 5b. (a) PC1 and PC2 and (b) PC1 and PC3 are represented.

Figure S3. GO enrichment analysis for biological processes (BP), cellular component (CC) and
molecular function (MF) of the differentially expressed genes in Mtm1™” vs WT mice (N =1175 genes)
at(a) 2 wand (b) at 7 w (N=1981 genes). GO terms with highest ratio and lowest g-value are represented.

The ratio represents the number of genes dysregulated divided by the total number of genes in the
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category. The color scale is based on the g-value, dark colors indicate most significantly over-represented

terms, while lighter colors indicate the least significant terms.

Figure S4. mRNA expression levels of genes of interest in diseased, rescued and control mice in the
MTMI1-a cohort at 2 w. Boxplots displaying normalized Ct values. Pairwise significance calculated by

Dunn’s test, p < 0.05 are represented in bold.

Figure S5. mRNA expression levels of genes of interest in diseased, rescued and control mice in the
MTM1-a cohort at 7 w. Boxplots displaying normalized Ct values. Pairwise significance calculated by

Dunn’s test, p < 0.05 are represented in bold.

Figure S6. GO enrichment analysis for biological processes (BP), cellular component (CC) and
molecular function (MF) of the differentially expressed proteins in MtmI™ vs WT mice (N =168
proteins) at (a) 2w and (b) at 7 w (N=496 proteins). GO terms with highest ratio and lowest q-value are
represented. The ratio represents the number of proteins dysregulated divided by the total number of
proteins in the category. The color scale is based on the q-value, dark colors indicate most significantly

over-represented terms, while lighter colors indicate the least significant terms.

Figure S7. Pearson correlation between mRNA and protein levels measured by RNASeq and mass

spectrometry (a) at 2 w and (b) at 7 w.

Figure S8. MTM1 and BIN1 protein levels in Dnm25Y" Tibialis anterior muscles. MTM1, BIN1 and

DNM2 protein levels in Dnm2%"* TA muscles. MTM1 protein level in Binl™*"~ TA muscles. Pairwise

significance calculated by t-test, p < 0.05 are represented in bold.
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Figure S9. Number of dysregulated genes and the associated PCA for each cohort for four comparisons
(Disease vs WT, Disease vs Rescue, Rescue vs Disease, and WT treated vs WT). (a) Cohort MTM1-b.

(b) Cohort MTM1-c. (¢) Cohort DNM2. (d) Cohort BINT1.

Figure S10. mRNA expression levels of genes of interest in diseased, rescued and control mice in the
DNM?2 cohort at 7 w. Boxplots displaying normalized Ct values. Pairwise significance calculated by

Dunn’s test, p < 0.05 are represented in bold.

Figure S11. mRNA expression levels of genes of interest in diseased, rescued and control mice in the
MTM1-b cohort at 7 w. Boxplots displaying normalized Ct values. Pairwise significance calculated by

Dunn’s test, p < 0.05 are represented in bold.

Figure S12. mRNA expression levels of genes of interest in diseased, rescued and control mice in the
BINI cohort at 7 w. Boxplots displaying normalized Ct values. Pairwise significance calculated by

Dunn’s test, p < 0.05 are represented in bold.

Figure S13. Gene Ontology (GO) enrichment analysis of the specific differentially expressed genes (a)
in MTM1 cohort (b) in BIN1 cohort and (¢) in DNM2 cohort. The 20 GO biological process terms with

the lowest p-value are displayed.

Figure S14. Blot related to Fig 7b.

Figure S15. (a) Histogram displaying the proportion of genes according to their status and the metric per
cohort. (b) Barplot showing the number of genes dysregulated and the status of these genes through the

different therapies.
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Table1: Description of the mouse cohorts used in the study. Country, age, background,

muscle and sequencer used.

Country Age Background Muscle | Sequencer
l\jl:'l(?l\r/ﬁr-ta France w 129Pas ;':éar::)sr Hiseq4000
Cohort 0 Eno G
2 France w 50 A)C1527QBPLa/(SSi\I5O o ;.;?;::)Sr Hiseq4000
MTM1-b
Cohort Tibialis
3 Switzerland w 129Pas anterior Hiseq4000
MTM1-c
Cohort Canada
4 (Maani et 5w C57BL/6J Quadriceps | Hiseq2500
MTM1-d | al., 2018)
Cohort | France 7w C57BL/6N Jibialls | Hiseq4000
conot | France 7w C57BL/6N Tibialis 1\ 0 04000
anterior
Table2: List of the most dysregulated genes in MTM1-CNM mice.
Log2FC Log2FC Log2FC Log2FC
Gene name Cohort MTM1- Cohort Cohort Cohort
a MTM1-b MTM1-c MTM1-d
Sox11 6,16 470 5,80 3,97
Krt18 5,25 3,20 7,78 5,23
Gm28653 5,24 2,64 513 3,80
Mt3 4,76 3,31 5,28 4,66
Gm13583 4,65 3,17 6,53 8,15
Msin 461 3,28 3,96 419
Hsf2bp 4,32 3,48 424 421
Fosl1 421 2,69 4.81 6,85
C130080G10Rik -1,88 -2,13 -3,36 -5,96
Amd1 -2,04 -2,66 -3,17 -2,72
Nt5c1a -2,05 -2,54 -2,79 -3,77
Fam19a4 -2,31 -3,00 -2,55 -3,77
Ighm -2,33 -2,89 -3,34 -2,55
Mtm1 -2,43 -2,12 -2,10 -2,55
Edn3 -2,51 -3,27 -2,93 -1,98
Cdh4 -2,57 -3,91 -3,63 -2,85
Mstn -2,59 -1,79 -1,89 -2,72
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1133
1134
1135
1136
1137
1138
1139

Table3: RNA and protein levels of Mtm1 (MTM1), Bin1 (BIN1) and Dnm2 (DNM2) in Mtm1-7%,
Bin1mek’- - Dnm2SY* and Dnm2RW"* mice.

Ml‘i’n”:e RNA/Protein MTM1 BIN1 DNM2
Fold =2 Fold=2.5
posent P < 0.05 P < 0.001
Protein (WB) 9 Age 7w Age Sw
(Cowling et al. Lionell | Cowli |
2014) (Lionello et al., (Cowling et al.
2019) 2014)
Mtm1"y Fold = 0.5 Fold =1.3
RNA (gPCR) P =0.0095 n.d. P <0.05
Age 7w Age 7w
RNA Fold =0.2 Fold =1.4 Fold = 1.02
(transcriptomic) P =1.98E-09 P =0.046 P=0.95
P Age 7w Age 7w Age 7w
Fold=1.5
. Fold = 1.07 Absent P =0.052
Protein (WB) P=0.95 Unpublished Age 8w
Age 8w Unpublished
Bin1mek- Fold = 0.97 Absent FF‘,"S o 354
RNA (gPCR) P=0.28 P =0.0091 :
Age 7w Age 7w Age 8w
Unpublished
RNA Fold = 0.93 Fold = 0.10 Fold = 1.1
(transcriptomic) P=0.63 P =1.63E-209 P=0.42
P Age 7w Age 7w Age 7w
Fold =0.7 Fold = 0.95 Fold = 2.2
Protein (WB) Pval = 0.016 Pval > 0.05 Pval = 0.057
Age 8w Age 8w Age 8w
RNA (gPCR) P=0.15 n.d. P=0.014
Age 7w Age 7w
RNA Fold = 0.87 Fold =1.37 Fold = 1.04
(transcriptomic) P =0.023 P=2.34E-09 P=0.77
P Age 7w Age 7w Age 7w
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Fold =1.2
P=0.4
Age 7w

Fold=1.8
P =0.07
Age 7w

Fold = 1.05
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Age 7w
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Supplementary Figure S6
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Supplementary Figure S8
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a Cohort MTM1

heterotypic cell-cell adhesion

acute-phase response

positive regulation of epithelial cell proliferation
endothelial cell proliferation

regulation of cytokine-mediated signaling pathway-
attachment of spindle microtubules to kinetochore{
regulation of endothelial cell proliferation

retina vasculature morphogenesis in camera-type eye

regulation of response to cytokine stimulus

regulation of phagocytosis{

neuroinflammatory response

negative regulation of cell-cell adhesion

regulation of blood vessel endothelial cell proliferation involved in sprouting angiogenesis{
positive regulation of macrophage activation

positive regulation of angiogenesis

lymphocyte migration

blood vessel endothelial cell proliferation involved in sprouting angiogenesis

regulation of heterotypic cell-cell adhesion

positive regulation of blood vessel endothelial cell proliferation involved in sprouting angiogenesis

homotypic cell-cell adhesion

o

1

@

2
-log10(pvalue)

b Cohort BIN1

synapse pruning
regulation of myeloid leukocyte differentiation|

hemostasis{

coagulation{

blood coagulation{

regulation of macrophage differentiation

regulation of hemostasis{

regulation of coagulation

regulation of blood coagulation]

positive regulation of tumor necrosis factor superfamily cytokine production
positive regulation of tumor necrosis factor production]

positive regulation of astrocyte differentiation]

platelet activation|

negative regulation of myeloid cell differentiation |

negative regulation of fibroblast growth factor receptor signaling pathway-
macrophage activation

dicarboxylic acid transport

Ca-dicarboxylate transport

organic acid transmembrane transport

antigen ing and of peptide or ide antigen via MHC class Il

o
°
o
o
N
o

1.0 15
-log10(pvalue)

c Cohort DNM2

relaxation of cardiac muscle
positive regulation of fatty acid biosynthetic process
relaxation of muscle

regulation of fatty acid biosynthetic process

regulation of cellular ketone metabolic process

positive regulation of fatty acid metabolic process
tissue remodeling

cellular ketone metabolic process

maternal process involved in female pregnancy|
regulation of wound healing

positive regulation of lipid biosynthetic process

positive regulation of small molecule metabolic process
positive regulation of lipid metabolic process

cardiac muscle hypertrophy

striated muscle hypertrophy

muscle hypertrophy

collagen metabolic process

positive regulation of triglyceride metabolic process

tissue regeneration

chemokine (C-C motif) ligand 2 secretion

.

-log10(pvalue)



ANXA2

36 kDa p

Rouge
Ponceau
(RP)

FETUB

55 kDa p

CILP

110 kDap

(RP)

CIiLP

110 kDap

Supplementary Figure S14

) - WT Dnm2S* WT Dnm2S“*
WT Mtm17Y WT Mtm1™7Y ANXA2 ANXA2 WT Binqmek- WT Binqmek
36 kDa p 36 kDa p
(RP) (RP)
FETUB FETUB
WT Mtm17Y WT Mtm17Y wT Dnm25-* WT Dnm25%* wT Bin1mek* WT Bin1mek+
55 kDap 55 kDap
(RP) (RP)
WT Mtm17Y WT Mtm17Y CILP WT Dnm2S* WT Dnm25*
110 kDa p
(RP)
WT B/n 1mck—/— WT Bl'n1mck-/-




Supplementary Figure S15

a

Number of Genes

MTM1-a

DNM2

4004

3004

2004

1001

il

MTM1-b

BIN1

4004

3004

2004

1001

A

MTM1-c

-100-90 -80 -70 -60 -50 —40 -30 -20 -10 0O

4004

3001

2004

1004

.

~100-90 ~80 ~70 -60 ~50 ~40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Number of genes

2000

1500

1000

Metric

MTM1-a

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Gene status
Excessive rescue
Not rescued
Partially rescued
Rescued
Worsened

Gene status
. Excessive rescue

Not rescued
Partially rescued
Rescued
Worsened



	Djeddi2021-sub
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6
	Figure7

