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Introduction

The effectiveness and volume of surgery has dramatically increased in the last decades, with more than 300 million procedures performed in 2012 [START_REF] Weiser | Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes[END_REF]. However, surgery is still not the safe place we would like it to be, as surgical adverse events represent a great part of medical mistakes [START_REF] Zegers | The incidence, root-causes, and outcomes of adverse events in surgical units: implication for potential prevention strategies[END_REF], the third leading cause of death in the United States [START_REF] Makary | Medical error-the third leading cause of death in the US[END_REF]. Furthermore, the large volume of procedures performed turn even low incidence safety treats into major global health issues, making surgical safety a research priority.

When performing an operation, surgeons need to communicate with a team of highly specialized collaborators, capture and interpret multiple signals coming from high-tech devices, recall and project surgical principles into the present case, anticipate consequences of decisions and, finally, act in a timely manner for the benefit of patients. The success and coordination of all events of this highly complex sociotechnical process result in effective care. However, this process demands a high physical and cognitive effort and any flaw in it can translate into harms for patients.

Modelling the surgical process with data and analytics could offer tremendous insights to optimize surgical care. Data-driven approaches in surgery have so far allowed to create high-fidelity simulators used to guarantee that competence is acquired in a safe setting [START_REF] Zendejas | State of the Evidence on Simulation-Based Training for Laparoscopic Surgery: A Systematic Review[END_REF] and to design cognitive aids such as checklists and time-outs [START_REF] Treadwell | Surgical checklists: a systematic review of impacts and implementation[END_REF] to make sure that the right information is recalled at the appropriate moment and is delivered to the right team member.

Surgery has learned to implement these solutions from other high-stake, team-based, technology intensive sectors as aviation and Formula One [START_REF] Helmreich | On error management: lessons from aviation[END_REF][START_REF] Catchpole | Patient handover from surgery to intensive care: using Formula 1 pit-stop and aviation models to improve safety and quality[END_REF]. The reliance on operating room (OR) black boxes [START_REF] Goldenberg | Using Data to Enhance Performance and Improve Quality and Safety in Surgery[END_REF] and surgical control towers [START_REF] Padoy | Vers une tour de contrôle des blocs opératoires?[END_REF] could be the next lesson learned to improve surgical efficacy and safety. OR black boxes, similarly to flight recorders, are designed to systematically capture OR data from multiple sources in order to allow post-operative (offline) analysis of error and near misses while surgical control towers, similarly to air traffic control towers, are being developed for real-time (online) data streaming and analysis, as a means to oversee, coordinate and feedback operators on OR activities.

The present paper will introduce the key elements enabling the vision of data-driven solutions in surgery, describe insights from early works related to OR black boxes and surgical control towers, illustrate a future scenario in which advanced analytics are used to promote safety in laparoscopic cholecystectomy, and conclude with a perspective on the road ahead.

Big Data and Artificial Intelligence for Surgical Data Science

The growing uptake of image-guided interventions, such as minimally invasive surgery, interventional radiology and surgical endoscopy, is not only revolutionizing how we care for patients but also how we study surgery [START_REF] Satava | Innovative technologies. The Information Age and the BioIntelligence Age[END_REF]. Indeed, the images guiding these procedures, whether radiological or endoscopic, are a natural source of direct, unbiased and rich information on intraoperative events. These digital images are much more informative and reliable than operator dictated post-operative reports and, if properly analyzed and quantified, could shed light on OR events and inform on strategies to improve safety. In addition, these visual information on surgical procedures can be enriched with other data generated in the OR -such as anesthesia monitors, OR devices usage, additional intraoperative imaging [START_REF] Mascagni | New intraoperative imaging technologies: Innovating the surgeon's eye toward surgical precision[END_REF], environmental cameras and microphones -and during perioperative care -such as patients' clinical history and outcomes stored in electronic medical records and imaging studies in picture archiving and communication system (PACS).

The offline analysis of these surgical big data [START_REF] Knight | Systematic review of the use of big data to improve surgery in low-and middle-income countries[END_REF] could elucidate strengths and weaknesses of the surgical process to address with a system approach while the online processing of these digital information could provide operators with timely and highly specific feedbacks to ameliorate patients care.

Machine and deep learning are needed to draw meaning out of surgical big data as these, by definition, are too large and complex to analyze with classical statistical methods [START_REF] Mauro | A formal definition of Big Data based on its essential features[END_REF]. These advanced computational methods automatically find complex patterns in data, learn to make predictions without being explicitly programmed and improve their performances with increasing amounts of data. These characteristics paired with state-of-theart performances in computer vision and natural language processing tasks, such as guiding an autonomous vehicle or naturally answering questions, made deep learning in particular one of the main analytical techniques powering the recent surge in artificial intelligence (AI).

The availability of surgical big data and the growing accessibility of powerful AI techniques could allow to accumulate detailed knowledge on the surgical process through offline analysis and to extract timely and actionable insights to feedback to surgical staff though online processing (Figure 1). This is the vision of Surgical Data Science, a novel discipline using data and advanced analytics to improve the quality and safety of interventional healthcare [START_REF] Maier-Hein | Surgical data science for next-generation interventions[END_REF].

OR Black Box, Surgical Control Tower and Related Works

To fully exploit the large amount of digital surgical data, comprehensive information needs to be recorded in a standardized, synchronized and systematic manner. This has always been difficult in the OR, one of the most siloed part of the surgical cycle of care. Many have proposed to deploy audio-visual recorders [START_REF] Guerlain | Assessing team performance in the operating room: development and use of a "black-box" recorder and other tools for the intraoperative environment[END_REF][START_REF] Gambadauro | Surgical videos for accident analysis, performance improvement, and complication prevention: time for a surgical black box?[END_REF], however this idea was only recently scaled by Teodor Grantcharov's group with the OR Black Box ® (Surgical Safety Technologies Inc., Toronto, ON, Canada). Their multiport recording device captures synchronized audiovisual, physiological and environmental data from the OR [START_REF] Goldenberg | Using Data to Enhance Performance and Improve Quality and Safety in Surgery[END_REF]. So far, the comprehensive data collected by the OR Black Box ® were analyzed by specifically trained surgeons and served to shed light on system factors that characterize surgical safety. For instance, they identified most common distractions and counted a median of 20 errors per case [START_REF] Jung | First-year analysis of the operating room black box study[END_REF], found out that coaching and proactive team management are the most frequent resilience supports in the OR [START_REF] Adams-Mcgavin | System Factors Affecting Patient Safety in the OR: An Analysis of Safety Threats and Resiliency[END_REF][START_REF] Kolodzey | System Factors Affecting Intraoperative Risk and Resilience: Applying a Novel Integrated Approach to Study Surgical Performance and Patient Safety[END_REF] and that performance reports facilitate team debriefing [START_REF] Van Dalen | Implementing structured team debriefing using a Black Box in the operating room: surveying team satisfaction[END_REF].

These pioneering works demonstrate the tremendous potential of systematically acquiring and thoroughly analyzing comprehensive and direct observations of surgical events. However, up to now these offline analyses have been mostly performed manually.

Manual analysis is a costly and labor-intensive process involving highly trained professionals prone to fatigue and errors. Analytical methods to automatically process and extract valuable information from large amounts of surgical data are needed to scale this approach. In addition, while humans often synthetize information qualitatively, analytical models such as deep learning algorithms "see" the information contained in images and audio files as matrices of bits and translate those into quantitative and reproducible information that could be used to precisely measure and predict outcomes of surgical value.

Such deep learning models would first need to understand the context [START_REF] Vercauteren | CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer-Assisted Interventions[END_REF] and workflow [START_REF] Padoy | Machine and deep learning for workflow recognition during surgery[END_REF] of surgery to then be able to speak the "language of surgery", i.e. gain information of higher semantic value. For instance, deep learning models were developed to recognize surgical instruments in 80 publicly available laparoscopic cholecystectomy videos (Cholec80) [START_REF] Twinanda | EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos[END_REF] with an average area under the receiver operator characteristic (ROC) curve above 0.99 [START_REF] Hajj | Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks[END_REF] while reliable tool localization [START_REF] Vardazaryan | Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos[END_REF] and tracking [START_REF] Nwoye | Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos[END_REF] (Figure 2a) were achieved on the same dataset deploying methods requiring very few human inputs. Such tooltissue interactions information have indeed been used to gain insights of higher surgical value, such as estimating surgical technical skills [START_REF] Jin | Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks[END_REF] and detecting bleeding events [START_REF] Yamazaki | Automated Surgical Instrument Detection from Laparoscopic Gastrectomy Video Images Using an Open Source Convolutional Neural Network Platform[END_REF].

Deep learning models were also trained to recognize phases of common procedures, as surgeons do when learning a procedure. Automatic recognition of laparoscopic cholecystectomies [START_REF] Twinanda | EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos[END_REF] (Figure2b), laparoscopic sleeve gastrectomy [START_REF] Hashimoto | Computer Vision Analysis of Intraoperative Video: Automated Recognition of Operative Steps in Laparoscopic Sleeve Gastrectomy[END_REF] and colorectal surgeries [START_REF] Kitaguchi | Automated Laparoscopic Colorectal Surgery Workflow Recognition using Artificial Intelligence: Experimental Research[END_REF] phases was achieved with above 80% of accuracy and could be used offline to quickly browse videos for coaching surgical trainees and to quantify statistical characteristic of surgical workflows for correlation with patient's clinical presentation and outcomes. In addition, phase recognition and tool detection predictions together could be used to localize critical moments in surgical videos and produce selective, condensed video for documentation and performance assessment [START_REF] Scully | Concordance Between Expert and Nonexpert Ratings of Condensed Video-Based Trainee Operative Performance Assessment[END_REF]. Deep learning is also being used to study ORs' environment through videos acquired by ceiling-mounted cameras. In this setting, deep learning models were trained to detect [START_REF] Rodas | Marker-less AR in the hybrid room using equipment detection for camera relocalization[END_REF] and estimate body pose of OR staff, also using videos recorded at low-resolution to preserve OR staff privacy [START_REF] Srivastav | Human Pose Estimation on Privacy-Preserving Low-Resolution Depth Images[END_REF] (Figure 2c). The information provided by the analysis of ceiling-mounted cameras videos, together with simulation and augmented reality visualization of X-ray radiation, have been harnessed by the Computational Analysis and Modeling of Medical Activities (CAMMA) research group (University of Strasbourg, France) to build a radiation awareness systems to quantify and visualize patients and clinician's radiation exposures during training for X-ray based procedures [START_REF] Rodas | A global radiation awareness system using augmented reality and Monte Carlo simulations[END_REF]. Furthermore, people detection and pose estimation algorithms, together with analysis of physiological signals reflecting operator's cognitive workload, are starting to be used to study OR team dynamics in order to devise cognitive engineering strategies [START_REF] Zenati | Cognitive engineering to improve patient safety and outcomes in cardiothoracic surgery[END_REF] to improve non-technical skill impacting surgical safety.

Thanks to today's accessibility to powerful computational resources and advances in algorithms efficiency, the type of analyses so far described could be performed in real-time, online, to feedback surgeons during procedures. This would allow us to move from "counting", accumulating knowledge to devise system policies, to "acting", intervening during procedures with case-specific feedbacks. Online, surgical phase recognition and tool detection models could, for instance, be used to efficiently coordinate OR staff and inform on ORs status. Furthermore, by comparing the current surgical workflow versus data of past cases, these models could trigger smart notifications warning surgeons of unexpected, risky scenarios before an adverse event occurs, as an air traffic control tower would notify two airplanes in a collision trajectory. CONDOR (Connected Optimized Network & Data in Operating Rooms) [START_REF]Projet CONDOR -Connected Optimized Network & Data in Operating Rooms n[END_REF] is a French multi institutional project aimed at turning the vision of a surgical control tower into reality. Fundamental requisites to enable surgical control towers are that data can be streamed in and out of ORs in real time and can be synchronized with metadata, i.e. extra information on the data, such as the results of analysis to feedback in the OR. CONDOR contributed to these aspects by proposing a standard and interoperable format to store surgical imaging data and metadata in a synchronized fashion, namely DICOM-RTV (Digital Imaging and Communications in Medicine Real Time Video), and the development of an over IP (Internet Protocol) system to stream OR data in a matter of milliseconds [START_REF] Jaouhari | Streaming DICOM Real-Time Video and Metadata Flows outside the Operating Room[END_REF].

Surgical Data Science for Laparoscopic Cholecystectomy

Here we would like to motivate the use of the kind of approaches outlined above to promote safety in a common and highly standardized abdominal surgical procedure and depict a future scenario were the analytical models being developed today by CAMMA and other Surgical Data Science groups are used to support surgical care.

Laparoscopic cholecystectomy (LC) is one of the most common abdominal surgical procedures, with almost 1 million cases performed per year in the United States alone [START_REF]Ambulatory%20Surgery%20in%20the%20United%20States&publicat ion_year=2009[END_REF].

LC is a generally safe, often outpatient, procedure mostly indicated to treat benign diseases of the gallbladder [START_REF] Pucher | Outcome trends and safety measures after 30 years of laparoscopic cholecystectomy: a systematic review and pooled data analysis[END_REF]. The procedure is so common and well standardized [START_REF] Hashimoto | Surgical procedural map scoring for decision-making in laparoscopic cholecystectomy[END_REF] that is often among the first operations performed by general surgery residents. However, LC can also be extremely complex, requiring advanced technical and cognitive skills and at times resulting in conversion to open surgery and/or adverse events [START_REF] Nassar | Predicting the difficult laparoscopic cholecystectomy: development and validation of a pre-operative risk score using an objective operative difficulty grading system[END_REF]. The most feared adverse events of LC are bile duct injuries (BDIs), in 97% of the cases caused by the visual perceptual illusion of dividing the cystic duct while actually cutting the common bile duct [START_REF] Way | Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective[END_REF]. Patients experiencing bile duct injuries have a threefold increase in mortality at 1 year [START_REF] Törnqvist | Effect of intended intraoperative cholangiography and early detection of bile duct injury on survival after cholecystectomy: population based cohort study[END_REF], often sue (and win) their surgeons [START_REF] Alkhaffaf | 15 years of litigation following laparoscopic cholecystectomy in England[END_REF] and were estimated to cost about 1 billion per year in the United States [START_REF] Berci | Laparoscopic cholecystectomy: first, do no harm; second, take care of bile duct stones[END_REF]. A number of strategies have been devised to prevent BDI, including: preoperative patients stratification [START_REF] Nassar | Predicting the difficult laparoscopic cholecystectomy: development and validation of a pre-operative risk score using an objective operative difficulty grading system[END_REF], identifying anatomical landmarks to safely start the dissection of the hepatocystic triangle [START_REF] Hugh | Rouviere's sulcus: a useful landmark in laparoscopic cholecystectomy[END_REF], achieving a critical view of safety [START_REF] Strasberg | An analysis of the problem of biliary injury during laparoscopic cholecystectomy[END_REF][START_REF] Felli | Feasibility and value of the critical view of safety in difficult cholecystectomies[END_REF] or using additional imaging [START_REF] Törnqvist | Selective intraoperative cholangiography and risk of bile duct injury during cholecystectomy[END_REF][START_REF] Dip | Randomized trial of near-infrared incisionless fluorescent cholangiography[END_REF] to conclusively identify the cystic duct, and bailing-out to other procedures in case of anatomical doubts [START_REF] Wakabayashi | Tokyo Guidelines 2018: surgical management of acute cholecystitis: safe steps in laparoscopic cholecystectomy for acute cholecystitis (with videos)[END_REF]. Despite the proved value of these approaches and the effort surgical societies are placing in decreasing the rates of BDI [START_REF] Pucher | SAGES expert Delphi consensus: critical factors for safe surgical practice in laparoscopic cholecystectomy[END_REF], scarce implementation of strategies for safe LC was reported [START_REF] Nijssen | Complications after laparoscopic cholecystectomy: a video evaluation study of whether the critical view of safety was reached[END_REF][START_REF] Rawlings | Single-incision laparoscopic cholecystectomy: initial experience with critical view of safety dissection and routine intraoperative cholangiography[END_REF] and this feared complication is still experienced by up to 2/3 of surgeons in their career [START_REF] Iwashita | Delphi consensus on bile duct injuries during laparoscopic cholecystectomy: an evolutionary cul-de-sac or the birth pangs of a new technical framework?[END_REF].

In the future, Surgical Data Science solutions could foster the implementation of the safety strategies presented above by aggregating and processing data and automatically providing timely support to surgical staff.

In this future scenario, a machine learning algorithm detects a LC case in the surgical waiting list, pulls out of the electronical medical record the data necessary to predict the case complexity, and presents it to a surgeon identified as having the right expertise and technical skills (Figure 3a). Next, an appropriate OR slot is automatically reserved for the patient. Once in the OR, a virtual assistant informs the OR staff about the case peculiarities, expected events and guides the WHO Surgical Safety Checklist time out before skin incision [START_REF] Conley | Effective Surgical Safety Checklist Implementation[END_REF] (Figure 3b). Intraoperatively, a deep learning model confirms or adapts the complexity expectations analyzing the first few minutes of the laparoscopic video. When the surgeon is about to start the dissection of the hepatocystic triangle, a deep learning model is triggered to detect anatomical landmarks [START_REF] Tokuyasu | Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy[END_REF] and indicated whether the surgeon is incising the peritoneal reflection at the right high or is entering a "no go" zone [START_REF] Madani | Measuring intra-operative decision-making during laparoscopic cholecystectomy: validity evidence for a novel interactive Web-based assessment tool[END_REF] (Figure 3c). Before dividing the cystic duct, the hepatocystic anatomical structures are highlighted and the critical view of safety is automatically assessed [START_REF] Mascagni | Formalizing video documentation of the Critical View of Safety in laparoscopic cholecystectomy: a step towards artificial intelligence assistance to improve surgical safety[END_REF] (Figure 3d). Based on the feedback, the surgeon is either given the green light to proceed with clipping and cutting, prompted to dissect further or bailout. Throughout the whole procedures, the remaining surgical duration [START_REF] Twinanda | RSDNet: Learning to predict remaining surgery duration from laparoscopic videos without manual annotations[END_REF] and the needed instruments are displayed to the entire OR staff to increase situational awareness and readiness. Furthermore, OR data are continuously streamed to an external surgical control room from which senior surgeons are able to remotely proctor multiple cases and administrators can monitor OR status (Figure 3e). Last, following the procedure a complete report is automatically generated, and critical sequences of videos are stored for documentation, education and auditing purposes (Figure 3f).

The Road Ahead

Recent surgical history has seen three major paradigm shifts, namely the introduction of general anesthesia, the implementation of asepsis and the uptake of minimally invasive procedures. The dramatic increase in the number and type of sensors deployed in surgical environments, the development of powerful algorithms capable to model complex data and learn from experience and the expanding armamentarium of precise and robotic actuators place surgery on the verge of a fourth revolution [START_REF] Maier-Hein | Surgical data science for next-generation interventions[END_REF]. This fourth surgical revolution will be characterized by smart assistance in perceptual, cognitive and physical tasks [START_REF] Rus | The AI Guardian for Surgery[END_REF] to augment [START_REF] Diana | Robotic surgery[END_REF] rather than replace surgeons [START_REF] Yeung | Bedside Computer Vision-Moving Artificial Intelligence from Driver Assistance to Patient Safety[END_REF].

Despite its potential impact, the fourth revolution is likely to be a gradual one. This is not surprising, as surgery, given its high-stake and complexity, is a tightly regulated field that has to scrutinize innovation [START_REF] Mcculloch | No surgical innovation without evaluation: the IDEAL recommendations[END_REF]. The introduction of smart analytics, assistance and autonomy in surgery will likely follow a course similar to the one being experienced by the automotive industry in their quest for safer and more effective transportation. The car manufacturer first introduced sensors and analytics in their vehicles to automatically warn drivers about engine problems and scheduled revisions, informing without intervening, a task that OR black boxes and surgical control tower could help implement in surgery in the near future. Then, they equipped higher-end models with smart driving supports in the form of lane-keeping and parking assistants, aiding the driver but leaving humans in full physical and legal control; highly standardized surgical procedures like cholecystectomy are likely to experience the kind of smart assistance depicted in Figure 3 in the next decade. Finally comes autonomous driving with its immense technical, legal and moral implications; Surgical Data Science and robotics together could someday lead to various levels of surgical autonomy [START_REF] Yang | Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy[END_REF], but this is still an uncharted territory.

It is now important to channel the energy resulting from the general enthusiasm surrounding AI in surgery to fulfill expectation with evidence of value. A number of challenges need to be faced in order to translate the fundamental Surgical Data Science works here described from the research domain to surgical practices. First, AI models will have to show consistent performances across different settings, surgeons' preferences and patients' populations. Surgical data coming from multiple institutions and annotated by various surgeons in a standardized and shared manner should be stored in a public database available to research group and industries for benchmarking purposes.

Second, AI solutions will have to work within the technical constraints of ORs, namely limited computational power and data streaming capabilities. Recent developments in lightweight and efficient AI algorithms [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF][START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] and OR data transmissions frameworks like the one developed within the CONDOR project will help to find a middle ground.

Third, regulatory bodies will need to adapt their requirements for safety and efficacy evidence to make sure that this kind of innovation is neither fast-tracked by the hype surrounding it nor penalized by its novelty. In 2013, a working group formed by the International Medical Device Regulators Forum (IMDRF) and chaired by the U.S. Food and Drug Administration (FDA) defined these stand-alone medical software as "Software as a Medical Device" (SaMDs) and outlined characteristics, risk categorization, quality management and evidence requirements for SaMDs [START_REF] Health | Software as a Medical Device (SaMD). FDA[END_REF].

Finally, the more legal, economical and sociological implications of introducing smart devices in a highly sensitive field like surgery will need to be explored. The establishment of a permanent forum of stakeholders could facilitate the debate around open issues such as liability and moral implications of computer-aided decisions, reimbursement strategies, patients and physicians' acceptance of various level of autonomy, the education necessary to effectively manage solutions at the intersections of technical and health sciences and, not less important, how to democratize worldwide access to innovation improving surgical safety. Ambitious projects like the OR black box and surgical control tower formalize and disseminate the vision of improving surgical care with data analytics, promote surgicaltechnical partnerships to identify pressing needs and develop efficient solutions, and lay the technical foundations to deploy Surgical Data Science solutions for the benefit of patients. 
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 23 Figure 2. Illustration of tool tracking (a), phase prediction in laparoscopic cholecystectomy (b) and OR staff pose estimation (c). Videos showcasing qualitative results of CAMMA research are available here: http://camma.u-strasbg.fr/videos
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