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Abstract
The vibration analysis of a multilevel spent nuclear fuel canister loaded with 68 fuel assemblies (FA) is
considered. The multilevel aspect leads to large numbers of degrees of freedom (DOF) and vibration eigen-
modes. The Craig-Bampton (CB) substructuring technique is well suited to perform the modal analysis in
presence of few interface DOF between the components and the structural levels, as well as for tackling
the high modal density. The Shift-Invert Lanczos solver is used for solving the large-scale CB generalized
eigenvalue problem (GEP), whose large dimension results from the numerous component modes. A block
factorization based on the Schur complement that exploits the sparsity of the CB matrices enables consider-
able speed-up. A CB model for the FA is also implemented as it exhibits two structural levels. Since many
local vibration modes do not contribute much to the response, a strategy for ranking the importance of the
component modes is developed, so that a significant portion of them are removed and the CB GEP lightened.

1 Introduction

This paper deals with the linear vibration analysis of a spent nuclear fuel (SNF) canister loaded with 68 iden-
tical fuel assemblies (FA). Each FA gathers 92 fuel rods that are wrapped together and maintained in parallel
configuration by spacer grids. The loaded SNF canister being considered in vertical configuration, each FA
is inserted in one of the basket cells of the canister, maintained by localized attachments at the top and simply
supported by the bottom plate of the cylindrical canister. The detailed geometry of the FA requires a finer
mesh in comparison to that of the canister and its basket. The structure is characterized by the presence of
three distinct structural levels, namely (i) a main body made up of the canister and the basket as the upper
level, (ii) the 68 FA as the intermediate level, and (iii) the 68× 92 = 6256 fuel rods as the lower level. There
is the repetition of a very large number of interconnected components, each of which having its own resonant
vibrations. As a result, the multilevel structure exhibits a very large number of modes, among which many
consist of local vibrations of small components. The vibration analysis relies on computing nearly half a
million modes using a finite element (FE, [1]) model with more than 130 million degrees of freedom (DOF).
Fortunately, the localized attachments between the several components and scales allows an advantageous
domain decomposition to be considered, with small interfaces. The vibration modes are the eigenvectors of
the generalized eigenvalue problem (GEP) involving the mass and stiffness FE matrices [2, 3]. For several
reasons, the Craig-Bampton (CB) substructuring technique [4, 5] is considered as an approximate solver
for this GEP. First, the substructural modes of the FA need not be computed 68 times. Second, the small
interfaces between the components lead to a small number of interface coupling DOF. Third, the iterative
solvers such as Shift-Invert Lanczos (SIL, [6, 7, 8]) or the Subspace Iteration Method [9, 10, 11], although
very efficient general-purpose solvers, turn out to be very time consuming in the present case.



The CB method consists in approximating the system modes as linear combinations of the component modes
and interface static constraint modes through Galerkin projection of the FE GEP. The number of static con-
straint modes is given by the number of interface DOF, whereas the number of component modes is generally
adjusted by considering a cutoff frequency. Even though the number of static constraint modes is small, the
dimension of the CB GEP obtained through Galerkin projection is very large, as a result of the large num-
ber of component modes. Usually for the CB method, the CB GEP is solved directly for all the eigenpairs
using for instance Householder tridiagonalization, with a negligible computational cost. Unfortunately, in
the present case, the CB GEP is a large-scale GEP with sparse matrices, and for which a large portion of the
eigenpairs are required. Although the SIL solver is better suited to solving a few eigenpairs of a sparse GEP,
spectrum slicing with multiple SIL is a possible strategy for solving many eigenpairs. The strategy consists
in dividing the frequency band into several slices and considering eigenvalue shifts given by the center of
the slices [12]. Independent eigenvalue computations with the different shifts are then run in parallel, for
which the eigenvectors are orthogonal by construction (upon convergence). For each shift, the matrix to
be factored for use in the iterative process is different. However, the sparsity of the CB matrices allows an
efficient factorization. With a small number of boundary (interface) DOF and a large number of substructure
(modal) DOF, a block factorization based on the Schur complement (see [13, 14]) of the interface coordinates
enables considerable gains. Thus, the CB GEP is solved by multiple SIL with block factorization by Schur
complement.

The accuracy of the CB approximation of the system modes depends on the number of component modes
kept. Several criteria can be used to quantify the error perpetrated by the CB approximation, such as con-
vergence of the eigenvalues and modal error. However, presumably due to the high modal density of the
multilevel structure, these criteria turned out to lack robustness. The objective being to calculate the vibra-
tion response, given by frequency response functions (FRF) between given input excitation DOF and output
observation DOF, the CB error is quantified through an FRF error criterion. For one given FRF, it is defined
as the root mean square error in decibel (RMS-dB) of the modulus of the response. It should be noted that
the exact response is required for computing such an error measure, and that it is not available. Since the
response can be written as modal superposition and since numerous modes have negligible contribution, it
is proposed to substitute the true FRF with the FRF restrained to a subspace spanned by a small subset of
dominant modes. Such FRF spanned by a subset of modes is referred to as “partial FRF”. The few dominant
modes are recomputed exactly by using the SIL solver with block factorization by Schur complement accord-
ing to the domain decomposition (this differs from the Schur complement factorization of the CB matrices).
Then the partial FRF can be compared (CB approximation against FE approximation). It has been shown
that this procedure allows to characterize the accuracy of the CB approximation with a good confidence.

Once its accuracy is quantified and deemed sufficient, the CB model can be considered as a reference. Then,
it is possible to decrease the cutoff frequency without altering the accuracy. This is explained by the fact that
the cutoff frequency required for obtaining rank correspondence between the exact and CB eigenvalues in
the validation step above can be very high due to the small eigenvalue separation (caused by the very high
modal density), which needs to remain larger than the relative eigenvalue error (otherwise, mode swap is
susceptible to occur, in which case the exact and CB partial FRF may not coincide).
Since the structure is multilevel, another CB step (inner CB), nested in the first one, is well indicated. The FA
exhibits numerous components (the fuel rods) attached to the main body by localized connections (through
the spacer grids). The cost for computing the FA modes (component modes of the outer CB) is thus de-
creased.

The most computationally demanding operation is the large-scale CB GEP. Its large dimension is due to
the numerous component modes, which correspond to local vibrations of small components. It has been
observed that many of the system modes made up of such local vibrations do not contribute much to the
response of the canister. In this research, the focus is on the prediction of the vibration response of the
canister exterior. Therefore, the removal of component modes with local vibrations is investigated in order
to decrease the dimension and cost of the CB GEP while keeping a satisfactory level of accuracy. For doing
so, a substructural (component) modal importance measure is introduced, defined as the RMS-dB error re-



sulting from the sole removal of the substructural mode for which the error is to be characterized. However,
the calculation of the RMS-dB error (with respect to the CB model) requires calculating the FRF with the
CB model. It is proposed to do so with coarse frequency sampling and observation grid, using direct nu-
merical simulation (frequency-by-frequency) involving a dynamic stiffness matrix that can again be factored
by Schur complement. Then, it is shown that the approximate response resulting from the removal of one
given mode can be calculated through a rank-1 modification of the Schur complement. Using the Scherman-
Morrison-Woodbury matrix identity, the response can be computed very efficiently. This enables a precise
yet affordable characterization of the substructural modal importance. Then, the least important modes can
be removed and the induced error examined with respect to the cost reduction.

The paper is organized as follows. In Section 2 some well known concepts for modal analysis in computa-
tional structural dynamics are briefly described, including modal projection, domain decomposition, Craig-
Bampton method, and Shift-Invert Lanczos approach with spectrum slicing. In Section 3 the methodology
proposed for performing an efficient multiscale modal analysis is presented. Section 4 presents developments
toward substructural mode selection that allow the overall cost to be significantly reduced. Finally, Section 5
presents numerical results and Section 6 draws conclusions. The theoretical developments and numerical
results can be found with more details in [15, 16].

2 Modal analysis in computational structural dynamics

2.1 Modal projection

The structural dynamics is described in the frequency domain by the discretization U(ω) of the displacement
field by using the FE method. For all circular frequency ω belonging to a given frequency band of analysis
B = 2π×]0, fu] (fu is the upper bound in Hz), the complex vector U(ω) is given by(

−ω2[M] + iω[D] + [K]
)
U(ω) = F(ω) , (1)

in which [M], [D], and [K] are respectively the mass, damping, and stiffness matrices and where vector F(ω)
is the discretization of the external forces. A reduced representation of the response can be obtained through
linear combination of the vibration eigenmodes ϕ such that

U(ω) =

ne∑
α=1

ϕα qα(ω) , (2)

in which α denotes the mode number (the modes are sorting according to their eigenfrequency or eigenvalue,
as described below) and ne denotes the number of modes kept, while quantity qα(ω) constitutes a so-called
“generalized” coordinate. In matrix form, one can write U(ω) = [Φ]q(ω) with [Φ] the modal matrix whose
size is (N × ne) with N the number of DOF. The vibration modes ϕ are the eigenvectors satisfying the GEP

[K]ϕ = λ[M]ϕ , (3)

with λ the associated eigenvalue and f =
√
λ/2π the eigenfrequency in Hz.

2.2 Domain decomposition

The structural domain can be partitioned. The DOF that are connected to several subdomains or substruc-
tures are referred to as boundary DOF and denoted by letter B. The other DOF belong to the interior of the
substructures are denoted by letter S. These substructure DOF are not coupled with any other DOF than
those present in the same substructure. Therefore, the coupling blocks between substructures are zero and
consequently, a DOF ordering according to the domain decomposition leads to block-diagonal submatrices



[KSS ], [MSS ], and [DSS ]. Based on this domain decomposition, the linear system [K]x = f can be paral-
lelized over the substructure, as described hereinafter. Let x (resp. f) be partitioned based on the subvectors
xB and xS (resp. fB and fS) associated with the boundary DOF and the substructure DOF. Then, it can be
shown that introducing the Schur complement [SKBB] = [KBB]− [KBS ][KSS ]−1[KSB] leads to the solution

xS = [KSS ]−1 (fS − [KSB]xB) , xB = [SKBB]
−1 (fB − [KBS ][KSS ]−1fS

)
. (4)

2.3 Craig-Bampton method

The above equations can be obtained by projecting the linear equations onto a square matrix [B] such that

[B] =

[
IS tSB
0 IB

]
, (5)

in which [tSB] = −[KSS ]−1[KSB] is the matrix of the static constraint modes that represent the static
reactions of the interfaces between the substructures. The CB technique first introduces this change of coor-
dinates and then, for dimension reduction, introduces a projection on the component modes [ΦS ] gathered in
a matrix [R] such that

[R] =

[
ΦS 0
0 IB

]
, (6)

where matrix [ΦS ] is block diagonal with each block containing the modal matrix of its corresponding sub-
structure. The CB matrices are obtained by Galerkin projection over the matrix [V ] = [B][R] and yields the
CB GEP

[K]q = λ[M ]q (7)

whose eigenvectors q yield an approximation ϕ = [V ]q to the eigenvectors ϕ of the GEP of Eq. (3). The
accuracy and the cost of the CB procedure are related to the modal truncations for the substructures. Denoting
as nJ the number of modes kept for substructure number J , as N the number of substructures, and as NB

the number of boundary DOF, the dimension ν of the CB model is ν = NB + nS with nS =
∑N

J=1 nJ .

2.4 Shift-Invert Lanczos approach

For solving a GEP of the type of Eq. (3) one possible strategy is to introduce an eigenvalue shift σ ≥ 0 and
consider shifting as ([K]− σ[M])ϕ = (λ− σ) [M]ϕ and then inverting (useful for eigenvalue separation)
as

([K]− σ[M])−1[M]ϕ =

(
1

λ− σ

)
ϕ . (8)

The largest eigenvalues of the standard eigenvalue problem [A]ϕ = µϕ with [A] = ([K]− σ[M])−1[M]
and µ−1 = λ − σ correspond to the eigenvalues λ that are closest to the shift σ. Due to the orthogonality
of the eigenvectors ϕ, two sets of eigenvectors (modes) computed from two different shifts are mutually
orthogonal. This is verified as long as the eigensolutions are converged. This way, a large number of modes
can be computed by considering several shifts. Thus, the eigenvalue calculation can be parallelized and the
complexity is kept linear with respect to the number of modes sought. For each eigenvalue analysis of the
type of Eq. (8), the matrix [H] = [K] − σ[M] has to be factored for solving linear systems in the iterative
Lanczos process. In this work, an LDL factorization (see [17]) [P]T [H][P] = [L][D][L]T is considered, with
[P] a permutation matrix, [L] a lower-triangular matrix, and [D] a block-diagonal matrix with block size of 1
or 2. Dividing the frequency band (spectrum slicing) to perform the eigenvalue analysis of Eq. (3) requires a
good knowledge of the modal density, to balance the number of modes per shift as well as to avoid computing
the same modes twice. In this work, the matrix size makes the LDL factorization costly in terms of memory
and CPU usage. Therefore, the domain decomposition of Section 2 is considered and the LDL factorization
is performed blockwise based on the Schur complement (see Section 3.1).



3 Multiscale modal analysis

3.1 Block factorization based on Schur complement

Using domain decomposition, the symmetric indefinite matrix [H] can be factored as [P]T [H][P] = [L][D][L]T

with the following construction:

[L] =

[
LS 0

PTBHBSH−1SSPSLS LB

]
, [D] =

[
DS 0
0 DB

]
, [P] =

[
PS 0
0 PB

]
, (9)

in which the matrices with index S satisfy the block LDL factorization [PS ]T [HSS ][PS ] = [LS ][DS ][LS ]T

(this factorization can be parallelized over the substructures according to the block-diagonal structure of
[HSS ]) and where the matrices with indexB satisfy the LDL factorization [PB]T [SHBB][PB] = [LB][DB][LB]T

of the Schur complement. Such block LDL factorization as described in (9) will be used in several instances
of the proposed methodology. It should be noted that the inertia count I([H]) (number of negative eigenval-
ues of matrix [H]) associated with a shift σ can be obtained as

I([H]) = I([D]) = I([DB]) + I([DS ]) = I([DB]) +
N∑
J=1

I([DJ ]) . (10)

3.2 Large-scale Craig-Bampton generalized eigenvalue problem

For performing the eigenvalue analysis of Eq. (3) in an affordable manner, the CB GEP of Eq. (7) is consid-
ered instead. In order to obtain an accurate CB model, a high frequency truncation is considered that leads
to a large value for the number nS of substructural (or component) modes. The small interfaces between
components yield a small number NB of boundary DOFs. The CB matrices are written as

[K] =

[
ΛS 0
0 KBB

]
, [M ] =

[
IS MT

BS
MBS MBB

]
, (11)

in which [IS ] is the identity matrix of dimension nS and [ΛS ] is the diagonal matrix of the eigenvalues of
the substructures, and where the submatrices [KBB] and [MBB] are rather dense and the submatrix [MBS ]

is sparse with dense blocks (their expression can be deduced from the equality [K] = [V ]T [K][V ] or [M ] =

[V ]T [M][V ]). Due to the large value of nS related to the high modal density arising from the local vibrations
of the numerous components, the dimension ν of the CB matrices [K] and [M ] can be several million. In
this context, the GEP of Eq. (7) cannot be solved by the usual direct solvers by transformation methods such
as the Householder tridiagonalization. Instead, the only tractable possibility is to consider the solvers for
large-scale sparse GEP such as SIL or SIM. This is possible because the CB matrices exhibit quite a high
sparsity, that is amplified by the large ratio nS/NB (large number of substructural modes and small number
of boundary DOF). In addition, the block structure allows an LDL factorization just like that of Eq. (9)
and, given that [ΛS ] and [IS ] are diagonal, significant gains can be obtained by doing so. For following the
SIL approach of Section 2.4, the LDL factorization [P ]T [H][P ] = [L][D][L]T of [H] = [K] − σ[M ] is
considered:

[L] =

[
IS 0

−σP TBMBS(ΛS − σIS)−1 LB

]
, [D] =

[
ΛS − σIS 0

0 DB

]
, [P ] =

[
IS 0
0 PB

]
, (12)

in which [PB], [LB], and [DB] satisfy the LDL factorization [PB]T [SHBB][PB] = [LB][DB][LB]T of the
Schur complement [SHBB]. It should be noted that the inertia count I([H]) (number of negative eigenvalues
of matrix [H]) associated with a shift σ can be obtained as

I([H]) = I([D]) = I([DB]) + I([ΛS ]− σ[IS ]) = I([DB]) +
N∑
J=1

I([ΛJ ]− σ[IJ ]) . (13)



3.3 Accuracy verification

The modal density can be estimated using several shifts σ and computing, for each of them, the inertia count
I([DB]) through the LDL factorization of the Schur complement [SHBB]. Since the number NB of boundary
DOF is small, this is quite efficient. Then, several slices are introduced and parallel SIL is undertaken. For
each GEP, the matrix factorization requires the LDL factorization of the Schur complement [SHBB]. Then,
the linear solves involve thin matrix products involving matrices with similar structure as [MBS ]. The CB
GEP can thus be solved very efficiently for a very large number of eigenpairs. Very large truncations are first
considered, to obtain a CB model that can be considered as error-free.

Concerning the error quantification, the usual error measures based on eigenvalue convergence or the modal
error did not turn out to be adequate for the multilevel structure considered. With the modal error, too large
values were obtained for some modes while considering very high truncations. Furthermore, because of the
very high modal density, the relative eigenvalue error could remain as high as the relative difference between
two distinct eigenvalues. In fact, the eigenvalues are susceptible to swap even though the CB model is already
very accurate. Since the purpose of the computational model is to calculate the FRF, the error measure is
defined through the FRF error. Let Uij(ω) denote the entry i, j of the true FRF matrix and let Ũij(ω) denote
one approximation of it, for instance obtained with the CB model. The associated error measure εij for this
particular FRF is defined as

εij =

√
1

|B|

∫
B

(uij(ω)− ũij(ω))2dω , (14)

in which uij(ω) = 20 log10|Uij(ω)| and ũij(ω) = 20 log10|Ũij(ω)| are the moduli in decibel (dB) scale, and
where |B| denotes the length of the frequency band of analysis. Error εij is the RMS-dB error. The global
error measure ε is then given by

ε = µε + kε σε , µε =
1

N2
I

NI∑
i=1

NI∑
j=1

εij , kε > 0 , σ2ε =
1

N2
I − 1

NI∑
i=1

NI∑
j=1

(εij − µε)2 , (15)

in which kε is a parameter that indirectly controls the probability of obtaining an error greater than ε when
randomly considering one FRF with error εij .
The exact FRF Uij(ω) are not available and consequently, this error measure ε cannot directly be used to
quantify the accuracy of the CB model. Since the response can be written as modal superposition and
since numerous modes have negligible contribution, it is proposed to substitute the true FRF with the FRF
restrained to a subspace spanned by a small subset of dominant modes. The dominant modes are defined
as those for which the error induced by their sole removal is the greatest. Such FRF spanned by a subset
of modes is referred to as “partial FRF”. This way, it is possible to calculate the true “partial FRF” by
computing the subset of dominant modes by using a solver as accurate as machine precision. To do so, the
SIL approach of Section 2.4 is used along with domain decomposition for the linear solver as described in
Section 2.2. The number nd of dominant modes should be such that nd � ne and adjusted such that the
eigenvalue computation of Eq. (3) be affordable. Then, the use of the error measure defined in Eqs. (14)
and (15) allows for controlling the accuracy of the nd dominant modes calculated through the CB GEP of
Eq. (7). It should be noted that these dominant modes are very much likely to cover the whole frequency
band. These dominant modes do not have any reason to have better accuracy than all the other modes that
have not been verified by such direct comparison. To make sure of it, one possibility is to examine the other
error measures (modal error and eigenvalue convergence) and verify that the dominant modes do not behave
differently than the others.

3.4 Loose truncation and multilevel Craig-Bampton

The FRF error described in Section 3.3 required that the modes recomputed with SIL correspond to the same
modes computed by the CB approach. Otherwise the error due to the mismatch between the FRF would not



be due to the inaccuracy of the CB model, and the accuracy verification would be biased and most likely
exhibiting too large errors. The mode correspondence was thus necessary for the accuracy certification de-
scribed in Section 3.3 and required large truncations (large value for nS). Nevertheless, the CB model does
not necessarily need that large a value for nS . The CB model for which the accuracy has been verified in
Section 3.3 is used as a reference and then the FRF error (not that of the partial FRF but that of the true
FRF) is used to study the convergence of the CB model with respect to the truncation of the substructural (or
component) modes.

In fact, the accuracy verification of Section 3.3 can be seen as an offline step necessary for preparing an
efficient procedure to perform the dynamic analysis for the same computational model but altered with few
changes such as damage or randomness. Beside the loose truncation compared to that used in the accuracy
verification step of Section 3.3, several other approximations are examined to decrease the cost of the com-
putational model while keeping the same level of accuracy.

Since the multilevel structure presents three structural levels, it is also beneficial to consider a second CB
approximation (referred to as “inner CB”), nested in the first one (referred to as “outer CB”), that is to say
devoted to computing the component modes of the outer CB. The component modes of the outer CB are
the FA modes and the modes of the so-called frame substructure constituted of the canister and its basket.
The inner CB only considers the CB model of a FA (the 68 FA are nominally identical) as it is assumed that
the frame substructure is not subject to change. Just like the FA are connected to the upper scale through
localized attachments with the basket and the canister bottom plate, the fuel rods are connected to the FA
skeleton through localized attachments with the spacer grids. The same methodology is used for performing
this inner CB step.

4 Substructural mode selection

For one different instance of the computational model, that is to say e.g., either for one choice of the set of
mechanical parameters describing the computational model or for one damage scenario, the FA modes and
static constraint modes need to be recomputed (no change is applied to the canister and its basket). As a
consequence, the CB model is changed and the CB GEP of Eq. (7) needs to be solved again. The main cost
is that of the CB GEP and for decreasing it, the strategy proposed is to remove the FA modes that do not
contribute much to the CB model. From one instance of the computational model to the other, the importance
or dominance of the FA modes varies, in general. Therefore, it needs to be calculated “online”, that is to say
for each instance of the computational model. Following the same definition as in Section 3.3, the dominant
FA modes are defined as those for which the error induced by their sole removal is the greatest. Nevertheless,
in this case, such calculation must be less time consuming than the time that is gained by dealing with a CB
GEP with a reduced dimension resulting from the removal of FA modes.

For quantifying the error due to removing one given FA mode, the FRF error is again used as in Section 3.3.
The true FRF is that obtained with the CB model without FA mode removal and the approximate FRF is
that with single FA mode removal. Again, the true FRF is not available. The strategy thus proposed is
to calculate the true FRF using direct numerical simulation using the dynamic stiffness matrix [H(ω)] =

−ω2[M ] + iω[D] + [K] , for which the damping model is hysteretic such that [D] = 2ξ(ω)
ω [K] with ξ(ω) a

frequency-dependent damping ratio. This way, the dynamic stiffness matrix exhibits the same sparsity as the
shifted matrix [H] of the CB GEP of Eq. (7). The approximate FRF then considers the same damping model
and is obtained in considering the removal of one FA mode (thus decreasing the dimension of the CB model
by one unit). Let [MβA] be the matrix similar to [MBS ] but associated with the FA substructure and for which
the rows are restricted to its Nβ boundary DOF. The matrix [sH,Aββ (ω)] = [MβA][HAA(ω)]−1[MβA]T with
[HAA(ω)] = −ω2[IA] + (1 + 2iξ(ω)) [ΛA] (dynamic stiffness matrix of the FA) includes the contribution
of the FA modes to the Schur complement [SHBB(ω)] of the dynamic stiffness matrix [H(ω)] of the complete
system. Let vβ denote the column vector of matrix [MβA] corresponding to the FA mode to be removed.



Then it can be shown that the contribution [s̃H,Aββ (ω)] of the remaining FA modes to the Schur complement
[SHBB(ω)] is given by

[s̃H,Aββ (ω)] = [sH,Aββ (ω)]− 1

h(ω)
vβvTβ , (16)

in which h(ω) = −ω2+(1 + 2iξ(ω))λA with λA the eigenvalue of the removed FA mode. It can be deduced
that the modified Schur complement [S̃HBB(ω)] resulting from the single FA mode removal can be written as

[S̃HBB(ω)] = [SHBB(ω)] +
w4

h(ω)
vBvTB , (17)

in which vector vB is the extension of vector vβ with zeros in the entries corresponding to boundary DOF
of other substructures. It can be seen that the single mode removal comes down to a rank-1 modification
of the Schur complement. The Sherman-Morrison-Woodbury formula is then used to efficiently deduce the
inverse of the modified Schur complement based on the inverse of the original Schur complement. This is
quite useful, considered that there are as many modified Schur complements to consider as the number of FA
modes (they are each removed one at a time). It can be shown that then inverse [S̃HBB(ω)]

−1
of the modified

Schur complement can be written as

[S̃HBB(ω)]
−1

= [SHBB(ω)]
−1 − 1

a(ω)
pB(ω)pTB(ω) , (18)

in which the frequency-dependent quantities a(ω) = h(ω)
ω4 + vTBpB(ω) and pB(ω) = [SHBB(ω)]

−1vB then
allow the modified FRF to be obtained.

For each mode of each FA and for a given sampling of frequencies, the approximate FRF are computed
and used along the true FRF to calculate the error measure defined in Eqs. (14) and (15). The importance
of a given FA mode is defined by the value of the error measure obtained through the sole removal of
this substructural mode. Thus, the FA modes can be sorted according to their importance. Then, a given
percentage of the most dominant FA mode is kept and the CB GEP solved. A convergence analysis is carried
out to determine an adequate percentage of substructural mode filtering, with respect to both accuracy and
efficiency.

5 Numerical results

The frame substructure (canister and its basket) has NF = 2,209,084 DOF, one FA has NA = 1,935,837
DOF, and there is a total of NB = 1140 boundary DOF. Therefore, the FE model is of dimension N =
NB + NF + 68 × NA = 133,847,140 DOF. Preliminary calculations pertaining to the offline stage are
carried out. Among them, the first nF = 211,057 modes of the frame substructure are calculated, as well
as the first nA = 46,383 FA modes. These numbers correspond to a frequency truncation of 20 kHz, given
that the modal analysis is to be performed up to 1.2 kHz. Such a high truncation is considered for obtaining
a reference computational model. The static constraint modes for both these structures are quite cheap to
compute, as there are only NB = 1140 of them for the frame substructures and Nβ = 27 for the FA. Then,
the CB GEP of Eq. (7) is solved for all the eigenpairs below 1.2 kHz: there are ne = 458,910 of them. The
dimension of the CB GEP is ν = NB +nF + 68×nA = 3,366,241. Even though it exhibits higher numbers
than for the frame substructure, the calculation is faster, thanks to the efficient block factorization.

The ne = 458,910 CB system modes are removed one at a time and the error measure defined in Eqs. (14)
and (15) is calculated for each of them. This allows for the modes to be ranked according to their dominance.
For accuracy certification as described in Section 3.3, the nd = 200 most dominant modes are considered.
For each of them, the approximate eigenvalue given by the CB model with 20 kHz truncation is available.
For each of these eigenvalues, the corresponding eigenpair is recomputed up to machine precision using the



SIL approach with domain decomposition as described in Sections 2.2 and 2.4, by using a frequency shift
equal to the approximate eigenvalue. Such a precise shit is necessary because of the very high modal den-
sity. The matrix factorization necessary for the Lanczos iterative process also gives the inertia count as a
byproduct, which allows the rank correspondence to be verified. Then the “partial FRF” restrained to these
nd = 200 dominant modes are computed with both the exact modes and the CB modes, which then allows
to calculate the FRF error defined in Eqs. (14) and (15). Using kε = 4 (the choice for this value is fixed for
the rest of this paper), the decibel error is of 0.46 dB, which is very low. Therefore, the CB model with 20
kHz truncation can be considered as a reference.

Then, a convergence analysis with respect to the truncation frequency is carried out, which shows that a 4 kHz
truncation is sufficient to reach a decibel error of 0.38 dB with respect to the reference computational model
(CB model with 20 kHz truncation frequency). There are only nF = 16,623 frame modes and nA = 14,064
FA modes up to 4 kHz and consequently, the dimension of the CB model is decreased to ν = 974,115.
Then, the FA modes are approximated by introducing an inner CB model for the FA. Using a 6 kHz inner
truncation allows for obtaining a decibel error of 0.41 dB, that is to say no noticeable error is introduced.
Due to this CB approximation, the number of FA modes slightly decreases to nA = 14,047. Applying the
methodology presented in Section 4, these modes are sorted according to their importance. For that, a coarse
frequency sampling of 1000 frequency points instead of 3000 frequency points as used everywhere else in
this paper is considered. Moreover, the number of FRF considered is decreased, such that the size of several
of the frequency-dependent matrices involved in the substructural mode selection are reduced. Despite these
approximations, the methodology delivers satisfying results, as a removal of 75% of the least important FA
modes leads to a decibel error of 0.45 dB, which is still very low. Thanks to this filtering, the size of the
CB model is decreased to ν = 256,579 with nA = 3512. As a remark, the sole removal of the one most
dominant FA mode gives an error of 7.43 dB, which is quite significant.

Regarding the computational cost, for the FA mode selection, the elapsed time for the true FRF is∼ 2 minutes
on one compute node devoted to one FA, and the elapsted time for computing the 68 × 14,047 = 955,196
FRF with FA mode removal is ∼ 12 minutes (therefore, it is five orders of magnitude faster). The mode
filtering allows the CB GEP to be solved in ∼ 21 minutes with dimension ν = 256,579 instead of being
solved in ∼ 118 minutes with dimension ν = 974,115. It should also be noted that the computational cost
per mode is four orders of magnitude less for the reference CB GEP with 20 kHz truncation than for the
SIL approach with domain decomposition as described in Sections 2.2 and 2.4. The proposed methodology
allows the vibration analysis to be performed in about ∼ 40 minutes whereas it is nearly intractable with a
standard approach.

6 Conclusions

For the vibration analysis of a multilevel structure characterized by pseudo-periodicity arising from the rep-
etition of numerous identical components, an efficient solver combining Craig-Bampton substructuring and
Shift-Invert Lanczos solver with spectrum slicing allowed to tackle the high computational cost induced by
the large number of DOF and the very large modal density characterized by nearly half a million modes.
The proposed methodology took advantage of the small number of interface DOF between components,
which allowed efficient matrix factorizations. In addition, capturing the relevant physics by removing 75%
of the least significant substructural modes allowed the computational cost to be further reduced. The pro-
posed methodology enables the practical simulation of the complex multilevel structure for studying various
instances of damage or variation of the mechanical properties.
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