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Abstract This paper investigates the dynamic charac-

teristics of a multilevel structure for the transportation

and storage of spent nuclear fuel (SNF) from commer-

cial power plants. The nuclear fuel is stored in slen-

der rods that are grouped together into fuel assemblies

(FA). In a sealed cylindrical container called “canis-

ter”, the FA are inserted into a honeycomb basket. The

objective of this paper is to develop a computational

model that accurately describes the structural dynam-

ics of the canister, based on measurements collected

from its external surface. Based on these measurements,

the computational model is intended to capture the sig-

nature of the structural integrity of the internal com-

ponents (FA and fuel rods). The numerous components

lead to a large finite element (FE) model and numerous

vibration modes and eigenfrequencies. Nevertheless, the
localized connections between components enable an ef-

ficient domain decomposition with few interface coordi-

nates. Craig-Bampton (CB) substructuring is thus used

to perform the modal analysis. However, the high modal

density yields a large-scale CB eigenvalue problem that

necessitates a sparse solver. A block factorization by

Schur complement that exploits the sparsity of the CB

matrices allows an efficient calculation of the numerous

eigenpairs. Many local vibration modes contribute little

to the dynamics of the SNF canister. The main contri-

bution of this paper is the development of an efficient

methodology for determining the importance of each of
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the substructural modes of the CB model. The removal

of the least dominant substructural modes allows for

reducing the CB model. Using a 75% filtering, a signif-

icant speed-up is obtained, without noticeable loss of

accuracy.
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1 Introduction

The context of this research is the nuclear safety during

transportation or storage of spent nuclear fuel (SNF).

The nuclear fuel pellets are assembled in long, slender

metal tubes called fuel rods, which are grouped together

into bundles called fuel assemblies (FA). The FA are the

elements that power the reactor cores at the nuclear

power plants (NPP) and are removed after depletion.

FA require radiation protection and cooling for several

decades. Multiple layers of packaging are required for

safe transportation and interim or long-term storage.

The FA are placed in a cylindrical container called the

canister. A basket with honeycomb geometry is inserted

into the canister to hold the FA in their respective lo-

cations. In each of the basket cells, a FA is inserted.

For radiation protection, the canister is sealed and in

most cases it is not meant to be opened unless it is

a storage only canister and repackaging is needed for

transportation. For safety, the integrity of the several

levels of protection have to be assessed. The fuel rod

cladding may suffer damage during and after the oper-

ation in the reactor core. Fuel rod failure is most often

due to debris fretting and grid-rod fretting (the fuel

rods are held by spacer grids) that initiate cracking in
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the cladding which may be worsened by hydride reori-

entation during the drying process. The stiffness of the

FA skeleton plays an important role in grid-rod fretting.

During storage, cladding oxidation and hydriding influ-

ence the fuel rod integrity. Therefore, before transporta-

tion or permanent storage, the fuel integrity has to be

evaluated. Non-intrusive inspection of sealed SNF con-

tainers is the focus of recent research involving various

techniques and scientific fields. This paper comes within

the scope of vibration-based structural health monitor-

ing. It consists in assessing the integrity of the internal

layers or levels (the FA and the fuel rods) based on the

vibration response of the external surface of the canis-

ter. For doing so, an explicit geometrical description of

the several structural levels (canister, FA and fuel rods)

is adopted. The ensuing finite element (FE [1]) model

is large due to the large number of FA and rods, which

require a finer mesh in comparison to that of the canis-

ter. In addition, the independent resonance vibrations

of each of these numerous components lead to a very

large number of vibration eigenmodes (or modes) and

eigenfrequencies to describe the structural dynamics.

Linear vibration analysis through a FE model is usually

carried out by using the vibration modes as a projection

basis [2]. The dimension of the associated reduced-order

model (ROM) is in general small for a low-frequency

(LF) analysis. In the LF range, the resonance peaks

are well separated, whereas the high-frequency (HF)

range is characterized by smooth frequency response

functions (FRF) and a high modal density [3]. Other

methods such as statistical energy analysis (SEA [4])

are generally preferred for the HF range, which also ex-

hibits more variability and model uncertainty. In this

research, the multilevel nature of the structure leads

to a high modal density even for low frequencies. The

dynamics is constituted of both long-wavelength vibra-

tions of the canister and short-wavelength vibrations

of the small components. Such a hybrid situation is

typical of the medium-frequency (MF) range [3], for

which neither SEA nor FE analysis prevail. Using FE

analysis, the generalized eigenvalue problem (GEP) to

be solved for obtaining the modal basis (the projection

basis) becomes challenging. This paper presents a new

methodology that tackles this difficulty inherited from

the multilevel nature of the structure. In structural dy-

namics, the prominent eigenvalue solvers include the

Shift-Invert Lanczos (SIL [5,6]) solver, the Subspace

Iteration Method (SIM [7,8]), Craig-Bampton (CB [9,

10]) substructuring technique, and Automated Multi-

level Substructuring (AMLS [11,12]). SIL and SIM are

iterative solvers that converge to the true eigensolutions

whereas CB and AMLS deliver approximate eigenso-

lutions. For CB and AMLS, the approximation sub-

space is spanned by a subset of the vibration modes

of the substructures, in addition to static constraint

modes that ensure proper junction between the sub-

structures. In general, CB is preferred over SIL when

a large frequency band with numerous modes is con-

sidered and when accuracy is not crucial. In addition,

the efficiency of SIL is lower for high-dimensional FE

models, whereas in this case CB takes advantage of the

divide-and-conquer paradigm. For the present case of a

multilevel structure that is composed of well-separated

components, CB technique is very well suited. Since

the several structural levels are made up of distinct

components that have limited interface, the CB reduc-

tion involves only a small number of static constraint

modes for describing the interface forces. However, the

high modal density inherited from the description of

the several structural levels leads to an unusually large

CB model. Usually, the CB model has a small dimen-

sion and the CB GEP that replaces the FE GEP is

solved instantly for all the eigenpairs by direct solvers

(based on, for instance, Householder tridiagonalization

[13]). In the present case, such a direct approach is pro-

hibitive because of this high modal density of the CB

substructures. In [14], the CB GEP is solved by SIL.

This is done efficiently by considering a block matrix

factorization given by the Schur complement [15,16].

The sparsity of the CB matrices, which is accentuated

by the small number of interface degrees of freedom

(DOF) and the large number of substructural modes,

is exploited. In this paper, the same strategy is em-

ployed. The focus of this paper is on the selection of

a reduced set of substructural modes to decrease the

dimension of the CB model and the resulting cost of

the CB GEP. In the literature, various techniques for

selecting the most important substructural modes have

been proposed. The usual criterion is to consider a cut-

off frequency beyond which all the modes are discarded.

In [17,18] the authors introduce the concept of Effec-

tive Interface Mass (EIM) that gives for any computed

substructural mode its contribution relative to the com-

plete set of substructural modes. For a given substruc-

tural mode, the EIM depends on the interface coupling

matrices of the substructure but remains agnostic about

the rest of the structure. In [19,20,22] the importance

of a substructural mode is evaluated from its contribu-

tion to the elastic forces exerted by the substructure

onto its interface with the rest of the structure. The ex-

pression of this elastic force is also completely agnostic

about the rest of the structure. A variant following a

moment-matching approach has been proposed in [21].

In [23] the substructural modes are ranked according

to their contribution to the mean kinetic and elastic
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energies over the time history, for given frequency and

spatial distribution of the excitation. In [24] the rank-

ing is defined according to the contribution to the re-

sponse (rather than the energy) and requires assigning

importance weights to each of the system modes (i.e.,

to the modes of the entire structure, as opposed to the

substructural modes). In [25,26] the moment-matching

method of [21] is revisited and the sorting criterion is

very similar to that of [17,18] but multiplied by a dif-

ferent exponent of the substructural eigenfrequency. Fi-

nally, the moment-matching method is used in [27] for

design optimization. In this paper, the importance of

a substructural mode is defined through the error in

decibel that the FRF of interest undergo after removal

of said substructural mode. This criterion is directly re-

lated to the usage made of the CB model and does not

suffer from any conceptual consideration or assumption.

For computational efficiency, the modal importance is

approximated through coarse frequency sampling and

with a reduced set of FRF of interest, which can both

be adjusted.

The paper is organized as follows. In Section 2, the

usual tools and concepts for modal analysis in com-

putational structural dynamics are presented, includ-

ing SIL, CB, and domain decomposition. In Section 3,

theoretical developments from paper [14] are summa-

rized, including the efficient implementation of CB tech-

nique adapted to the high modal density exhibited by

the SNF canister. Finally, in Section 4, the proposed

methodology for determining the dominant substruc-

tural modes is presented.

2 Modal analysis in computational structural

dynamics

2.1 Direct numerical simulation

In this paper, the structural vibrations under harmonic

excitation are studied in the frequency domain. The

unknown displacement field is discretized using the FE

method. The resulting vector U(ω) of nodal displace-

ments is the solution of the matrix equation(
−ω2 [M] + iω [D] + [K]

)
U(ω) = F(ω) , (1)

in which [M], [D], and [K] are the mass, damping, and

stiffness FE matrices, F(ω) is the vector of the exter-

nal forces, and ω is the circular frequency. Equation (1)

is considered for frequencies belonging to an interval

(frequency band of analysis) B = 2π×]0, fu] with fu its

upper bound in Hz. The FE matrices are assumed to be

positive definite and their dimension is denoted by N

(number of DOF). In general, the FE matrices are large

and sparse. Solving Eq. (1) for many frequencies and ex-

ternal loads can be computationally prohibitive. Tradi-

tionally, a reduced-order model (ROM) is constructed

based on the vibration eigenmodes.

2.2 Modal analysis

The vibration eigenmodes are the eigenvectors of the

generalized eigenvalue problem (GEP)

[K]ϕ = λ[M]ϕ , (2)

in which ϕ is an eigenmode (or mode) and λ > 0 is

the associated eigenvalue. The eigenfrequency in Hz is

given by
√
λ/2π. There areN finite eigenvalues but only

a few ne � N of them are of interest. In general, for a

vibration analysis in frequency band B, all the modes

with eigenfrequency below some fc > fu are consid-

ered. The cutoff frequency fc depends for instance on

the half-power bandwidth of the modes beyond B and

is usually determined by convergence analysis. Let [Φ]

denote the modal matrix that includes as columns the

first ne modes (i.e., the modes whose eigenfrequency

belongs to Bc = 2π×]0, fc]). The GEP can be written

in matrix form as

[K][Φ] = [M][Φ][Λ] , (3)

in which [Λ] denotes the diagonal matrix of the ne eigen-

values. The modes, whose amplitude is arbitrary, satisfy

orthogonality properties that, under mass normaliza-

tion, are written as

[Φ]
T

[M][Φ] = [Ine ] , [Φ]
T

[K][Φ] = [Λ] . (4)

In Eq. (4), [Ine ] denotes the identity matrix of dimen-

sion ne . This notation for the identity matrix is re-

served throughout the article. In this paper, a modal

damping model is assumed, such that the projection of

the damping matrix is considered to be diagonal. It is

written as [Φ]
T

[D][Φ] = 2[Ξ][Ω] , with [Ω] =
√

[Λ] and

where [Ξ] is the diagonal matrix of the modal damping

ratios. The ROM is obtained through the approxima-

tion

U(ω) = [Φ]q(ω) , (5)

where q(ω) is a vector comprising ne generalized coordi-

nates that are obtained by solving the diagonal matrix

equation(
−ω2 [Ine ] + 2iω [Ξ][Ω] + [Λ]

)
q(ω) = F(ω) , (6)

with F(ω) = [Φ]
TF(ω) . This equation is very inexpen-

sive and can thus be solved easily for numerous frequen-

cies and loads. The FRF U(ω) need not be computed
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for every DOF of the structure. A subset of NI DOF

is considered, for which unit loads are applied and the

displacements are observed. The associated FRF ma-

trix [UII(ω)] can be obtained as

[UII(ω)] = [ΦI ]
(
−ω2 [Ine ] + 2iω [Ξ][Ω] + [Λ]

)−1
[ΦI ]

T
,

(7)

in which matrix [ΦI ] with dimension (NI × ne) is the

restriction (rows) of matrix [Φ] to the NI DOF of in-

terest. In this setting, the overall cost of the vibration

analysis is concentrated on the eigenvalue computation

of Eq. (3).

2.3 Shift-Invert Lanczos approach

For computing a relatively large number of modes, an

efficient strategy is to divide the frequency band and use

the Lanczos solver with eigenvalue shifts. This way, the

cost associated with maintaining orthogonality between

the eigenvectors remains linear with respect to the num-

ber of eigenvectors sought. In addition, it allows for

coarse-grained parallelism. Introducing an eigenvalue

shift σ, the GEP [K]ϕ = λ[M]ϕ is replaced by the GEP

([K]− σ[M])ϕ = (λ− σ) [M]ϕ with both positive and

negative eigenvalues. The SIL solver considers the stan-

dard eigenvalue problem (SEP) ([K]− σ[M])
−1

[M]ϕ =
1

λ−σϕ which has better eigenvalue separation. Introduc-

ing the symmetric indefinite matrix [H(σ)] = [K]−σ[M],

the GEP of Eq. (2) is replaced by the SEP(
[H(σ)]

−1
[M]
)
ϕ =

(
1

λ− σ

)
ϕ . (8)

In the Lanczos algorithm, the matrix-vector product(
[H(σ)]

−1
[M]
)
x is repeated through the iterations for

varying x. The ensuing linear system involving indefi-

nite matrix [H(σ)] is usually solved with direct solvers

through factorization (such as LDL [28]) rather than

iterative solvers (such as conjugate gradient [29] ). In

this paper, the LDL factorization of [H(σ)] is consid-

ered, such that

[P(σ)]
T

[H(σ)][P(σ)] = [L(σ)][D(σ)][L(σ)]
T
, (9)

in which [L(σ)] is a lower-triangular matrix, [D(σ)] is a

block-diagonal matrix with a block size of 1 or 2, and

[P(σ)] is a permutation matrix such that [P(σ)]
−1

=

[P(σ)]
T

. In the sequel, the dependency on σ is omitted

for simplifying the notation to

[P]
T

[H][P] = [L][D][L]
T
. (10)

2.4 Domain decomposition

The sparsity of the FE matrices is related to the struc-

tural connectivity between the FE. Partitioning the struc-

tural domain Ω into N substructures Ω1, . . . , ΩN can

be beneficial for efficiency. Denoting with B, the DOF

that belong to the boundary between substructures and

with S, the remaining DOF that belong to the interior

of the substructures, the FE matrices can be rewritten

in partitioned form as

[K] =

[
KSS KSB
KBS KBB

]
, [M] =

[
MSS MSB

MBS MBB

]
. (11)

Unlike the boundary DOF (B), which are connected

to several substructures, the substructure DOF (S) are

only connected to DOF belonging to the same substruc-

ture. Therefore, the submatrix [KSS ] (for instance) is

block diagonal, such that

[KSS ] =


K11 0 . . . 0

0 K22
. . .

...
...

. . .
. . . 0

0 . . . 0 KNN

 . (12)

Solving the linear system [K]x = f (i.e., computing

x = [K]
−1

f) can be performed in parallel over the sub-

structures in conjunction with a sequential step involv-

ing the boundary, as is shown hereinafter. The following

matrix decomposition of [K] can be shown[
KSS KSB
KBS KBB

]
=[

IS 0

KBSK−1SS IB

] [
KSS 0

0 SKBB

] [
IS K−1SSKSB
0 IB

]
,

(13)

in which [SKBB ] is the Schur complement, such that

[SKBB ] = [KBB ]− [KBS ][KSS ]
−1

[KSB ] . (14)

Owing to Eq. (13), it can be shown (using block matrix

inversion formula) that the inverse of [K] can be written

as

[K]
−1

=[
IS −K−1SSKSB
0 IB

][
K−1SS 0

0
(
SKBB

)−1] [ IS 0

−KBSK−1SS IB

]
.

(15)

Consequently, introducing the notation x = (xB ,xS)
T

and f = (fB , fS)
T

, the linear system [K]x = f can be

solved through the operations

xB = [SKBB ]
−1 (

fB − [KBS ][KSS ]
−1

fS

)
,

xS = [KSS ]
−1

(fS − [KSB ]xB) . (16)
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It can be seen in Eq. (16) that although a linear solu-

tion is required twice for the substructures (index S),

it involves a block-diagonal matrix. Hence, each sub-

structure linear system can be solved in parallel with

the others. A block Cholesky [28] factorization [K] =

[U]
T

[U] can be deduced from Eq. (13) based on the

Cholesky factorizations [KSS ] = [US ]
T

[US ] and [SKBB ] =

[UB ]
T

[UB ] (where [US ] and [UB ] are upper-triangular

matrices), by introducing the upper-triangular matrix

[U] such that

[U] =

[
US U−TS KSB
0 UB

]
. (17)

Similarly to Eq. (16), the Cholesky factorization [KSS ] =

[US ]
T

[US ] and the linear solution of [US ]
−T

[KSB ] can

be performed blockwise because [KSS ] is block diago-

nal. Similar to Eq. (16), the linear system [H]x = f

(with [H] = [K]− σ[M]) can be solved according to

xB = [SHBB ]
−1 (

fB − [HBS ][HSS ]
−1

fS

)
,

xS = [HSS ]
−1

(fS − [HSB ]xB) , (18)

in which [SHBB ] is the Schur complement such that [SHBB ] =

[HBB ] − [HBS ][HSS ]
−1

[HSB ] . A block LDL factoriza-

tion [P]
T

[H][P] = [L][D][L]
T

can thus be deduced based

on the LDL factorizations [PS ]
T

[HSS ][PS ] = [LS ][DS ][LS ]
T

and [PB ]
T

[SHBB ][PB ] = [LB ][DB ][LB ]
T

(where [LS ] and

[LB ] are lower-triangular matrices, [DS ] and [DB ] are

block-diagonal matrices with a block size of 1 or 2, and

[PS ] and [PB ] are permutation matrices) by introducing

the lower-triangular matrix [L], the block-diagonal ma-

trix [D] with a block size of 1 or 2, and the permutation

matrix [P], such that

[L] =

[
LS 0

PT
B HBS H−1SS PS LS LB

]
,

[D] =

[
DS 0

0 DB

]
, [P] =

[
PS 0

0 PB

]
.

(19)

The number I ([H]) of negative eigenvalues of [H] (in-

ertia count [30,31]) is a byproduct of the above LDL

factorization and it can be obtained as

I ([H]) = I ([D]) = I ([DB ]) + I ([DS ])

= I ([DB ]) +

N∑
J=1

I ([DJ ]) .
(20)

The inertia count is not only useful for verifying that

the eigenvalue computation by SIL did not miss any

mode, it is also a way to estimate the modal density

(distribution of the eigenvalues), which is necessary for

splitting the frequency band and choosing the eigen-

value shifts σ.

2.5 Craig-Bampton approach

The CB substructuring technique provides approximate

solutions to the GEP [K]ϕ = λ[M]ϕ by introducing

the reduced-order representation ϕ = [V ]q with q =

(qS ,ϕB)
T

, a vector of both generalized coordinates (qS)

and physical coordinates (ϕB). Following the same ap-

proach as in Section 2.2, the GEP is projected (Galerkin

projection) onto the subspace spanned by the columns

of matrix [V ], such that(
[V ]

T
[K][V ]

)
q = λ

(
[V ]

T
[M][V ]

)
q . (21)

The reduced-order representation is given by the rect-

angular matrix [V ], such that

[V ] =

[
ΦS tSB
0 IB

]
, [tSB ] = −[KSS ]

−1
[KSB ] , (22)

in which [tSB ] is the matrix of the static constraint

modes that ensure the continuity between the substruc-

tures and where the matrix [ΦS ] satisfies the equality

[KSS ][ΦS ] = [MSS ][ΦS ][ΛS ]. Matrices [ΦS ] and [ΛS ] are

block diagonal such that

[ΦS ] =


Φ1 0 . . . 0

0 Φ2
. . .

...
...

. . .
. . . 0

0 . . . 0 ΦN

 , [ΛS ] =


Λ1 0 . . . 0

0 Λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 ΛN

 ,
(23)

and are obtained by solving theN GEP associated with

the substructures:

[KJJ ][ΦJ ] = [MJJ ][ΦJ ][ΛJ ] , J = 1, . . . ,N . (24)

For each substructure J , only nJ modes out of the NJ
DOF are kept, usually by considering a cutoff frequency.

In general, one has nJ � NJ and the GEP [K]q =

λ[M ]q of Eq. (21) with [K] = [V ]
T

[K][V ] and [M ] =

[V ]
T

[M][V ] is not very expensive. The dimension of the

CB model is given by ν = NB +
∑N
J=1 nJ with NB the

number of boundary DOF. The CB matrices [K] and

[M ] can be written as

[K] =

[
KSS KT

BS

KBS KBB

]
, [M ] =

[
MSS MT

BS

MBS MBB

]
, (25)

in which the submatrices are given by

[KSS ] =[ΛS ] , [KBS ] = [ 0 ] ,

[KBB ] =[SKBB ] , [MSS ] = [IS ] ,

[MBS ] =
(

[MBS ] + [tSB ]
T

[MSS ]
)

[ΦS ] ,

[MBB ] =[MBB ] + [MBS ][tSB ]

+ ([MBS ][tSB ])
T

+ [tSB ]
T

[MSS ][tSB ] .

(26)
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The block structure for [K] and [M ] is inherited from

domain decomposition, as demonstrated hereinafter. The

projection basis [V ] can be written as [V ] = [B][R] with

[B] and [R] such that

[R] =

[
ΦS 0

0 IB

]
, [B] =

[
IS −K−1SSKSB
0 IB

]
,

[B]
−1

=

[
IS K−1SSKSB
0 IB

]
.

(27)

And, given the equality [K] = [B]
−T

([B]
T

[K][B])[B]
−1

,

it can be deduced by identification from Eqs. (13) and

(27) that the matrix [B]
T

[K][B] is block diagonal. Ow-

ing to the block structure of rectangular matrix [R]

(this matrix is responsible for dimension reduction), the

block structure of [K] and [M ] is thus preserved.

3 Craig-Bampton implementation suitable for

high modal density

3.1 Craig-Bampton implementation with Shift-Invert

Lanczos

In the case of high modal density (large number of

modes or in this case, large number of substructural

modes, nJ), the dimension of the CB GEP can be very

high, such that the direct approach to compute all the

eigenpairs of Eq. (21) (e.g., Householder tridiagonaliza-

tion) is computationally prohibitive. Nevertheless, the

CB matrices are rather sparse, especially in the case

of low number NB of boundary DOF and large number

nS =
∑N
J=1 nJ of substructural (or component) modes.

Indeed, [MSS ] is diagonal, [MBS ] is sparse with dense

blocks, and [MBB ] is rather dense. In this context, it

is proposed that the CB GEP be solved using the SIL

solver just like the usual approach for FE analysis. A

large portion of the eigenpairs of the sparse GEP are

sought.

As a basic tool for SIL, solving the linear system [H]x =

f with [H] = [K] − σ[M ] and given vector f can be

carried out according to

xB = [SHBB ]
−1 (

fB − [HBS ][HSS ]
−1

fS

)
,

xS = [HSS ]
−1

(fS − [HSB ]xB) ,
(28)

in which [SHBB ] is the Schur complement such that [SHBB ] =

[HBB ]− [HBS ][HSS ]
−1

[HSB ] . The submatrices [HBB ],

[HBS ], and [HSS ] of symmetric matrix [H] are given by

[HBB ] = [KBB ]− σ[MBB ] , [HBS ] = −σ[MBS ] ,

[HSS ] = [ΛS ]− σ[IS ] ,

(29)

from which the expression for the Schur complement

[SHBB ] follows as

[SHBB ] =[KBB ]− σ[MBB ]

− σ2[MBS ]([ΛS ]− σ[IS ])
−1

[MBS ]
T
.

(30)

A block LDL factorization [P ]
T

[H][P ] = [L][D][L]
T

can

be obtained — just like in Section 2.4 — through the

LDL factorizations [PS ]
T

[HSS ][PS ] = [LS ][DS ][LS ]
T

and

[PB ]
T

[SHBB ][PB ] = [LB ][DB ][LB ]
T

(where [LS ] = [IS ]

and [LB ] are lower-triangular matrices, [DS ] = [ΛS ] −
σ[IS ] and [DB ] are block-diagonal matrices with a block

size of 1 or 2, and [PS ] = [IS ] and [PB ] are permuta-

tion matrices) by introducing the lower-triangular ma-

trix [L], the block-diagonal matrix [D] with a block size

of 1 or 2, and the permutation matrix [P ] such that

[L] =

[
IS 0

−σPT
BMBS (ΛS − σIS)

−1
LB

]
,

[D] =

[
ΛS − σIS 0

0 DB

]
, [P ] =

[
IS 0

0 PB

]
.

(31)

The inertia count I ([H]) is a byproduct of the above

LDL factorization, given by

I ([H]) = I ([D]) = I ([DB ]) + I ([ΛS ]− σ[IS ])

= I ([DB ]) +

N∑
J=1

I ([ΛJ ]− σ[IJ ]) .
(32)

3.2 Craig-Bampton model for the fully-loaded spent
nuclear fuel canister

In this paper, we are interested in performing the vibra-

tion analysis of a fully-loaded SNF canister (FLSNFC).

The canister is a cylindrical container with thick upper

and lower circular plates inside which a basket with

honeycomb structure is placed (see Fig.1). This basket

has 68 cells inside each of which a FA is inserted. A

FA is constituted of a stiff frame that holds together

close to a hundred nuclear fuel rods that are stacked

together along their length (see Fig.2). The FLSNFC

clearly exhibits three structural levels that correspond

to the FLSNFC components: the lower level is consti-

tuted of the fuel rods, the medium level of 68 identical

FA, and the upper level of the canister and its basket.

The structural connection between the components is

not continuous but rather discrete and consequently, it

is possible to define an advantageous domain decompo-

sition that entails a small number of boundary DOF,

namely NB = 1140 with the 68 FA and the main frame
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Fig. 1 Frame substructure (canister + basket), represented
without the thick canister lid.

(canister and basket) as substructures (N = 69). There

are only Nβ = 27 boundary DOF for each FA. On

the other hand, the slender fuel rods, which are nu-

merous, are responsible for the presence of a very large

number of modes. Nearly half a million modes will be

considered for the vibration analysis. In addition, due

to the fine mesh necessary for representing the lower

scales, the FE model has N = NB + 68 ×NA + NF =

1140 + 68 × 1,935,837 + 2,209,084 = 133,847,140 DOF

(with NA the number of DOF for each FA and NF
the number of DOF for the frame substructure). A CB

model is implemented according to Section 3.1. The

FE matrices [KF ] and [MF ] for the frame substructure,

which include interior (substructure) DOF denoted by

F and boundary DOF denoted by B, can be written as

[KF ] =

[
KFF KFB
KBF KFBB

]
, [MF ] =

[
MFF MFB

MBF MF
BB

]
.

(33)

For the frame, there are NB = 1140 static constraint

modes to compute according to [tFB ] = −[KFF ]
−1

[KFB ].

In addition, there is a given number nF of frame modes

to compute from the GEP

[KFF ][ΦF ] = [MFF ][ΦF ][ΛF ] . (34)

This number nF of modes is determined by the cut-

off frequency, which depends on the accuracy desired.

Introducing the matrix [VF ] such that

[VF ] =

[
ΦF tFB
0 IB

]
, (35)

Fig. 2 Fuel assembly (partial views with and without sur-
rounding channel).

the CB matrices [KF ] = [VF ]
T

[KF ][VF ] and [MF ] =

[VF ]
T

[MF ][VF ] associated with the frame substructure

are obtained based on their submatrices [KFF ] = [ΛF ],

[KBF ] = [ 0 ], [MFF ] = [IF ], and

[KF
BB ] =[KFBB ] + [KBF ][tFB ] ,

[MF
BB ] =[MF

BB ] + [MBF ][tFB ] + ([MBF ][tFB ])
T

+ [tFB ]
T

[MFF ][tFB ] ,

[MBF ] =
(

[MBF ] + [tFB ]
T

[MFF ]
)

[ΦF ] .

(36)

For the CB model developed for the FLSNFC, the Schur

complement [SHBB ] of Eq. (30) is given by the contribu-

tions from the frame and from the 68 FA. The contri-

bution [SH,FBB ] from the frame is given by

[SH,FBB ] =[KF
BB ]− σ[MF

BB ]

− σ2[MBF ]([ΛF ]− σ[IF ])
−1

[MBF ]
T
.

(37)



8 O. Ezvan et al.

The FE matrices [KA] and [MA] for one FA (the 68 FA

are all identical), which include interior (substructure)

DOF denoted by A and boundary DOF denoted by β,

can be written as

[KA] =

[
KAA KAβ
KβA KAββ

]
, [MA] =

[
MAA MAβ

MβA MA
ββ

]
. (38)

For the FA, there are Nβ = 27 static constraint modes

to compute according to [tAβ ] = −[KAA]
−1

[KAβ ]. In

addition, there is a given number nA of frame modes to

compute from the GEP

[KAA][ΦA] = [MAA][ΦA][ΛA] . (39)

This number nA of modes is determined by the cut-

off frequency, which depends on the accuracy desired.

Introducing the matrix [VA] such that

[VA] =

[
ΦA tAβ
0 Iβ

]
, (40)

the CB matrices [KA] = [VA]
T

[KA][VA] and [MA] =

[VA]
T

[MA][VA] associated with the FA substructure are

obtained based on their submatrices [KAA] = [ΛA],

[KβA] = [ 0 ], [MAA] = [IA] and

[KA
ββ ] =[KAββ ] + [KβA][tAβ ] ,

[MA
ββ ] =[MA

ββ ] + [MβA][tAβ ]

+ ([MβA][tAβ ])
T

+ [tAβ ]
T

[MAA][tAβ ] ,

[MβA] =
(

[MβA] + [tAβ ]
T

[MAA

)
[ΦA] .

(41)

The contribution [SH,Aββ ] from one FA is given by

[SH,Aββ ] =[KA
ββ ]− σ[MA

ββ ]

− σ2[MβA]([ΛA]− σ[IA])
−1

[MβA]
T
.

(42)

It can be deduced from Eq. (30) that the Schur com-

plement for the FLSNFC CB model is given by

[SHBB ] =

N∑
J=1

[SH,JBB ] , (43)

in which, for J = 1, [SH,JBB ] = [SH,FBB ] and, for J > 1, the

nonzero terms of [SH,JBB ] are given by [SH,Aββ ]. In this pa-

per, we are only interested in the structural vibrations

as can be obtained from the external surface of the can-

ister (which is sealed for radiation protection), for the

purpose of inverse identification of the damage to the in-

ternal components (lower scales). Consequently, the NI
DOF of interest associated with FRF matrix [UII(ω)]

belong to the frame. To solve Eq. (7), only [ΦI ] and

[Λ] need to be computed, with the columns ϕI of [ΦI ]

hence given by

ϕI = [Φ IF ]qF + [t IFB ]ϕB , (44)

where [Φ IF ] and [t IFB ] denote the restrictions of the ma-

trices [ΦF ] and [tFB ] to the DOF of interest.

3.3 Error quantification

Partial error measure For quantifying the error due to

the CB approximation, the approximate FRF may be

compared with the exact FRF obtained with the exact

modes. Of course, the exact modes are not available and

it is the purpose of the CB approach to avoid having

to compute them. The strategy proposed is to compare

the FRF associated with (modal) superposition of a re-

duced set of nd � ne modes, rather than the true FRF

(obtained upon convergence with a large number ne of

modes). In other words, the error quantification is car-

ried out by comparing the FRF restricted to a subspace

spanned by nd modes. Or, by using as quantity of in-

terest the contribution of nd given modes. The nd exact

modes are computed by SIL solver with domain decom-

position (see Section 2.4) and the value of nd is chosen

so that the computation is affordable. The use of do-

main decomposition allows the advantageous structural

connectivity to be leveraged.

Generic error measure Let Uij(ω) denote one entry of

the reference FRF matrix [UII(ω)] of Eq. (7) (obtained,

for instance, through exact modes). Let Ũij(ω) denote

the corresponding approximate FRF (obtained, for in-

stance, through the CB model). Introducing the mod-

uli in decibel (dB) scale uij(ω) = 20 log10|Uij(ω)| and

ũij(ω) = 20 log10|Ũij(ω)|, the corresponding error mea-

sure εij in decibel is defined as

εij =

√
1

|B|

∫
B

(uij(ω)− ũij(ω))
2
dω , (45)

in which |B| is the length of the frequency band of anal-

ysis. Then, the global error measure related to all the

FRF is defined as

ε = µε + kεσε , µε =
1

N2
I

NI∑
i=1

NI∑
j=1

εij , kε > 0 ,

σ2
ε =

1

N2
I − 1

NI∑
i=1

NJ∑
j=1

(εij − µε)2 ,

(46)

in which kε is a parameter that controls the confidence

level associated with the decibel error ε .

Error quantification for the FLSNFC The FLSNFC ex-

hibits many vibration modes that are due to the iso-

lated vibrations of the small-scale components. These

local modes (see Fig. 3 right), as opposed to global

modes (see Fig. 3 left) that involve an in-phase defor-

mation of the entire structure, do not necessarily con-

tribute much to the structural response. In fact, the
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Fig. 3 Example of global mode (left) and local mode (right)
for the fuel assembly.

majority of them have a negligible impact on the FRF.

For better robustness of the error quantification, it is

proposed that the nd modes be chosen as the most dom-

inant ones, that is to say the modes that contribute the

most to the FRF. To determine which are the dominant

modes, a modal importance criterion is defined based

on the error ε obtained through mode removal. That

is, the importance of number-α vibration mode ϕα is

given by the error ε that is obtained when using all the

ne modes at the exception of mode ϕα for computing

the FRF matrix.

The procedure is as follows. The ne vibration modes

are approximated by the CB model. The list of the

nd dominant modes is determined by calculating the

modal importance of the ne approximate CB modes

(one CB mode is removed at a time and the result-

ing FRF is compared to the reference FRF with all the

ne CB modes). These dominant modes are then exactly

computed using SIL with frequency slices obtained with

eigenvalue shifts corresponding to the approximate CB

eigenvalues. For the error quantification, having corre-

spondence (same rank) between the CB eigenvalues and

the exact eigenvalues is crucial. Otherwise, it is not the

same modes that are compared and the resulting error

quantification is not related to the CB approximation.

4 Reduced-order model based on dominant

substructural modes

Due to the presence of numerous local modes, the CB

eigenvalue problem [K]q = λ[M ]q of Eq. (21) remains

quite computationally intensive despite the CB imple-

mentation suitable for high modal density described

in [14] and summarized in Section 3. In this paper,

a methodology and an algorithm are developed to de-

crease the cost of this computation. The objective is not

to compute the ne CB modes (which provide an approx-

imation to the reduced basis [Φ]) but instead, to com-

pute a reduced basis that can differ from [Φ] or its CB

approximation. It is intended that the associated ROM

gives accurate FRF. To achieve the cost reduction, the

strategy is to reduce the number of substructural modes

used in the reduced basis [V ] of the CB model (i.e.,

decrease nS =
∑N
J=1 nJ). In order to only keep dom-

inant substructural modes, the same procedure as in

Section 3.3 is used. That is, one substructural (or com-

ponent) mode is removed at a time and its dominance or

importance is defined as the resulting error ε defined in

Eq. (46). To apply this strategy, a reference FRF must

be available. It is recalled that the error we are inter-

ested in here is that relative to the CB model and that

we want to avoid solving the CB eigenvalue problem.

It is proposed to consider as reference FRF, the FRF

obtained with the CB model through direct numerical

simulation. For doing so, it is necessary to replace the

modal damping model with another damping model,

because the modes are not available. It is proposed

to use a hysteretic damping model, which coincides

with the modal damping model at the eigenfrequen-

cies with appropriate frequency-dependent loss factor

η(ω) = 2ξ(ω) (one must have: ∀α = 1, . . . , ne ξ(ωα) =

ξα , with ωα the eigenfrequency of mode α and ξα as its

modal damping ratio). The CB matrices are given by

[K] =

[
ΛS 0

0 KBB

]
, [M ] =

[
IS MT

BS

MBS MBB

]
,

[D] =
2ξ(ω)

ω
[K] .

(47)

The CB dynamic stiffness matrix [H(ω)] = −ω2[M ] +

iω[D] + [K] is given by:

[H(ω)] =

[
HSS(ω) HT

BS(ω)

HBS(ω) HBB(ω)

]
,

[HSS(ω)] = −ω2[IS ] + (1 + 2iξ(ω)) [ΛS ] ,

[HBS(ω)] = −ω2[MBS ] ,

[HBB(ω)] = −ω2[MBB ] + (1 + 2iξ(ω)) [KBB ] .

(48)

The CB representation ϕ = [V ]q for the modes trans-

lates to U(ω) = [V ]q(ω) for the FRF (letters q and
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q differ), with U(ω) = (US(ω) , UB(ω))
T

and q(ω) =

(qS(ω) , qB(ω))
T

. The FRF of the frame (where the

DOF of interest are located) is obtained through

U(ω) = [V ]q(ω)

⇒ US(ω) = [ΦS ]qS(ω) + [tSB ]qB(ω)

⇒ UF (ω) = [ΦF ]qF (ω) + [tFB ]qB(ω) .

(49)

Similar to Section 2.4, the unknown vectors qF (ω) and

qB(ω) can be obtained using the Schur complement.

Let [SHBB(ω)] denote the Schur complement such that

[SHBB(ω)] =

[HBB(ω)]− [HBS(ω)][HSS(ω)]
−1

[HBS(ω)]
T
.

(50)

Notation [SHBB(ω)] should not be confused with nota-

tion [SHBB ] (and [H(ω)] with [H], etc.). The matrix

[H] defined in Section 3.1 does not include the damp-

ing term and does not depend on frequency (it de-

pends on the eigenvalue shift σ). Based on frequency-

dependent Schur complement [SHBB(ω)], the unknown

vectors qB(ω) and qF (ω) of Eq. (49) under application

of an external load F(ω) can be obtained as

qB(ω) =

[SHBB(ω)]
−1 (

fB(ω)− [HBF (ω)][HFF (ω)]
−1

fF (ω)
)
,

qF (ω) = [HFF (ω)]
−1
(
fF (ω)− [HBF (ω)]

T
qB(ω)

)
,

(51)

in which fB(ω) and fF (ω) are the subvectors of the vec-

tor f(ω) = (fS(ω) , fB(ω))
T

given by f(ω) = [V ]
TF(ω).

From Eqs. (49) and (51), it can be deduced that

UF (ω) =[ΦF ][HFF (ω)]
−1

fF (ω)

+
(

[tFB ]− [ΦF ][HFF (ω)]
−1

[HBF ]
T
)
qB(ω) .

(52)

For the case of unit point loads associated with the FRF

matrix [UII(ω)] of Eq. (7), one has fF (ω) = [ΦIF ]
T

and

fB(ω) = [tIFB ]
T

, which yields

[UII(ω)] = [LII(ω)] + [LIB(ω)]qIB(ω) , (53)

in which

[LII(ω)] = [ΦIF ][HFF (ω)]
−1

[ΦIF ]
T
,

[LIB(ω)] = [tIFB ]− [ΦIF ][HFF (ω)]
−1

[HBF ]
T

= [tIFB ] + ω2[ΦIF ][HFF (ω)]
−1

[MBF ]
T
,

qIB(ω) = [SHBB(ω)]
−1

[LIB(ω)]
T
.

(54)

Similarly to Eq. (43), the Schur complement [SHBB(ω)]

of Eq. (50) is given by

[SHBB(ω)] = [HBB(ω)]−[HBF (ω)][HFF (ω)]
−1

[HBF (ω)]
T

−
69∑
J=2

[HBJ(ω)][HJJ(ω)]
−1

[HBJ(ω)]
T
, (55)

in which for all J = 2, . . . , 69 one has [HJJ(ω)] =

[HAA(ω)] = −ω2[IA] + (1 + 2iξ(ω)) [ΛA] and where the

nonzero terms of [HBJ(ω)] are given by [HβA(ω)] =

−ω2[MβA]. It follows that

[SHBB(ω)] =[HBB(ω)]

− ω4

(
[sH,FBB (ω)] +

69∑
J=2

[sH,JBB (ω)]

)
,

(56)

with [sH,FBB (ω)] = [MBF ][HFF (ω)]
−1

[MBF ]
T

and where

the nonzero terms of [sH,JBB (ω)] are given by [sH,Aββ (ω)] =

[MβA][HAA(ω)]
−1

[MβA]
T

, for all J = 2, . . . , 69.

From Eqs. (53) and (54), one gets

[UII(ω)] = [LII(ω)] + [LIB(ω)][SHBB(ω)]
−1

[LIB(ω)]
T
.

(57)

Let [ŨII(ω)] denote the approximation of [UII(ω)] re-

sulting from the removal of a single mode of a given

FA. Since neither [LII(ω)] nor [LIB(ω)] depend on the

set of FA modes retained, only the Schur complement

[SHBB(ω)] is affected by the removal of a FA mode. Thus,

let [S̃HBB(ω)] denote the approximation of [SHBB(ω)] re-

sulting from the mode removal. In the expression of

[SHBB(ω)] in Eq. (56), the only term that is affected by

the removal of a FA mode is [sH,JBB (ω)], which is de-

fined through [sH,Aββ (ω)]. Thus, let [s̃H,Aββ (ω)] denote the

approximation of [sH,Aββ (ω)] resulting from the mode re-

moval. Let [M̃βA] be the matrix obtained by removing

from matrix [MβA] the column corresponding to the

removed FA mode, and let [H̃AA(ω)] be the diagonal

matrix obtained by removing from [HAA(ω)] the row

and column corresponding to the removed FA mode.

Due to the outer product form of [sH,Aββ (ω)], it can be

deduced that

[s̃H,Aββ (ω)] = [sH,Aββ (ω)]− 1

h(ω)
vβv

T
β , (58)

in which vβ denotes the column vector that is removed

from [MβA] to obtain [M̃βA] and where the scalar func-

tion h(ω) is given by h(ω) = −ω2 + (1 + 2iξ(ω))λA ,
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with λA the eigenvalue of the removed FA mode. Re-

placing [sH,Aββ (ω)] with [s̃H,Aββ (ω)] for the relevant FA,

the modified Schur complement [S̃HBB(ω)] becomes

[S̃HBB(ω)] = [HBB(ω)]

− ω4

(
[sH,FBB (ω)] +

(
69∑
J=2

[sH,JBB (ω)]

)
− 1

h(ω)
vBv

T
B

)

= [SHBB(ω)] +
w4

h(ω)
vBv

T
B ,

(59)

in which vB is a vector with dimensionNB whose nonze-

ros elements are given by vector vβ . It can be seen

from Eq. (59) that [S̃HBB(ω)] is a rank-1 modification

of [SHBB(ω)]. For given square matrix A and matrices

U , C, and V with compatible dimensions, Sherman–

Morrison–Woodbury formula [28] is written as

(A+ UCV )
−1

=

A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 .

(60)

Replacing A with [SHBB(ω)], U with vB , V with vT
B ,

and C with w4

h(ω) yields

[S̃HBB(ω)]
−1

= [SHBB(ω)]
−1 − [SHBB(ω)]

−1
vB . . .

×
(
h(ω)

ω4
+ vT

B [SHBB(ω)]
−1

vB

)−1
vT
B [SHBB(ω)]

−1
.

(61)

Introducing the vector function pB(ω) = [SHBB(ω)]
−1

vB
and the scalar function a(ω) = h(ω)

ω4 +vT
BpB(ω), the in-

verse of the modified Schur complement [S̃HBB(ω)] can

be written as

[S̃HBB(ω)]
−1

= [SHBB(ω)]
−1 − 1

a(ω)
pB(ω)pT

B(ω) . (62)

It can be deduced that the FRF matrix [ŨII(ω)] result-

ing from the removal of a single mode of a given FA can

be written as

[ŨII(ω)] = [LII(ω)] + [LIB(ω)][S̃HBB(ω)]
−1

[LIB(ω)]
T

= [LII(ω)] + [LIB(ω)] . . .

×
(

[SHBB(ω)]
−1 − 1

a(ω)
pB(ω)pT

B(ω)

)
[LIB(ω)]

T

= [UII(ω)]− 1

a(ω)
qI(ω)qT

I (ω) ,

(63)

in which the complex vector qI(ω) is defined as qI(ω) =

[LIB(ω)]pB(ω) . The dimension NI of the FRF matrix

[UII(ω)] as well as the frequency sampling can be ad-

justed to decrease the cost for computing [UII(ω)] and

[ŨII(ω)] through Eqs. (57) and (63).

Summary of the operations The first step is to com-

pute the exact response [UII(ω)] defined in Eq. (57),

for a given frequency sampling and NI given DOF of

interest. For this, it is assumed that the following ma-

trices have been computed: [KBB ], [MBB ], [tIFB ], [ΦIF ],

[MBF ], and [MβA].

For all sampling frequency ω, compute (loop over ω):

• [HFF (ω)] = (1 + 2iξ(ω)) [ΛF ]− ω2[IF ]

• [HAA(ω)] = (1 + 2iξ(ω)) [ΛA]− ω2[IA]

• [PBF (ω)] = [MBF ][HFF (ω)]
−1

This consists of a real dense (NB × nF ) (nF × nF )

complex diagonal matrix product.

• [PIF (ω)] = [ΦIF ][HFF (ω)]
−1

This consists of a real dense (NI × nF ) (nF × nF )

complex diagonal matrix product.

• [LIB(ω)] = [tIFB ] + ω2[ΦIF ][PBF (ω)]
T

This is a real dense (NI × nF ) (nF ×NB) complex

dense matrix product.

• [LII(ω)] = [PIF (ω)][ΦIF ]
T

This is a complex dense (NI × nF ) (nF ×NI) com-

plex dense matrix product.

• [sH,FBB (ω)] = [PBF (ω)][MBF ]
T

This is a complex dense (NB × nF ) (nF ×NB) real

dense matrix product.

• [sH,Aββ (ω)] = [MβA][HAA(ω)]
−1

[MβA]
T

This consists of a real dense (Nβ × nA) (nA × nA)

complex diagonal matrix product and of a complex

dense (Nβ × nA) (nA ×Nβ) real dense matrix prod-

uct.

• [HBB(ω)] = −ω2[MBB ] + (1 + 2iξ(ω)) [KBB ]

• [SHBB(ω)] = [HBB(ω)]

0 −ω4

(
[sH,FBB (ω)] +

69∑
J=2

[sH,JBB (ω)]

)
• LDL factorization of [SHBB(ω)]

This matrix is complex dense (NB ×NB) .

• [PBI(ω)] = [SHBB(ω)]
−1

[LIB(ω)]
T

This is a complex dense (NB ×NB) (NB ×NI) com-

plex dense linear solve.

• [UII(ω)] = [LII(ω)] + [PBI(ω)]
T

[LIB(ω)]
T

This entails a complex dense (NI ×NB) (NB ×NI)
complex dense matrix product.

• [uII(ω)] = 20 log10 |[UII(ω)]| where log10 and

modulus |.| are applied term by term.
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For each sampling frequency ω, the following matrices

are saved to disk:

• the LDL factorization of complex dense (NB ×NB)

matrix [SHBB(ω)]

• complex dense (NB ×NI) matrix [PBI(ω)]

• complex dense (NI ×NI) matrix [UII(ω)]

• real dense (NI ×NI) matrix [uII(ω)]

The next step is to compute the error induced by re-

moving the FA modes one at a time. Each FA can be

dealt with in parallel of the others. Although the FA

are identical and consequently, share the same modes,

their contributions to the dynamics of the FLSNFC is

in general different, due to the different locations of the

FA. A loop over the 68 FA is considered thereafter. Typ-

ically, one compute node can be assigned to each FA.

For each FA, matrices [MβA] and [ΛA] are loaded in

memory. In addition, denoting as nω the number of fre-

quency points, an (nω×nA×NI×NI) array [EαII(ω)] is

initialized to obtain the FRF error for each frequency

and associated with each mode α = 1, . . . , nA of the

FA. The FRF error for each frequency is given by the

integrand in Eq. (45).

Then, for all sampling frequency ω, do (loop over ω):

• load the LDL factorization of the complex dense

(NB ×NB) matrix [SHBB(ω)]

• load the complex dense (NB ×NI) matrix [PBI(ω)]

• load the complex dense (NI ×NI) matrix [UII(ω)]

• load the real dense (NI ×NI) matrix [uII(ω)]

• For each mode α = 1, . . . , nA do (loop over α):

• extract vector vβ from matrix [MβA] to obtain

vector vB

• compute pB(ω) = [SHBB(ω)]
−1

vB
This is a complex dense (NB ×NB) (NB × 1) real

sparse linear solve.

• compute h(ω) = −ω2 + (1 + 2iξ(ω))λA

– compute a(ω) =
h(ω)

ω4
+ vT

BpB(ω)

This involves a real sparse (1×NB) (NB ×N1)

complex dense dot product.

• compute qI(ω) = [PBI(ω)]
T
vB

This is a complex dense (NI ×NB) (NB × 1) real

sparse matrix-vector product.

• compute [ŨII(ω)] = [UII(ω)]− 1

a(ω)
qI(ω)qT

I (ω)

This is a complex dense (NI × 1) (1×NI) com-

plex dense outer product.

• For all i = 1, . . . , NI and j = 1, . . . , NI , com-

pute the integrand eij = (uij(ω)− ũij(ω))
2

in

Eq. (45). Then, store these N2
I values in array

[EαII(ω)].

After the nested loops over ω and α are done, for a

given FA, the array [EαII(ω)] is filled up. For each mode

α = 1, . . . , nA of a given FA, the error measure εij from

Eq. (45) is computed for given i ∈ {1, . . . , NI} and

j ∈ {1, . . . , NI} based on nω components of [EαII(ω)].

For each mode α = 1, . . . , nA of a given FA, the error

measure ε from Eq. (46) is then computed based on

the N2
I error measures εij . For each mode of each FA,

its importance measure is given by its error measure ε .

The FA modes are then ranked according to this impor-

tance measure and a truncation is considered. Applying

this truncation leads to a CB model that is incomplete,

in the sense that not all the substructural modes below

the original cutoff frequency are kept. The absence of

numerous substructural modes leads to the filtering of

numerous system modes (as opposed to substructural

modes) through the GEP of Eq. (21) of the incomplete

CB model. Thereby, not only the CB GEP of Eq. (21)

is less expensive, but the system modes obtained are

fewer and still constitute an adequate projection basis

to represent the vibration response (the FRF). Thus,

a reduced set of n ≤ ne dominant vibration modes

that accurately describes the structural dynamics is ob-

tained at a proportionally reduced cost. It should be

noted that in general, these dominant “modes” do not

correspond neither to the modes solution of Eq. (2) nor

to those obtained after solution of Eq. (21) with the

complete (standard) CB model.

5 Numerical results

5.1 Multiscale modal analysis

In this section, some of the results presented in [14] are

repeated for clarity and completeness.

It is recalled that the frame (canister + basket) has

NF = 2,209,084 DOF and that the FA has NA =

1,935,837 DOF. Performing a domain decomposition

with the frame (J = 1) and each of the 68 FA (J =

2, . . . , 69) as substructures, there are only NB = 1140

boundary DOF. The FE model has N = NB + NF +

68×NA = 133,847,140 DOF. The objective is to com-

pute the FRF matrix [UII(ω)] of Eq. (7) gathering all
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the combinations of FRF from the NI = 1581 DOF of

interest whose locations are depicted in Fig. 4. Such a

Fig. 4 Location of the NI = 1581 DOF of interest on the
bottom plate of the canister.

fine observation grid is postulated to be needed for an

inverse identification of damage to the internal compo-

nents. Concerning the boundary conditions, the FLSNFC

is suspended from the top as shown in Fig. 5. The

FLSNFC is fixed at these two attachments and rigid

body motion is prevented. The NI DOF of interest be-

long to the outer surface of the canister bottom plate,

as depicted in Fig. 6. The FA rest in a vertical po-
sition within their respective basket cells. The vibra-

tions of the FA are transmitted to the bottom plate

through a slender nose piece but are not directly trans-

mitted to the thick top lid. It should be noted that

the basket is not connected to the cylindrical shell of

the canister. In addition, the FA are not connected to

the walls of their basket cell except at the top through

height springs that secure their horizontal positioning.

The methodology described in Section 3.2 is applied us-

ing a cluster of compute nodes, which all have roughly

the same computational power. The GEP of Eq. (34)

is solved for the first nF = 211,057 modes by LS-

DYNA software [33] using SIL, in ∼ 60 h with 180

nodes. The NB = 1140 static constraint modes [tFB ]

are computed by MATLAB software [34] in ∼ 3.5 h

with one node. The GEP of Eq. (39) is solved for the

first nA = 46,383 modes by LS-DYNA software using

SIL, in ∼ 5 h with 180 nodes. The Nβ = 27 static con-

straint modes [tAβ ] are computed by MATLAB software

in ∼ 15 min with one node. In this paper, all the re-

Fig. 5 Top of a longitudinal mid-section of the canister
loaded with one fuel assembly (the whole details of the basket
are not represented). The structure is fixed at the top of the
thick canister lid through two attachments.

Fig. 6 Bottom of a longitudinal mid-section of the canis-
ter loaded with one fuel assembly (the whole details of the
basket are not represented). The external loads and dynamic
response monitoring are restricted to the outer surface of the
canister bottom plate.

maining calculations are done with MATLAB software.

The values for nF and nA correspond to a truncation

to 20 kHz frequency. The objective of the CB model

is to calculate all the modes up to fc = 1200 Hz. The

very high frequency truncation at 20 kHz is used to

achieve an almost exact solution as will be shown and
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relaxed later in this paper. This cutoff frequency ex-

plains the large values for nF and nA and associated

high computational cost. Using this CB model of di-

mension ν = NB + nF + 68× nA = 3,366,241 , the CB

GEP of Eq. (21) is solved for the first ne = 458,910

modes found below fc , in ∼ 3.8 h with 50 nodes. For

error quantification (see Section 3.3), the ne = 458,910

CB modes are removed one at a time and the error

ε of Eq. (46) is evaluated with kε = 4 and in consid-

ering a reduced set of NI = 63 DOF of interest for

increased efficiency (see Fig. 7). The greater the error,

Fig. 7 Location of the NI = 63 DOF of interest considered
for defining the dominant modes.

the greater the modal importance. The CB modes are

sorted according to their importance (or dominance).

The nd = 200 most dominant CB modes are consid-

ered for accuracy verification. Based on the eigenvalues

of the nd = 200 most dominant CB modes, the corre-

sponding 200 modes are recomputed with no approxi-

mation using SIL solver (exact modes): for each of the

nd = 200 modes, an eigenvalue shift σ is introduced,

and only the closest mode is computed. Although the

advantageous structural connectivity between compo-

nents is leveraged by the domain decomposition lin-

ear solver presented in Section 2.4, the nd = 200 exact

modes are computed in ∼ 35 h with 25 nodes.

The FRF matrix restricted to these nd = 200 modes is

computed up to fu = 1000 Hz based on the CB modes

on the one hand and based on the exact modes on the

other hand. The associated error measures of Eq. (46)

are evaluated. Figure 8 depicts the distribution of error

εij of Eq. (46) associated with the FRF matrix of the

NI = 1581 DOF of interest depicted in Fig. 4. One

Fig. 8 Distribution of the error εij for the 20 kHz Craig-
Bampton model with respect to the exact modes, both re-
stricted to the nd = 200 most dominant modes. Red line:
global error ε = µε + 4 × σε = 0.46 dB.
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Fig. 9 FRF comparison between the 20 kHz Craig-Bampton
model (dashed gray) and the exact model (black), both re-
stricted to the nd = 200 most dominant modes. Error:
εij = 0.46 dB.

FRF for which the error is representative of the global

error ε is plotted in Fig. 9, based on which it can be

deduced that the 20 kHz CB model is very accurate (it

should be noted that roughly 99% of the FRF have an

even smaller error, as can be seen in Fig. 8). Now that

it has been verified that the CB model with 20 kHz

truncation is accurate, it can be used as a reference.

Such a high cutoff frequency was necessary to ensure

the CB modes and the exact modes have corresponding

ranks. The objective of this work is to define an efficient

methodology for obtaining an accurate model for the vi-

bration analysis through the bottom plate using the NI
DOF of the FRF matrix. This methodology is then to

be used for various cases of damage or uncertainty in-

troduced to the internal components. It is assumed that

the frame substructure is not subject to damage or un-

certainty and consequently, its modal matrix [ΦF ] and

static constraint modes [tFB ] need not be recomputed.

With respect to the reference CB model with 20 kHz
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truncation, several approximations are now introduced

for the purpose of increased efficiency.

A convergence analysis of the CB model with respect to

the cutoff frequency is carried out. The CB model global

error ε is calculated for multiple truncations and the

convergence curve is plotted in Fig. 10. It is seen that

the error converges to zero and that a 20 kHz truncation

is clearly unnecessary. For a cutoff frequency of 4 kHz,

the global error is ε = 0.38 dB, which is lower than the

error of the reference CB model with 20 kHz truncation

(partial error with respect to the exact modes). For the
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Fig. 10 Convergence of the Craig-Bampton model error ε =
µε + 4 × σε with respect to the cutoff frequency.

CB model with 4 kHz truncation, the distribution of the

FRF error εij (for all the FRF of the NI = 1581 DOF

of interest) is plotted in Fig. 11. Using the 4 kHz CB

Fig. 11 Distribution of the 4 kHz Craig-Bampton model er-
ror εij . Global error ε = µε + 4 × σε = 0.38 dB (red line).

model, one FRF for which the error is representative of

the global error ε = 0.38 dB is computed and plotted in

Fig. 12, based on which it can be deduced that the 4 kHz

CB model does not lose significant accuracy. The 4 kHz

truncation is therefore selected. For this truncation, one

has nF = 16,623 and nA = 14,064 , which yields a CB

model with dimension ν = 974,115 . The corresponding

CB GEP is solved for the first ne = 458,910 modes in

∼ 118 min with 68 nodes. Since damage or uncertainty
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Fig. 12 FRF comparison between the 4 kHz Craig-Bampton
model (dashed gray) and the 20 kHz Craig-Bampton reference
(black). Error: εij = 0.38 dB.

are to be introduced to the internal components (to

the 68 FA), the FA eigenvalue computation of Eq. (39)

has to be repeated many times. Since the FA is also a

multilevel structure with localized connections between

the fuel rods and their supports, a CB model is also

introduced for the FA. This CB model is referred to

as “inner CB” and the previous CB model is now re-

ferred to as “outer CB”. These are nested CB models

(see [14] for details). The domain decomposition asso-

ciated with the inner CB is presented in Fig. 13. It is

composed of, from left to right and top to bottom: the

channel, the two water rods (for neutron moderation),

the upper tie plate, the 9× 92 fuel rod segments (there

are 92 fuel rods), the eight spacer grids (that hold the

fuel rods together), the lower tie plate, and the extrem-

ity of the bottom nose piece. A convergence analysis

is carried out with respect to the cutoff frequency for

the inner CB. It is found that an inner truncation of

6 kHz is sufficient to retain the same level of accuracy,
as demonstrated by Figs. 14 and 15, which respectively

show the distribution of the error and one example of

FRF comparison that has the same error as the global

error (i.e., equal to ε = 0.41 dB). The FA CB GEP is

solved for all the modes below 4 kHz in ∼ 6 min with

1 node. As a conclusion, using 68 nodes, it takes about

118 + 6 = 124 minutes to perform the multiscale modal

analysis, without significant loss of accuracy.

5.2 Proposed reduced-order model

As a further cost reduction step, the methodology pro-

posed in Section 4 is now applied. It first requires the

FA modes to be sorted in accordance with their contri-

bution to the FRF matrix. The nA = 14,047 FA modes

that have been computed by 6 kHz inner CB are re-

moved one at a time to determine their importance (or

dominance). More precisely, the algorithm presented in

Section 4 is implemented and executed with 68 nodes



16 O. Ezvan et al.

Fig. 13 Fuel assembly domain decomposition: all the sub-
structures are represented as disconnected from the others.

Fig. 14 Distribution of the error εij for the multilevel CB
model with 4 kHz outer truncation and 6 kHz inner trunca-
tion. Global error ε = µε + 4 × σε = 0.41 dB (red line).
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Fig. 15 FRF comparison between the 20 kHz Craig-
Bampton reference (black) and the multilevel Craig-Bampton
model with 4 kHz outer truncation and 6 kHz inner trunca-
tion (dashed gray). Error: εij = 0.41 dB.

(one per FA). The reduced set of NI = 63 DOF of in-

terest depicted in Fig. 7 as well as a slightly coarser

frequency sampling are considered (nω = 1000 instead

of nω = 3000 frequency points). The importance value

given by the error ε in decibel is obtained for all the

nA = 14,047 FA modes below 4 kHz of each of the 68

FA (these modes are approximated by the inner CB).

The FA modes are sorted (see Figs. 16 and 17) and a

convergence analysis with respect to the percentage of

FA modes retained is carried out (see Fig. 18). It can
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Fig. 16 Importance value (dB) of all the fuel assembly
modes (sorted).

be observed in Fig. 17 that the modal importance is

not exactly the same from FA to FA. These differences

can be explained by the different locations within the

canister. It can be observed in Fig. 18 that about 75%

of the FA modes do not contribute much to the vibra-

tion response. Keeping only the 25% most dominant

FA modes within each FA, the error is very close to

that of the multiscale modal analysis. For this choice of

truncation (nA = 3512), the distribution of the error is

plotted in Fig. 19 and one example of FRF comparison

that has the same error as the global error is presented

Fig. 17 For each fuel assembly, importance value (dB) of its
modes (sorted).

in Fig. 20. As can be seen, the error level is as low as be-

fore and the accuracy of the FRF is retained. The 75%



Dominant substructural vibration modes for fully-loaded spent nuclear fuel canisters 17

10 20 30 40 50 60 70 80 90 100

Dimension (%)

0

1

2

3

4

E
rr

o
r 

(d
B

)

Fig. 18 Convergence of the global error ε = µε+4×σε with
respect to the percentage of dominant fuel assembly modes
retained.

Fig. 19 Distribution of the error εij for the proposed
reduced-order model with 75% removal of the fuel assembly
modes below 4 kHz frequency. Global error ε = µε+ 4×σε =
0.45 dB.
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Fig. 20 FRF comparison between the 20 kHz Craig-
Bampton reference (black) and the proposed reduced-order
model with 75% removal of the fuel assembly modes below
4 kHz frequency (dashed gray). Error: εij = 0.45 dB.

FA mode removal allows the outer CB GEP of dimen-

sion ν = 256,579 (instead of ν = 972,959) to be solved

more efficiently, in ∼ 21 min with 68 nodes (instead

of 118 min). Taking into account the cost for deter-

mining the importance of each of the FA substructural

modes, which took ∼ 14 min with 68 nodes (∼ 2 min

for the reference FRF matrix and ∼ 12 min for the

68 × 14,047 = 955,196 FRF matrices with FA mode

removal), the proposed procedure allows a computa-

tional gain of a factor ∼ 3.5 compared to the multiscale

modal analysis presented in [14]. The modes that are

obtained as eigenvectors of the outer CB GEP with FA

mode removal are fewer but nonetheless they are able to

preserve the same level of accuracy. The structural dy-

namics is accurately represented with only n = 232,586

“modes” as substitutes of the usual ne = 458,910 modes

associated with the FE approximation. This suggests

that the usual modes do not necessarily constitute an

adapted or optimal representation basis.

To highlight the importance of carefully evaluating the

contribution of the substructural modes, Figure 21 shows

the distribution of the error that is obtained when, in-

stead of removing the 75% least dominant FA modes,

only the one most dominant FA mode is removed. This

single mode removal leads to an important error of

ε = 7.43 dB. Figure 22 shows one example of FRF

comparison exhibiting the same error: the single FA

dominant mode removal is responsible for the large dis-

crepancies in the high-frequency region of the whole

system.

Fig. 21 Distribution of the error εij for multiscale modal
analysis with removal of the one most dominant fuel assembly
mode. Global error ε = µε + 4 × σε = 7.43 dB.
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Fig. 22 FRF comparison between the 20 kHz Craig-
Bampton reference (black) and the multilevel Craig-Bampton
model with 4 kHz outer truncation and 6 kHz inner trunca-
tion from which the one most dominant fuel assembly mode
is removed (dashed gray). Error: εij = 7.43 dB.
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6 Conclusions

A methodology for efficiently evaluating the importance

of each of the substructural modes in a Craig-Bampton

model has been proposed and validated for the case

of a multilevel structure characterized by high modal

density and localized structural connections. The im-

portance of a substructural mode is given by the error

induced by its sole removal and is calculated exactly for

given frequency sampling and set of frequency response

functions, which can both be adjusted with respect to

efficiency. Through block factorization of the dynamic

stiffness matrix using its Schur complement, the exact

response matrix is efficiently calculated, from which the

response matrix resulting from a single substructural

mode removal can be readily obtained through a rank-

1 modification. For the fully-loaded spent nuclear fuel

canister, the methodology allowed the removal of 75%

of the substructural modes without significant loss of

accuracy, which led to decrease the overall runtime by

a factor of 3 to 4.
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