
HAL Id: hal-03245473
https://hal.science/hal-03245473v1

Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A novel access control method via smart contracts for
internet-based service provisioning

Fariba Ghaffari, Emmanuel Bertin, Noel Crespi, Shanay Behrad, Julien Hatin

To cite this version:
Fariba Ghaffari, Emmanuel Bertin, Noel Crespi, Shanay Behrad, Julien Hatin. A novel access control
method via smart contracts for internet-based service provisioning. IEEE Access, 2021, 9, pp.81253-
81273. �10.1109/ACCESS.2021.3085831�. �hal-03245473�

https://hal.science/hal-03245473v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Novel Access Control Method via
Smart Contracts for Internet-based
Service Provisioning
FARIBA GHAFFARI1, EMMANUEL BERTIN1, (Senior Member, IEEE), NOEL CRESPI2, (Senior
Member, IEEE), SHANAY BEHRAD3, and JULIEN HATIN4
1Orange Telecom, Institut Polytechnique de Paris, IMT, Telecom SudParis (e-mail: {fariba.ghaffari, emmanuel.bertin}@orange.com)
2Institut Polytechnique de Paris, IMT, Telecom SudParis(e-mail: noel.crespi@mines-telecom.fr)
3b-com Institute of Research and Technology
4Orange Telecom

Corresponding author: FARIBA GHAFFARI (e-mail: fariba.ghaffari@orange.com).

ABSTRACT The dramatic rise in internet-based service provisioning has highlighted the importance of
deploying scalable access control methods, facilitating service authorization for eligible users. Existing
centralized methods suffer from single-point-of-failure, low scalability, and high computational overhead. In
addition, in these methods, users pay for the service provider as well as the network provider independently
for a specific service, imposing extra cost for the user. New business models are needed to resolve such
shortcomings. The realization of these models calls for sophisticated access control methods which consider
the requirements of all parties who want to: 1) access a service; 2) provide that service; and 3) provide the
network connection. Blockchain is an enabling technology that provides unprecedented opportunities to
novel distributed access control methods for new business models. We propose an Attribute-based access
control solution by leveraging Blockchain to share network providers’ and service providers’ resources.
Our solution offers access flexibility based on the requirements of the parties while fulfilling reliability,
accountability, and immutability. Besides, it decreases the overall service cost which is beneficial for each
party. Our solution makes it possible for service providers to outsource their access control procedures
without requiring a trusted third party. The experiments confirm that our solution can provide a fast,
comprehensive, and scalable access control mechanism.

INDEX TERMS ABAC, Blockchain, Ethereum, flexible access control, network, service provisioning,
smart contract, trusted payment, 5G.

I. INTRODUCTION

THE dramatic increase in network-based services (e.g.,
video/audio streaming and internet calls) has led both

network providers and service providers to implement a vari-
ety of techniques to meet the growing need for network secu-
rity. Given that service providers offer their services to users
(e.g., websites similar to Netflix for video streaming) and
network providers provide the network infrastructure, Access
Control (AC) is one of the vital aspects in the effort to assess
users’ eligibility to access services. AC can be implemented
by deploying one or more different solutions. The majority of
these solutions are deployed in centralized systems, in which
a user’s request is sent to a Central Authority (CA) and the
CA then decides about their eligibility to access the system
based on certain rules.

As a typical scenario of current internet-based service
provisioning, when a user wants to use an online service (e.g.,
video streaming), he/she first subscribes to both a network
provider and a service provider and then requests the service
provider to access the service. The service provider then
authorizes the user via its central authority. If the user is
eligible, she can watch the video. While watching the video,
the user is consuming not only the already paid service, but
also her available internet. In the other word, user is paying
for the service provider as well as the network provider. This
scenario undergoes several drawbacks from both business
and technical perspectives. From the technical viewpoint,
the central authority in the access control procedure is a
single point of failure. So, it causes low scalability, man-
agement difficulties (e.g., in the maintenance of the server),

VOLUME x, 2021 1

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

lack of automation in the access control process, and low
fault tolerance. From a business model perspective, another
shortcoming is that the user has to do extra payment for the
service. Regarding these parameters, any solution bringing
flexibility in access management, rules’ immutability, dis-
tributed management of requests, fault tolerance, possibility
to implement a new business model (to reduce extra pay-
ments), and eliminates the need for a trusted third party can
be a promising candidate as a new access control mechanism.

Blockchain [1] was introduced in 2008 as a distributed
technology. In 2014, the first extension of this technology
emerged as smart contracts [2]. These technologies are cryp-
tographically secure, and all changes in the system require
the consensus of all the eligible nodes. After the consensus
of the nodes, the updates are applied in the distributed ledger
stored in each node of the network. Thanks to their features,
Blockchain, and smart contracts are changing many aspects
of business models, management, and operations in a range
of fields. Indeed, Blockchain can be a game-changing tech-
nology in access control, because: Its distributed nature can
remove the single point of failure and increase the availability
of the system;

• The consensus among nodes provides a more reliable
access management process;

• It can offer the immutability of rules, due to its crypto-
graphically secure nature;

• Smart contracts provide the ability of access flexibility
using agreements among parties, based on their needs;

• Signing the transactions can support non-repudiation;
• Removing the need for a CA can reduce the access

management load of the service provider side, as well
as decrease the maintenance cost.

In this paper, we propose a solution, based on smart
contracts to provide flexible access control in a new business
model. In this system we aim to 1) remove the central author-
ity to decrease the maintenance cost and remove the inherited
threats of centralized systems, and 2) eliminate the user’s
extra payment for the service. It is important to mention
that in our proposed method, we do not remove the user’s
payment to the network provider. We assume that the user
is subscribed to the network provider, but, while using the
specific service through our platform, the user is exempt from
payment (e.g., does not use the available internet capacity).
To achieve the first goal, the service provider outsources the
authorization process to a Blockchain-based platform, and
for the second target, after user authorization, the service
provider is the party who pays the network provider on behalf
of the user.

In this setting, there are three main parties (user, service
provider, and network provider) that do not trust each other.
For instance, the network provider does not trust the service
provider to pay the network cost. In this paper, we aim to re-
solve the above-mentioned challenges in centralized systems
and to provide a trusted connection among the three men-
tioned parties. Also, to deploy a new business model using

the proposed access control solution. The main contributions
of this paper are:

1) Outsourcing the access control process to an entity
without requiring any trusted third party. This feature
has two advantages, first, it can decrease the process-
ing load of the service provider (i.e., by simplifying
the user registration, access control, etc.), and second,
there is no need for any other organization as a trusted
third party (i.e., decreases the operation cost).

2) Providing flexible access control solution. Smart con-
tracts can be designed to provide authorization possi-
bilities based on the requirements of all parties. These
requirements can consider the needs of the network
provider (e.g., how much the network provider will
be paid), service providers (e.g., which service will be
provided at which cost), and users (e.g., which service
at which cost and how long is available).

3) Providing automation in the access control process.
Using smart contracts to handle the access control,
there is no need for a central authority. Smart con-
tracts also can make this process completely secure,
immutable, and automatic.

4) Make it possible to implement new business models
for network providers and service providers. Instead
of paying twice for a specific service, in our proposed
method a user will pay the service provider for its
service, and in the next steps the service provider is
the entity that pays the network provider on behalf of
the user.

The rest of this paper is organized as follows: Section II
provides a brief background, followed by a summary of the
state of the art in Section III. Section IV outlines the problems
of the existing methods and presents our proposed solution.
The detailed design and construction of our proposed flexible
access control solution to support the new business model is
provided in Section V, followed by the experiment and threat
analysis in section VI. Section VII provides our conclusions
about the proposed method as well as some future research
directions.

II. PRELIMINARIES
A. BLOCKCHAIN AND SMART CONTRACT
Blockchain is introduced by Satoshi Nakamoto in 2008 and
implemented in 2009 by Bitcoin [1]. Blockchain is a peer-to-
peer distributed ledger, immutable, cryptographically secure,
permanent, traceable, and transparent technology that is up-
dateable only via consensus among the majority of the nodes
that existed on the network [3], [4].

Blockchain is implemented in the structure of linked list,
in which, each block is connected to the previous block via
its hash. As shown in Fig. 1, using the hash of the preceding
block makes it difficult to change the data in a block. Chang-
ing a data in one transaction results to change in the hash
of that block, and consequently it must be changed in the
next block. To change this value, the hash of all next blocks

2 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

FIGURE 1. The structure of blocks in the Blockchain.

must be calculated again. Due to this feature, Blockchain
is immutability; it means that any confirmed transaction or
data cannot be altered. Blockchain’s permanency means that
all data can be available at any time, and nothing may be
removed from the network [5], [6].

Fitting the transactions inside a block in an order, and
publishing a new block, can be done through solving a
consensus puzzle [7]. Higher number of nodes to contribute
in the consensus proses, results in the lower the probability
that an individual miner can monopolize the ability to alter
the order of the transactions [8]. Proof of Work (PoW) [9],
Proof of Stake (PoS) [10] and Practical Byzantine Fault Tol-
erant (PBFT) [11] are three well-known examples of existing
consensus models. As one of the extensions of blockchain
technology, smart contracts introduced by Szabo in 1998 [2]
and implemented by Ethereum in 2015 [12], are defined as
computerized transaction protocols that execute the terms of
a contract on a Blockchain. The main purposes of smart con-
tracts are to satisfy common contractual conditions, minimize
exceptions both malicious and accidental, and minimize the
need for trusted intermediaries.

B. ACCESS CONTROL
Access control is a security technique that regulates who or
what (i.e., subject) can perform which action on resources
(i.e., object) [13]. There are a variety of access control
mechanisms that are used for different purposes. Some of
the most well-known methods are Capability-based Access
Control (CapBAC) [14], [15], Discretionary Access Control
(DAC) [16], Role-Based Access Control (RBAC) [17], and
Attribute-Based Access Control (ABAC) [18]. Elaboration of
all of these methods is not in the scope of this paper, and to
be focused on our goal, we only explain the ABAC solution.

Fine-grained access management of ABAC makes this
solution a primitive candidate for our method. ABAC is fine-
grained because it supports different constraints to define
the legitimate user. Also, it provides dynamic and context-
specific access which makes the resource owner capable

to define the access control policy based on their needs.
ABAC generally uses Boolean logic in which the validator
can verify the subject’s eligibility in 0/1 logic based on
different attributes. In the rest of this part, the ABAC method
is formulated and explained comprehensively.

The attribute-based access control method has four sets of
attributes to define the access policy and manage the subject’s
access to the object. These sets are Subject Attributes (SA),
Object Attributes (OA), Environment Attributes (EA), and
Action Attributes (AA). Let define all the attributes (AT) of
access policy as equation (1):

AT = (SA,OA,EA,AA) (1)

each set of attributes are defined in below:

SA = {s1, s2, . . . , sn}, OA = {o1, o2, . . . , om},
EA = {e1, e2, . . . , ep}, AA = {a1, a2, . . . , aq}

(2)

where n = |SA|, m = |OA|, p = |EA| and
q = |AA|. Each attribute in ABAC is defined as a pair
(attribute_name, value).

Subject attributes specify the subject by its identifiers such
as username, token, and so on. Object attributes distinguish
the resources that the subject wants to access; for instance the
file name, the network resource, the service name, etc. Action
attributes are the actions that can be performed by the subject
(e.g., “read”, “write”, and “execute”). Finally, Environment
attributes describe the context in which access is requested
(e.g., the time and location from where access is requested,
the type of communication channel, etc.).

The request of the subject u to access a resource can be
formulated as equation (3). To shorten the formulation, we
avoid expanding each attribute set.

Requ = {SAr, OAr, EAr, AAr} (3)

Different validators in a system may need a subset of the
attributes to validate the subject to perform a specific action
based on the access policy. Let’s define the attribute subset
for validator v as:

ATv = {SAv, OAv, EAv, AAv} (4)

The validation result for each attribute set based on the
predefined access policy is as (5):

VSA =

{
1, if SAv = SAr,

0, otherwise
(5)

The validation process for OA, EA, and AA sets is the same
as (5).

Finally, access control result (AR), based on the policies
defined by the owner, which is returned as “allow” or “deny”
to the user, can be formulated as (6):

AR =

{
1(allow), if VSA = VOA = VEA = VAA = 1

0(deny), otherwise
(6)

VOLUME x, 2021 3

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

III. RELATED WORKS
Due to the significance of access control, a variety of solu-
tions are proposed in this field. A considerable part of the
literature is dedicated to centralized systems in which there is
a trusted central authority that manages users’ requests (see
Fig. 2 (a)). Despite the low complexity in implementation of
these methods and time efficiency of access validation, they
suffer from having a single point of failure, low scalability,
low availability, and low non-repudiation [19], [20].

Most of these drawbacks can be resolved by a reasonable
trade-off between the advantages and disadvantages of using
Blockchain technology. As an example, using Blockchain for
access control procedure may decrease the time efficiency,
while it increases the non-repudiation and removes the single
point of failure. Existing Blockchain-based access control
methods can be classified into two main categories [21].
In the first category, they use Blockchain as a distributed
database to store rules (see Fig. 2 (b)); Even though these

(a)

(b)

(c)

FIGURE 2. Access control approaches. (a) centralized model, (b) using
Blockchain as a distributed database, (c) using Blockchain in all access
management procedure.

TABLE 1. General Comparison among Access control solutions

AC Model Centralized Blockchain Blockchain in
Parameter model as DB whole Process

removing SPoF Low Moderate High
Immutability Low High High
Rule Integrity Low High High
Non-repudiation Low Low High
availability Low Moderate High
time efficiency High Moderate Low
Implementation
complexity Low Moderate High

Scalability* Low Moderate High
auditability Low Low High
*Scalability in terms of the number of users. Note that scalability in the
number of transaction(s) per second (TPS) in the Blockchain is generally
lower than centralized systems [22]

methods improve the centralized solutions regarding non-
repudiation, rule immutability, etc., they could suffer from a
single point of failure. Because in these methods, access de-
cision is made by a central authority outside the Blockchain.
In the second category, the Blockchain is used not only as
a database, but also as a decision point (see Fig. 2 (c));
it means the rules are stored in the Blockchain, and the
access decision can be done using smart contracts. Even
though the complexity of implementation of these methods
is high, and their time efficiency is marginally lower than the
centralized solutions, they can provide high scalability (in
terms of the number of users), availability, fault tolerance,
the immutability of rule and decision, non-repudiation, and
audibility (Table 1).

Following, some of the existing Blockchain-based access
control solutions are introduced. To the best of our knowl-
edge, using Blockchain for access control in internet-based
service provisioning in our proposed business model is not
seen in other works. So, in the following we introduce the
works that are more related to our work regarding their use-
case purpose or implementation.

A. USING BLOCKCHAIN AS A DATABASE FOR RULES
Shafeeq et al. [23] proposed an ABAC mechanism in which
the object’s owner can define the access rules and store them
in the Blockchain. In the access request, the owner sends
the authorization token to the requester only if the requester
meets the conditions defined in the access control policy. An-
other ABAC method for cloud computing is proposed by Qin
et al. [24] in which the Central Authority (CA) is responsible
for managing the security of the whole system. First, the CA
issues an attribute key to the user and adds the validity period
of the key in the smart contract. BlendCAC [19] is a CapBAC
mechanism in which, smart contracts are used for storing the
access control matrix. Each node interacts with the smart
contract through the provided contract address and the Re-
mote Procedure Call interface. Another CapBAC scheme is
proposed by Tan et al. [25], that Blockchain stores capability
set and access logs of the users. Wang et al. [26] proposed
a fine-grained access control method using attribute-based

4 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

encryption (ABE) scheme [27]. At first, the owner encrypts
the system’s master key and saves it to the Blockchain, and
then deploys a smart contract. The user sends the registration
request to the owner; the owner manages the secret key for
the user and saves it on the Blockchain and sends transaction
ID and smart contract’s address to the user through a secure
channel. These data will be used for the next connections.
Moreover, Guo et al. [28] proposed a traceable attribute-
based encryption method named as TABE-DAC to provide
the capability of sharing private data in cloud. This system
uses the ABE method. In TABE-DAC the Blockchain is used
to store the encrypted key and policies. Ling et al. [29], [30]
proposed an ABAC model using Blockchain Radio Access
Network (BRAN) in which the user and network provider
reach an agreement on some parameters such as payment
and digitized spectrum assets, written in the smart contract.
After the validation of the smart contract concerning the
user’s balance and network’s spectrum assets, the user will
be granted time-limited access to the resource, and the access
point will automatically receive the payment for the access.

B. USING BLOCKCHAIN IN ACCESS MANAGEMENT
PROCESS

Yang et al. [31] proposed AuthPrivacyChain in which, the
policies and access logs are stored in Blockchain and access
control is done by the smart contract. This system is designed
to handle the user’s request to access the data in the cloud
and supports all access control models. RBAC-SC [32] is
an RBAC mechanism that consists of a smart contract and
a challenge-response protocol. The smart contract is used
for the creation, changing, and revoking of the user’s role
assignments, while the challenge-response protocol is for the
authentication of the owner. Fabric-IoT [33] is an ABAC
method that uses three kinds of smart contracts to: 1) store
the URL of the data that is produced by devices, 2) store
ABAC policies, and 3) implement access control methods.
The main problem of this method is its low scalability in the
context of IoT. Zhang et al. [34] proposed a smart contract-
based ABAC framework in which multiple contracts are used
for access management. The environment attributes in this
method are limited to the time attributes. Another similar
system for data sharing in IoT is proposed by Sultana et al.
[35], [36]. In this system, the user sends an access request
to a central server. This server redirects the request to the
access control contract. If the user’s history is clear, the user’s
permission level is verified, and an access decision is made.
The main problem is that both systems have a central point
that can be a single point of failure.

IV. PROBLEM STATEMENT AND PROPOSED SOLUTION
To explain the problem of existing internet-based service
provisioning, we start with an example depicted in Fig. 3.
Assume that user (ua) wants to watch a video from the
website of a service provider (spa). The scenario is described
as follows:

FIGURE 3. An example of a current scenario for service provisioning

1) ua subscribes to network provider npa for the inter-
net connection. In this step, the user’s information is
stored in the authorization database of npa for further
connections.

2) ua subscribes to spa and pays for the service based on
her needs. In this step, the authorization information
of ua is stored in the database of spa for the next
connections.

3) ua connects to the website of spa using her internet
provided by npa and requests to watch the video.

4) spa sends ua’s credentials and identifiers to its central-
ized access control server.

5) The access control server returns the authorization
result to spa, which specifies the user’s permission to
use the service.

6) If ua is eligible to use the service, she can watch the
video. In this scenario, not only the user is subscribed
in spa, but using the service consumes her share of
internet access from npa.

We have identified several drawbacks in this scenario. First,
there is a central authorization server for spa , which can
be a single point of failure. Moreover, ua must pay twice
to watch a video. The processing loads of spa and npa are
high, because they need to authorize the ua separately for
each connection. Finally, there are several general issues in
centralized access control solutions which this scenario has
inherited. For example, the risk of losing the user’s data in a
centralized server, denial of an action done by a malicious
user (low non-repudiation), the possibility of an attacker
changing a user’s permissions, and the high maintenance cost
of the centralized server.

Addressing these constraints, we propose a novel flexible
access control solution to share network and service with
users. This solution provides a trustful payment capability to
pay network provider based on Blockchain technology, with-
out the need for a central authority. Moreover, this system
can eliminate users’ extra payments for a service, which is a
new business model for both service and network providers.

VOLUME x, 2021 5

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

FIGURE 4. Proposed scenario for Internet-based service provisioning via
Blockchain-based access control solution

A schematic of the method is presented in Fig. 4.
Assume that user ub wants to watch a video from the

website of the service provider spb and she uses the network
provider npb. The procedures to follow in this system are
outlined below (Fig. 4):

1) Service provider registration in the system:
a) spb and npb agree on the price of network media.
b) After reaching a compromise, registration token

is sent to Blockchain by npb.
c) spb is registered in the system using the one-time

token.
2) Subscription for the internet:

a) ub subscribes to npb for the internet connection.
This process is off-chain. After the user’s sub-
scription in npb, her next connections, is authen-
ticated by npb in the first step, and then the user
can use the system.

3) User subscription and registration for the service:
a) ub sends the registration request to the

Blockchain and gets the URL of spb for regis-
tration.

b) The user is redirected to spb for subscription to
the service and getting the one-time registration
token.

c) After payment, spb sends a one-time registration
token to the ub and also stores it in the Blockchain
for further process.

d) ub sends the registration request accompanied by
the token. If the token is valid and available, the
agreement of ub and spb can be added to the
Blockchain as a smart contract.

4) User authorization (access control) procedure:
a) After registration, ub send the access request to

the Blockchain a request for using the service.

b) The access request result is returned to ub, and if
she is validated, the URL of spb accompanied by
a one-time access token is sent to the user.

c) ub connects to the URL and sends the token.
Then, spb validates the token stored in the
Blockchain. If the request is valid, spb can have
access to the service and in our example scenario,
while ub watching the video, her internet will not
be consumed.

5) Termination and payment:
a) When ub finished using the service, the termina-

tion trigger will be sent to the Blockchain.
b) In Blockchain, after receiving the trigger, the

payment of npb will be performed through the
account of spb.

Considering the drawbacks of the current methods, the ad-
vantages of this system are listed in Table 2. Before focusing
on a detailed presentation of the system, it is important to
mention that in this method we don’t eliminate the user’s
subscription fee in the network provider. Rather, we want
to remove the user’s extra payment for using that specific
service.

V. SYSTEM DESIGN
Our proposed method consists of four main steps: 1) setup; 2)
registration; 3) access control, and 4) payment. In the setup,
we deploy all the unique contracts that are needed for the fur-
ther steps. Next, in the registration step, the service provider
and the user register in the system. After registration, in the
access control step, the user requests authorization to use the
service without internet consumption, based on her desired
connection level and service plan. Finally, after using the
service, the termination feedback is sent to the Blockchain
to pay the network provider. All symbols used, are listed in
Table 3. Our general assumptions for deploying the system
are listed below:
• The connections between the user, Blockchain, service

provider, and network provider are secure;
• There is only one network provider in the system and

the user is subscribed to the network provider;
• User is authenticated to use the Blockchain (as men-

tioned in step 2.a in Fig. 4);
• User is limited to use the service at the granularity of

their contract (e.g., just watch one episode of a series, or
have a call lasting 1 hour, etc.);

Before describing the steps, we first introduce the smart
contracts used in the on-chain part of our system.

A. DESIGN SMART CONTRACTS
Following, are the designed smart contracts:

1) Known_Addresses: six contracts in our system are
each deployed once. Known_Addresses stores the
addresses of these single contracts, enabling them to
collaborate safely. In this contract, the names of con-
tracts are mapped to their addresses:

6 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

TABLE 2. Key advantages of the proposed method

Feature Description Advantages
Access control
outsourcing

The ability to outsource the access control procedure on the service provider
side

• the processing load and maintenance cost

No need to Trusted
Third- Party Thanks to using smart contracts for payments, no trusted third party is needed.

• Reduces the outsourcing and payment
costs

Supports a new busi-
ness model

Provides a new business model for service providers and network providers
which can bring new business opportunities.

• Avoids double payment by the user

Trusted payment
After the use of the service has been terminated by the user, the platform sends a
trigger to the Blockchain. The Blockchain then pays the network provider from
the service provider’s account.

• Provides trustful payment in trustless en-
vironments.

Access flexibility The access control attributes are based on the agreement between the user and
the service provider.

• Meets the user’s, the service provider’s
and the network provider’s needs

Removing Single point
of Failure

All of this access control procedure is done via distributed and fault-tolerant
smart contracts; there is no central authority for access control.

• High availability
• High fault tolerance

Immutability
Thanks to checking the block hash reference in the Blockchain, and the
requirement of consensus for any change in the system, the rules, permissions,
and user’s service level agreement cannot be altered.

• Reduces the probability of misuse
• Improves the level of trust in the whole

system

Accountability
Traceability of access requests increases the accountability of the system. Also,
the users’ signatures on contracts and transactions remove the possibility of
access or request denial.

• Non-repudiation
• Traceability

TABLE 3. Symbols and their descriptions

Symbol Description
Attru User access attributes
Attrsp The attributes and identifiers of service provider
Addradmin Address of System admin
AddrKAddr Known_Addresses contract address
Addrsp The address of service provider
Addru User’s Blockchain address
AddrSPDB Service_Provider_DB contract address
AddrACM AC_Manager contract address
AddrReg Registration contract address
AddrUser_Contract User and service provider’s contract
AddrContractsp,np Service provider and network provider’s contract
AddrUCDB User_Contracts_DB contract
AddrNP Network provider
CAddr All addresses stored in the contract AddrKAddr

Codesp The unique code of sp to retrieve its information
URLregsp The URL for registration in sp
URLconsp The URL for connection to the sp
Hash(M) Representation of hash function (Keccak256)

CAddr
namecontract←−−−−−−−−− Addrcontract

namecontract is in string format and has a set of
predefined values (Table 4 in the setup step). It is
important to mention that we designed this contract
to 1) avoid using hardcoded addresses and resolve the
maintainability [37] defects of smart contracts, and 2)
having a list of predefined addresses that let us state-
specific requirements per functions.

2) SP_NP_Contract: A unique contract between the
network provider and a service provider. Since the
service provider must pay for the user’s connection,
the Internet price per service unit is declared in this
contract. Also, the amount of network providers owe
from the service provider is indicated in Owe.

3) Service_Provider_DB is a distributed database to
store the attributes of all registered sp as a mapping
of Codesp to a tuple of five parameters:

Attrsp
Codesp←−−−−(Addrsp, URLregsp , URLconsp

AddrContractsp,np
, Balance)

(7)

Codesp is a unique identifier to retrieve the Attrsp. We
use an incremental function to generate Codesp (i.e.,
Codesp = i, where i is the number of registered sps).
two URLs are the web addresses for user’s registration
or connection, and AddrContractsp,np

is the address of
SP_NP_Contract between sp and np.

4) User_Contract: this is a unique contract between a
user and a specific service provider to which that the
user is subscribed to. These contracts store the user’s
access attributes, which are used to check the user’s
eligibility to use the service. The stored attributes of
user u in these smart contracts are:

Attru
Addru←−−−− (ExpT , Balance ,Priceservice)

Addru is the address of u in the Blockchain. ExpT is
the expired time of the subscription of u in sp. In the
first registration ExpT is:

ExpT = block_time+ (t× 86400)
where block time is the Unix timestamp of the contract
deployment and t is the number of subscription days.
Balance indicates the remaining balance of u to use
the service in sp, and Priceservice is the price of using
a predefined unit of the service (e.g., the price of each
video available on the website of sp). In this contract,
there is a flag as ActiveUser_Contract which indicates
if the user is currently using the service or not.

VOLUME x, 2021 7

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

5) User_Contracts_DB stores the AddrUser_Contractu,sp

for each pair (u ,sp). To store these data, we defined
a structure for a user’s contract as a tuple of two
parameters:

UC_str = (AddrUser_Contractu,sp ,Codesp).
AddrUser_Contractu,sp is the address of the contract
deployed between u and sp. A user may have regis-
tered with several service providers, and so to have all
the contracts of u, we map the Addru to the set of
UC_str:
All_UC =

Addru←−−−− {UC_stru,sp1 , ... UC_stru,spn }
where n is the number of service providers to which
the user is registered.

6) Registration aims to register the users and service
providers in the system. To do so, after the registration
of sp, its data is added to the Service_Provider_DB
contract, and after registration of u in service s, the
address of deployed User_Contract will be added to
the User_Contracts_DB.

7) AC_Manager handles the access control and the pay-
ment. When the user requests access to a service, this
contract validates the request based on the user’s access
control attributes stored in User_Contractu,sp. Also,
after the user terminates their use of the service, this
contract manages the payment to np.

B. SETUP STEP
The first step in the deployment of our system is the setup.
This is where we deploy the smart contracts, store their
addresses in Known_Addresses, a tamper-proof safe con-
tract, and initiate the system by the required variables. First of
all, the system admin deploys the Known_Addresses con-
tract. Initially, the contract stores Addradmin as the owner.
After deploying the Known_Addresses, the procedure for
the deployment of other single contracts is as follows. The
deployment of Service_Provider_DB, is given as exam-
ple. To deploy Service_Provider_DB, the admin uses the
AddrKAddr as the initial parameter. The constructor of the
Service_Provider_DB calls a function of AddrKAddr by
sending a dedicated name (i.e., ′SPDB′) to add its address.
Known_Addresses checks the input and if there is no other
address stored with that name in CAddr, it stores the new
address. After deployment of all single contracts, the stored
values in the Known_Addresses contract are as Table 4.
Note that, the AddrNP is a predefined address that is added
by the admin to the system and cannot be changed.

C. REGISTRATION STEP
In this step, the user or service provider is registered in the
system. The registration process for the user and also for the
service provider is given below.

1) SERVICE PROVIDER REGISTRATION
In this step, a service provider sp will be registered in the
system. Since the sp should pay the network provider (np)
on behalf of the user, registration of service providers is done

TABLE 4. Initial parameters in Known_Addresses

Identifier Parameter Address of
’Owner’ Addradmin System admin
’KAddr’ AddrKAddr Known_Addresses contract
’SPDB’ AddrSPDB Service_Provider_DB contract
’ACM’ AddrACM AC_Manager contract
’REG’ AddrReg Registration contract
’UCDB’ AddrUCDB User_Contracts_DB contract
’NP’ AddrNP Network provider

after the agreement of np and sp for the internet and medium
price. Following is the process of registration (see Fig. 5).

1) sp connect to np and ask for the registration token. In
this process, sp and np agree on a price (off-chain) and
they define the URLs which are free to connect.

2) np generates a one-time registration token for the sp,
using the agreed price and the address of both parties.
The token (T) is:

T = Hash
(
AddrNP ‖Addrsp ‖ priceinternet

)
(8)

the hash function is Keccak256 [38].
3) np sends the generated token to Registration con-

tract. This contract checks the sender of the token (Al-
gorithm 1) and if it is AddrNP , the token is added to
the list of valid tokens for service provider registration.

4) sp calls AddNewSP () from the Registration (Algo-
rithm 2). As shown in Algorithm 2, the Registration
checks the validity of the token by generating another
token with the same algorithm (Algorithm 2, L:2) and
compares it with the token which is sent by the np in
step 3. If both tokens are the same and the token is
valid, firstly it revokes the token and generates Codesp,
the unique identifier for sp.

5) Registration contract deploys a SP_NP_Contract,
and stores the agreement price of sp and np in this
contract. Note that, because this contract is deployed
after checking the validity of the token, and the
priceinternet is a parameter of the token, then it cannot
be changed by sp. To deploy the SP_NP_Contract,
the AddrKAddr is sent to the contract. If the caller of
the contract is Registration, the SP_NP_Contract
is deployed and its address is sent to the Registration.

6) Registration gets the AddrSPDB and calls AddSP ()
from Service_Provider_DB to insert service
provider’s attribute in the list of registered service
providers (Algorithm 2, L:13, Algorithm 3).

7) As shown in lines 1 to 6 of Algorithm 3, there are
two requirements to execute AddSP (). First, this
function must be called by Registration. To check
this, Check_Caller (Algorithm 1) is called. Second,
another service provider with Addrsp must not exist
(Algorithm 3, L: 4-8). If both of the requirements were
satisfied, sp will be added to the system (Algorithm 3,
L: 9)

8 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

FIGURE 5. Service Provider registration procedure

Algorithm 1 Check_Caller
Input name
Output Boolean
1: Address← instance of AddrKAddr

2: value← Address.getAddress(name)
3: return (msg.sender == value)

Algorithm 2 AddNewSP
Input Name ,URLregsp , URLconsp ,priceinternet, T oken
Output Boolean
1: AddrNP ←Known_Addresses.getAddress(′NP ′)
2: T ′ = hash(URLregsp ‖msg.sender ‖ priceinternet)
3: if T ′ 6= Token
4: throw
5: end if
6: if !validSPtoken[Token]
7: throw
8: end if
9: validSPtoken[Token]← false
10: AddrContractsp,np ← deployNewContract(priceinternet)
11: Codesp = counterregistered
12: counterregistered += 1
13: Service_Provider_DB.AddSP (msg.sender ,

URLregsp , URLconsp , Codesp, AddrContractsp,np)

2) USER REGISTRATION
User registration in the system is done by registering for a
service of the specific service provider (sp). To register the
user u, after selecting the sp, u asks Registration to get
URLregsp . Registration sends URLregsp to the user, and

Algorithm 3 AddSP
Input Addrsp,URLconsp ,URLregsp ,Codesp,AddrContractsp,np

Output Boolean
1: if !Check_Caller(′REG′)
2: throw
3: end if
4: while (i ≤ Codesp)
5: if SPAddresses[i].address 6= null
6: throw
7: end if
8: end while
9: SPAddresses[Codesp]

add←−− (Addrsp, URLregsp , URLconsp ,
AddrContractsp,np)

then u can subscribe to a service and get the one-time reg-
istration token to store a unique contract in the Blockchain.
The user registration steps (Fig. 6) are given next.

1) u sends the subscription request to URLregsp ac-
companied by Addru. u Then, selects her preferred
subscription plan and performs an off-chain payment.
This plan defines ExpT, Priceservice, and the user’s
payment indicates initial Balance.

2) sp generates a one-time registration token and sends it
to u. The token (T) is the hash amount of the agreement
of u and sp on access parameters as well as Addrsp and
Addru. the token is generated as:

T = Hash

(
ExpT ‖Balance ‖Addru‖

Priceservice ‖ Codesp ‖Addrsp

)
(9)

3) sp sends the T to Registration contract to add it to the
valid registration tokens. After checking the existence
of the service provider, Registration adds the token to
valid registration tokens. Note that, adding the token in
Blockchain, prevent the user from misbehavior to add
arbitrary data in the system.

4) The function RegisterNewUser() is called by u from
Registration with the agreed parameters for access
accompanied by Codesp and T (Algorithm 4).

5) Registration generates a hash amount (T ′) based
on received data and with the same algorithm of sp.
The generated hash is calculated as Algorithm 4, L:3.
It is important to mention that all addresses (e.g.,
AddrSPDB) are fetched from Known_Addresses,
but to make the figures simple, we avoid mentioning
the unnecessary details.

6) If T == T ′ and the token exists in valid registration to-
kens, Registration deploys a contract between u and
sp (User_Contractu,sp) with pre-mentioned parame-
ters. To do so, decided parameters and AddrKAddr is
sent to the constructor of User_Contractu,sp.

VOLUME x, 2021 9

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

FIGURE 6. User registration procedure

Algorithm 4 RegisterNewUser
Input ExpT,Balance, Priceservice, Codesp, T oken
Output Boolean
1:AddrSPDB ←KnownAddress.getAddress(′SPDB′)
2.Addrsp← Service_Provider_DB.getAddress(Codesp)
3: T ′ = Hash(ExpT ‖Balance‖Priceservice‖Addrsp‖msg.sender)
4: if T ′ 6= Token
5: throw
6: end if
7: if !validUsertoken[Token]
8: throw
9: end if
10: validUsertoken[Token]← false
11: AddrUser_Contractu,sp← deployNewContract(ExpT,Balance,

Priceservice, AddrKAddr)
12: SPDB.increaseBalance(Addrsp , Balance)
13: User_Contracts_DB.addNewContract(msg.sender, Codesp,

AddrUser_Contractu,sp)

7) The newly deployed contract must be added in the
User_Contracts_DB. So, AddNewContract() is
called by Registration, and Addru, Codesp and
AddrUser_Contractu,sp

are sent as inputs.
8) The permission of adding a new contract in

the database is limited to Registration, therefore
Check_Caller(′REG′) is called and if this require-
ment passed, the new contract will be pushed to the list
of user’s contracts.

9) To finish the registration procedure, the available bal-
ance of sp must be increased by the user’s payment.
To do so, Registration calls the increaseBalance()
from Service_Provider_DB. The function, after
checking the caller (Algorithm 1) and make sure that
it is Registration, then increases the balance of sp by
Balance.

D. ACCESS CONTROL
In this step, the registered user u requests for connection
to the service of sp. The Attribute-based Access Control

solution to share the service with the user without internet
consumption is given in the following steps(Fig. 7).

1) by sending Codesp, u calls the AccessToService()
function of AC_Manager and a hash amount (Al-
gorithm 5). As explained in Fig. 7, to have a trustful
connection between u and sp, after authorization, a
token is sent to the user for further connection. To
generate the unique and unrecoverable token, in the
first step of connection, the user generates a random
nonce and calculates its hash with Keccak256.

2) As the first requirement, the user must have a de-
ployed contract with sp. So, AC_Manager gets
AddrUser_Contractu,sp from User_Contracts_DB
(Algorithm 5, L: 1-4).

3) Using Codesp AC_Manager gets the URLconsp
and

the AddrContractsp,np
.

4) One of the environmental attributes to validate the
user’s access to the service is the balance of sp.
This attribute guarantees that as long as np provides
the network, the payment is performed safely based
on their agreement in SP_NP_Contract. So, the
Priceservice is fetched.

5) the user’s access attributes (i.e., ExpT, Priceservice,
Balance) is fetched from User_Contractu,sp by
AC_Manager (Algorithm 5, L: 8).

6) To connect the user to the service, all the subject, ob-
ject, and environment attributes must be validated. The
attributes are shown in Fig. 8 . Assume that VSA,OA is
the validation result for the subject and object attributes
and that VEA is the validation result for the environ-
ment attributes. The final validation result based on
the predefined policy by the service provider is V as
equations (10) - (12). VSA,OA is validated in step 4.
Algorithm 5, lines 9-11 ensures that the system can
safely pay np after using the service, and lines 12-14

10 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

FIGURE 7. The attribute-Based Access control procedure

Algorithm 5 AccessControl
Input Addru, Codesp, Hash(nonce)
Output Boolean
1: AddrUser_Contractu,sp ←

User_Contracts_DB.getContractAddress(Codesp,msg.sender)
2: if AddrUser_Contractu,sp == 0
3: throw
4: end if
5: Balancesp ←Service_Provider_DB.Balance(Codesp)
6: SP_NP_Contract←

Service_Provider_DB.SP_NP_Contract(Codesp)
7: Priceinternet ← SP_NP_Contract.getPrice()
8: AttrUC ← User_Contractu,sp.getAttributes()
9: if Balancesp < Priceinternet

10: throw
11: end if
12: if Balanceu < Priceservice
13: throw
14: end if
15: if Block.timestamp > ExpT
16: throw
17: end if
18:if AddrUser_Contractu,sp .active
19: throw
20: end if
21: Token = Hash(msg.sender ‖Addrsp) ‖ hash(nonce)
22. AddrUser_Contractu,sp .active← true
23: TransferToACM(Addrsp, P riceinternet)
24: return true

ensures that u cannot use the service more than allowed
by her payment. This limitation removes the possibility
of decreasing the Balancesp to less than the sum of
the balances of all its active users. This limitation also
implicitly guarantees the safe payment of np. Another
parameter to check is to be sure that the user’s contract
is not active at the moment (i.e., if it is active, it means

FIGURE 8. Access control attributes

that the user is not terminated the previous connection,
and the network provider is not paid for the last service
(Algorithm 5, L: 18-20)).

VSA,OA =

{
1, if AddrUser_Contract 6= 0,

0, otherwise
(10)

VEA =

1, if Balancesp > Priceinternet,

Balanceu > Priceservice

CurrentT ime > ExpT

0, otherwise

(11)

V =

{
1(allow), if VSA,OA = VEA = 1,

0(deny), otherwise
(12)

7) If validation results were 1, AC_Manager generates
a one-time token for user connection and adds it to the
list of valid tokens. The token is the hash amount of
user’s and service provider’s addresses, concatenated
with the hash amount of nonce which is sent by the

VOLUME x, 2021 11

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

user in the first step of connection. the generation of
token T is done as follows:
T = Hash(msg.sender ‖Addrsp) ‖ hash(nonce)

In this step also AC_Manager calls Activate() func-
tion with ′true′ parameter to set the flag active of
User_Contractu,sp to indicate that the user is using
the service. Activate() function is limited to be able to
call only by AC_Manager. (Algorithm 5, L: 21, 22).

8) To be able to pay the np, we need to design a pay-
ment procedure that is trustful; it means np can be
sure that its payment will be performed after a suc-
cessful connection. To satisfy this requirement, after
user validation, AC_Manager blocks Priceinternet
in the contract, automatically. So, three parties (u, np,
and sp) who do not know each other but accept the
AC_Manager, can safely trust the process. To block
the token, AC_Manager calls TransferToACM()
function of Service_Provider_DB to virtually trans-
fer Priceinternet from Addrsp to AddrACM .

9) TransferToACM() is limited to be able to call
only by AC_Manager. To pass this requirement, the
Check_Caller(′ACM ′) is called by the function. If
it passed, The Priceinternet will be decreased from
sp. Then this amount is increased in the balance on the
AC_Manager (Algorithm 5, L: 20).

10) The URLconsp
and the token are sent to the user.

11) The user sends a connection request to the URLconsp

accompanied by {T, nonce,Addru}. Note that, in this
step, the user sends the nonce itself (not it’s hash). sp
sends a validation request to the AC_Manager via
these parameters.

12) To check the validity of the token AC_Manager
calculates T ′ as following:

H = Hash(nonce)
T = Hash(Addru ‖msg.sender) ‖H

If the T is equal to T ′ (T == T ′), and the token is
valid, AC_Manager will answer to the sp that the
token is valid, and also it will remove the token from
valid tokens. If the token is valid, the user can access
the service. It is important to mention that the token
is unrecoverable, because, in step 1, the user sends the
hash amount on the nonce, and in step 11, sends the
nonce itself. In this solution, the attacker should be
aware of the nonce, to be able to act maliciously.

E. PAYMENT
After u has used the service and confirmed the termination,
the payment to np must be performed. The payment proce-
dure (Fig. 9) is listed below:

1) u calls the Termination() function of AC_Manager
and sends Codesp as the input.

2) AC_Manager gets the AddrUser_Contractu,sp from
User_Contracts_DB. Also, it gets AddrContractsp,np

from Service_Provider_DB.
3) Executing the rest of the payment procedure de-

pends on the trueness of the flag Active in

AddrUser_Contractu,sp
. So, this parameter and

Priceservice are fetched from AddrUser_Contractu,sp
.

4) AC_Manager changes the active flag to ′false′ and
updates the user’s available balance in the contract. To
do so, it calls Activate() function with ′false′ pa-
rameter and updateBalance() function. The permis-
sion of calling updateBalance() function is limited
to AC_Manager. So, AddrUser_Contractu,sp

calls the
Check_Caller(′ACM ′). If the requirement passed,
the balance of the user is decreased by Priceservice.
It also changes the flag to false.

5) To pay the np using the blocked money in
AC_Manager, firstly the contract must know how
much to pay. So, it gets the Priceinternet from
SP_NP_Contract.

6) Then AC_Manager increases the balance of
SP_NP_Contract by Priceinternet and decreases
this amount from the balance of AC_Manager. It
is important to mention that the network provider
can call the checkout function of SP_NP_Contract
to withdraw its balance (i.e., Owe) from that. The
Checkout() function checks the caller, and if it is the
np, it transforms the amount Owe from Addrsp to the
AddrNP .

F. UPDATE
This subsection is not part of the regular procedure of access
control. However, we believe that some updates will be
needed when using the system. Two scenarios are presented.

1) UPDATE USER CONTRACT
Assume that user u aims to renew her contract with sp.
u is already registered and has AddrUser_Contractu,sp . The
update procedure is similar to registration and is as follows.

First, u sends the update request to Registration contract.
Registration checks the existence of a contract between sp
and u. if the contract exists, URLregsp will be sent to the
user. The next steps are the same as Fig. 6, unless in two
steps. 1) step 6 of user registration; In the update, instead of
deploying the contract, the update() function is called by the
Registration (Algorithm 6), and 2) Steps 7, 8 of Fig. 6 is not
needed. As shown in Algorithm 6, to update the expiration
time, we check the user’s current expiration time, and based
on that, the ExpT is updated. Balance will increase by the
new balance and Priceservice is also updated to new values.

2) UPDATE THE ADDRESSES
As mentioned before, one of the well-known defects of smart
contracts is maintainability [37]. To overcome this problem,
we provided a solution to replace an old contract with a new
one. The changes can be used to upgrade the system function-
ality, fix some of the bugs, or make it compatible with new
needs. Fig. 10 , lists the contracts with the addresses that can
be changed and those that cannot. Contracts that are used as
distributed databases are permanent and cannot be changed
because they store the user’s and the service provider’s data.

12 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

FIGURE 9. Payment procedure

Algorithm 6 update
Input _ExpT, _Balance, _Priceservice
Output Boolean
1: if !Check_Caller(′REG′)
2: throw
3: end if
4. if ExpT > block.timestamp
5: ExpT ← ExpT + (_ExpT × 86400)
6: else
7: ExpT ← block.timestamp+ (_ExpT × 86400)
8: end if
9: Balance += _Balance
10:Priceservice = _Priceservice
11: return true

FIGURE 10. Permanent and changeable addresses

AC_Manager and Registration are changeable and the
replacement procedure is as follows:

1) Admin calls the function UpdateAddress() from
Known_Addresses.

2) UpdateAddress() checks the caller of the func-
tion, and if it is the admin, it verifies that the re-
quest is to change the address of AC_Manager or
Registration. If both requirements are passed, it adds
a new variable in CAddr (REG is given as example):

CAddr
′Temp′

←−−−−− CAddr[′REG′]

CAddr
′REG′

←−−−− 0x0
(13)

Having a temporal address in the list helps the system
to keep the old address in case of any further prob-
lem, and writing the address of zero on the existing
parameter allows the admin to generate other contracts
of <Contract_name>. Admin can deploy the new
contract. As mentioned before, the constructor of the
contract will add itself to the Known_Addresses.

3) When the updated system has proved to function, the
admin can remove the temporal address.

VI. EXPERIMENTS
To evaluate the feasibility of the proposed method, we de-
signed a use case in which the user uses her mobile connec-
tivity (i.e,. cellular network) to use the system. As mentioned
earlier, we assume that the user’s authentication is done
by the network provider. To do so we simulated a cellular
network environment that the user connects. In this section,
we describe the testbed implementation, the architecture of
the network, and the implementation of smart contracts. Then
we present the performance of the proposed method. We also
analyze the security of the system through several thread
scenarios.

A. EXPERIMENT ENVIRONMENT
To simulate the complete procedure of the user connection,
access control, and termination of the connection, we need
to deploy an environment that supports the connection of the
user to the cellular network as well as a Blockchain.

Table 5 lists the hardware and software specifications of
the test environment. It is important to mention that, as stated
in step 2.a of Fig.4, the user’s connection to the system is
done after the authentication of the network provider. The
user authentication is needed to guarantee that the user is
already subscribed to the network. Due to the widespread
usage of 5G networks [39], we choose this technology as our

VOLUME x, 2021 13

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

TABLE 5. Environment specifications

Part Parameter Specification
Hardware

5G RAN and
Core

CPU Intel quad-core at 2.9 GHz
RAM 16 GB
SDR board USRP B210

Blockchain
CPU Intel i7 Dual-core 1.6GHz
RAM 6 GB
Hard Disk 128GB SSD

Software
5G
RAN

OAI-RAN master branch release v1.1.0
OS Ubuntu 16.04-low latency ker-

nel

Blockchain

OS Xubuntu
Ganache-cli 6.12.2
Ganache-core 2.13.2
Web3j 1.4.1
Solc 0.8.2

testbed.
The cellular networks consist of two main parts : Radio

Access Network (RAN) and Core Network (CN). To simulate
the 5G network, we used OAI (Open Air Interface) consisting
of RAN and CN [40]. OAI is open-source software that
implements cellular network functions of the RAN named by
OAI-RAN and the core named by OAI-CN. To build the RAN
part (i.e., the network provider’s base station), the OAI-RAN
was executed on a PC that is connected to an SDR (software-
defined radio) board for radio communications through a
USB3 interface. To implement our proposed method, we
focused on the CN and implemented a gateway that will send
the request from the CN to the Blockchain and authenticate
the user. In this system, the user’s request is sent to the 5G
RAN (Fig. 11) and will be authenticated by the gateway (Fig.
11, 5G Core).

Authentication of the user’s equipment and the network
provider is done by the AKA procedure (i.e., the existing
authentication model in the cellular networks [40]). Once the
user has been authenticated, CN sends the user’s request to
the Blockchain through the gateway (5G core in Fig. 11).

In the Blockchain, we utilized a private Ethereum that
allows us to assess the system’s performance using a variety
of parameters. The smart contracts are written in Solidity
language [41]. Solidity supports complex variables such as
the mapping of structures, and it provides the capability of
defining different requirements per function; also, it is a
Turing-complete language (i.e., can be used to simulate any
Turing machine).

B. PERFORMANCE ANALYSIS
The performance analysis of the proposed method is done in
two parts: 1) By assessing the execution and transaction costs
of the transactions and processes, and 2) By evaluating the
scalability of the system in terms of the increasing number of
concurrent connection requests.

FIGURE 11. The architecture of the testbed

1) TRANSACTION COST
For the first analysis, we calculated the GAS price of the
processes. The GAS is the fee that must be paid by the sender
to submit transactions to the Ethereum network. Calculation
of the GAS is formulated in [42]. The cost that is mentioned
in this part is the cost of sending a transaction of a contract
to the Ethereum blockchain (i.e., transaction cost) [42]. The
GAS cost is defined in Gwei (i.e., as 10(−9)ETH). Table
6 shows the GAS cost in different processes (i.e., in setup,
user registration, service provider registration, access control,
and payment). It is important to mention that in private or
consortium Blockchains, no currency is required to process
or validation of transactions [43]. To make the costs in
the public network more tangible, we calculated the price
in USD (on 8/04/2021 the average price over 24H was
$1,933.91 for each ETH).

2) SCALABILITY
To measure scalability, we assess the throughput, and the
latency [44], [45]. Throughput can be calculated as:

Throughput =
|Tx|
t

(14)

where Tx is the set of all transactions, |Tx| is the number of
transactions, and t is the required time to handle them. latency
is another measure similar to throughput which clarifies the
average required time to handle one transaction.

Latency =
tf − ts
|Tx|

(15)

Where tf is the finishing time of simulation and, ts is the time
in which we started the simulation. It is important to mention
that simulation here means the time of starting to send
concurrent requests and finishing to receive the transaction
receipt of all of them.

The scalability of the system can be defined as changes in
throughput or latency when altering a parameter [46]. Dif-
ferent parameters are used to measure the throughput and la-
tency (see Table 7). It is important to mention that adding the
one-time registration token for the service provider cannot be
executed concurrently, because only the network provider is
eligible to add the token in the Blockchain, and we designed
one network provider in the system. One node cannot send
concurrent requests to the system without waiting for the
receipt of the previous transaction.

14 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

TABLE 6. GAS price of processes and transactions of the proposed method

Process Transactions Tx cost Price ($)

Registration

Service Provider
Registration

Add valid token 21374 0.04
Registration and deployment of contract 369490 0.73

User Registration add valid token 28079 0.05
Registration and deployment of contract 485536 0.96

Access Control Access validation ABAC and token generation 104227 0.20

Token checking by SP 14661 0.02

Payment Pay the network provider 81228 0.16

Fig. 12 (a-e) depicts the latency of the system for different
block sizes (BS) and block times (BT). This process is also
done to assess the throughput, which is shown in Table 8.
As shown in Fig. 12 (a-e), systems latency is almost stable
for C ≥ 200 (i.e., when concurrent requests are more
than 200). Therefore, based on the definition of scalability,
we can claim that the system is scalable and can maintain
low latency, based on system configuration in a large-scale
request environment.

To analyze the system throughput Table 7 is provided. As
shown in the table, by increasing the BS and decreasing the
BT to a threshold of the system requirement, the throughput
will increase (see Table 7 for BS = 30 and BT = 5).
For example in BS = 30, BT = 5 (low complexity of
consensus puzzle and a large number of transactions fit in
each block) the throughput has the highest amount, while
BS = 15, BT = 15 (high complexity of consensus puzzle
and the small number of transactions fit in each block) has
the lowest throughput. But an important issue in this configu-
ration is the system’s security; it means decreasing the block
time of the Blockchain results in an easier consensus puzzle,
that can increase the risk of integrity violation in the PoW
model. Based on the requirements of the system, the admin
must specify a trade-off between consensus complexity and
throughput.

It is important to mention that in BS = 15, BT = 15, due
to several exceptions of web3j library, we could not reach
a precise result for parameters in concurrent request 700.
Based on our observation, because the difficulty of consensus
puzzle is high and Block size is in minimum, web3j library
throws time-out exception. Therefore, in Fig. 12 (a-e), we
exceptionally finished the assessment of this configuration in
500.

To assess the latency and throughput of the system for
the execution of different processes, Fig. 13 (a-b) depicts
these two parameters in the different concurrent requests for
BT = 10, BS = 30. As shown in Fig. 13, user registration,
ABAC procedure, and payment are mostly need more time
for execution, while inserting the valid token for registration
and service provider registration are the fastest procedures.

TABLE 7. Parameters of analysis

Parameter values description

Concurrent
requests (C)

50, 100, 200,
500, 700

The number of the virtual clients
in the system. all requests are sent
concurrently and all the virtual
clients are full nodes that participate
in consensus

Block Size
(BS)*

15, 30 The number of transactions fitting
in one block.

Block time
(BT)

5, 10, 15 The difficulty of consensus puzzle
which leads to extraction of blocks
in predefined time. The average
block time for Ethereum is 13.12
seconds on 08/04/2021.

*in real-world public Blockchains, this parameter is higher, but due
to the limitation of the libraries, the mentioned values are tested.

3) DISCUSSION ON EXPERIMENTS

In the previous section, we analyzed the system performance
and scalability for at most 700 concurrent requests. In the
real-world implementation of our use-case, it is important
to assess system performance when an enormous number of
requests and smart contracts exist in the system. Regarding
this assessment, two features can be taken into account:
1) latency and throughput of the system, and 2) storage
scalability.

• Throughput and latency: As shown in Fig. 12 and Table
8, the system is highly scalable in terms of the number
of requests. Also, an increasing number of user’s in the
system results in increasing the number of validators.
Due to these two reasons, we can state that the system’s
latency and throughput are not highly dependent on the
number of requests.

• Storage: Increasing number of transactions, smart con-
tracts, and Blockchain logs, need high storage space
for full-nodes in the system. For the time being, in
the current version, we store the logs, transactions, and
smart contracts directly into the Blockchain, which can
be a challenging issue in the real implementation of the
system. This issue is discussed in the Section VII-E.

VOLUME x, 2021 15

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

TABLE 8. System throughput with different parameters

P SP registration Add registration token User registration ABAC procedure Payment

BT 5 15 5 15 5 15 5 15 5 15

BS 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30C

50 1.64 3.20 0.82 1.63 1.63 3.20 0.82 1.62 1.62 3.20 0.77 1.44 1.63 3.19 0.77 1.43 1.64 3.19 0.78 1.47
100 1.62 2.05 0.89 1.30 2.17 3.24 0.93 1.63 2.13 3.21 0.87 1.45 2.16 3.19 0.87 1.45 2.17 3.22 0.88 1.47
200 1.26 1.69 0.87 1.43 2.57 4.24 0.93 1.85 2.14 4.05 0.88 1.62 2.14 3.22 0.88 1.62 2.17 4.16 0.89 1.66
500 0.78 4.81 - 0.90 2.64 4.58 0.95 1.88 2.26 3.82 0.90 1.67 2.4 3.84 0.90 1.66 2.29 3.81 0.91 1.70
700 1.08 2.68 - 1.00 2.58 4.64 - 1.95 2.35 3.91 - 1.87 2.31 3.60 - 1.87 2.35 3.77 - 1.87

(a) (b)

(c) (d)

(e)

FIGURE 12. System latency with different values for Block Time (BT) and Block Sizes (BS) in several concurrent requests for service provider registration (a),
inserting valid registration token (b), user registration (c), ABAC procedure (d), and payment to the network provider (e).

16 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

(a) (b)

FIGURE 13. System latency and throughput in BT= 10s and BS = 30 for all processes in the system with several concurrent requests. (a) is the latency of the
system and (b) is the throughput.

C. THREATS SCENARIO
In this section we provide an assessment of the system based
on several threat scenarios:

1) SINGLE POINT OF FAILURE (DOS/DDOS)
Scenario 1: there is a centralized point in the access

control process, which can be a single point of failure.
Analysis: As shown in Fig. 4, registration, the access

control, and the payment process (i.e., steps 1, 3, 4, 5) in
the system are performed on-chain. This means there are
several Blockchain nodes in the system to receive a user’s
request, validate the request based on the rules in the smart
contracts, reach consensus on the validation result, update
the ledger and send the result to the user or other contracts.
In this process, the failure of a single node does not have a
significant effect on the functionality of the whole system.

Finally, we can claim that it is feasible to outsource the ac-
cess management of service providers and network providers
to our system, without being concerned about having a single
point of failure or the need for a trusted third party. The
system is resistant to DoS/DDoS attacks, as well as node
failures.

2) UNAUTHORIZED USE OF SERVICE (MITM)
Scenario 2: Adversary A aims to directly connect to the

service provider without authorization, and use the service
subscribed by another user. This thread can be assumed as a
Man-in-the-Middle scenario.

Analysis: To use the service, the user should send a one-
time valid token as well as a random number (i.e., nonce)
to the sp (Fig. 7, step 11). The token is generated in the
AC_Manager contract (Fig. 7, Step 7) and is stored in the
Blockchain. So, it is feasible to get the token. The token is
the concatenation of Addru and Addrsp with hash(nonce)
which is sent by the user. It means A can restore hash(nonce)
from the Blockchain.

nonce is a strong random number that is generated off-
chain for each connection. Besides, the hash function is one-
way, and if its input has enough entropy, finding the clear

message by having its hash is not feasible in acceptable time.
Since u sends the hash(nonce) in the first request, A cannot
find the nonce. Therefore, the attempt of A to use the service
registered by the other user is failed.

Scenario 3: Adversary A aims to connect to the system,
but use the service subscribed by another user.

Analysis: Because the access tokens are generated based
on the Addru, A must be able to use the identity of the
legitimate user to call the AccessToService(). In the token
generation, we use msg.sender, which will remove the
possibility of changing the address of the sender. So, the
attempt of A is failed.

Scenario 4: Adversary A uses the old tokens for connec-
tion.

Analysis: Adversary A can regenerate the old token, be-
cause it has all of the parameters. But in checking the validity
of the token by sp, this attempt will fail. Because after
checking the validity of the token by the sp, AC_Manager
removes the token from the list of valid tokens (Fig. 7,
step 12). Moreover, A can not insert the regenerated to-
ken to the Blockchain, because this capability is limited to
AC_Manager.

3) TAMPERING THE INTERNET PRICE(IMMUTABILITY)
Scenario 5: Adversary A creates a SP_NP_Contract

with modified priceinternet. This scenario has a motivation
of using the internet without paying the network provider.

Analysis: As shown in Fig. 5, when sp reaches an agree-
ment with the np, a one-time registration token is generated
by the np (Fig. 5, step 2). The attempt of A will be failed
because:

1) The token can be stored in the network, only when it
is sent by the np. So, A can not insert any valid token
into the Blockchain.

2) The priceinternet exists in the token; therefore, any
change in the price will lead to T 6= T ′.

3) As T ′ is generated using msg.sender, if A can find
a token with low priceinternet and send it to the
Blockchain, instead of agreement with the network

VOLUME x, 2021 17

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

provider, AddrA 6= Addrsp, therefore, T 6= T ′ and
the scenario is failed.

4) TAMPERING ACCESS ATTRIBUTES (IMMUTABILITY)
Scenario 6: Adversary A aims to request registration with

modified access attributes (not based on agreement).
Analysis: This analysis is the same for both registration

and update scenarios, but to make it short, we only explain
the scenario for registration. As shown in step 2 of Fig. 6 ,
when the user pays for the subscription, sp generates a token
based on all parameters of the agreement. Then it registers
the valid token in the Blockchain and sends it to the user. If
Adversary A changes any parameter in Fig. 6, step 4, will
cause to T 6= T ′ in step 5.

Scenario 7: Adversary A aims to change its (or other
one’s) access attributed in the system by updating the existed
User_Contractu,sp.

Analysis: To update the access attributes, 2 scenarios can
be assumed:

1) A calls the Update() function of Registration (Algo-
rithm 6). As mentioned in the update process, using the
update tokens will result in the failure of the adversary
attempt.

2) A calls the update() function of User_Contractu,sp.
This function checks the sender of the message, and
if msg.sender 6= AddrReg , the transaction will fail.
As mentioned before, AddrKAddr is stored in this
contract from deployment step. update() fetches the
AddrReg from Known_Addresses, and this scenario
fails because AddrA 6= AddrReg .

5) THREAT OF MAINTAINABILITY
Scenario 8: The controller contracts (i.e., the contracts

which are not used as a distributed database), needed to be
replaced to be adapted to the new needs of new business
models.

Analysis: As shown in Fig. 10, two contracts
AC_Manager and Registration, as two controller con-
tracts in the system, are replaceable. These two contracts
do not store any hardcoded parameter. Based on [37], the
maintainability problem can be resolved by assigning the
variables dynamically.

6) IMMUTABILITY OF STORED ADDRESSES
Scenario 9: Adversary A aims to change the addresses

stored in Known_Addresses.
Analysis: If this scenario can be executed, all other threads

in the system would be feasible. To protect the system against
this threat, we defined that:

1) The addresses of the database contracts (see Fig. 10),
cannot be changed in any circumstances, and

2) Controller contracts can only be replaced by a new
contract if msg.sender == Addradmin. Note that
Addradmin is stored in Known_Addresses in the
setup phase.

D. COMPARISON
Table 9 shows the comparison among the proposed method
and other related works. As mentioned before, to the best of
our knowledge, we could not find a paper that shares the same
concerns as us. Thus, we compare the more related state of
the arts. So, several works implemented the ABAC method
(i.e., [23], [24], [26], [28]–[30], [33], [34]), while other
works proposed different access control methods. Important
to mention that, in the related works we only focused on
the papers that are more related to our use-case and select
among them; because of this some papers are not related to
the ABAC model.

Focusing on access control solution, our proposed method
can be compared with [23], [24], [26]–[30], [33], and [34].
As shown in Table 9, [23], [24], [26]–[30] use Blockchain
as a distributed database for rules and policies. They have a
central point for access decisions, that can be a single point
of failure. While, in our solution, we use Blockchain for both
access management and distributed database for rules. This
approach can remove any single point of failure in the access
control procedure. So, we can claim that the proposed system
is more fault-tolerant. [33], [34] are similar regarding the
performance, scalability, and fault-tolerant. But, their use-
cases are different from our paper and they also do not
support payment capabilities.

VII. CONCLUSION AND FUTURE DIRECTIONS
Blockchain and smart contracts are disruptive technologies
that can change different aspects of businesses. In this
paper, we proposed a smart contract-based access control
mechanism. A high-level abstract of the proposed method
is depicted in Fig. 14. The main purpose of the proposed
method is to provide a flexible and scalable access control
solution without the need for a trusted third party to enable
service providers to outsource their access control needs.
Our method also supports a new business model to decrease
the user’s payment, improves the access management au-
tomation, removes the single point of failure (increasing the
fault tolerance) in access management, increases the security,
accountability, and reliability of connection, and addresses
the user’s, network provider’s and service provider’s needs.
This method also guarantees payment security based on
blockchain properties in a trustless environment.

Measuring the scalability of the system using two param-
eters (i.e., latency and throughput) indicates that increasing
the number of nodes in the system can result in decreasing
the latency. This change happens, because the validators in
the system, participate in the consensus procedure, increase.
The variation in latency and throughput in the case of having
several different concurrent requests (50 to 700), several
block sizes (15 and 30 transactions per block), and different
block times (5s, 10s, 15s), show that this system also brings
high scalability.

Due to the many challenges in the implementation of a new
model, we have postponed some improvements for future
work. Detailed suggestions for future work are given next.

18 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

TABLE 9. Comparison of proposed method with existing systems

refs [19] [23] [24] [25] [26] [27] [28] [29] [31] [32] [33] [34] [35] ProposedFeatures [30] [36]

Access control automation No No No No No No No No Yes Yes Yes Yes Yes Yes
Purpose of blockchain usage* DB DB DB DB DB DB DB DB ACM ACM ACM ACM ACM ACM
Scalability+ H H N/A N/A N/A N/A N/A H N/A N/A M N/A N/A H
Access decision making** C O C C C C C N/A D D D D D D
Fault tolerance in AC process No No No No No No No Yes Yes Yes Yes Yes Yes Yes
Remove single point of Failure No No No No No No No No Yes Yes Yes Yes Yes Yes
Payment capability No No No No No No No Yes No No No No No Yes
Access control model++ CB AB AB CB AB AB AB AB G RB AB AB G AB

* DB (Using blockchain as a database for rules or terms of the agreement) or ACM (Using blockchain for both database and access control process)
+ Tolerance of latency is low for more than 500 concurrent requests (High(H)), up to 500 concurrent requests (Moderate(M)) in different parameters
**C (Centralized), O (the Owner), and D (Distributed)
++AB (ABAC), CB (CapBAC), RB (RBAC), and G(Generic)

FIGURE 14. A high-level abstract of the proposed access control method.

A. AUTHENTICATION

As mentioned before, our proposed method uses the network
provider’s AKA-based authentication method to send the
user’s request to the Blockchain. As future directions, we
may have two suggestions:

1) In addition to AKA-based authentication (i.e., a cen-
tralized solution), we need to propose another dis-
tributed authentication solution. This solution must
consider the requirements of all parties (i.e., AKA is
only done in network provider side).

2) From another perspective, even though the proposed
access control method is done after the AKA-based
authentication on the network provider side, in the
future it can be introduced as the first step to eliminate
the AKA-based access control mechanisms. Also, it
can provide an idea and vision about how to implement
more software-based and loosely-coupled networks,
by outsourcing the authentication and access control
process and decoupling it from the network. This so-
lution can remove any single point of failure in whole
process; Privacy of all parties, latency, scalability and
trust are main challenges to solve in this solution.

B. PRIVACY PRESERVING
In this version of the proposed method, we did not focused
on privacy issues because, we do not store any identifier
data about users (e.g., email, phone number, etc.). The only
available data of the users in the system is their Blockchain
address, a random parameter that cannot be the user’s iden-
tifier. Despite this reason, when implementing the method in
a real-world scenario, the users’ and the service provider’s
privacy would be of vital challenge to focus on.

C. DECREASING THE LATENCY
One of the main concerns about using Blockchain tech-
nology for access management is its delay in getting a
response. To overcome this problem, we propose to use
a private/consortium Blockchain with a small number of
users. In a real-world scenario, the latency of the system
must be decreased as much as possible. To do so, one key
research challenge will be to reduce the number of messages
exchanged in the system while maintaining the constraints
and requirements to protect the system’s safety and security.

D. DELEGATION
Using the current system is limited to one user. It means
no one rather than the user herself, can use the system. To
increase the flexibility of the system, the user can delegate
her access permissions to another user to use the services. To
do so, several challenges in security and trust will rise. Re-
solving these challenges can be a future direction to improve
the functionality of the method.

E. STORAGE OPTIMIZATION
Storage requirement is one of the challenges to implement
the proposed system in a real-life scenario. Many users of
this system utilize resource constraint devices such as mobile
phones and laptops that are not highly capable of storing a
large amount of data in their storage capacity. So, optimiza-
tion of storage can be an important upcoming challenge. Two
scenarios can be effective for the future direction in this part:
• It is possible to use cloud storage to store Blockchain

data (i.e., smart contracts and their data), and then, we

VOLUME x, 2021 19

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

can only store the URL of those data in the Blockchain.
In this scenario, another authentication and access con-
trol is needed to access to cloud and avoid data leakage;

• Separation of full-nodes and light-weight nodes can be
another solution. To do so, we can designate several
nodes with an enormous amount of storage and pro-
cessing power for consensus, validation, and storage
purpose, and all users can participate in the system as
light-weight nodes. In this scenario, the challenge of
trust must be taken into account.

F. ANALYSIS IMPROVEMENTS
To improve the assessment and analysis of the proposed
method, in the future we aim to perform a detailed study of
the cost and performance of the system:

1) With different scenarios of using public, private, or
consortium Blockchains. In these experiments, using
real traffic patterns and finding the best fitting for shap-
ing the on-chain operations (to maximize the through-
put) is the main challenge.

2) With different scenarios of using several Blockchain
implementations such as Hyperledger Fabric, Quorum,
etc., to select the most appropriate solution for our use-
case.

3) With different consensus models such as PoS, PBFT,
etc. to find the best solution for the system. The main
challenge in this part of the analysis is to find a solu-
tion that can provide a suitable compromise between
security and the performance of the system.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” p. 9.
[2] “Secure Property Titles with Owner Authority | Satoshi Nakamoto Insti-

tute.” https://nakamotoinstitute.org/secure-property-titles/ (accessed Mar.
19, 2021).

[3] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and
H. Janicke, “Blockchain Technologies for the Internet of Things: Research
Issues and Challenges,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.
2188–2204, Apr. 2019, doi: 10.1109/JIOT.2018.2882794.

[4] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain
from the perspectives of applications, challenges, and opportunities,” IEEE
Access, vol. 7, pp. 117134–117151, 2019.

[5] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M.
H. Rehmani, “Applications of blockchains in the Internet of Things: A
comprehensive survey,” IEEE Communications Surveys & Tutorials, vol.
21, no. 2, pp. 1676–1717, 2018.

[6] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-
lenges and opportunities: A survey,” International Journal of Web and
Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[7] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed
Consensus Protocols for Blockchain Networks,” IEEE Communications
Surveys Tutorials, vol. 22, no. 2, pp. 1432–1465, Secondquarter 2020, doi:
10.1109/COMST.2020.2969706.

[8] R. Wattenhofer, The science of the blockchain. Inverted Forest Publishing,
2016.

[9] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,”
in Secure information networks, Springer, 1999, pp. 258– 272.

[10] S. King and S. Nadal, “PPCoin: Peer-to-Peer Crypto-Currency with Proof-
of-Stake,” p. 6.

[11] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
1999, vol. 99, no. 1999, pp. 173–186.

[12] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, “Recent advances in
smart contracts: A technical overview and state of the art,” IEEE Access,
vol. 8, pp. 117782–117801, 2020.

[13] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-based access con-
trol. Artech House, 2003.

[14] Y. Nakamura, Y. Zhang, M. Sasabe, and S. Kasahara, “Exploiting smart
contracts for capability-based access control in the Internet of Things,”
Sensors, vol. 20, no. 6, p. 1793, 2020.

[15] B. Anggorojati, P. N. Mahalle, N. R. Prasad, and R. Prasad, “Capability-
based access control delegation model on the federated IoT network,”
in The 15th International Symposium on Wireless Personal Multimedia
Communications, 2012, pp. 604–608.

[16] B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review,
vol. 8, no. 1, pp. 18–24, 1974.

[17] R. S. Sandhu, “Role-based access control,” in Advances in computers, vol.
46, Elsevier, 1998, pp. 237–286.

[18] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based access
control,” Computer, vol. 48, no. 2, pp. 85–88, 2015.

[19] R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A smart contract
enabled decentralized capability-based access control mechanism for the
iot,” Computers, vol. 7, no. 3, p. 39, 2018.

[20] A. Gauhar et al., “xDBAuth: Blockchain based cross domain authentica-
tion and authorization framework for Internet of Things,” IEEE Access,
vol. 8, pp. 58800–58816, 2020.

[21] F. Ghaffari, E. Bertin, J. Hatin, and N. Crespi, “Authentication and Access
Control based on Distributed Ledger Technology: A survey,” in 2020
2nd Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), 2020, pp. 79–86.

[22] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16440–16455, 2020.
VOLUME XX, 2017 1

[23] S. Shafeeq, M. Alam, and A. Khan, “Privacy aware decentralized access
control system,” Future Generation Computer Systems, vol. 101, pp.
420–433, 2019.

[24] X. Qin, Y. Huang, Z. Yang, and X. Li, “An access control scheme with fine-
grained time constrained attributes based on smart contract and trapdoor,”
in 26th International Conference on Telecommunications (ICT) , 2019, pp.
249–253.

[25] L. Tan, N. Shi, C. Yang, and K. Yu, “A blockchain-based access control
framework for cyber-physical-social system big data,” IEEE Access, vol.
8, pp. 77215–77226, 2020.

[26] S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for data
sharing with fine-grained access control in decentralized storage systems,”
IEEE Access, vol. 6, pp. 38437–38450, 2018.

[27] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in International Workshop on
Public Key Cryptography, 2011, pp. 53–70.

[28] L. Guo, X. Yang, and W.-C. Yau, “TABE-DAC: Efficient Traceable
Attribute-Based Encryption Scheme With Dynamic Access Control
Based on Blockchain,” IEEE Access, vol. 9, pp. 8479–8490, 2021, doi:
10.1109/ACCESS.2021.3049549.

[29] X. Ling, J. Wang, T. Bouchoucha, B. C. Levy, and Z. Ding, “Blockchain
radio access network (B-RAN): Towards decentralized secure radio access
paradigm,” IEEE Access, vol. 7, pp. 9714–9723, 2019.

[30] X. Ling, Y. Le, J. Wang, Z. Ding, and X. Gao, “Practical modeling
and analysis of blockchain radio access network,” IEEE Transactions on
Communications, 2020.

[31] C. Yang, L. Tan, N. Shi, B. Xu, Y. Cao, and K. Yu, “AuthPrivacyChain:
A blockchain-based access control framework with privacy protection in
cloud,” IEEE Access, vol. 8, pp. 70604–70615, 2020.

[32] J. P. Cruz, Y. Kaji, and N. Yanai, “RBAC-SC: Role-based access control
using smart contract,” IEEE Access, vol. 6, pp. 12240–12251, 2018.

[33] H. Liu, D. Han, and D. Li, “Fabric-IoT: A blockchain-based access control
system in IoT,” IEEE Access, vol. 8, pp. 18207–18218, 2020.

[34] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1594–1605, 2018.

[35] T. Sultana, A. Almogren, M. Akbar, M. Zuair, I. Ullah, and N.
Javaid, “Data sharing system integrating access control mechanism using
blockchain-based smart contracts for IoT devices,” Applied Sciences, vol.
10, no. 2, p. 488, 2020.

[36] T. Sultana, A. Ghaffar, M. Azeem, Z. Abubaker, M. U. Gurmani, and N.
Javaid, “Data sharing system integrating access control based on smart
contracts for IoT,” in International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 2019, pp. 863–874.

20 VOLUME x, 2021

Ghaffari et al.: A Novel Access Control Method via Smart Contracts for Internet-based Service Provisioning

[37] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Transactions on Software
Engineering, 2020.

[38] B. Guido, D. Joan, P. Michaël, and V. A. Gilles, “The K SHA-3 submis-
sion,” 2011.

[39] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Blockchain
for 5G and beyond networks: A state of the art survey,” Journal of Network
and Computer Applications, p. 102693, 2020.

[40] S. Behrad, E. Bertin, and N. Crespi, “Securing authentication for mobile
networks, a survey on 4G issues and 5G answers,” in 2018 21st Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
Feb. 2018, pp. 1–8, doi:10.1109/ICIN.2018.8401619.

[41] C. Dannen, Introducing Ethereum and solidity, vol. 318. Springer, 2017.
[42] D. G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction

Ledger,” p. 39.
[43] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and

challenges.,” IJ Network Security, vol. 19, no. 5, pp. 653–659, 2017.
[44] P. W. Eklund and R. Beck, “Factors that impact blockchain scalability,” in

Proceedings of the 11th international conference on management of digital
ecosystems, 2019, pp. 126–133.

[45] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on
the scalability of blockchain systems,” IEEE Network, vol. 33, no. 5, pp.
166–173, 2019.

[46] M. Schäffer, M. Di Angelo, and G. Salzer, “Performance and scalability of
private Ethereum blockchains,” in International Conference on Business
Process Management, 2019, pp. 103–118.

FARIBA GHAFFARI is pursuing her Ph.D. with
Institut Polytechnique de Paris (Telecom Sud-
Paris). She has been involving in the field of Au-
thentication, and access control mechanisms based
on Blockchain and smart contracts at Orange Labs,
France, since 2019. She received her master de-
gree of science in the field of Information Security.

EMMANUEL BERTIN is an expert community
leader at Orange Labs and an adjunct professor at
the Institut Mines-Telecom, France. His activities
are focused on 5G and 6G, Blockchain and ser-
vice engineering, with more than 100 published
researched articles. He received a Ph.D. and an
habilitation in computer science from Sorbonne
University. He is a senior member of the IEEE..

NOEL CRESPI holds Masters Degrees from the
Universities of Orsay and Canterbury, a “Diplome
d’ingénieur” from Telecom ParisTech and a Ph.D.
and Habilitation from Paris VI University. He
joined Institute Mines-Telecom in 2002 and is
currently Professor and M.Sc. Programme Direc-
tor, leading the Service Architecture Laboratory.
He coordinates the standardization activities for
Institute Telecom at ETSI, 3GPP, and ITU-T. He is
also an adjunct professor at KAIST (South Korea),

an affiliate professor at Concordia University (Canada), and guest researcher
at the University of Goettingen (Germany). He is the scientific director the
French-Korean laboratory ILLUMINE. His current research interests are in
Data Analytics, Internet of Things and Softwarisation. He is the author/co-
author of 400 articles and contributions in standardization. He is a senior
member of the IEEE.

SHANAY BEHRAD holds a Ph.D. in computer
science from “Institut Polytechnique de Paris”.
She worked on designing authentication and ac-
cess control mechanisms for 5G networks during
her Ph.D. at Orange Labs. She currently works at
b-com institute of research and technology as a
research engineer. Her research interests include
5G networks, Microservices and Security.

JULIEN HATIN holds a Ph.D. in computer sci-
ence from the University of Caen and a “Diplome
d’ingénieur” from Ecole National Superieur In-
génieur de Caen. He currently works at Orange
Labs, as a research engineer. His research inter-
ests include Smart contract, Blockchain, Identity
management and Authentication.

VOLUME x, 2021 21

