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Abstract

We study the statistical mechanics of supercooled liquids when the system evolves at a
temperature T with a field ε linearly coupled to its overlap with a reference configuration
of the same liquid sampled at a temperature T0. We use mean-field theory to fully char-
acterize the influence of the reference temperature T0, and we mainly study the case of
a fixed, low-T0 value in computer simulations. We numerically investigate the extended
phase diagram in the (ε, T) plane of model glass-forming liquids in spatial dimensions
d = 2 and d = 3, relying on umbrella sampling and reweighting techniques. For both
2d and 3d cases, a similar phenomenology with nontrivial thermodynamic fluctuations
of the overlap is observed at low temperatures, but a detailed finite-size analysis reveals
qualitatively distinct behaviors. We establish the existence of a first-order transition line
for nonzero ε ending in a critical point in the universality class of the random-field Ising
model (RFIM) in d = 3. In d = 2 instead, no phase transition is found in large enough sys-
tems at least down to temperatures below the extrapolated calorimetric glass transition
temperature Tg . Our results confirm that glass-forming liquid samples of limited size
display the thermodynamic fluctuations expected for finite systems undergoing a ran-
dom first-order transition. They also support the relevance of the physics of the RFIM
for supercooled liquids, which may then explain the qualitative difference between 2d
and 3d glass-formers.
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1 Introduction

Glass formation is the direct consequence of the rapid evolution of dynamic properties of su-
percooled liquids as the temperature is decreased toward the experimental glass transition
temperature Tg [1, 2]. It is thus conceivable to explain this phenomenon by using kinetic
concepts to directly account for slow molecular motion [3], such as free volume [4], kinetic
constraints [5], or local barriers controlled by elasticity [6]. Yet, slow dynamics can also be
regarded as an emerging physical property slaved to some important changes in static prop-
erties of the supercooled liquid [7], captured for instance by the evolution of the potential [8]
and free-energy landscapes [9,10], or geometric frustration [11]. In the mean-field limit or in
large spatial dimensions [12], the evolution of the free-energy landscape directly reflects the
approach to a random first-order transition (RFOT) to an ideal glass phase [9] that is accompa-
nied by a vanishing configurational entropy at a “Kauzmann transition” temperature TK . The
emergence of metastable minima (states) in the free-energy landscape that can trap the system
for increasingly long times is responsible for ergodicity breaking [13, 14]. The present work
belongs to a large research effort to understand how finite-dimensional fluctuations affect this
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Figure 1: (a) Glass-forming liquid (blue) evolving at a temperature T : its overlap
with a quenched reference configuration (yellow) sampled at a temperature T0 is
linearly coupled to a source ε > 0, which may trigger a transition from (left) a low-
overlap delocalized (liquid) phase to (right) a large-overlap localized (glass) phase.
(b, c) Possible phase diagrams for a constrained liquid with T0 = T , depending on the
existence [panel (b)] or the absence [panel (c)] of an entropy crisis and a random
first-order transition at a nonzero TK . Both diagrams display a line of first-order
transition (full line) between low- and high-overlap phases ending in a critical point
(εc , Tc). Above the critical point, a “Widom line” (dashed line) where the fluctuations
of the overlap are maximum exists. (d) Possible phase diagram with no transition
and a Widom line.

mean-field theoretical construction.
An elegant way to follow the evolution of the free-energy landscape of glass-formers as

temperature is lowered was proposed long ago by Franz and Parisi [15–17] and has since
given rise to many studies [18–25]. It relies on studying the equilibrium statistical mechanics
of a glass-forming liquid at a temperature T in the presence of a finite attraction of amplitude ε
to a quenched reference configuration of the same liquid sampled from the equilibrium Boltz-
mann distribution at a temperature T0. In other words, one now studies the thermodynamics
of a liquid in the presence of an imposed quenched disorder represented by the reference con-
figuration, which will be called below a “constrained liquid”: see the sketch in Fig. 1(a). (The
annealed version, where both copies evolve simultaneously with an attraction, has also been
studied [26–32].) In this construction, the similarity or overlap between the two copies (or
replicas) is computed from the positions of the N particles in the constrained liquid, denoted
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by r N , and the reference configuration, r N
0 , as follows:

bQ[r N ; r N
0 ] =

1
N

N
∑

i, j=1

w(|ri − r0, j|/a) . (1)

The overlap represents the order parameter that distinguishes between a delocalized (liquid)
phase of typical overlap Qrand� 1 and a localized (glassy) phase with a large overlap Qg ≈ 1.
In the above equation, w(x) is a window function decreasing from 1 to 0 on a scale of order 1
and a is a tolerance length that accounts for thermal vibrations in the localized phase [33].

An attractive coupling between the two copies is implemented by linearly biasing the over-
lap between the two configurations by means of a “source” ε in order to favor large overlap
values when ε > 0. If we let

ÒH[r N ] =
1
2

∑

i< j

v(|ri − r j|) , (2)

denote the Hamiltonian of the unconstrained liquid with a pair interaction v(r), the Hamilto-
nian of the liquid coupled to the reference configuration r N

0 reads

ÒHε[r
N ; r N

0 ] = ÒH[r
N ]− NεbQ[r N ; r N

0 ] , (3)

which defines the statistical-mechanical problem to be studied. The positions r N
0 in the refer-

ence configuration act as a source of quenched disorder for the Hamiltonian ÒHε[r N ; r N
0 ].

At a fixed temperature T , the state of the constrained liquid is obtained by minimizing
its free energy. Qualitatively, at low ε, entropy dominates and can be maximized by a full
exploration of the configuration space. The system is thus a delocalized liquid, which is never
close to the reference configuration and the overlap is small. Instead, at large ε, the attraction
energy dominates and the system acquires a large overlap with the reference configuration
by staying very close to it. The system is then in a localized glass phase. The Franz-Parisi
construction with a source ε allows one to track the evolution between these two regimes and
how it may lead, in the thermodynamic limit, to an equilibrium phase transition [16].

Investigating equilibrium phase transitions for constrained liquids is valuable for several
reasons. First, they give insight into the statistical properties of the underlying landscape
characterizing glass-formers and indicate whether localized glassy states exist in the system.
The existence of phase transitions then suggests that, in the unconstrained liquid, one can
meaningfully define a glass phase, which is metastable with respect to the liquid phase (for
T > TK). On the other hand, the absence of such phase transitions implies, inter alia, the
absence of a thermodynamic glass transition (RFOT). As such, this provides a complementary
tool to other approaches such as measurements of the point-to-set length [34–37] and of the
configurational entropy [38–41]. Second, because they may take place at temperatures and
conditions under which the glassy slowdown of relaxation is not too severe, they can be directly
observed in equilibrium conditions, rather than extrapolated as the ideal glass transition; they
can furthermore be crisply defined, unlike, e.g., the dynamical mode-coupling crossover [42].

The thermodynamics of constrained liquids can be computed exactly in the limit of infinite
dimensions [43], which is equivalent to a mean-field treatment [12]. Possible phase diagrams
in the (ε, T ) plane are shown in Fig. 1(b)-(c) for the case where the reference configurations
are sampled at the same temperature T as the constrained liquid [44], i.e., T0 = T . They both
display a first-order transition line separating the localized and delocalized phases, ending in a
critical point at (εc , Tc). This line may either converge at low T to (0, TK > 0) if the system has
a vanishing configurational entropy (Kauzmann transition) at a nonzero TK , or to (0, 0) if not.
On the first-order transition line and at the critical point, the variance of the properly defined
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overlap fluctuations diverges in the thermodynamic limit. In contrast, above the critical point,
the variance of the overlap fluctuations stays finite for any ε. It displays a maximum at fixed
T , which defines the so-called “Widom line” [45]. While a nonzero TK implies the existence of
a second-order critical point at (εc , Tc) [see Fig. 1(b)], the reverse is not true [see Fig. 1(c)].

Extrapolating the physics of glass formation from d =∞ down to d = 2,3 is nontrivial due
to finite-dimensional fluctuations which can have a dramatic effect on mean-field constructs
such as metastable states. There is no guarantee, then, that any of the mean-field predictions
survives in the (ε, T ) phase diagram: one may rather find something as sketched in Fig. 1(d),
with no singularity and just a Widom line going down to zero temperature. (Of course, the
phase diagrams displayed in Fig. 1 do not exhaust all possibilities: see, e.g., Ref. [44].)

Recent field-theoretical calculations based on an effective description in terms of a Landau-
Ginzburg free-energy functional of the overlap have shown that a constrained glass-forming
liquid close to its putative critical point (εc , Tc) can be mapped onto a disordered system de-
scribed by a φ4-theory in the presence of a random field [21,22]. This shows that if the critical
point survives in finite d, it should be in the universality class of the random-field Ising model
(RFIM) [46]. Modulo some adjustments, this mapping applies to the first-order transition
line [47,48]. This result also implies that there should be no transition in 2d, whatever ε, be-
cause d = 2 is the lower critical dimension of the RFIM [49,50]. For 2d glass-forming liquids,
we may thus postulate a phase diagram as in Fig. 1(d). In contrast, the transition in 3d may
survive if the strength of the effective random field is not too large [46, 51, 52], and phase
diagrams as illustrated in Fig. 1(b)-(c) could then be expected.

The Hamiltonian in Eq. (3) has been the subject of a number of numerical analyses for
both models of atomic liquids [17, 19, 20, 23, 24, 26] and spin plaquette models [53]. Early
studies suffered from sampling issues which were later solved by introducing biased sampling
techniques and reweighting methods [26]. All studies on 3d constrained systems pointed to
the existence of a phase transition and RFIM-like behavior, but accessing large system sizes for
model glass-forming liquids was not possible. By combining the biased sampling and reweight-
ing techniques with the accelerated exploration of the configurational space offered by the
swap Monte Carlo algorithm [54–56], it now becomes feasible to study a broader range of
system sizes over a broader range of temperatures and to carry out finite-size analyses to de-
termine if the transitions persist in the thermodynamic limit.

In this paper, we present an extensive numerical study of the thermodynamics and phase
transitions of constrained supercooled liquids in dimensions d = 3 and d = 2. We find strong
signatures of the mean-field phenomenology for both cases when system sizes are sufficiently
small. By using a careful finite-size scaling analysis, we show that the 3d phase diagram ex-
hibits a first-order transition line ending in a RFIM-like critical point. A short report of this
investigation on the critical behavior in 3d systems can be found in Ref. [57]. On the other
hand, in d = 2, we find no signature of a phase transition down to the lowest temperature nu-
merically accessible, which is below the extrapolated calorimetric glass transition temperature
Tg . This is fully compatible with the RFIM phenomenology.

The rest of the manuscript is organized as follows. In Sec. 2, we describe our numerical
strategy. It relies on an optimized choice of a low temperature T0 of the reference configura-
tions, which is suggested by a mean-field analysis and is made possible by the swap algorithm.
It is then combined with state-of-the-art importance sampling techniques. In Sec. 3, we study
the overlap statistics and the thermodynamics of constrained supercooled liquids in 2d and 3d
for rather small samples. In Sec. 4, we perform finite-size analyses to capture the thermody-
namic limit and determine the presence or absence of a transition in 3d and 2d. In Sec. 5, we
focus on the 3d liquid and characterize the nature of the critical point at (εc , Tc). Finally, we
summarize and discuss our results in Sec. 6. Details on the mean-field analytical calculations
are presented in an Appendix and those on the liquid models and the methods in another one.
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2 Numerical strategy

2.1 Insights from the spherical p-spin model

So far, we have mostly discussed the (ε, T ) phase diagram in the situation where the reference
configurations are sampled at the same temperature as the constrained liquid, namely, T = T0.
In this case, the constrained liquid is attracted toward configurations which are typical of the
unconstrained liquid at the same temperature T . One then has a handle on the organiza-
tion of the typical metastable states at temperature T , in particular on their number which
is controlled by the configurational entropy. However, one more generally has three control
parameters, ε, T , and T0. Fixing the temperature T0 of the reference configurations amounts
to coupling the liquid at temperature T to configurations which are typical at another tem-
perature. The direct link to the configurational entropy is then lost because its contribution is
intertwined with the intrinsic difference in the free energy of typical glassy states between T
and T0. Yet, as we discuss below, interesting information can still be obtained while practical
improvements are made possible.

The choice of T0 affects the phase diagrams presented in Fig. 1(b)-(c). We have fully ex-
plored the influence of T0 at the mean-field level. Detailed results are presented in Appendix A,
and we merely summarize them here. We study the fully-connected spherical p-spin model
(with p ≥ 3) [58,59]. Its Hamiltonian is given by

ÒHJ

�

σ
�

= −
∑

1≤i1<···<ip≤N

Ji1...ipσi1 . . .σip , (4)

where J = {Ji1...ip}1≤i1<···<ip≤N are Gaussian random variables of zero mean and variance

E{J2
i1...ip
}= J2p!/(2N p−1), with J > 0, and the spin variables σi are real numbers constrained

to stay on the unit sphere. The model has already been extensively investigated (see, e.g.,
Ref. [60] for a review) and is known to exhibit a phenomenology similar to that of mean-field
structural glasses [61, 62]. In particular, a random first-order transition (RFOT) at a nonzero
temperature TK is found and the phase diagram in the (ε, T ) plane is similar to that in Fig. 1(b)
when T = T0 [16,17].

The thermodynamics of the spherical p-spin model can be computed exactly for any set
of parameters (ε, T, T0). We show in Fig. 2(a) the (ε, T ) phase diagram for the case T = T0
along with that for a low, fixed temperature T0, focusing on the case p = 3. When T = T0,
a line of first-order transition emerges from the Kauzmann transition (RFOT) at TK and ends
in a critical point at (ε(T=T0)

c , T (T=T0)
c ). When the temperature of the reference configurations

is fixed to T0 < T (T=T0)
c , the critical point still exists, but its position is shifted to a higher

temperature Tc(T0) and a larger value of the source εc(T0). The behavior of the first-order
transition line at low temperatures is however qualitatively different. For temperatures T0
that are sufficiently low (in particular for T0 < Td , with Td the dynamical glass transition
temperature), the transition line is reentrant and ends at a finite source ε in the limit of zero
temperature. In Appendix A, we detail the possible shapes of the phase diagram (ε, T ) as a
function of T0. We also compute the location of the critical point as a function of T0, showing
that Tc and εc are decreasing functions of T0: this is illustrated by the dotted line in Fig. 2(a).

We next consider the critical behavior of the p-spin model beyond mean-field, i.e., by taking
into account finite-dimensional fluctuations. In Ref. [22], it was shown that the critical point
of the spherical p-spin is in the universality class of RFIM when T = T0. In Appendix A, we
extend this conclusion to any temperature T0 of the reference configurations and we perform
the explicit mapping. In particular, our computation provides the variance ∆ of the effective
random field that emerges in the mapping. It is displayed in Fig. 2(b) as a function of T0.
The effective strength of the random field decreases for both low and high values of T0, the
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Figure 2: (a) Phase diagram in the (ε, T ) plane of the fully-connected spherical p-
spin model (p = 3) for T = T0 and for a fixed temperature T0 of the reference
configurations. Energies are expressed in units of the strength J of the coupling con-
stants between spins [see Eq. (4) and below]. When T = T0, a first-order transition
line emerges from TK/J = 0.586 and ends in a critical point at T (T=T0)

c /J = 0.772
and ε(T=T0)

c /J = 0.087 (the Boltzmann constant is set to unity). For T0 < T (T=T0)
c ,

a critical point still exists at a higher temperature Tc(T0) and a larger value of the
source εc(T0). For this choice of T0, the line of first-order transition terminates at
(ε > 0, T = 0). The dotted line represents the loci of the critical points when T0 is var-
ied. (b) Variance ∆ of the effective random field in the mapping to the random-field
Ising model (RFIM): see Appendix A. The maximum is obtained for T0/J ≈ 0.784,
close to the case T = T0 (square).

maximum being achieved for T0 ≈ T (T=T0)
c . As a consequence, the case T = T0 corresponds to

near maximal effective random-field disorder.
We can use these mean-field results to somehow optimize our numerical strategy. First,

except very close to ε= 0, the phase diagram is qualitatively unchanged when varying T0 over
a broad range. As we are primarily interested in assessing the existence of transitions in the
(ε, T ) plane, this implies that we can choose the most convenient value of T0. As we have seen,
the critical point and the first-order transition line are shifted upward in temperature when T0
is low enough. Previous numerical works suggested that if the critical point survives in finite
d for T = T0, it should be close to, or below the mode-coupling crossover [20,24,26,40,57].
Consequently, we can take advantage of the swap Monte Carlo algorithm to generate very
stable equilibrium configurations at the lowest accessible temperatures T0, close to or even
below the extrapolated calorimetric glass transition temperature. This should allow us to shift
all the relevant thermodynamic features to higher temperatures where equilibration is much
easier. The potential downside is that the effective disorder is lower than in the case T = T0,
with the implication that the RFIM behavior could be more difficult to observe. (If disorder
is too weak, the system near the critical point behaves up to some distance as the pure Ising
model and RFIM physics only dominates beyond some crossover length [49] that could be
quite large; as will be seen, this is not the case here.)

2.2 Models and sampling methods

We use a hybrid algorithm [56] combining swap Monte Carlo moves and molecular dynamics
to simulate the size-polydisperse system described in Ref. [55] and in Appendix B. Two parti-
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cles i and j interact via the repulsive pairwise potential v(ri j)/v0 = (σi j/ri j)12 + vc(ri j/σi j),
where the function vc in the second term regularizes the potential, the force and its deriva-
tive at a cutoff distance 1.25σi j , with ri j the relative distance and σi j the cross-diameter.
The distribution of particle diameters is p(σi) ∝ σi

−3, and the interaction is nonadditive,
σi j = 0.5(σi +σ j)(1−µ|σi −σ j|), in order to maximize the glass-forming ability of this sys-
tem and avoid fractionation and crystallization. The average diameter σ of the particles is
used as unit length (µ = 0.2 in this unit), v0 as unit temperature (the Boltzmann constant is
set to unity) and

p

mσ2/v0 as unit time (with m the mass of the particles). The model has been
studied both in d = 2 [63–65] and d = 3 [40, 55, 65, 66], where characteristic temperature
scales and dynamical properties have been determined.
Guided by the analysis of the mean-field p-spin model, we focus on equilibrium reference con-
figurations at a low temperature T0 = 0.06¦ Tg(≈ 0.056) in 3d and T0 = 0.03< Tg(≈ 0.068)
in 2d, which we generate with the help of the swap algorithm. To study the thermodynam-
ics of the constrained liquid at a temperature T , we do not impose a source ε because this
direct approach suffers from several sampling issues. First, at high temperatures but close to
the putative critical point, the dynamics (even with the swap Monte Carlo algorithm) slows
down significantly [57]. This critical slowing down is due to the diverging thermodynamic
fluctuations of the overlap. In random-field-like systems, the slowing down is far more spec-
tacular than in pure systems as the relaxation time increases exponentially with the correlation
length (instead of algebraically), a feature known as activated dynamic scaling [67, 68] (see
also Ref. [57] and Sec. 5). In addition, near the first-order transition line, sampling may be
hindered due to large nucleation barriers between the metastable and stable phases.

We use instead state-of-the-art importance sampling techniques combining umbrella sam-
pling [69–71] and subsequent histogram reweighting [72, 73], as described in Appendix B.
All the simulations are run with ε = 0. We add a biasing potential that forces the system to
visit untypical values of the overlap which would otherwise never be sampled by using a direct
approach. As a consequence, we are able to repeatedly visit very unlikely configurations and
to cover the entire overlap range between 0 and 1. In such a two-step numerical strategy, we
can compute for a given temperature T and a given reference configuration r N

0 the proba-
bility distribution Pε(Q; r N

0 ) of the overlap for any source ε with a good numerical accuracy.
From this distribution, the thermal average of any observable A(bQ) which only depends on
the overlap can be computed as

〈A(bQ)〉ε(T ; r N
0 ) =

∫

dr NA(bQ[r N ; r N
0 ])e

−βÒHε[r N ;r N
0 ]

∫

dr N e−βÒHε[r
N ;r N

0 ]

=

∫ 1

0

dQA(Q)Pε(Q; r N
0 ) ,

(5)

where β = 1/T . We then need to perform an average over the different realizations of the
disorder, i.e., over the reference configurations,

〈A(bQ)〉ε(T, T0) =

∫

dr N
0 e−β0ÒH[r N

0 ]〈A(bQ)〉ε(T ; r N
0 )

∫

dr N
0 e−β0ÒH[r N

0 ]

=

∫ 1

0

dQA(Q)Pε(Q; r N
0 ) .

(6)
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In particular, we will focus on the average overlap and on the amplitude of its fluctuations
characterized by the overlap susceptibilities. As is usual for systems with quenched disorder,
two susceptibilities can be defined to disentangle the two different sources (temperature and
disorder) of fluctuations of the order parameter [74,75]. The connected susceptibility

χ(con)
ε (T, T0) = Nβ

h

〈bQ2〉ε(T, T0)− 〈bQ〉2ε(T, T0)
i

= χε(T ; r N
0 ) ,

(7)

where χε(T ; r N
0 ) = Nβ[〈bQ2〉ε − 〈bQ〉2ε] = ∂ 〈bQ〉ε(T ; r N

0 )/∂ ε is the thermal susceptibility for
a fixed reference configuration, accounts for the thermal fluctuations, and the disconnected
susceptibility

χ(dis)
ε (T, T0) = Nβ

�

〈bQ〉2ε(T, T0)− 〈bQ〉ε
2
(T, T0)

�

, (8)

quantifies the fluctuations due to the disorder. The total susceptibility, computed as the second

cumulant of the disorder-averaged probability distribution Pε(Q; r N
0 ) of the overlap, is then

given by

χ(tot)
ε (T, T0) = Nβ

�

〈bQ2〉ε(T, T0)− 〈bQ〉ε
2
(T, T0)

�

= χ(con)
ε (T, T0) +χ

(dis)
ε (T, T0) ,

(9)

which is simply the sum of the connected and disconnected contributions.
Before presenting our results, we comment on the potential difficulties stemming from the

choice of the order parameter in the case of 2d systems. As the overlap bQ[r N ; r N
0 ] is defined

from the positions of the particles in Eq. (1), it may suffer in d = 2 from large collective transla-
tional displacements [76,77] which have been associated with “Mermin-Wagner fluctuations”
preventing periodic ordering in 2d systems. This would hamper the detection of the localized
phase, irrespectively of the existence of a transition. Other choices for the order parameter
(for instance the mean-squared displacement from the reference configuration [12] or the
quadratic cumulative difference between the density fields in the constrained and reference
replicas [78,79]) suffer from the same issue. The amplitude of these fluctuations increases (lin-
early) with the temperature and (logarithmically) with the system size [80]. In consequence,
for the system sizes and the temperatures that are considered here in 2d (up to N = 250), the
Mermin-Wagner fluctuations are expected to be irrelevant. For instance, the translational (self-
intermediate scattering function) correlation function and the bond-orientational correlation
function Cψ6

(t) (see Appendix B) are very similar despite the fact that the former is sensitive to
the Mermin-Wagner fluctuations and not the latter. For the system sizes and the temperatures
considered, the relaxation times that are extracted from the two functions closely follow each
other when varying the temperature [81].

3 Mean-field-like behavior in finite systems

3.1 Thermodynamic properties in the presence of a source ε in d = 3 and d = 2

We first consider the thermodynamic properties of the constrained liquid when the source ε
is applied on relatively small systems in d = 3 (N = 600) and d = 2 (N = 64). Isotherms
are shown in Fig. 3. They correspond to the source ε plotted versus the average overlap order

parameter 〈bQ〉ε(T, T0) for several temperatures T at a fixed temperature T0 of the reference
configurations. The latter is chosen as T0 = 0.06 in 3d and 0.03 in 2d, and the definition of
the double average is given in Eqs. (5)-(6). Imposing a finite positive (respectively, negative)
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Figure 3: Numerical isotherms showing the applied source ε versus the average over-

lap 〈bQ〉ε(T, T0) for several temperatures T and a fixed temperature T0 of the refer-
ence configurations. Top: 3d liquid with N = 600 and T0 = 0.06. Bottom: 2d liquid
with N = 64 and T0 = 0.03. The isotherms are strictly monotonically increasing
at high temperatures but become almost flat at low temperatures, as expected for a
first-order transition ending in a critical point.

ε biases the overlap toward larger (respectively, smaller) values than its “random” value Qrand.
Isotherms are strictly monotonically increasing at large temperatures with an inflexion point
that corresponds to maximal fluctuations at a fixed temperature T . Indeed, from Eq. (7), it is
easy to see that the slope of the tangent to the isotherm corresponds to the inverse of the con-
nected susceptibility, susceptibility which then has a maximum at the inflexion point. As the
temperature T decreases, the value of ε beyond which the system is localized also decreases,
as the attraction between configurations has to counterbalance smaller thermal fluctuations
(or equivalently a smaller entropic cost). At the same time, the slope at the inflexion point of
the isotherm decreases until the lowest temperatures at which the isotherms seem to plateau.
This directly indicates growing fluctuations of the order parameter when decreasing the tem-
perature.

This behavior is consistent with a coexistence between low- and high-overlap phases at
low temperatures ending in a critical point at a larger temperature. The curves in Fig. 3 are
reminiscent of the van der Waals isotherms for the liquid-gas transition when corrected by the
Maxwell construction [82]. The average overlap being here computed in the canonical ensem-
ble in which ε is the control parameter, the isotherms cannot display any loop: the isotherms
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Figure 4: Average probability distribution Pε∗(Q; r N
0 ) of the overlap Q for

ε = ε∗(T, T0), at which the total variance of the overlap has a maximum, several
temperatures T and a fixed temperature T0 of the reference configurations. Top: 3d
liquid with N = 600 and T0 = 0.06. Bottom: 2d liquid with N = 64 and T0 = 0.03.
With decreasing temperature, the probability distribution broadens and eventually
becomes bimodal, which is a manifestation of a growing static lengthscale that ex-
ceeds the linear size of the system.

as calculated involve 〈bQ〉ε(T, T0) which is the first cumulant of the overlap distribution and
therefore takes a unique value at any given ε in a finite-size system. (Loops could be observed
in a “micro-canonical” iso-overlap ensemble which, in the case of phase coexistence, is not
equivalent to the canonical ensemble for a finite-size system.) Isotherms in the canonical en-
semble can become strictly flat, but in the thermodynamic limit only. For finite-size systems,
they display a residual slope of order 1/

p
N in disordered systems: see Eq. (12). A finite-size

analysis is therefore necessary to detect whether the remnants of the mean-field phenomenol-
ogy seen in relatively small systems persist as a true phase transition in the thermodynamic
limit.

As mentioned in the previous section, our numerical strategy not only enables us to mea-
sure the average overlap but also its full probability distribution averaged over the reference

configurations, Pε(Q; r N
0 ), for any source ε. From our discussion of the isotherms we know

that, at a fixed temperature T , the connected susceptibility displays a maximum for some in-
termediate value of the source and that this maximum increases with decreasing temperature.
Actually, both the connected and the disconnected susceptibilities are maximum around the
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same value of ε, and we let ε∗(T, T0) denote the value of the source at which the total sus-
ceptibility, which is the sum of the connected and disconnected susceptibilities [see Eq. (9)],
is maximum. We then display in Fig. 4 the disorder-averaged probability distribution of the
overlap for several temperatures T , a fixed temperature T0 of the reference configurations,
and ε = ε∗(T, T0). At high temperatures, the distribution is almost Gaussian with a single
peak centered at Q close to its average value. As the temperature T decreases, the overall
width of the distribution increases, reflecting larger overlap fluctuations as already inferred
from the slope of the isotherms. Eventually, the distribution becomes strongly bimodal for the
lowest temperatures. This is exactly what is expected if there is a phase separation between
a delocalized and a localized phase, corresponding to a first-order transition line in the (ε, T )
phase diagram.

One should of course be cautious before concluding to the existence of a phase transition,
as this requires a finite-size analysis. Nonetheless, the fact that the probability distribution
becomes increasingly bimodal for a given system size as one lowers the temperature is evidence
for the existence of a static (thermodynamic) lengthscale associated with overlap fluctuations
that grows with decreasing temperature. This is consistent with the existence of a critical point
at a finite temperature Tc , at which the lengthscale would diverge. At this point however,
several other scenarios cannot be excluded, such as a divergence at zero temperature only or
a growth without divergence of the correlation length: see the schematic phase diagrams in
Fig. 1(b)-(d).

3.2 Evolution with the temperature of the Franz-Parisi potential

The Franz-Parisi (FP) potential is the free-energy cost for keeping equilibrium liquid configu-
rations at a given value of the overlap with a reference configuration, chosen here at a fixed
temperature T0. It is defined as the large deviation rate function of the probability distribution
of the overlap when ε= 0, i.e., [15,16]

V (Q) = −
T
N

lnPε=0(Q; r N
0 ) = V (Q; r N

0 ). (10)

The FP potential is defined up to an irrelevant additive constant, which we fix so that it vanishes
at its absolute minimum.

We show in Fig. 5 the temperature evolution of the FP potential for a 3d system with
N = 600, T0 = 0.06 and a 2d one with N = 64, T0 = 0.03. The trends are similar in both
cases. The FP potential always displays an absolute minimum for Q = Qrand, reflecting the
fact that in the temperature range which we are able to simulate, the liquid is always found
in the delocalized state when ε = 0. The potential is strictly convex at high temperatures but
becomes slightly nonconvex at the lowest temperatures (compare with the dashed lines). This
behavior is reminiscent of that observed in mean-field glass-formers (see, e.g., Fig. 12 for the
fully connected spherical p-spin model in Appendix A). However, in the present situation, the
nonconvexity results from a finite-size effect that limits the spatial extent of the fluctuations
and is due to the rather small system sizes considered. Convexity needs to be restored in
finite-dimensional systems in the thermodynamic limit (N → +∞) [83].
The thermodynamics of the constrained liquid, i.e., the liquid in the presence of a nonzero
applied source ε, can be directly obtained from the FP potential, and this gives a comple-
mentary picture to that presented in the preceding subsection. For a given source ε, it
is convenient to tilt the FP potential according to Vε(Q) = V (Q) − εQ. The latter is re-
lated to the free energy as a function of the applied source F(ε) via a Legendre-Fenchel
transform: F(ε) = infQ{Vε(Q)} = Vε(Q∗ε(T, T0)) with V ′ε(Q

∗
ε(T, T0)) = 0, where a prime de-

notes a derivative with respect to the argument. At high temperatures, the FP potential is
strictly convex and so is the tilted potential Vε(Q). The FP potential can then be written
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Figure 5: Franz-Parisi (FP) potential rescaled by the temperature, βV (Q), for the 3d
liquid (N = 600, top) and the 2d liquid (N = 64, bottom) at several temperatures
T for a fixed temperature T0 of the reference configurations (T0 = 0.06 for d = 3
and T0 = 0.03 for d = 2). The potential is convex at high temperatures with a single
minimum at Q =Qrand. However, with the relatively small system sizes considered, it
becomes nonconvex at lower temperatures (the dashed lines are a guide to the eye).
This behavior is similar to that of mean-field glass-formers: compare with Fig. 12 in
Appendix A.

as the Legendre-Fenchel transform of F(ε), namely V (Q) = supε{F(ε) + εQ}, resulting in

F ′(ε) = −Q∗ε(T, T0) = −〈bQ〉ε(T, T0). At the lowest temperatures shown in Fig. 5 for d = 3 and
d = 2 the FP potential has lost convexity, which implies that for a range of values of ε the tilted
potential Vε(Q) is also nonconvex and has two minima and one maximum. For a specific value
ε∗(T, T0) the two minima have the same height, which corresponds in a mean-field setting to a
first-order transition between a low-overlap and a high-overlap phase and in the present finite-
size finite-dimensional systems to a vestige of such a transition [84]. In a finite-dimensional
system in the thermodynamic limit, the FP potential must be convex but can nonetheless dis-
play a linear segment between two values Qlow and Qhigh of the overlap. The slope of this
segment is the source ε∗(T, T0) at which phase coexistence between the low-overlap phase
with Q = Qlow and the high-overlap phase with Q = Qhigh takes place. The highest tempera-
ture at which this singular linear behavior exactly disappears then corresponds to the critical
temperature Tc and V (Q) displays an inflexion point at the critical value Qlow =Qhigh =Qc of
the overlap. This corresponds to a critical source εc = ε∗(Tc , T0).
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Figure 6: Evolution with system size N of the disorder-averaged probability distribu-

tion Pε∗(Q; r N
0 ) of the overlap Q in 3d (left) and 2d (right) for ε= ε∗(T, T0), at which

the total variance of the overlap order parameter is maximum. The distributions are
shown for two different temperatures T and a fixed temperature T0 of the reference
configurations (T0 = 0.06 in 3d and T0 = 0.03 in 2d). The 3d results support the
existence of a first-order transition line ending in a critical point at a temperature
0.15 ≤ Tc < 0.30. Instead in 2d, the results point to the absence of a transition
at any temperature T ≥ 0.06. The inset in the top left panel shows the probability
distributions in a logarithmic scale to highlight that the free-energy barrier between
the low-overlap and high-overlap phases grows with system size.

All of the above shows that glass-forming liquid models in d = 3 and d = 2 simulated with
modest system sizes display a phenomenology similar to that of mean-field glass-formers. This
is in line with the outcome of several previous simulation studies [17,19,20,23,24,26,27,85,
86]. However, the presence of bona fide transitions in the (ε, T ) diagram requires a finite-size
study to determine whether the features seen in small systems persist when extrapolating to
the thermodynamic limit.

4 Finite-size analysis: contrasting 2d and 3d

4.1 System-size dependence of the overlap probability distribution

To assess the existence of a first-order transition line ending in a critical point in the extended
phase diagram of supercooled liquids in 2d and 3d, we first analyze the system-size depen-

dence of the probability distribution Pε∗(Q; r N
0 ) of the overlap for two different temperatures:

see Fig. 6.
At the lower temperature in 3d (T = 0.15), the probability distribution of the overlap is

bimodal for all studied system sizes, with two maxima at Q =Qlow and Q =Qhigh. In addition,
the distribution gets increasingly bimodal when the system size is increased: the width of the
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two peaks shrinks while the free-energy barrier between the two maxima,

β∆F(T, T0) = ln





r

Pε∗(Qlow; r N
0 )Pε∗(Qhigh, r N

0 )

Pε∗(Qmin; r N
0 )



 , (11)

where Qmin is the location of the relative minimum of the probability distribution in the range
[Qlow,Qhigh], grows. The probability distribution then appears to converge to a double Dirac
distribution in the thermodynamic limit. At the higher temperature in 3d (T = 0.30), the
probability distribution is bimodal in small-enough samples (N ® 1000) but this behavior dis-
appears when considering large enough systems: see the curve for N = 2400. For this temper-
ature, the distribution is therefore expected to become Gaussian in the thermodynamic limit.
This pattern as a function of system size and temperature provides support to the existence
of a critical point at a nonzero temperature Tc ∈ [0.15,0.30]. We stress that the system sizes
considered here are unprecedentedly large compared to earlier simulation studies of glass-
forming liquids which were limited to at most a few hundreds of particles. Clearly, dealing
with too small system sizes tends to overestimate the critical temperature Tc and may even
lead to an erroneous conclusion concerning the existence of a transition.

Consider now the case d = 2. The overlap probability distribution is bimodal in sufficiently
small systems but its overall width always narrows and the distribution eventually becomes
single-peaked in larger samples. Excluding the unlikely scenario in which bimodality reap-
pears at even larger system sizes, this observation rules out the existence of a critical point
in 2d for T ≥ 0.06. We emphasize that with the help of the swap Monte Carlo algorithm,
we have been able to prepare equilibrium configurations at T0 = 0.03, i.e., much lower than
the estimated calorimetric glass transition temperature Tg = 0.068: they represent equilibrium
reference configurations with an estimated (but unmeasurable!) relaxation time of about 1037

in the units of the model. Converted into physical units [65], this corresponds to about 1018

years, much larger than the age of the universe. In addition, the lowest temperature T that we
could achieve (T = 0.06) is itself below the extrapolated glass transition temperature Tg . This
suggests the absence of phase transition in 2d and, to the least, we can conclude that in the
experimentally relevant temperature range (near and above the calorimetric glass transition
temperature), there is no signature of a critical point in the 2d glass-forming liquid. The fact
that one needs to consider larger system sizes to recover a single-peaked probability distribu-
tion of the overlap as one lowers the temperature (N ≥ 125 for T = 0.12 and N ≥ 250 for
T = 0.06) nonetheless indicates the existence of a growing static lengthscale associated with
overlap fluctuations. Although we do not attempt to characterize its precise behavior due to
the limited system sizes that we can access, our findings are compatible with the existence of
a zero-temperature critical point in d = 2.

4.2 Finite-size scaling in 3d indicates a first-order transition in the thermody-
namic limit

To further confirm that the 3d constrained liquid is below a critical point when T = 0.15
and then undergoes a first-order transition as a function of the applied source ε, we assess
the validity of the scaling laws predicted by the mapping onto an effective random-field Ising
model [21,22]. We first display in Fig. 7 the system-size dependence of the connected and the
disconnected susceptibilities evaluated at or very near their maximum, when ε = ε∗(T, T0).
At a first-order transition in the presence of a random field, the finite-size scaling behavior is
described by [74,75]

χ
(con)
ε∗ (T, T0)∼ Ld/2 ∼

p
N ,

χ
(dis)
ε∗ (T, T0)∼ Ld ∼ N ,

(12)
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Figure 7: Finite-size scaling analysis for the 3d constrained glass-forming liquid in
the region of first-order transition. Maximum of (a) the connected χ(con)

ε∗ (T, T0) and

(b) disconnected χ(dis)
ε∗ (T, T0) susceptibilities at T = 0.15 for a fixed temperature

T0 = 0.06 of the reference configurations. The full lines are the result of a linear
fit to the data and are compatible with what is expected for the random-field Ising
model [compare with Eq. (12)]. (c) Rescaled free-energy barrier∆F(T, T0)/(2Ld−1)
versus ln L/Ld−1 with L∝ N1/d the linear size of the system, validating the scaling in
Eq. (13). The intercept corresponds to the surface tension between the low-overlap
and the high-overlap phases, Υ (T, T0) ≈ 0.0041. For panels (a)-(c) error bars are
obtained from the jackknife method when performing the disorder average [73]. (d)
Snapshot of the liquid with N = 10000 for T = 0.15, T0 = 0.06 and a fixed value
of the overlap with the reference configuration, bQ ≈ 0.44, intermediate between
low and high overlaps. The particles are colored according to their coarse-grained
overlap q(`)i with the reference configuration: see Eqs. (14)-(15). A macroscopic
phase separation is clearly visible.

where L∝ N1/d is the linear extent of the system. The fingerprint of the random field is the
dominance at large scale of the sample-to-sample fluctuations encoded in the disconnected
susceptibility over the thermal ones encoded in the connected susceptibility1. As can be seen
from Fig. 7(a)-(b), both relations are well satisfied by our data, even though error bars are
quite large for the largest system size.

1Note that the suceptibilities as considered here include fluctuations from the localized to the delocalized phase,
which is why they diverge in the thermodynamic limit. This should be contrasted with susceptibilities restricted to
one phase or the other, which for Ising-like variables stay finite in the thermodynamic limit [74].
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We have also studied the size-dependence of∆F(T, T0), the free-energy barrier separating
the low-overlap and the high-overlap phases [see Eq. (11)]. If one assumes a planar interface
between the two coexisting phases, the free-energy barrier should scale as [87]

∆F(T, T0)
2Ld−1

= Υ (T, T0) + A
ln L
Ld−1

+
B

Ld−1
. (13)

In this equation, A and B are unknown coefficients characterizing the amplitude of the sub-
dominant behaviors while the factor of 2 in the denominator of the left-hand side comes from
using periodic boundary conditions. The free-energy barrier per unit area converges to the
surface tension Υ (T, T0) when L→ +∞.

To describe the subdominant terms we have added to the standard contribution propor-
tional to B an extra ln L/Ld−1 dependence accounting for massless modes due to the invariance
of the free-energy cost under translations of the planar interface and contributions from non-
planar interfaces [88]. For large-enough sizes (as is the case here), the latter contribution
dominates the former one, and in Fig. 7(c) we show that the variation of ∆F(T, T0)/(2Ld−1)
is indeed consistent with a linear behavior as a function of ln L/Ld−1. From the fit we extract
a surface tension Υ (T, T0)≈ 0.0041 for T = 0.15. This positive nonzero value guarantees the
self-consistency of our ansatz and confirms the presence of a phase separation associated with
the first-order transition.

A snapshot of a configuration of the 3d constrained liquid with N = 10000, T = 0.15
and for a fixed temperature T0 = 0.06 of the reference configuration is shown in Fig. 7(d).
This configuration is obtained during a biased simulation with an umbrella potential chosen
so that the overlap with the reference configuration is intermediate between Qlow and Qhigh:
bQ ≈ 0.44; macroscopic phase separation is then expected. For each particle, we compute a
local overlap

qi =
N
∑

j=1

w(|ri − r (0)j |/a) , (14)

where the sum runs over all the particles of the reference configuration and w(x) is the window
function already introduced in Eq. (1). To smooth out the local fluctuations of the overlap we
coarse-grain this single-particle quantity by using an exponential window of size `= 1, which
leads to

q(`)i =

∑

j q je
−ri j/`

∑

j e−ri j/`
, (15)

where the sums run over all the particles in the constrained replica, and ri j = |ri − r j|. We
clearly observe that the system segregates into two phases with distinct values of the overlap.
The interface is not perfectly planar and there are inhomogeneities of the overlap inside the
high-overlap phase. Nonetheless, all the particles with a local overlap larger than the average
form a single connected cluster: their relative distance is smaller than 1.5, which corresponds
to the first minimum in the radial pair correlation function g(r) [89]. This snapshot illustrates
what a phase separation in a constrained glass-forming liquid looks like, and it strengthens
the conclusions of the scaling analysis of the free-energy barrier following Eq. (13).

4.3 Finite-size analysis in 2d shows no sign of phase transition

We give further support to the absence of a phase transition in 2d in the thermodynamic limit
for the whole accessible temperature range. We plot in Fig. 8(a)-(b) the maximum of the
connected and the disconnected susceptibilities for two temperatures T = 0.12 and T = 0.06
and a fixed temperature of the reference configurations, T0 = 0.03. We observe that, contrary
to what is found for the 3d system, the susceptibilities do not grow with system size and
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Figure 8: Finite-size analysis for the 2d constrained glass-forming liquid. (a) Maxi-
mum of the connected susceptibility Tχ(con)

ε∗ (T, T0) as a function of the linear system

size
p

N and (b) maximum of the disconnected susceptibility Tχ(dis)
ε∗ (T, T0) as a func-

tion of the system size N for two temperatures T = 0.06 and T = 0.12 and a fixed
temperature T0 = 0.03 of the reference configurations. Contrary to the 3d liquid, the
susceptibilities are bounded, do not grow with system size and should then remain
finite in the thermodynamic limit. Error bars are obtained from the jackknife method
when performing the disorder average. (c) Snapshot of the liquid with N = 2000,
T = 0.06, and a fixed value of the overlap with the reference configuration, bQ ≈ 0.48,
which is intermediate between low and high overlaps. The particles are colored ac-
cording to their coarse-grained overlap q(`)i with the reference configuration: see
Eqs. (14)-(15). Contrary to the 3d liquid, no macroscopic phase separation is ob-
served.

therefore will most likely converge to a finite value in the thermodynamic limit. (Of course,
with only so few points we did not try to perform any bona fide scaling analysis2.) Accordingly,
in real space, the system does not phase separate: this is illustrated in Fig. 8(c) which is
obtained in the course of an umbrella sampling simulation at T = 0.06 for a larger system of
N = 2000 particles. Instead of a system-spanning phase separation, the 2d liquid constrained
at an intermediate value of the overlap with the reference configuration displays small domains

2Because of the peculiar nature of the scaling at a lower critical dimension, a proper finite-size scaling analysis
requires very large system sizes, as, e.g., in studies of the RFIM in d = 2 for which sizes of 106 or more spins have
been considered (see Refs. [90–92]).
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characterized by either a small or a large overlap, and the particles with an overlap larger than
the average one do not form a single connected cluster. This is in contrast with the macroscopic
phase separation observed in d = 3 and corroborates the conclusion drawn above from the
system-size dependence of the overlap probability distribution.

4.4 Further results concerning 2d and 3d for the case with T = T0

To confirm the conclusions obtained for a fixed low T0 we have also studied the phase diagram
of the 3d and 2d liquids in the case where the constrained liquid configurations and the refer-
ence configurations are at the same temperature, T0 = T . This situation more directly probes
the relevant regions of the underlying landscape and the physics of the glass-forming liquid in
the absence of an applied source than when T0 is fixed because the reference configurations are
then typical states. However, as already stressed, such a study with T0 = T is computationally
more demanding: if present, the critical point is indeed expected at a temperature Tc at which
the relaxation time of the unconstrained liquid is already so large that conventional simulation
techniques without swap moves are barely able to equilibrate the system. In consequence, we
have only probed the existence of a transition in d = 3 and the absence of a transition in d = 2
without delving more into the details.

We focus on the behavior of the disorder-averaged overlap probability distribution

Pε∗(Q; r N
0 ) for ε = ε∗(T ) (where the total variance of the overlap order parameter is max-

imum) which, as illustrated above, is a convenient means to contrast 2d and 3d physics. Both
for d = 2 and d = 3 we display two temperatures and we study three and two system sizes

0

3

6

9

12

0 0.2 0.4 0.6 0.8

3d
T = 0.085

P ε
∗
(Q

;r
N 0
)

Q

N= 300
1200

0

1.5

3

4.5

0 0.2 0.4 0.6 0.8 1

2d
T = 0.06

P ε
∗
(Q

;r
N 0
)

Q

N= 64
125
250

0

2

4

6

0 0.2 0.4 0.6 0.8

3d
T = 0.10

P ε
∗
(Q

;r
N 0
)

Q

N= 300
1200

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

2d
T = 0.12

P ε
∗
(Q

;r
N 0
)

Q

N= 64
125
250

Figure 9: Evolution with system size N of the disorder-averaged probability distribu-

tion Pε∗(Q; r N
0 ) of the overlap Q in 3d (left) and 2d (right) for ε = ε∗(T ), at which

the total variance of the overlap order parameter is maximum. The distributions
are shown for two and three different temperatures T respectively and the reference
configurations are sampled at a temperature T0 = T . The 3d results support the
existence of a critical point at a temperature 0.085 ≤ Tc < 0.100. Instead in 2d, the
results point to the absence of a transition at any temperature T ≥ 0.06 (which is
below the estimated calorimetric glass transition temperature Tg ≈ 0.068).
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respectively: see Fig. 9. When comparing with Fig. 6 obtained for a fixed low temperature
T0, one can see that one must go to significantly lower temperatures T to observe a bimodal
distribution of the overlap even for the smaller system sizes (N = 300 in 3d and N = 64 in
2d): this illustrates the already emphasized trend with T0 (see, e.g., Sec. 2). The 3d results,
which have already been displayed in our short report [57], point to the persistence of a phase
transition in the thermodynamic limit. For the lowest temperature considered, the two peaks
at low and high overlap indeed grow and narrow as the system size increases, which suggests
that the system is below the critical temperature, contrary to what is observed at the higher
temperature. In d = 2 instead, our new results confirm the absence of a transition in the
experimentally relevant temperature regime (the lowest temperature shown in the figure is
below the calorimetric glass transition temperature Tg): the bimodal behavior of the overlap
distribution, if present in small systems, disappears for a large enough size, which is sufficient
to rule out the presence of a transition at these temperatures.

5 Characterization of the critical point in 3d

In order to locate and characterize the critical point in the 3d constrained liquid, we focus
on the analysis of the finite-size behavior of the connected and disconnected susceptibilities.
(As discussed in Ref. [57] the conventional way of detecting a critical point through ratios of
cumulants of the order parameter is not practical in the present case of a random-field-like
system without Z2 inversion symmetry.) When approaching close enough to a critical point in
a finite-size system, the correlation length saturates around the linear size L of the system. As
a result, when considered at ε= ε∗(T, T0) (above the critical point this is the Widom line), the
susceptibilities should follow finite-size scaling relations [74],

χ
(con)
ε∗ (T, T0) = L2−η

eχcon(t L1/ν) ,

χ
(dis)
ε∗ (T, T0) = L4−η

eχdis(t L1/ν) ,
(16)

where eχcon and eχdis are (non-singular) scaling functions, η, η and ν are critical exponents,
and t = T/Tc − 1 is the reduced temperature. We expect the critical point to belong to the
universality class of the random-field Ising model (RFIM) and we therefore take the values that
have been accurately measured in the RFIM at zero temperature [93–95]: η≈ 0.52, η≈ 1.04,
and ν ≈ 1.37 (limiting ourselves here to two significant figures). One may note that η ≈ 2η.
Although the relation is only approximate [94, 96], the deviations are very small in 3d and
beyond the precision needed here. Then, combining Eqs. (12), (16), and the approximate
relation between η and η, one obtains that the disconnected susceptibility scales as the square
of the connected one both for the first-order transition region and near the critical point. More
precisely,

χ
(dis)
ε∗ (T, T0)≈

∆

Tc
χ
(con)
ε∗ (T, T0)

2 , (17)

where ∆ represents the variance of the effective random field that emerges in the mapping
from the constrained supercooled liquid to the RFIM while Tc is the critical temperature.
The dominance of the sample-to-sample fluctuations characterized by the disconnected sus-
ceptibility stems from the property that the critical behavior of the RFIM is controlled in a
renormalization-group sense by a zero-temperature fixed point [97]. In Fig. 10(a), we show
the scatter plot of the maximum of the disconnected susceptibility versus that of the connected
susceptibility for a fixed temperature T0 = 0.06 of the reference configurations. The above re-
lation is well satisfied by our data. The disconnected susceptibility is larger than the connected
one at low-enough temperatures or large-enough system sizes, which means that quenched

20

https://scipost.org
https://scipost.org/SciPostPhys.12.3.091


SciPost Phys. 12, 091 (2022)

disorder is relevant for the system. This is a first evidence of random-field-like physics in the
transition from the delocalized state to the localized state.

We now turn to the direct finite-size scaling analysis of the two susceptibilities by means
of Eq. (16). In Fig. 10(b)-(c), we show the collapse of the properly rescaled connected and
disconnected susceptibilities as a function of the reduced temperature. The critical tempera-
ture Tc entering in the reduced temperature is the unique adjustable parameter to ensure the
best data collapse on a master curve. (As mentioned above, the critical exponents are fixed
to their known values: we did not try to fit the critical exponents from our data to reduce the
number of free parameters.) Even though mixing-field effects may be present [98, 99], we

100

101

102

103

101 102

(a)

χ
(d

is
)

ε
∗

(T
,T

0
)

χ
(con)
ε∗ (T, T0)

N= 300
600

1200
2400

χ
(dis)
ε∗ (T, T0) ∝ χ

(con)
ε∗ (T, T0)

2

0

2

4

6

0 2 4 6 8

(b)

χ
(c

o
n
)

ε
∗

(T
,T

0
)L

η
−
2

tL1/ν

N= 300
600

1200
2400

0

0.2

0.4

0.6

0 2 4 6 8

(c)

χ
(d

is
)

ε
∗

(T
,T

0
)L

η
−
4

tL1/ν

N= 300
600

1200
2400

Figure 10: Finite-size scaling analysis of the connected and disconnected suscepti-
bilities in the 3d liquid close to the critical point for a fixed temperature T0 = 0.06
of the reference configurations. (a) Scatter plot of the maximum value of the dis-
connected susceptibility χ(dis)

ε∗ (T, T0) versus the maximum value of the connected

susceptibility χ(con)
ε∗ (T, T0). The full line represents the quadratic relation character-

istic of the 3d random-field Ising model (RFIM). (b) Rescaled connected susceptibil-
ity and (c) rescaled disconnected susceptibility versus rescaled reduced temperature
t = T/Tc − 1. L∝ N1/3 is the linear system size. With the critical exponents taken
as those of the 3d RFIM, a good data collapse is obtained for Tc ≈ 0.17. The dashed
lines are a guide for the eye. All error bars are obtained from the jackknife method
when performing the disorder average.
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find that a good collapse is obtained for Tc ≈ 0.17. This estimate of the critical temperature
is found by minimizing the average quadratic difference between the rescaled data and an a
priori unknown master curve3 by using the algorithm given in Refs. [100], [101].

All of the above confirms the existence in the 3d constrained liquid of a critical point in the
universality class of the RFIM at a finite temperature Tc and a finite applied source εc [with
εc = ε∗(Tc , T0)≈ 0.20], in agreement with field-theoretical treatments [21,22]. The fact that
no such critical point was detected in d = 2 is also fully in line with the mapping to the RFIM.
The lower critical dimension of the latter is indeed d = 2 [49,50,52], so that Tc should go to
0 for two-dimensional glasses.

From the prefactor obtained by fitting Eq. (17) and by using our estimate of the critical
temperature Tc , we obtain an estimate of the strength of the effective disorder in the 3d liq-
uid,

p
∆ ≈ 0.097. In the 3d RFIM one knows from numerical simulations [93, 94] that the

disorder destroys the transition whenever
p
∆/J ¦ 2.3, where J is the magnitude of the (fer-

romagnetic) coupling between the Ising spins. Accessing the value of this ratio in the 3d liquid
would therefore provide an interesting consistency check for the existence of the transition.
Unfortunately, although the effective coupling constant J may in principle be estimated from
the surface tension Υ (T, T0), the latter must be computed at temperatures significantly below
Tc , because the surface tension vanishes at the critical point [68]. More specifically at the
RFIM critical point, the free-energy barrier ∆F crosses over from a dependence in Ld−1 ∼ L2

to one in Lθ with θ = 2+η−η≈ 1.49 the temperature exponent: see the inset in Fig. 2(a) in
our previous paper [57]. Such an investigation at low temperatures is presently out of reach
to computer simulations of constrained glass-forming liquids.

Finally, for completeness, we recall the results already given in our previous paper con-
cerning the critical slowing down of the 3d constrained liquid near the critical point [57]. In
the case of the RFIM, the time τ for relaxation to equilibrium diverges at the critical point but
it does so in an anomalous manner. Instead of the conventional power-law behavior between
the time and the correlation length, τ ∼ ξz [102], one finds a much stronger divergence,
lnτ∼ ξψ with ψ> 0 a new exponent which in 3d is predicted to be equal to the temperature
exponent θ ≈ 1.49 [103]. Furthermore, the time-dependent correlation function of the order
parameter at long times is not as usual a function of t/τ but rather of ln t/ lnτ. These features,
which are referred to as activated dynamic scaling, stem from the fact that the critical point
is controlled by a zero-temperature fixed point [67, 68]. We have computed the equilibrium
time-dependent correlation function of the fluctuations of the overlap in the 3d constrained
liquid in the vicinity of the previously located critical point at (εc , Tc) and we have found that
both predictions of activated dynamic scaling are obeyed by our data: see Ref. [57] for more
details. This provides additional evidence that criticality in constrained glass-forming liquids
is in the same universality class as the one of the RFIM.

6 Summary and discussion

Focusing on the insight that can be obtained about 3d and 2d glass-forming liquids from study-
ing the statistical mechanics of the overlap between equilibrium and reference configurations,
we have found two sets of results. First, we have confirmed that the mean-field scenario of
glass formation which is based on the emergence of a complex free-energy landscape com-
prising a multitude of metastable states is relevant to describe systems of relatively small sizes
in which the spatial extent of the fluctuations (here, of the overlap order parameter) are by
construction limited. Second, we have been able to simulate much larger system sizes than

3An uncertainty (although somehow arbitrary) on Tc could be defined by imposing a criterion on the average
quadratic difference between the two curves.
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Figure 11: Phase diagram of the glass-forming liquid in the (ε, T ) plane in d = 3 (left)
and d = 2 (right) for a fixed temperature of the reference configurations (T0 = 0.06
in 3d and T0 = 0.03 in 2d). We show the loci of the maxima of total susceptibility,
i.e., ε∗(T, T0). In 3d, a critical point (full yellow square) at Tc ≈ 0.17 and εc ≈ 0.20
terminates the line of first-order transition (full line) and above it a Widom line is
displayed as a dashed line. In 2d, there is no critical point nor first-order transition
line and only remains a Widom line (dashed line). In both panels, we give several
characteristic temperatures: the onset temperature of glassy behavior (green disk),
the mode-coupling crossover temperature (pink up triangle), the extrapolated calori-
metric glass transition temperature Tg (orange down triangle and horizontal dotted
line), and the temperature T0 of the reference configurations (blue diamond).

previously done on model supercooled liquids and thereby to carry out finite-size analyses in
d = 3 and d = 2.

Our findings from extensive investigations of the phase diagrams of 3d and 2d liquids in
the presence of an additional control parameter ε that introduces a bias toward high overlap
with the reference configurations are summarized in Fig. 11. The results are displayed for
low values of the temperature T0 of the reference configurations, which are about (in 3d)
or much below (in 2d) the extrapolated calorimetric glass transition temperature Tg . We
give evidence that the mean-field prediction of a line of first-order transition between a low-
overlap (delocalized) phase and a high-overlap (localized) phase terminating at a critical point
persists in the thermodynamic limit in the 3d liquid but is absent in the 2d one at least down
to temperatures that go below the calorimetric glass transition temperature Tg . In the 2d
case, one still observes the analog of a Widom line with a growing correlation length as the
temperature decreases but no sign of a critical point, and hence of a transition, in the accessible
region of temperature. Although we have not carried out a similarly extensive investigation
for the case where the constrained liquid and the reference configurations are at the same
temperature, i.e., T = T0, because it is computationally much more demanding, our results
show the same pattern concerning both 3d and 2d liquids. These observations, together with
the results of a finite-size scaling analysis and a study of the relaxation dynamics near the
critical point for the 3d liquid, are consistent with the prediction that the critical behavior
terminating the transition between low- and high-overlap phases is in the universality class of
the random-field Ising model.

Our conclusions are compatible with previous studies on the same model glass-forming
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liquids in which measurements of the configurational entropy were performed [38,39,63]. The
outcome of these studies is that whereas the 3d curve showing the temperature dependence
of the configurational entropy seems to extrapolate to a vanishing value at a nonzero TK , the
extrapolation of the 2d curve instead points to TK = 0. The entropy crisis at TK being the
endpoint at ε = 0 of the first-order transition line in the (ε, T ) diagram when T0 = T and the
critical point at (εc , Tc) being the upper limit of the line, TK 6= 0 requires Tc 6= 0 and, on the
other hand, Tc = 0 implies TK = 0 (or no TK at all). With the additional property that T (T=T0)

c
is less than Tc for a low T0, this is precisely what we found here.

The detour via the statistical properties of the overlap between pairs of configurations in
supercooled liquids has allowed us to track what remains of the mean-field scenario of glass
formation in 2 and 3 dimensions. It would be worth going one step beyond in the direction
of building an effective theory for the overlap fluctuations in finite dimensions by defining a
local Franz-Parisi potential over a small region of the sample as the free-energy cost to keep
the liquid close a reference configuration in a specific region of space and investigating its
fluctuations from one region to another. This would for instance provide access to the local
fluctuations of the configurational entropy [104, 105]. This could also help overcoming a
limitation of the kind of study presented in this work on the thermodynamics of constrained
liquids, which is the lack of a direct connection with the slowdown of relaxation associated
with glass formation.
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A Analytical results on the p-spin model

The fully connected p-spin model (with p ≥ 3) is a paradigmatic example of a mean-field struc-
tural glass which has been extensively studied. Our aim is to investigate the influence of the
temperature T0 of the reference configurations on the Franz-Parisi potential and on the phase
diagram of the constrained system in the (ε, T ) plane. For a self-contained presentation we
will reproduce derivations and results that are already well-known but which help providing
a useful background [60]. The Hamiltonian of the fully connected p-spin model is given by

ÒHJ

�

σ
�

= −
∑

1≤i1<···<ip≤N

Ji1...ipσi1 . . .σip , (18)

where J = {Ji1...ip}1≤i1<···<ip≤N are Gaussian random variables of zero mean and variance

E{J2
i1...ip
} = J2p!/(2N p−1), with J > 0 a constant that is used as unit energy. In the spherical

version which we consider the spin variables are real numbers on the unit sphere, so that spin
configurations σ = {σi}i=1...N satisfy

1
N

N
∑

i=1

σ2
i = 1 . (19)

The overlap between a spin configuration σ and a reference one σ(0) is

bQ[σ;σ(0)] =
1
N

N
∑

i=1

σiσ
(0)
i , (20)
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with, unlike glass-forming liquids, no need to introduce a tolerance lengthscale a. The spher-
ical constraint is then merely written as bQ[σ;σ] = 1.

A.1 Cumulants of the (random) Franz-Parisi potential

The Franz-Parisi (FP) potential V (Q), which quantifies the free-energy cost of constraining the
overlap bQ[σ;σ(0)] between two copies σ and σ(0) of the same system to a given value Q can
be computed exactly, starting from its definition [15],

V (Q) = E

¨

∫ ′

dσ(0)
e−β0ÒHJ[σ(0)]

Z0(J)
V (Q;σ(0), J)

«

= E
¦

V (Q;σ(0), J)
©

,

(21)

where Z0(J) is the partition function at temperature T0 = 1/β0 (the Boltzmann constant is
set to unity) for a given realization of the random couplings, the prime symbol on the integral
stands for an integration over all the spin configurations which fulfill the spherical constraint,
and two distinct averages are introduced: the overline denotes an average over the reference
configuration σ(0) while E denotes a disorder average over the random couplings J . In spite
of the additional source of disorder due to the random couplings, the model displays the very
same phenomenology for glass formation as mean-field glass-forming liquids [61, 62]. [We
will restrict ourselves to reference configurations above the static (Kauzmann) glass transition
so that we can assume that the partition function Z0(J) is self-averaging, hence dropping the
dependence on J of the partition function.]

The quantity V (Q;σ(0), J) is a random function corresponding to the FP potential for a
given reference configuration σ(0) and a given realization J of the random couplings, namely,

V (Q;σ(0), J) = −
T
N

ln

∫ ′

dσe−βÒHJ[σ]δ(Q− bQ[σ;σ(0)]) . (22)

Its statistical properties can be analyzed through its cumulants. The first cumulant is given
by Eq. (21) and corresponds to the average FP potential. The second one quantifies the total
variance of the fluctuations of the FP potential among the realizations of the disorder and is
defined as [25,106,107]

V (2)(Q1,Q2) = Nβ
�

E
¦

V (Q1;σ(0), J)V (Q2;σ(0), J)
©

−E
¦

V (Q1;σ(0), J)
©

E
¦

V (Q2;σ(0), J)
©
�

, (23)

where the factor of N comes from the fact that the FP potential is an intensive quantity and
that its typical fluctuations are expected to scale as N−1/2, while the factor β ensures that
V (2)(Q1,Q2) has the dimension of an energy. Higher order cumulants V (l)(Q1, . . . ,Q l) (l ≥ 3)
can be similarly defined.

In disordered systems, the cumulants can be generated by introducing an arbitrary number
n of replicas with the same realization of the disorder and constrained to have an overlap
{Qa}a=1...n with the reference replica 0 and by then considering the replicated FP potential
Vrep({Qa}) defined through

e−NβVrep({Qa}) = E
n

e−Nβ
∑n

a=1 V (Qa;σ(0),J)
o

∝ E

¨

∫ ′ n
∏

α=0

dσ(α)e−
∑n
α=0 βα

ÒHJ [σ(α)]
n
∏

a=1

δ(Qa − bQ[σ(a);σ(0)])

«

,
(24)

with βa = β for 1≤ a ≤ n. After averaging over the random couplings, this becomes

e−NβVrep({Qa})∝
∫ ′ n

∏

α=0

dσ(α)e
N
4

∑n
α,γ=0 βαβγ

bQ[σ(α);σ(γ)]p
n
∏

a=1

δ(Qa − bQ[σ(a);σ(0)]) . (25)
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The cumulants can be generated through an expansion in increasing number of sums over
replicas [22,106]:

Vrep({Qa}) =
n
∑

a=1

V (Qa)−
1
2

n
∑

a,b=1

V (2)(Qa,Qb) +
1
6

n
∑

a,b,d=1

V (3)(Qa,Qb,Qd)

−
1
24

n
∑

a,b,d,e=1

V (4)(Qa,Qb,Qd ,Qe) + · · · .
(26)

The expression in Eq. (25) can be recast in an integral over all n× n overlap matrices with
diagonal elements equal to 1 (to fulfill the spherical constraint on spin configurations):

e−NβVrep({Qa})∝
∫ n

∏

a,b=1
a 6=b

deQabe−NβV({eQαγ}) , (27)

where we denote Qa = eQa0 = eQ0a and where the potential V({eQαγ}) is given by

e−NβV({eQαγ}) = e
N
4

∑n
α,γ=0 βαβγ

eQp
αγ

∫ n
∏

α=0

dσ(α)
n
∏

α,γ=0

δ(eQαγ − bQ[σ(α);σ(γ)]) . (28)

After introducing an exponential representation of the δ-functions and using a saddle-point
approximation in the limit of large N [60], one obtains, up to an irrelevant additive constant,

V({eQαγ}) = −
1
4

n
∑

α,γ=0
α6=γ

βαeQ
p
αγ −

1
2β

ln det eQ , (29)

with eQ the (n+ 1)× (n+ 1) overlap matrix of elements eQαγ. By using another saddle-point
approximation for the integration over all overlap matrices, one finds that the replicated FP
potential Vrep({Qa}) is finally given by an expression of the form of the right-hand side of
Eq. (29) in which the coefficients eQab are solution of

pβ2

4
eQp−1

ab + (eQ
−1)ab = 0 , (30)

for 1 ≤ a, b ≤ n (a 6= b). Note that the eQ0a ’s are fixed (with eQ0a = eQa0 = Qa) and that the
solutions of the above equation depend on the Qa ’s through the inverse of the matrix eQ.

The first cumulant (the average FP potential) can be derived by choosing Qa = Q for
1 ≤ a ≤ n. By using Eq. (26) and by only keeping the leading term in the limit n → 0, one
finds that V = limn→0 ∂nVrep, where ∂n denotes the derivative with respect to the number of
replicas. To solve Eq. (30), we insert the 1-step replica symmetry breaking (1-RSB) ansatz
with parameters (eQ,Q0, x) for the overlap matrix eQab, i.e. [60,108–111],

eQab =Q0 + (eQ−Q0)ζab + (1− eQ)δab , (31)

with δab the identity matrix and ζab the block diagonal matrix with blocks of size x filled
with 1. This ansatz is exact at any temperature for p-spin models with p ≥ 3 [58, 112]. The
parameters Q0, eQ and x that are involved in the definition of the overlap matrix are solutions
of the following saddle-point equations:

pβ2

2
Q0

p−1 =
Q0 −Q2

�

1− (1− x)eQ− xQ0

�2 , (32)
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pβ2

2
[eQp−1 −Q0

p−1](1− x) =
(eQ−Q0)(1− x)

(1− eQ)
�

1− (1− x)eQ− xQ0

� , (33)

and
β2

2
[eQp −Q0

p] +
pβ2

eQp−1

2x
(1− eQ)−

pβ2Q0
p−1

2x

�

1− (1− x)eQ− xQ0

�

+
1
x2

ln

�

1− eQ
1− (1− x)eQ− xQ0

�

= 0 .
(34)

Furthermore, within the 1-RSB ansatz, the FP potential reads

VRSB(Q) = −
β0

2
Qp +

β

4

�

(1− x)eQp + xQ0
p
�

+
1

2β
1− x

x
ln(1− eQ)

−
1

2β x
ln
�

1− (1− x)eQ− xQ0

�

−
Q0 −Q2

2β
�

1− (1− x)eQ− xQ0

� .
(35)

The simpler replica-symmetric (RS) case, which gives the correct solution of Eq. (30) at
high-enough temperatures [15,58,113] is easily obtained from the 1-RSB expression by setting
eQ =Q0, leading to

VRS(Q) = −
β0

2
Qp +

β

4
eQp −

1
2β

ln(1− eQ)−
eQ−Q2

2β(1− eQ)
, (36)

where eQ ≡ eQ(Q) satisfies
pβ2

2
eQp−1 =

eQ−Q2

(1− eQ)2
. (37)

At this point, we note that the saddle-point equations [Eqs. (32)-(34) or Eq. (37)] do not
depend on T0, and their solution can thus be computed at once for the case T = T0. The FP
potential itself nonetheless depends on T0 through the first term in the right-hand side, and

V (Q) = V (T=T0)(Q) +
β − β0

2
Qp , (38)

so that the FP potential for any temperature of the reference configurations can be straight-
forwardly obtained from its value when T = T0.

The second cumulant can be computed by introducing two groups of replicas: n1
replicas having an overlap Q1 with the reference configuration and n2 having an overlap
Q2 with the reference configuration (with n1 + n2 = n). Using Eq. (26), one has that
V (2) = − limn1,n2→0 ∂n1

∂n2
Vrep. In the following, we only consider the vicinity of the critical

point in the (ε, T ) plane and we will verify that it is always in the replica-symmetric region.
This leads to

V (2)RS (Q1,Q2) =
β

2
Q12

p −
(Q12 −Q1Q2)

2

2β(1− eQ1)(1− eQ2)
, (39)

where eQa (a = 1,2) are solutions of Eq. (37) with Q replaced by Qa and Q12 ≡Q12(Q1,Q2) is
an extremum of Eq. (39), i.e.,

pβ2

2
Q12

p−1 =
Q12 −Q1Q2

(1− eQ1)(1− eQ2)
. (40)

We note that neither the solution of Eq. (40) nor the expression in Eq. (39) depend on the
temperature T0 of the reference configurations. In addition, one finds that if Q1 = Q2 (in
particular at the critical point), then Q12 = eQ1 = eQ2.
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Figure 12: Franz-Parisi (FP) construction for the fully connected spherical p-spin
model with p = 3. (a) One-step replica symmetry breaking (RSB) and replica-
symmetric (RS) regions obtained by solving the saddle-point equations [Eqs. (32)-
(34)] for each pair (Q, T ). The full black line delimiting the two regions represents
the discontinuous and continuous RSB transitions. We have also reported the values
of Q in the low-overlap (up triangles) and high-overlap (down triangles) phases at
coexistence in the first-order transition region, corresponding to the two minima of
equal height of the tilted FP potential Vε(Q) = V (Q)− εQ when T0 = T and for sev-
eral values of T0 fixed. The square marks the location of the critical point (Qc , Tc),
where Qc stands for the critical overlap. The dotted line represents the loci of Qc as
a function of T0: see the calculations of Sec. A.4. (b) FP potential for T = T0 and
p = 3. The FP potential is strictly convex at high temperatures and loses convexity at
Tcvx = 0.772 (βcvx = 1.295). A metastable minimum appears at the dynamical tran-
sition temperature Td = 0.613 (βd = 1.632) and the two minima become equally
stable at the static (Kauzmann) transition temperature TK = 0.586 (βK = 1.707).

A.2 Evolution with temperature of the Franz-Parisi potential

The Franz-Parisi (FP) potential can be numerically computed for any temperature by solv-
ing Eqs. (32)-(34) for increasing values of Q ∈ [0, 1] and by finally using Eq. (35). When
T ≤ TRSB (= 0.666 for p = 3), the replica symmetry is broken for intermediate values of the
overlap Q ∈ [Qmin,RBS(T ),Qmax,RSB(T )] whose range increases as the temperature decreases:
see Fig. 12(a). For T ≤ TK , the replica symmetry becomes broken even in the minimum at
Q = 0. A discontinuous replica symmetry breaking occurs at Q = Qmin,RBS(T ) (with a jump in
eQ as a function of Q) and a continuous one at Q =Qmax,RSB(T ).
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The evolution with the temperature of the FP potential for the case T = T0 is illustrated
in Fig. 12(b). This result is already well known [17]. At high-enough temperatures, the FP
potential is convex with a single minimum for Q = 0 down to the temperature Tcvx at which
it first loses its convexity. A second minimum appears at a lower temperature Td , which also
corresponds to the dynamical glass transition in which the system gets trapped in a metastable
glassy state. Below Td the difference in height between the secondary minimum and the stable
one is the free-energy cost to maintain the replicas in the same metastable state and therefore
provides the configurational entropy per spin sc(T ) related to the logarithm of the number of
metastable states (which are well-defined in this mean-field limit). At a still lower temperature
TK , the configurational entropy vanishes and a random first-order phase transition takes place
between the liquid at Q = 0 and the ideal glass at Q =Qg > 0.

A.3 Phase diagrams in the (ε, T ) plane

Whenever the Franz-Parisi (FP) potential is not convex, a well-chosen nonzero source ε linearly
coupled to the overlap Q can tilt the FP potential so that Vε(Q) = V (Q)−εQ has a double-well
structure with two minima of equal depth, inducing a first-order phase transition between a
low-overlap phase at high temperature and small ε (delocalized phase) and a high-overlap
phase at low temperature and large ε (localized phase) [16,17,114–116]. The phase diagram
for the case T = T0 obtained from the double tangent construction is shown in Fig. 2(a) of
the main text and is also reproduced in Fig. 13(a). A line of first-order transition emerges
from the random first-order transition (RFOT) point at (0, TK) and ends in a critical point
(ε(T=T0)

c , T (T=T0)
c ) at the temperature T (T=T0)

c = Tcvx at which the FP potential first loses con-
vexity [16]. We also report in Fig. 12(a) the values of the overlap in the low- and high-overlap
phases obtained from the double tangent construction for T ≤ T (T=T0)

c , and we note that both
always lie in the replica-symmetric region, except at TK .

We study the influence of the temperature T0 of the reference configurations (with T0 ≥ TK).
It is known that the FP potential has a secondary minimum in the temperature range
0 < T < T f (T0) as long as T0 < Td [25, 113]. When this minimum exists, its height has two
contributions, one coming from the entropic cost for selecting a particular metastable state at
the temperature T0, the other from the difference between the free energy of the metastable
states that dominate at T0 and are followed to the temperature T and the equilibrium free
energy at the temperature T [15, 113]. It has also been found that when T0 > Td , the FP
potential no longer displays a secondary minimum, whatever the temperature T .

We display in Fig. 2(a) of the main text the phase diagram for a fixed T0 between Td and
TK (T0 = 0.599 or β0 = 1.67). It is reproduced in Fig. 13(b), where we additionally show the
replica symmetry breaking (RSB) transitions. The phase diagram shows some differences with
the case T = T0. The main one is that the first-order transition line does not converge to the
RFOT point at TK but instead strongly bends and goes to zero temperature for a finite value of
ε. The first-order transition line still ends in a critical point which appears to be shifted up in
temperature and in applied source (see below). We note that the continuous RSB transition is
absent, as the high-overlap phase is always replica-symmetric, as seen in Fig. 12(a). There is
however a discontinuous RSB transition close to TK . We recall that the overlap is continuous
at this transition while the saddle-point solution eQ is not.

For the sake of completeness, we have also studied the intermediate case where
Td < T0 < Tcvx. This is illustrated in Fig. 13(c). The critical point still seems to be shifted
upward in T and ε. If T0 < Tz (≈ 0.749 for p = 3), the line of first-order transition still ends
at zero temperature and finite source. However, if T0 > Tz , the line ends in another critical
point at a low temperature in the 1-RSB region. We find four different phases in the diagram,
as illustrated for T0 > Tz in Fig. 13(c). We have finally investigated the case where T0 > Tcvx.
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It also leads to a complex pattern of RSB transitions but this it is not directly relevant to the
physical situation that we are interested in and we do not show the results. [This is indirectly
displayed in Fig. 12(a): see the curve for T0 = 0.833.] In particular, we found that the critical
point at high temperature disappears when it enters the 1-RSB region.
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Figure 13: Phase diagram of the fully connected spherical p-spin model with p = 3
in the (ε, T ) plane for different cases concerning the temperature T0 of the refer-
ence configurations: (a) T = T0, (b) T0 < Td (T0 = 0.599 or β0 = 1.67) and (c)
Td < T0 < Tcvx (T0 = 0.752 or β0 = 1.33). We have displayed the line of first-order
transition ε∗(T, T0) from the delocalized phase to the localized phase, along with
the lines of continous, εcon(T, T0), and discontinuous, εdis(T, T0), replica symmetry
breaking (RSB) transitions. The phase diagrams display at most four different phases:
a low-overlap replica-symmetric (RS) phase (RSl), a low-overlap one-step RSB (1-
RSB) phase (RSBl), a high-overlap RS phase (RSh), and a high-overlap 1-RSB phase
(RSBh). In all panels, the full square marks the position of the high-temperature
critical point, the empty disk the end of the first-order transition line at a low tem-
perature, the full disk the static glass transition at (ε = 0, TK), and the full diamond
the temperature at which RSB effects appear (TRSB = 0.666 or βRSB = 1.502). The
overlap is discontinuous on the line ε∗(T ) or ε∗(T, T0) but is continuous otherwise.
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Figure 14: Evolution of the location of the critical point as a function of the tempera-
ture T0 of the reference configurations for the fully connected spherical p-spin model
with p = 3: (a) critical temperature Tc and (b) critical source εc . The critical point
only exists when it is in the replica-symmetric phase. The square marks the location
of the critical point when T = T0. The Kauzmann temperature is at TK = 0.586.

A.4 Variation of the location of the critical point with the temperature T0 of the
reference configurations

To systematically study the location of the critical point (εc , Tc) when varying T0, we use the
replica-symmetric (RS) expression of the Franz-Parisi (FP) potential given by Eq. (36). Indeed,
we have already mentioned that the critical point disappears when it enters the region of
replica symmetry breaking. To simplify notations, we now drop the subscript RS. To find the
critical point, we need to solve the set of equations

V ′(Qc) = εc ,

V ′′(Qc) = 0 ,

V ′′′(Qc) = 0 ,

(41)

for the triplet (Qc ,εc , Tc), with Qc the value of the overlap at the critical point. Physically, the
last two equations are equivalent to requiring that the isotherm (ε as a function of the average
overlap) has an inflexion point with a horizontal tangent line.

The derivatives in Eq. (41) can be computed from Eq. (36) and Eq. (37), the latter being
used to obtain the derivatives of the saddle-point solution eQ(Q) with respect to Q. The first
derivative of the FP potential reads

V ′(Q) = −
pβ0

2
Qp−1 +

Q

β[1− eQ(Q)]
, (42)

where we have used that the derivative of Eq. (36) with respect to eQ is zero due to the saddle-
point condition. The second derivative can be found in the same way:

V ′′(Q) = −
p(p− 1)β0

2
Qp−2 +

1

β[1− eQ(Q)]
+

Q

β[1− eQ(Q)]2
eQ′(Q) , (43)

where the first derivative eQ′(Q) of the saddle-point solution with respect to Q can be obtained
by differentiating the saddle-point equation (36) with respect to Q:

eQ′(Q) =
−2Q

(pβ2/2)[eQ(Q)]p−2[1− eQ(Q)][p− 1− (p+ 1)eQ(Q)]− 1
. (44)
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The third derivative is obtained by using the same procedure. It involves the second deriva-
tive of the saddle-point equation with respect to Q, which can be expressed by differentiating
Eq. (44) with respect to Q. The resulting expressions are not reproduced here.

We display in Fig. 14 the evolution of Tc and εc with the temperature T0 of the refer-
ence configurations. When T0 is fixed, the critical temperature Tc is a monotonically decreas-
ing function of T0. The figure clearly shows that when T0 is fixed to a temperature below
T (T=T0)

c = Tcvx, the critical point is shifted upward in temperature and in ε in the phase di-
agram. By contrast, when T0 is fixed above Tcvx, the critical temperature and critical source
are shifted downward (until replica symmetry becomes broken). This feature can be easily
understood from Eq. (38). We note that the second term in the right-hand side is positive if
T < T0 and negative otherwise. As Tcvx is the highest temperature at which V (T=T0)(Q) devel-
ops an inflexion point, taking T0 smaller (respectively, larger) than Tcvx makes the FP potential
at T = Tcvx even more nonconvex (respectively, convex), pushing the critical critical point up
(respectively, down) in temperature. The same observations hold for εc(T0), suggesting that
when T0 decreases the critical source has to overcome larger thermal fluctuations in order
for the system to fall in the localized phase, as Tc also increases. Note that the case where
T0 > Tcvx is not relevant to our study and is not easily interpretable in terms of the physics of
glass-forming liquids.

The variation of the critical temperature is quite large, of about 25 % between the case
T = T0 and the case of fixed T0 = TK . As a result, by considering the overlap with an equilib-
rium reference configuration sampled at a very low temperature (but still above the Kauzmann
transition), it is possible to move the critical point high up in the liquid region. We expect this
feature to persist in finite dimensions, thus motivating our choice of very stable reference con-
figurations prepared with the help of the swap Monte Carlo algorithm for the numerical study
described in the main text.

A.5 Beyond mean-field: effective Landau-Ginzburg action in the vicinity of the
critical point

Following the analysis of Ref. [22], we introduce finite-dimensional fluctuations of the overlap
in the spherical p-spin model by building an effective Landau-Ginzburg action in the vicinity of
the (mean-field) critical point, but contrary to Ref. [22] that was focused on the case T = T0,
we consider the generic situation of a fixed temperature T0 of the reference configurations.

The local part of the action is obtained by performing a Taylor expansion of the replicated
Franz-Parisi (FP) potential βVrep({Qa};β ,β0), where we have explicitly displayed the depen-
dence on β = 1/T and β0 = 1/T0, for Qa = Qc +φa. Up to an irrelevant additive constant,
this gives in the vicinity of the mean-field critical point (βc ,εc)

βVrep({Qa};β ,β0)− βε
n
∑

a=1

Qa =
n
∑

a=1

� g2

2
φa

2 +
g3

6
φa

3 +
g4

24
φa

4
�

−
1
2

n
∑

a,b=1

φaφb

�

τ20 +
τ21

2
(φa +φb) +

τ22

4
φaφb +

τ23

6

�

φa
2 +φb

2
� �

+
1
6

n
∑

a,b,d=1

φaφbφd

�

τ30 +
τ31

2

�

φa +φb +φd

��

−
τ40

24

n
∑

a,b,d,e=1

φaφbφdφe + . . . ,

(45)

where the coefficients involved in the expansion can be expressed in terms of derivatives of
the cumulants of the FP potential [22]; for instance,

g2 = βcV
′′(Qc;βc ,β0), g3 = βcV

′′′(Qc;β ,β0) , (46)

32

https://scipost.org
https://scipost.org/SciPostPhys.12.3.091


SciPost Phys. 12, 091 (2022)

which both vanish at the (mean-field) critical point, and, from higher cumulants,

τ20 = βc∂Q1
∂Q2

V (2)(Q1,Q2;βc ,β0)|Qc
,

τ21 = βc∂
2

Q1
∂Q2

V (2)(Q1,Q2;βc ,β0)|Qc
,

τ22 = βc∂
2

Q1
∂ 2

Q2
V (2)(Q1,Q2;βc ,β0)|Qc

,

τ23 = βc∂
3

Q1
∂Q2

V (2)(Q1,Q2;βc ,β0)|Qc
,

τ30 = βc∂Q1
∂Q2
∂Q3

V (3)(Q1,Q2,Q3;βc ,β0)|Qc
,

(47)

etc.
The effective Landau-Ginzburg action should allow for nonuniform overlap profiles and

include a penalty for too strong fluctuations between low- and high-overlap regions. This can
be done by considering a Kac version of the spherical p-spin model [117,118], as in Ref. [47],
but a short-cut is to envisage an expansion in spatial gradients of the overlap field and to keep
only the lowest-order term. The resulting effective action reads

Srep,eff({φa};β ,β0) =
n
∑

a=1

∫

dd x
�

K (∂xφa(x ))
2 +

g2

2
φa(x )

2 +
g3

6
φa(x )

3 +
g4

24
φa(x )

4
�

−
1
2

n
∑

a,b=1

∫

dd xφa(x )φb(x )
�

τ20 +
τ21

2
(φa(x ) +φb(x ))

+
τ22

4
φa(x )φb(x ) +

τ23

6

�

φa(x )
2 +φb(x )

2
� �

(48)

+
1
6

n
∑

a,b,d=1

∫

dd xφa(x )φb(x )φd(x )
�

τ30 +
τ31

2
(φa(x ) +φb(x ) +φd(x ))

�

−
τ40

24

n
∑

a,b,d,e=1

∫

dd xφa(x )φb(x )φd(x )φe(x ) + · · · ,

where K > 0 is a phenomenological parameter, ∂x denotes a spatial gradient, and the ellipses
denote higher-order terms in the number of replicas, fields and/or gradients.

It is then possible to show that the above effective Landau-Ginzburg functional can be
mapped onto the replicated Hamiltonian of a system in the presence of a random field h(x ),
a random mass m(x ) and a random cubic coupling λ(x ) [22], whose disordered Hamiltonian
is

βH[φ(x )] =
∫

dd x
�

K (∂xφ(x ))
2 +

g2

2
φ(x )2 +

g3

6
φ(x )3 +

g4

24
φ(x )4

+
m(x )

2
φ(x )2 +

λ(x )
6
φ(x )3 − h(x )φ(x )

�

,

(49)

where the random field, random mass, and random coupling have zero mean and higher
cumulants given by

h(x )h(y) = τ20δ
(d)(x − y) ,

h(x )m(y) = −τ21δ
(d)(x − y) ,

m(x )m(y) = τ22δ
(d)(x − y) ,

h(x )λ(y) = −τ23δ(x − y) ,

h(x )h(y)h(t ) = −τ30δ
(d)(x − y)δ(d)(x − t ) ,

(50)

etc., where an overline denotes the disorder average while δ(d) stands for the Dirac distribution
in d dimensions. Consistency of the mapping requires that τ20 > 0, τ22 > 0, etc.
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In the absence of spin-glass-like frustrating interactions, provided τ20 > 0, the above dis-
ordered system is known to be in the universality class of the RFIM. A short-range correlated
random field h(x) that breaks the Z2 inversion symmetry in any given sample (the symmetry
is only statistically recovered after disorder-averaging) and the 1-replica φ4-theory are the
necessary ingredients for this universality class: the other disorder terms as well as additional
gradient terms describing nonlocal but short-ranged behavior or terms associated with higher-
order cumulants of the disorder are indeed generated along the renormalization-group flow,
even in the standard RFIM [106]. This for the exact same reason that the whole Ising critical
universality class can be described by starting from the Wilson-Ginzburg-Landau φ4-theory.

The above derivation therefore shows that, if the critical point survives in finite dimensions,
it is in the universality class of the RFIM. Its lower critical dimension is then dl = 2 and in 3d
it may survive if the strength of the disorder is not too strong [46]. These considerations are
expected to apply even when considering finite-dimensional realistic supercooled liquids.

For the spherical p-spin, the parameters of the effective random system can be explicitly
obtained for any temperature T0 of the reference configurations. We focus on τ20, which
represents the effective strength of the random field and can be computed from the second
cumulant of the FP potential given in Eq. (39). This yields

τ20(T0) =
−Qc

2

[1− eQ(Qc)]2
+

pβc
2

2
eQ(Qc)

p−1
+

Qc eQ
′(Qc)

2[1− eQ(Qc)]2

¦

1+ pβc
2
eQ(Qc)

p−1
[1− eQ(Qc)]

©

−
pβc

2
eQ(Qc)

p−1
eQ′(Qc)

2

4[1− eQ(Qc)]

�

1+
pβc

2

2
eQ(Qc)

p−1
[1− eQ(Qc)]

�

,

(51)
where the dependence on T0 comes from that of Qc and Tc . Besides the derivatives of
Q12(Q1,Q2) with respect to Q1 or Q2 at the critical point have been expressed as a function of
Q̃′(Qc).

The evolution of the random-field variance ∆ ≡ τ20 with the temperature T0 of the refer-
ence configurations is shown in Fig. 2(b) of the main text: ∆ decreases at both large and small
values of T0 while it is maximum for intermediate values with T0 ≈ Tcvx. This in particular
implies that the case T0 = T corresponds to a relatively high random-field disorder strength.

B Models and methods

B.1 Models

We study a system of N spherical particles of equal mass m in spatial dimensions d = 2
and d = 3 with radial pairwise interactions, as first introduced in Ref. [55]. The diameters
{σi}i=1···N of the particles are drawn from the distribution p(σi)∝ σi

−3 for σi ∈ [σmin,σmax]
with σmax/σmin ≈ 2.217. Two particles i and j interact with the repulsive potential

v(ri j) = v0

�

σi j

ri j

�12

+ c0 + c2

�

ri j

σi j

�2

+ c4

�

ri j

σi j

�4

, (52)

if their relative distance ri j = |ri−r j| satisfies ri j/σi j < xc = 1.25; v0 is the interaction strength
and the interaction cross-diameter σi j is given by the nonadditive rule (µ > 0)

σi j =
σi +σ j

2
(1−µ|σi −σ j|) . (53)

The constants c0, c2 and c4 are set in order to make the potential and its two first derivatives
continuous at the cut-off distance xc: c0 = −28v0/x12

c , c2 = 48v0/x14
c , c4 = −21v0/x16

c . The
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Table 1: Parameters used to run the simulations: time step dt for the integration of
the equations of motion, damping time of the thermostat τth, number of molecular
dynamics steps nMD between sequences of swap moves, number of swap moves per
particle nswap, tolerance length a in the definition of the overlap, curvature κ of the
umbrella potential, fixed temperature T0 of the reference configurations. We also re-
port the mode-coupling crossover temperature Tmct and the extrapolated calorimetric
glass transition temperature Tg for comparison [63,65].

dt τth nMD nswap a κ T0 Tmct Tg

2d 0.005 0.5 50 10 0.22 0.3 0.03 0.115 0.068
3d 0.01 0.5 25 1 0.22 20 0.06 0.095 0.056

distribution of diameters along with the nonadditive rule for cross-diameters reduce the ten-
dency of the system for crystallization or demixing. The average diameter σ of the particles
is used as unit length (µ = 0.2 in this unit), the interaction strength v0 is used as unit tem-
perature (the Boltzmann constant kB is set to unity), and

p

mσ2/v0 is used as unit time. The
system is simulated in a cubic box of linear size L with periodic boundary conditions [119].
The number density ρ = N/Ld is chosen equal to 1.

The unconstrained liquid is simulated by using a hybrid scheme combining molecular dy-
namics in the canonical ensemble (NVT-MD) and the recently developed swap Monte Carlo
algorithm in order to speed up equilibration and exploration of the phase space [56]. The
scheme consists in the succession of blocks of MD steps separated by blocks during which
swap moves are performed. The MD is run by implementing the Hoover equations [120] of
the Nosé thermostat [121–123] with a time step dt and a thermostat damping time τth (see
Table 1). The equations of motion are integrated by means of a reversible integrator based
on a Liouville formulation of the equations [124, 125]. The MD is run for nMD steps (see
Table 1). Then, the positions and velocities of the particles are frozen and Nswap = nswapN
swap moves are attempted (see Table 1). For an elementary swap move, two particles i and
j are randomly selected and their diameters are exchanged. The change in the total poten-
tial energy ∆ÒHswap = ÒHswap − ÒH is then computed with ÒH given by Eq. (2) (as the kinetic
energy remains constant) and ÒHswap the total potential energy when particle diameters are
swapped. The move is eventually accepted following the Metropolis rule, i.e., with probability
min(1, e−β∆ÒHswap) (with β = 1/T), in order to guarantee detailed balance [73,119]. This com-
bination of NVT-MD and swap moves ensures a proper sampling in the canonical ensemble.
The parameters nMD and nswap have been chosen to maximize the algorithm efficiency.

To compute the overlap between two configurations [see Eq. (1)], we use the window
function w(x) = e−x4 ln2 with a tolerance length a reported in Table 1. The influence of
the tolerance length on the results presented in the main text was extensively studied in
Ref. [33] where we focused on a mean-field-like model, the hypernetted chain approxima-
tion of liquid-state theory (see Refs. [126–128] and Refs. [18,19,30–32] for its application in
the Franz-Parisi setting). It was found that the qualitative features of the phase diagram in the
(ε, T ) plane are insensitive to the choice of a, even though the precise location of the critical
point is quantitatively changed when varying a. Here we have chosen a relatively small value
of a, i.e., a = 0.22.

B.2 Umbrella sampling

From Eq. (3), it is obvious that when a source ε is applied, the probability distribution of the
overlap for a fixed reference configuration r N

0 is simply given by Pε(Q; r N
0 )∝ P(Q; r N

0 )e
NβεQ

where P(Q; r N
0 ) = Pε=0(Q; r N

0 ) is the probability distribution of the overlap in the uncon-
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Figure 15: Overlap time series for several biases Qref for the 3d liquid with N = 1200,
T = 0.22, and the other parameters given in Table 1.

strained liquid at a temperature T . As a result, to accurately compute thermodynamic quan-
tities for any ε, overlap fluctuations in the unconstrained liquid with an exponentially small
weight in N must be measured. In a conventional simulation, the system typically explores
a narrow range of overlap values around the random value Qrand, which corresponds to the
overlap for two uncorrelated configurations and which is the absolute minimum of the Franz-
Parisi potential. Consequently, a good measure of P(Q; r N

0 ) on the entire range of overlap
requires a sophisticated algorithm to sample rare events.

We use umbrella sampling [69–71] to force the unconstrained liquid toward large and
untypical values of the overlap and we sample the phase space with the biased Hamiltonian

ÒHb[r
N ; r N

0 ] = ÒH[r
N ] +W (bQ[r N ; r N

0 ])

= ÒH[r N ] +
1
2

Nκ(bQ[r N ; r N
0 ]−Qref)2 ,

(54)

which is obtained by adding a harmonic bias W (Q) of center Qref and curvature κ to the
Hamiltonian of the unconstrained liquid. The factor N ensures that the Hamiltonian remains
an extensive quantity. By increasing Qref, one can explore different regions of the phase space
that are characterized by larger overlap values, while the strength of the bias κmostly controls
the amplitude of the fluctuations of bQ.

In principle, a source ε could be directly applied to force the system toward large values of
the overlap. However, the system is expected to slow down close to the putative critical point
or near phase coexistence because of an increase in the extent of the overlap fluctuations. As
discussed in Sec. 5 and in Ref. [57], the dynamics close to the random-field-like critical point
is known to be activated with the relaxation time scaling exponentially (and not algebraically)
with the variance of the order parameter. In addition, near the first-order transition line, the
dynamics is dominated by rare nucleation events from the low-overlap phase to the high-
overlap one. Overall, the direct study of the constrained liquid with a nonzero εmay thus give
rise to severe sampling issues [17–19], even with the hybrid MD/swap scheme. By contrast,
umbrella sampling enables one to control the amplitude of the overlap fluctuations and to
make them small-enough to be accurately sampled.

For a given reference configuration r N
0 and a temperature T , we thus run ns ∈ [23,35]

simulations in parallel with umbrella potentials {Wk}k=1...ns
of identical curvature κ and in-
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creasing centers {Qref
k }k=1...ns

in order to sample the entire range of overlap values between
0 and 1: see Fig. 15. In the 2d system, we use systems of moderate size (typically, up to
N = 250) and simulations are very slow when a large bias strength κ is imposed, as found in
past work [129]. Consequently, we choose a smaller value of the bias strength κ (see Table 1)
which results in a significant overlap between adjacent biased distributions of the overlap
(see Sec. B.3). In 3d instead, we consider unprecedently large system sizes (typically, up to
N = 2400) for such a type of simulation to perform a finite-size scaling analysis. In order for
our reweighting scheme to adequately scale with N , we then use a large bias strength κ (see
Table 1) to reduce the fluctuations (see Sec. B.4).

For each biased simulation, the system is first equilibrated for−trelax < t < 0. Equilibration
is ensured by checking that simulations started from two distinct initial conditions converge
toward the same stationary state [36,130]. Then, the statistical properties of the overlap are
measured for 0< t < teq. In 3d, we monitor the mean-squared displacement,

∆(t) =
1
N

N
∑

i=1

|ri(t)− ri(0)|2 , (55)

and we check that at the end of sampling, it exceeds a target value of 10. In 2d, due to
the so-called Mermin-Wagner fluctuations that induce large, and somehow spurious, transla-
tional displacements [76, 77], we instead follow the time evolution of the bond-orientational
correlation function and require that it has decreased to 0 at the end of the sampling. The
bond-orientational correlation function is defined as

Cψ6
(t) =

1
N

N
∑

j=1

ψ
( j)
6 (t)

�

ψ
( j)
6 (0)

�∗
, (56)

where the star denotes the complex conjugate and

ψ
( j)
6 (t) =

1
n j(t)

n j(t)
∑

l=1

ei6θ jl (t) . (57)

In the above equation, n j(t) is the number of neighbors of particle j at time t, which are
particles l fulfilling the condition |r j(t) − rl(t)|/σ jl < 1.33, and θ jl(t) is the angle between
the x-axis and the line joining the centers of the two neighbors [63]. As this correlation is
rotationally invariant, the choice of the x-axis is made without any loss of generality. These
criteria ensure that particles in both 2d and 3d have moved sufficiently and that the system
explores the phase space ergodically.

B.3 Multi-histogram reweighting

In 2d, we use a method already used in Refs. [24,26,40,41] to compute P(Q; r N
0 ) from the dif-

ferent biased simulations. It relies on the Weighted Histogram Analysis Method (WHAM) [131,
132] which is an extension to arbitrary collective variables (such as the overlap) and potential
biases of the multiple histogram method [73,133,134] first developed with the aim of extrap-
olating the thermodynamic properties of the Ising model at temperatures at which the system
was not directly simulated.

We give a derivation of the formula that allows us to reconstruct P(Q; r N
0 ) from the ns

simulations run with the different biases. For the kth simulation run at a temperature T with
a reference configuration r N

0 , the empirical histogram of the overlap is

Nk(Q)
nk

=
1
Zk

P(Q; r N
0 )e

−βWk(Q) , (58)
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where nk is the total number of times the overlap was stored during the kth simulation and
Zk is a normalization constant. In consequence, from one biased histogram, it is in principle
possible to determine the unconstrained probability distribution of the overlap by inverting the
above equation. However, during a simulation of finite duration teq, only a restricted range of
overlap values is sampled and, in practice, we can only use the above equation to determine
P(Q; r N

0 ) in the range in which the histogram has nonzero values. However, as is clearly visible
from Fig. 15, this range changes from one simulation to the other, and we thus seek P(Q; r N

0 )
for the entire range [0, 1] as a linear combination of its estimate from each separate biased
histogram, i.e.,

P(Q; r N
0 ) =

ns
∑

k=1

yknk
−1ZkNk(Q)e

βWk(Q) , (59)

where {yk}k=1...ns
are unknown coefficients that verify the condition

ns
∑

k=1

yk = 1 . (60)

To determine the coefficients yk, we require that the statistical error on the above estimate is
minimum. The histograms for the different biased simulations are independently measured,
and the squared statistical error on P(Q; r N

0 ) reads:

[δP(Q; r N
0 )]

2 =
ns
∑

k=1

yk
2nk

−2Zk
2[δNk(Q)]

2e2βWk(Q) . (61)

To estimate the statistical error on the biased histogram Nk(Q), we make a thought exper-
iment. We assume that we have performed nh times the same simulation with the same bin
center Qref

k during which we have measured nk times the value of the overlap. For instance,
this would correspond to simulations with different initial conditions or different sequences
of random numbers for swap moves. Then, for each bin, the statistical error is given by the
variance computed over the nh histograms. If we let brackets 〈〈·〉〉 denote the average over the
nh simulations, the statistical error on the biased histogram is given by [135]

[δNk(Q)]
2 = gk〈〈Nk(Q)〉〉

§

1−
〈〈Nk(Q)〉〉

nk

ª

, (62)

where gk is the statistical inefficiency, which is given by gk = 1 + 2τk/∆tk with τk the
(auto)correlation time of the overlap for the kth simulation and ∆tk(= dt) the time inter-
val between two measures of the overlap. If the bin width is small-enough, or if the overlap
range that is covered during the kth simulation is sufficiently large, then 〈〈Nk(Q)〉〉 � nk
and [73,135]:

[δNk(Q)]
2 ≈ gk〈〈Nk(Q)〉〉

= nk gkZk
−1P(Q; r N

0 )e
−βWk(Q) .

(63)

Eventually, one obtains for the statistical error on the unconstrained probability distribution
of the overlap

�

δP(Q; r N
0 )
�2
= P(Q; r N

0 )
ns
∑

k=1

yk
2nk

−1 gkZkeNβWk(Q) . (64)

To minimize the previous expression with respect to the yk ’s with the constraint given by
Eq. (60), we introduce the Lagrangian

L= [δP(Q; r N
0 )]

2 − ς
ns
∑

k=1

yk, (65)
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with ς a Lagrange multiplier. The coefficients yk are thus given by ∂L/∂ yk = 0, which yield

yk =
ς

2P(Q; r N
0 )

nk gk
−1Zk

−1e−βWk(Q), (66)

and using again Eq. (60) to determine the Lagrange multiplier, we finally obtain

P(Q; r N
0 ) =

ns
∑

k=1

gk
−1Nk(Q)

ns
∑

k=1

nk gk
−1Zk

−1e−βWk(Q)

. (67)

Once the partition functions are known, the unconstrained probability distribution of the
overlap can then be determined. The partition functions can be expressed by using Eq. (58),
summing over all bins and inserting the previous equation:

Zk =

∫ 1

0

dQ

ns
∑

k′=1

gk′
−1Nk′(Q)

ns
∑

k′=1

nk′ gk′
−1Zk′

−1e−Nβ[Wk′ (Q)−Wk(Q)]
. (68)

We have checked that the statistical inefficiencies are not varying much from one biased sim-
ulation to another, and we can simplify the previous equations by setting gk = 1 for all k.

The set of equations (68) is solved self-consistently starting from Zk = 1 for all k. The
iteration is stopped when the relative change in the partition function between two iterations
is less than 10−10. To avoid overflows or underflows, the partition functions are rescaled at
each iteration by the geometric average of the minimum and the maximum partition functions
over all the simulations. In practice, the convergence of the partition functions is fast and the
result of the reweighting procedure only weakly depends on the cut-off criterion to stop the
iteration [73]. Once the partition functions are converged, the probability distribution can
be readily obtained from Eq. (67). We emphasize that, with this procedure, we are able to
determine P(Q; r N

0 ) on the full range [0, 1], hence to measure exponentially small values in
N of the overlap probability distribution.

The accuracy of the reweighting procedure using WHAM requires a significant overlap
between adjacent histograms. As the width of the histograms is expected to shrink with N
as 1/

p
N , increasing the system size requires a larger number of simulations. We could also

decrease the bias curvature κ but this would be problematic as this also decreases the driving
force toward configurations with untypically large overlap values. In 2d, with the moderate
sizes that we consider, the multi-histogram method is suitable. In 3d, we consider larger
system sizes up to N = 2400. We thus turn to another reweighting procedure. It is similar
to the umbrella integration [136] or the Gaussian ensemble [72,137], and does not require a
significant overlap between adjacent distributions.

B.4 Gaussian ensemble reweighting

In 3d, instead of setting κ to a small value to have adjacent overlapping biased histograms, we
apply a bias with a large curvature κ in order for the biased histograms to display a sharp peak
at their most probable value which we denote by Q∗k for k = 1 . . . ns. Taking the logarithm of
Eq. (58), differentiating with respect to Q, and evaluating at the most probable value yield:

V ′(Q∗k; r N
0 ) = −

W ′
k(Q

∗
k)

N
= κ

�

Qref
k −Q∗k

�

, (69)
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where the prime denotes a derivative with respect to Q and V (Q; r N
0 ) is the large deviation

rate function of P(Q; r N
0 ), namely, the random Franz-Parisi potential,

P(Q; r N
0 )∝ e−NβV (Q;r N

0 ) . (70)

We note at this point that the normalization constants Zk have disappeared from the ex-
pression of the bulk probability distribution (or equivalently its large deviation rate function).
Consequently, for each simulation, we just need to measure the most probable value of the
overlap. We end up with ns values of the derivative of V (Q; r N

0 ) estimated at ns different
points. As Qref(Q∗) is a smooth function, we interpolate it by means of a cubic spline [138].
Finally, the cubic spline can be analytically integrated to obtain V (Q; r N

0 ) up to an additive
constant which we choose so that V (Q; r N

0 ) is zero at its global minimum:

V (Q; r N
0 ) = κ

∫ Q

Qrand

Qref(Q∗)dQ∗ −
1
2
κ
�

Q2 −Qrand
2
�

, (71)

with Qref(Q∗) locally approximated by a third-degree polynomial function4. The full procedure
is represented in Fig. 16(a). The probability distribution is eventually obtained from Eq. (70):
see Fig. 16(b). Once again, we stress that, with this procedure, we are able to sample the large
deviation rate function associated with P(Q; r N

0 ) on the full range of overlap values and, as a
result, to measure arbitrary small probabilities in N (less than 10−300).

We now explain how to determine the most probable value of the overlap for a given biased
simulation during the course of the simulation, without actually measuring the histogram
Nk(Q), to avoid systematic errors related to the bin width. Our goal is to derive an expression
for the most probable value from quantities directly accessible during a simulation, such as
the cumulants of the overlap. To obtain more insight about this relation we show in Fig. 16(c)
the skewness

γ
(1)
k =

〈(bQ− 〈bQ〉k)3〉k
〈(bQ− 〈bQ〉k)2〉

3/2
k

, (72)

and the kurtosis

γ
(2)
k =

〈(bQ− 〈bQ〉k)4〉k
〈(bQ− 〈bQ〉k)2〉2k

− 3 , (73)

where 〈·〉k denotes the thermal average in the kth simulation. They are both close to 0, which
is their expected value if the overlap is normally distributed. Besides, the kurtosis remains
small for all biases while the skewness is larger for extreme values of Qref. Therefore, it is
reasonable to assume that the biased histograms Nk(Q) are well approximated by [72]

Nk(Q)∝ e−αk(Q−Q∗k)
2+ξk(Q−Q∗k)

3
∝
�

1+ ξk(Q−Q∗k)
3
�

e−αk(Q−Q∗k)
2
, (74)

where the third-order term is considered as a perturbation of the Gaussian limit (ξk = 0) and is
nonzero for extreme values of Qref only. We restrict ourselves to expansions at the first order in
ξk, which are correct if ξkαk

−3/2� 1. Expansions at any order could be done but this requires
measuring an increasing number of cumulants of the overlap in each biased simulation, which
may give rise to larger statistical errors if teq is not large-enough.

4The reweighting formula for the random Franz-Parisi potential is obtained when all the umbrella potentials
have the same curvature κ, but the relation can be straightforwardly generalized when they are not.
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Figure 16: Gaussian ensemble reweighting for the 3d liquid with N = 1200,
T = 0.22, and the other parameters given in Table 1. (a) Derivative of the large de-
viation rate function V (Q; r N

0 ) at the discrete most probable values {Q∗k}k=1...ns
and

its cubic spline interpolation. (b) Unconstrained probability distribution P(Q; r N
0 )

(ε = 0) obtained by integration of the cubic spline and by using Eq. (70), along
with distributions Pε(Q; r N

0 ) ∝ P(Q; r N
0 )e

NβεQ of the overlap for finite values of

ε= 0.2, 0.3,0.4, 0.5. (c) Skewness γ(1)k [see Eq. (72)] and kurtosis γ(2)k [see Eq. (73)]
of the biased histograms Nk(Q) as a function of the bias center Qref.
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We use Eq. (74) to compute the three first cumulants of the overlap, which then read at
the leading order in ξk

〈bQ〉k =Q∗k +
3ξk

4αk
2

,

〈(bQ− 〈bQ〉k)2〉k =
1

2αk
,

〈(bQ− 〈bQ〉k)3〉k =
3ξk

4αk
3

.

(75)

Inserting the second and third lines of Eq. (75) in the first one leads to

Q∗k = 〈bQ〉k −
〈(bQ− 〈bQ〉k)3〉k

2〈(bQ− 〈bQ〉k)2〉k
. (76)

The right-hand side can be measured on the fly in simulations and the most probable value of
the overlap can be obtained from the measured moments of the overlap. The small parameter
involved in the previous expansions, ξkαk

−3/2 =
p

2γ(1)k , is directly related to the skewness
of the biased histogram. Fig. 16(c) shows that this parameter is indeed much smaller than
1, making our approach fully self-consistent. We also note that if the biased histogram is
symmetric and almost Gaussian the above expression reduces to Q∗k = 〈bQ〉k. Inserting this
into Eq. (69) yields the reweighting formula for a related interpolation scheme known as the
tethered Monte Carlo method [139] which has already been implemented in the context of
supercooled liquids and glasses [27, 86]. However, the method used in the present study
has the merit of being able to cure the zeroth-order Gaussian approximation of the tethered
method by storing an increasing number of cumulants of the overlap order parameter during
umbrella simulations. (Of course the measurement of higher-order cumulants of the overlap
would require longer simulations.)

The Gaussian approximation is even more accurate when κ is large. However, if κ becomes
too large, the amplitude of the bias force applied on each particle grows and the time step for
integrating the equations of motion must be decreased to keep the same numerical accuracy
and continue to sample the phase space correctly. A trade off is thus necessary.
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