# Chemistry-A European Journal 

Supporting Information

## Rhodium-Catalyzed Enantioselective Synthesis of Highly Fluorescent and CPL-Active Dispiroindeno[2,1-c]fluorenes

Timothée Cadart, David Nečas,* Reinhard P. Kaiser, Ludovic Favereau, Ivana Císařová, Róbert Gyepes, Jana Hodačová, Květa Kalíková, Lucie Bednárová, Jeanne Crassous, and Martin Kotora*
I. General Information ..... 2
II. Synthesis of Starting Material ..... 3
III. Optimization of Cyclotrimerization reaction ..... 12
IV. Enantioselective [2+2+2] Cyclotrimerization and Oxidation Reactions ..... 18
V. Synthesis of Dispiro-9,5'-indeno[2,1-c]fluorene-8',9'-fluorenes ..... 29
VI. Determination of the Racemization Barrier of 2a and 3a ..... 45
VII. X-Ray Diffraction Analysis ..... 48
VIII. Photophysical Properties ..... 52
IX. Circular Dichroism Measurement of ( $P$ )- and ( $M$ )-2a ..... 54
X. Circularly Polarized Luminescence (CPL) measurements ..... 55
XI. Calculations ..... 56
XII. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ..... 62

## I General Information

All reagents were commercially available and purchased from Sigma-Aldrich, Acros Organics, Fluorochem, Alfa Aesar, and Strem Chemicals companies formed. Solvents were purified and dried by distillation: tetrahydrofuran (THF) and toluene from sodium/benzophenone, dichloromethane and 1,2-dichloroethane from calcium hydride. Other solvents and all reagents were used without further purification. All reactions were per under argon atmosphere unless otherwise noted. Chromatography was performed on Silica gel 60A $(40-60 \mu \mathrm{~m})$ from Acros Organics. Thin layer chromatography was performed on Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated aluminum sheets. NMR spectra were recorded on Bruker AVANCE III Spectrometer ( ${ }^{1} \mathrm{H}$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 101 MHz , and ${ }^{19} \mathrm{~F}$ at 376 MHz ). All NMR spectra were measured in $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$ or $d_{6}$-DMSO solutions and referenced to residual solvent signal: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta_{\mathrm{H}}=7.26 ;{ }^{13} \mathrm{C}, \delta_{\mathrm{C}}=77.16\right), \mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{1} \mathrm{H}, \delta_{\mathrm{H}}=7.16 ;{ }^{13} \mathrm{C}, \delta_{\mathrm{C}}=128.06\right), d_{6}{ }^{-}$ DMSO ( ${ }^{1} \mathrm{H}, \delta_{\mathrm{H}}=2.50 ;{ }^{13} \mathrm{C}, \delta_{\mathrm{C}}=39.52$ ). Coupling constants $J$ are given in Hz. The IR samples were recorded in KBr powder and measured on spectrometer Thermo Nicolet AVATAR 370 FT-IR and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. The MS spectra were recorded on an Agilent 5975 Inert MSD or GC $\times$ GC-TOFMS LECO Pegasus IVD device. All melting points are uncorrected and were determined on a Kofler apparatus KB T300. Optical rotations were measured on automatic polarimeter Autopol III and are given in deg.mL.g ${ }^{-1} \cdot \mathrm{dm}^{-1}$ with accuracy $\pm 2$ and the mass concentrations in $\mathrm{g} / 100 \mathrm{~mL}$. HPLC analyses were performed with YMC Chiral ART Cellulose-SB ( $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ ) or Daicel Chiralpak® ( $4.6 \mathrm{~mm} \times 250$ $\mathrm{mm})$ columns and carried out on an Ecom instrument using LCP4100 pump and LCD2083 UV detector. SFC conditions: Waters Acquity Ultra Performance Convergence Chromatography system, column YMC CHIRAL ART Cellulose-SB ( $150 \times 3 \mathrm{~mm}$ I.D., particle size $3 \mu \mathrm{~m}$ ). The values obtained from the enantiomeric ratio were rounded to the whole numbers.

## II Synthesis of Starting Material

1,1'-(Ethyne-1,2-diyl)bis(2-naphthaldehyde) (S) was synthesized by using the previously reported procedures. ${ }^{1}$

1-Ethynyl-2-naphthaldehyde (S2a). In a Schlenk flask were dissolved $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.5$
 mmol, 351 mg ), CuI ( $1.0 \mathrm{mmol}, 190 \mathrm{mg}$ ) and 1-bromo-2-naphthaldehyde S1a $(10.0 \mathrm{mmol}, 2.35 \mathrm{~g})$ in THF $(40 \mathrm{~mL})$ followed by addition of trimethylsilylethyne ( $15.0 \mathrm{mmol}, 2.1 \mathrm{~mL}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(40 \mathrm{~mL})$. The reaction mixture was stirred at reflux for 3 hours and then it was cooled down to $25^{\circ} \mathrm{C}$, filtered through a pad of Celite ${ }^{\circledR} /$ silica, which was washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure. The residue was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ pellets in a mixture of MeOH /water at $0^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was quenched with 1 M HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue on silica gel ( $19 / 1$ hexanes/EtOAc) furnished $1.75 \mathrm{~g}(97 \%)$ of the title compound as a yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 10.79(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.56-8.52(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz; $\mathrm{CDCl}_{3}$ ) $\delta 192.1,135.8,135.4,133.5,129.62,129.57,128.6,128.0$, 127.2, 126.2, 122.0, 90.3, 77.3.

The recorded spectral data were in accordance with the previously published values. ${ }^{2}$

1,1'-(Ethyne-1,2-diyl)bis(2-naphthaldehyde) (S3a). In a flask was dissolved $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$
 (0.46 mmol, 323 mg ), CuI ( $0.74 \mathrm{mmol}, 141 \mathrm{mg}$ ), 1-bromo-2naphthaldehyde S1a ( $9.3 \mathrm{mmol}, 2.18 \mathrm{~g}$ ) and 1-ethynyl-2-naphthaldehyde S2a (9.3 mmol, 1.68 g$)$ in THF $(37 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(37 \mathrm{~mL})$ was added. The reaction mixture was stirred at reflux for 3 hours. Then the reaction mixture was cooled down to $25^{\circ} \mathrm{C}$ and filtered. The precipicate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250$ mL ), washed with $\mathrm{H}_{2} \mathrm{O}$ ( 3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to provide $2.3 \mathrm{~g}(74 \%)$ of the title compound as a yellow solid.
$\mathrm{Mp}=129-131{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.00(\mathrm{~s}, 1 \mathrm{H}), 10.99(\mathrm{~s}, 1 \mathrm{H}), 8.69-8.64(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.4$ (2C), 136.0 (2C), 135.1 (2C), 133.4 (2C), 130.2 (2C), 129.8 (2C), 128.9 (2C), 128.5 (2C), 127.2 (2C), 126.0 (2C), 122.6 (2C), 95.5 (2C).

IR (KBr) v 3342, 3074, 2838, 2238, 1693, 1617, 1589, 1461, 1434, 1397, 1371, 1336, 1248, $1231,867,822,780,745 \mathrm{~cm}^{-1}$.
HRMS (EI): $m / z$ calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{2}\left[(\mathrm{M})^{+}\right]: 334.0994$, found: 334.0995 .

[^0]1-Bromo-7-methoxy-2-naphthaldehyde (S1b). To a solution of dry DMF ( $85 \mathrm{mmol}, 6.6$ $\mathrm{mL})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was dropwise added $\mathrm{PBr}_{3}(71 \mathrm{mmol}, 6.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 1 hour of stirring, 7-methoxy-1-tetralone ( $14.2 \mathrm{mmol}, 2.5 \mathrm{~g}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the rection mixture was stirred under reflux for 4 h . Then the reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$ and quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$. After the end of the
 gas generation, the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. A solution of the crude product in dry toluene ( 50 mL ) was heated with DDQ (31.2 $\mathrm{mmol}, 7.1 \mathrm{~g}$ ) at $120^{\circ} \mathrm{C}$ and stirred for 16 h . The mixture was diluted with hexanes ( 50 mL ), filtered, and concentrated under reduced pressure.
Column chromatography of the residue on silica gel (20/1 hexanes/EtOAc) furnished 2.8 g ( $74 \%$ ) of the title compound as a yellow solid.
$R_{f}(20 / 1$ hexanes $/ \mathrm{EtOAc})=0.23$.
$\mathrm{Mp}=89.6^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{H} 10.65(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.9,2.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta_{C} 193.2,159.6,133.7,132.8,131.8,130.2,129.5,128.0,122.6$, 122.2, 106.3, 55.7.

IR (KBr) v 3336, 3007, 2965, 2935, 2905, 2869, 2857, 2830, 1673, 1595, 1455, 1308, 1269, 1237, 1216, 1201, 1186, 1135, 1045, 1033, 975, 848, $842 \mathrm{~cm}^{-1}$.
HRMS (EI): $m / z$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrO}_{2}\left[(\mathrm{M})^{+}\right]: 263.9786$, found: 263.9788 .

1-Ethynyl-7-methoxy-2-naphthaldehyde (S2b). In a Schlenk flask was dissolved
 $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.2 \mathrm{mmol}, 134 \mathrm{mg}), \mathrm{CuI}(0.38 \mathrm{mmol}, 72 \mathrm{mg})$ and 1-bromo-7-methoxy-2-naphthaldehyde S1b ( $3.8 \mathrm{mmol}, 1 \mathrm{~g}$ ) in THF ( 15 mL ). To the solution was added trimethylsilylethyne ( $5.7 \mathrm{mmol}, 790 \mu \mathrm{~L}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(15$ mL ). The reaction mixture was stirred at reflux for 3 h . Then the mixture was cooled down to $25^{\circ} \mathrm{C}$, filtered through a pad of Celite ${ }^{\circledR} /$ silica gel, and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure. The residue was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ pellets in a mixture of $\mathrm{MeOH} /$ water at $0^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was quenched with 1 M HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue on silica gel (19/1 hexanes/EtOAc) furnished 574 mg ( $72 \%$ ) of the title compound as a yellow solid.
$R_{f}(19 / 1$ hexanes/EtOAc $)=0.28$.
$\mathrm{Mp}=114.4^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}$, 1 H ), 4.00 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.93 ( $\mathrm{s}, 1 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 192.3,159.5,135.8,135.2,131.3,130.1,129.3,124.4,122.3$, 120.0, 105.2, 90.0, 55.6.

IR (KBr) v 3279, 3261, 3240, 3064, 3010, 2962, 2941, 2863, 2830, 1739, 1685, 1625, 1595, 1509, 1461, 1320, 1216, 1051, 1027, 842 $\mathrm{cm}^{-1}$.
HRMS (EI): $m / z$ calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}\left[(\mathrm{M})^{+}\right]: 210.0681$, found: 210.0680 .

1-((2-Formylnaphthalen-1-yl)ethynyl)-7-methoxy-2-naphthaldehyde (S3b). In a flask
 were dissolved $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.25 \mathrm{mmol}, 175 \mathrm{mg})$, $\mathrm{CuI}(0.3 \mathrm{mmol}, 57$ mg ), 1-bromo-7-methoxy-2-naphthaldehyde S2b ( $5 \mathrm{mmol}, 1.32 \mathrm{~g}$ ) and 1-ethynyl-2-naphthaldehyde S1a ( $5 \mathrm{mmol}, 900 \mathrm{mg}$ ) in THF ( 20 mL ) followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mL})$. The reaction mixture was stirred at reflux for 3 hours.

Then the reaction mixture was cooled down to $25^{\circ} \mathrm{C}$ and filtered. The precipicate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}$ (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to provide $1.4 \mathrm{~g}(77 \%)$ of the title compound as a yellow solid.
$\mathrm{Mp}=184.9^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 10.98(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.00-7.91 (m, 5H), 7.86 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.76-7.71 (m, 2H), 7.37 (dd, $J=8.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.6,191.4,159.8,136.0,135.4,135.3,135.0,133.5,131.5$, 130.4, 130.0, 129.9, 129.8, 129.0, 128.4, 127.2, 126.1, 124.1, 122.8, 122.7, 120.8, 105.1, 96.3, 95.5, 55.8.

IR (KBr) v 3411, 3267, 3004, 2848, 1691, 1679, 1589, 1455, 1278, 1240, 1216, 836, $824 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS (EI): $m / z$ calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{O}_{3}\left[(\mathrm{M})^{+}\right]: 364.0994$, found: 364.1101.

For synthesis of S3c, see synthesis of $\mathbf{1 i}$.

General procedure for alkynylation reaction (A). ${ }^{1} n$-BuLi $1.6 \mathrm{M}(3 \mathrm{mmol}, 2 \mathrm{~mL})$ was added dropwise to a solution of the corresponding alkyne ( 3 mmol ) in anhydrous THF ( 40 $\mathrm{mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 1 hour of stirring was added dialdehyde $\mathbf{S 3}(1.0 \mathrm{mmol})$ and the reaction mixture was stirred for 5 min at $-78{ }^{\circ} \mathrm{C}$ and then it was allowed to warm up to $25^{\circ} \mathrm{C}$ and stirred for 3 hours. It was quenched with a saturated aqueous solution $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography of the residue on silica gel (hexanes/EtOAc) provided products 1.


Note: In all cases the respective triynediols were obtained as mixtures of rac (and meso) diastereoisomers. In some cases full assignment of NMR signals was possible, but in other ones it was not feasible (the signals were often covered by each other). Therefore, in those cases the peaks are listed as observed and in the respective ${ }^{1} \mathrm{H}$ NMR spectra are listed and displayed without integration.
 phthalene-1,2-diyl))bis(3-(4-methoxyphenyl)prop-2-yn-1-ol) (1a). According to the general procedure A with $\mathbf{S 3 a}(5.7 \mathrm{mmol}$, 1.9 g ), 4-ethynylanisole ( $17.1 \mathrm{mmol}, 2.1 \mathrm{~mL}$ ), $n$ - BuLi ( 17.1 $\mathrm{mmol}, 10.7 \mathrm{~mL}$ ) in THF ( 150 mL ). Column chromatography of the residue on silica gel (2.5/1 hexanes/EtOAc) furnished 3.2 g ( $94 \%$ ) of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a light brown solid.
$R_{f}(4 / 1$ hexanes $/ E t O A c)=0.12$.
$\mathrm{Mp}=97-102{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.67$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.01$ (dd, $\left.J=8.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.92-$ $7.86(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, 2 H ), 3.75 (s, 6H), 3.62 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.44 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ).
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.82$ (2C), 141.6 (2C), 133.6 (2C), 133.5 (4C), 133.1 (2C), 129.6 (2C), 128.4 (2C), 127.6 (2C), 126.9 (2C), 126.7 (2C), 124.5 (2C), 119.01 (2C), 114.60 (2C), 113.94 (4C), 95.6 (2C), 87.40 (2C), 87.24 (2C), 64.25 (2C), 55.3 (2C).
Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.80$ (2C), 141.4 (2C), 133.51 (2C), 124.4 (2C), 118.96 (2C), 114.57 (2C), 113.92 (4C), 95.7 (2C), 87.44 (2C), 87.22 (2C), 64.21 (2C); other peaks are covered by signals of the major isomer.
IR (KBr) v 3418, 3055, 3004, 2956, 2929, 2836, 2223, 1605, 1569, 1509, 1463, 1440, 1291, 1249, 1173, 1107, 1033, 979, 829, 802, $762 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$: $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$]: 621.20363, found: 621.20367 .

The spectral data were in accordance with previously published results. ${ }^{3}$

(1b).
According to the general procedure A with S3a ( $1.5 \mathrm{mmol}, 502 \mathrm{mg}$ ), phenylacetylene ( $4.5 \mathrm{mmol}, 495 \mu \mathrm{~L}$ ) and $n-\mathrm{BuLi}(4.5 \mathrm{mmol}, 2.8 \mathrm{~mL})$ in THF ( 40 mL ). Column chromatography of the residue on silica gel ( $4 / 1$ hexanes/EtOAc) furnished $544 \mathrm{mg}(67 \%)$ of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a light brown solid. $R_{f}(4 / 1$ hexanes $/ E t O A c)=0.14$.
$\mathrm{Mp}=93-98{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.70-8.67(\mathrm{~m}, 2 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 2 \mathrm{H})$, 7.94-7.87 (m, 4H), 7.61-7.55 (m, 4H), 7.48-7.44 (m, 4H), 7.30-7.22 (m, 6H), $6.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 3.61 (br s, 1H), 3.45 (br s, 1H).

Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.28$ (2C), 133.56 (2C), 133.18 (2C), 132.0 (4C), 129.8 (2C), 128.7 (2C), 128.5 (2C) 128.36 ( 4 C ), 127.7 (2C), 126.98 (2C), 126.7 (2C), 124.4 (2C), 122.48 (2C), 119.06 (2C), 95.7 (2C), 88.71 (2C), 87.29 (2C), 64.2 (2C);

Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.34$ (2C), 133.59 (2C), 133.20 (2C), 128.38 (4C), 127.0 (2C), 124.5 (2C), 122.50 (2C), 119.14 (2C), 95.6 (2C), 88.68 (2C), 87.32 (2C), 64.3 (2C); other peaks are covered by signals of the major isomer.

IR (KBr) v 3371, 3053, 2926, 2856, 2224, 1591, 1571, 1484, 1443, 1401, 1260, 1218, 1173, 1032, 980, 918, 824, 755, $693 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$: $m / z$ calcd for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 561.18250$, found: 561.18256.

## 1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(4-(trifluoromethyl)phenyl)prop-2- <br>  $\mathbf{y n}-1$-ol) (1c). According to the general procedure A with S3a (1.5 $\mathrm{mmol}, 502 \mathrm{mg}$ ), 1-ethynyl-4-(trifluoromethyl)-benzene ( 4.5 mmol , $740 \mu \mathrm{~L}$ ) and $n-\operatorname{BuLi}(4.5 \mathrm{mmol}, 2.8 \mathrm{~mL})$ in THF ( 40 mL ). Column chromatography of the residue on silica gel ( $3 / 1$ hexanes/EtOAc) furnished 930 mg ( $92 \%$ ) of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a brownish solid.

$R_{f}(3 / 1$ hexanes $/ E t O A c)=0.28$.
$\mathrm{Mp}=98-103{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta 8.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 4 \mathrm{H})$, 7.46-7.38 (m, 2H), 7.33-7.28 (m, 2H), 7.19-7.13 (m, 5H), 7.05-6.98 (m, 4H), $6.94(\mathrm{~s}, 1 \mathrm{H})$, 5.28 (br s, 2H).

Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.8$ (2C), 133.4 (2C), 133.1 (2C), 132.0 (4C), $130.26\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=32.6 \mathrm{~Hz}\right)(2 \mathrm{C}), 129.8(2 \mathrm{C}), 128.5$ (2C), 127.7 (2C), 127.1 (2C), 126.5 (2C), $126.0(\mathrm{~m})(2 \mathrm{C}), 125.0\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)(2 \mathrm{C}), 124.4(2 \mathrm{C}), 123.7\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.3 \mathrm{~Hz}\right)(2 \mathrm{C})$, 119.0 (2C), 95.5 (2C), 91.1 (2C), 85.8 (2C), 64.1 (2C);

Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.7$ (2C), 133.3 (2C), 133.04 (2C), 130.21 (q, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right)(2 \mathrm{C}), 129.7(2 \mathrm{C}), 127.6(2 \mathrm{C}), 127.0(2 \mathrm{C}), 125.05\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)(2 \mathrm{C})$,

[^1]124.2 (2C), 118.9 (2C), 95.7 (2C), 91.2 (2C), 85.7 (2C), 64.0 (2C); other peaks are covered by signals of the major isomer.
${ }^{19}$ F NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-62.93, -62.91.
IR (KBr) v 3381, 3053, 2935, 2856, 2099, 1612, 1408, 1318, 1249, 1218, 1166, 1125, 1073, 1021, $983,835,762 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$: $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~F}_{6} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 697.15727$, found: 697.15738 .
1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(4-chlorophenyl)prop-2-yn-1-ol)

(1d). According to the general procedure $\mathbf{A}$ with $\mathbf{S 3 a}$ ( 1.5 mmol , 502 mg ), (4-chlorophenyl)acetylene ( $4.5 \mathrm{mmol}, 615 \mathrm{mg}$ ) and $n$ BuLi ( $4.5 \mathrm{mmol}, 2.8 \mathrm{~mL}$ ) in THF ( 40 mL ). Column chromatography of the residue on silica gel ( $3 / 1$ hexanes/EtOAc) furnished $806 \mathrm{mg}(88 \%)$ of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a brownish solid.
$R_{f}(3 / 1$ hexanes $/ \mathrm{EtOAc})=0.33$.
$\mathrm{Mp}=173-175{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.67-8.65(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.90(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.60-6.58(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}$ ).
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.0$ (2C), 134.7 (2C), 133.44 (2C), 133.1 (2C), 133.0 ( 4 C ), 129.7 (2C), 128.58 ( 4 C ), 128.4 (2C), 127.6 (2C), 126.97 (2C), 126.5 (2C), 124.3 (2C), 120.78 (2C), 119.0 (2C), 95.5 (2C), 89.48 (2C), 86.1 (2C), 64.11 (2C);

Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.9$ (2C), 134.6 (2C), 133.37 (2C), 133.1 (2C), 128.55 ( 4 C ), 128.4 (2C), 126.95 (2C), 124.2 (2C), 120.75 (2C), 118.9 (2C), 95.6 (2C), $89.53(2 \mathrm{C}), 86.0(2 \mathrm{C}), 64.05(2 \mathrm{C})$; other peaks are covered by signals of the major isomer.
IR (KBr) v 3369, 3061, 2226, 1703, 1592, 1568, 1488, 1401, 1263, 1222, 1093, 1012, 979, 827, $764 \mathrm{~cm}^{-1}$.
HRMS ( $\mathrm{ESI}^{+}$): $m / z$ calcd for $\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]:$629.10456, found: 629.10394.

1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(trimethylsilyl)prop-2-yn-1-ol) (1e). $T^{\text {TMS }}$ According to the general procedure A with S3a $(1.5 \mathrm{mmol}, 502 \mathrm{mg})$, trimethylsilyl acetylene ( $4.5 \mathrm{mmol}, 630 \mu \mathrm{~L}$ ) and $n-\mathrm{BuLi}(4.5 \mathrm{mmol}, 2.8$ mL ) in THF ( 40 mL ). Column chromatography of the residue on silica gel ( $5 / 1$ hexanes/EtOAc) furnished 738 mg ( $93 \%$ ) of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a light brown solid. $R_{f}(5 / 1$ hexanes $/ E t O A c)=0.29$.
$\mathrm{Mp}=79-84^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.66-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.89(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58$ (ddd, $J=8.1,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.37(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 0.198(\mathrm{~s}, 9 \mathrm{H}), 0.195(\mathrm{~s}, 9 \mathrm{H})$.
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.0$ (2C), 133.54 (2C), 133.20 (2C), 129.6 (2C), 128.5 (2C), 127.6 (2C), 127.0 (2C), 126.69 (2C), 124.6 (2C), 119.4 (2C), 104.67 (2C), 95.6 (2C), 92.5 (2C), 64.2 (2C), -0.3 (6C);

Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.9$ (2C), 133.49 (2C), 133.18 (2C), 129.7 (2C), 126.72 (2C), 124.4 (2C), 119.3 (2C), 104.74 (2C), 92.4 (2C), 64.1 (2C); other peaks are covered by signals of the major isomer.
IR (KBr) v 3515, 3461, 3336, 3061, 2956, 2932, 2896, 2170, 1649, 1509, 1401, 1329, 1251, 1148, 1030, 1000, 842, $758 \mathrm{~cm}^{-1}$.
HRMS ( $\mathrm{ESI}^{+}$): $m / z$ calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 553.19895$, found: 553.19903.

1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(prop-2-yn-1-ol) (1f). $\quad \mathrm{K}_{2} \mathrm{CO}_{3} \quad$ (4.0

$\mathrm{mmol}, 553 \mathrm{mg})$ was added to a solution of $\mathbf{1 e}(1.32 \mathrm{mmol}, 700 \mathrm{mg})$ in a mixture of $\mathrm{MeOH}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The heterogeneous mixture was stirred for 2 hours at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was quenched by HCl (1M), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Without further purification, the title compound was obtained as a mixture of diastereoisomers and as a brownish solid ( $484 \mathrm{mg}, 96 \%$ ).
$R_{f}(4 / 1$ hexanes $/ E t O A c)=0.14$.
$\mathrm{Mp}=169-171{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~s}, 4 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.69-$ $7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 6.39-6.37(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 1.57$ (br s, 1H).
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $d_{6}$ ) $\delta 143.1$ (2C), 132.81 (2C), 132.80 (2C), 130.3 (2C), 129.1 (2C), 128.4 (2C), 127.6 (2C), 126.1 (2C), 124.26 (2C), 117.0 (2C), 95.2 (2C), 85.3 (2C), 76.71 (2C), 61.8 (2C);

Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 143.0$ (2C), 132.83 (2C), 128.5 (2C), $124.33(2 \mathrm{C}), 117.1(2 \mathrm{C}), 85.2(2 \mathrm{C}), 76.73(2 \mathrm{C}), 61.9(2 \mathrm{C})$; other peaks are covered by signals of the major isomer.
IR (KBr) v 3511, 3458, 3069, 2958, 2894, 2171, 1612, 1507, 1405, 1250, 1148, 1035, 845, $759 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$: $m / z$ calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 409.11990$, found: 409.11999.
1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(hex-2-yn-1-ol) (1g). According to the
 general procedure A with S3a ( $1.5 \mathrm{mmol}, 502 \mathrm{mg}$ ), 1-pentyne ( 4.5 $\mathrm{mmol}, 450 \mu \mathrm{~L}$ ) and $n-\mathrm{BuLi}(4.5 \mathrm{mmol}, 2.8 \mathrm{~mL})$ in THF ( 40 mL ). Column chromatography of the residue on silica gel (4/1 hexanes/EtOAc) furnished 627 mg ( $89 \%$ ) of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a yellow solid. $R_{f}(4 / 1$ hexanes $/ E t O A c)=0.21$.
$\mathrm{Mp}=154-159{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67-8.64(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.67-$ $7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.43-6.41(\mathrm{~m}, 2 \mathrm{H}), 3.76$ (br s, 2H), 2.27 (td, $J=7.1,2.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.56(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 0.97(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 6 \mathrm{H})$.
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.9$ (2C), 133.4 (2C), 132.93 (2C), 129.4 (2C), 128.3 (2C), 127.3 (2C), 126.7 (2C), 126.56 (2C), 124.4 (2C), 118.8 (2C), 95.35 (2C), 88.04 (2C), 79.98 (2C), 63.7 (2C), 22.0 (2C), 20.9 (2C), 13.6 (2C);

Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 141.8$ (2C), 133.3 (2C), 132.91 (2C), 126.64 (2C), 124.2 (2C), 118.7 (2C), 95.41 (2C), 87.96 (2C), 80.04 (2C), 63.6 (2C); other peaks are covered by signals of the major isomer.
IR (KBr) v 3411, 3363, 3330, 3061, 2965, 2929, 2908, 2869, 2171, 1616, 1589, 1461, 1374, $1329,1281,1225,1135,1096,1036,994,866,830,764 \mathrm{~cm}^{-1}$.
HRMS (MALDI): $m / z$ calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 470.2245$, found: 470.2240.

## 3-(4-Chlorophenyl)-1-(1-((2-(3-(4-chlorophenyl)-1-hydroxyprop-2-yn-1-yl)-7-

 methoxynaphthalen-1-yl)ethynyl)naphthalen-2-yl)prop-2$\mathbf{y n} \mathbf{- 1 - 0 \mathbf { l }} \mathbf{( 1 h )}$. Following the general procedure $\mathbf{A}$ with $\mathbf{S 3 b}$ (1.5 mmol, 547 mg ), (4-chlorophenyl)acetylene ( $4.5 \mathrm{mmol}, 615$ mg ) and $n-\mathrm{BuLi}(4.5 \mathrm{mmol}, 2.8 \mathrm{~mL})$ in THF ( 40 mL ).
Column chromatography of the residue on silica gel ( $3 / 1$ hexanes/EtOAc) furnished $850 \mathrm{mg}(89 \%)$ of the title compound (an inseparable 2:1 mixture of diastereoisomers) as a brownish solid.
$R_{f}(3 / 1$ hexanes $/ E t O A c)=0.28$.
$\mathrm{Mp}=221.7^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 8.75-8.70 (m, 1H), 7.99-7.76 (m, 7H), 7.59-7.53 (m, 2H), 7.35-
$7.30(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.65-$ $3.57(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H})$.
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.34,141.5,141.0,135.3,134.9,134.80$, 133.6, 133.3, 133.19 (2C), 133.17 (2C), 130.1, 129.7, 129.5, 128.8 (2C), 128.73 (2C), 127.5, 127.09, 126.5, 124.7, 122.2, 120.92, 120.86, 120.1, 119.4, 117.8, 104.69, 96.2, 95.8, 89.56, $89.49,86.22,86.14,64.5,64.32,55.64$ ( 2 carbon signals are probably covered by other signals);
Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.32$, 141.4, 140.9, 135.1, 134.83, 134.78, 133.5, 133.25, 133.1, 128.70, 128.65, 127.4, 127.07, 124.5, 122.0, 119.35, 117.7, 104.71, $95.75,89.59,89.51,86.24,64.35,64.2,55.62$; other peaks are covered by signals of the major isomer.
IR (KBr) v 3315, 3055, 3004, 2941, 2911, 2830, 1706, 1619, 1491, 1269, 1225, 1180, 1096, 1036, 1018, $830,761 \mathrm{~cm}^{-1}$.
HRMS ( $\mathrm{ESI}^{+}$): $m / z$ calcd for $\mathrm{C}_{41} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Cl}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]:$659.11512, found: 659.11424.

## 1,1'-(Ethyne-1,2-diylbis(7-methoxynaphthalene-1,2-diyl))bis(3-(4-chlorophenyl)prop-2-


yn-1-ol) (1i). In a flask were dissolved $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.21$ $\mathrm{mmol}, 147 \mathrm{mg}$ ), CuI ( $0.42 \mathrm{mmol}, 80 \mathrm{mg}$ ), 1-bromo-7-methoxy-2-naphthaldehyde S1b ( $4.2 \mathrm{mmol}, 1.1 \mathrm{~g}$ ) and 1-ethynyl-7-methoxy-2-naphthaldehyde S2b ( $4.2 \mathrm{mmol}, 882 \mathrm{mg}$ ) in THF ( 17 mL ) followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(17 \mathrm{~mL})$. The reaction mixture was stirred at reflux for 3 hours. Then, the reaction mixture was cooled down to $25^{\circ} \mathrm{C}$ and filtered. The crude precipitate was, because of its low solubility, used directly in the next step. According to the general procedure $\mathbf{A}$ with the precipitate of S3c (4.2
mmol, 1.7 g ), (4-chlorophenyl)acetylene ( $12.6 \mathrm{mmol}, 1.7 \mathrm{~g}$ ) and $n-\mathrm{BuLi}(12.6 \mathrm{mmol}, 7.9 \mathrm{~mL}$ ) in THF ( 110 mL ). Column chromatography of the residue on silica gel (linear gradient: $4 / 1$ to $2 / 1$ hexanes/EtOAc) furnished $1.3 \mathrm{~g}(46 \%)$ of the title compound (an inseparable $2: 1$ mixture of diastereoisomers) as a brown solid.
$R_{f}(3 / 1$ hexanes $/ E t O A c)=0.25$.
$\mathrm{Mp}=192.8^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.00$ (br s, 2H), 7.91-7.81 (m, 6 H ), 7.37-7.33 (m, 4H), 7.29$7.21(\mathrm{~m}, 6 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 6 \mathrm{H}), 3.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.98$ (br s, 1H).
Major isomer: ${ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 160.3$ (2C), 143.78 (2C), 135.7 (2C), 134.84 (2C), 133.93 (4C), 131.01 (2C), 130.17 (2C), 129.52 (4C), 129.3 (2C), 122.79 (2C), 122.4 (2C), 120.2 (2C), 117.9 (2C), 105.8 (2C), 96.4 (2C), 92.13 (2C), 85.15 (2C), 64.10 (2C), 56.16 (2C);
Minor isomer: ${ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 143.80$ (2C), 135.6 (2C), 134.83 (2C), 133.92 (4C), 131.03 (2C), 130.18 (2C), 129.50 (4C), 122.81 (2C), 120.1 (2C), 117.8 (2C), 105.9 (2C), $92.06(2 \mathrm{C}), 85.14$ (2C), $64.07(2 \mathrm{C}), 56.14$ (2C); other peaks are covered by signals of the major isomer.
IR (KBr) v 3419, 3052, 2995, 2935, 2839, 2226, 2196, 1736, 1712, 1622, 1512, 1491, 1464, 1392, 1380, 1269, 1234, 1174, 1087, 1030, 1018, 845, 833, $719 \mathrm{~cm}^{-1}$.
HRMS ( $\mathrm{ESI}^{+}$): $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Cl}_{2} \mathrm{Na}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 689.12569$, found: 689.12601.

Note: Attempts to oxidize the prepared diol 1a to the corresponding ketone failed. Although numerous oxidation procedures were applied ( PCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{MnO}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$; IBX in THF/DMSO; $\mathrm{NaOCl}, \mathrm{Et}_{3} \mathrm{NBnCl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; Collins reagent in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ), a complex reactions mixture was obtained each time. In most of the cases, formation of a mono-oxidation reaction products and some degradation products of the starting material were observed.

## III: Optimization of Cyclotrimerization Reaction

III.1. Screening of chiral ligands in enantioselective cyclotrimerization of 1a in THF

Triynediol 1a was chosen as a representative substrate to study catalytic enantioselective cyclotrimerization under different conditions by using combinations of $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$ with various chiral ligands in THF at $80{ }^{\circ} \mathrm{C}$ for 16 h . Since upon cyclotrimerization a mixture of meso and rac diols was formed, the crude diols were directly oxidized with PCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the corresponding diketone 2a to obtain a product with element of helical chirality only. The oxidation proceeded without erosion of its ee value. Although asymmetric induction of up to $60 \%$ ee (80:20 e.r.) was observed when BINAP or (R)-DBTM-Segphos were used (SI-Table 1), the reaction proved to be rather irreproducible with no obvious reason, as far as yields and asymmetric induction were concerned.

## Representative procedure for enantioselective cyclotrimerization using rhodium catalyst and chiral ligand.

A dry microwave vial was charged with $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(2.4 \mathrm{mg}, 0.006 \mathrm{mmol})$, a chiral ligand ( 0.008 mmol ), and were dissolved under argon atmosphere in THF ( 2 mL ). Afterwards $\mathrm{H}_{2}$ gas was bubbled through the reaction to activate the catalytic system ( $3 \times 5 \mathrm{~min}$ ). Then starting material $\mathbf{1 a}$ ( $120 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) was added, the reaction vessel was sealed and heated up to $80^{\circ} \mathrm{C}$ for 16 h while stirring. The reaction mixture was cooled down to $25^{\circ} \mathrm{C}$ and the solvent was evaporated under reduced pressure. The crude diol was added to a solution of pyridinium chlorochromate ( $130 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and Celite ${ }^{\circledR}(120 \mathrm{mg})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the reaction mixture was stirred for 3 h at $25{ }^{\circ} \mathrm{C}$. Then the reaction mixture was filtered through a Celite ${ }^{\circledR} /$ silica gel plug and the filtrate was concentrated under reduced pressure. Column chromatography of the residue on silica gel yielded product 2a.

Table S1. Screening of ligand for catalytic enantioselective cyclotrimerization of 1a in THF and subsequent oxidation to $\mathbf{2 a}$.

${ }^{\text {a }}$ ees (e.r.) were determined by HPLC using a column with a chiral stationary phase
III.2. Representative screening of cyclotrimerization of 1a in various solvents.

In order to avoid irreproducibility of yields of the aforementioned cyclotrimerizations in THF, various reaction media were screened (SI-Table 2). Cyclotrimerizations were catalyzed by a combination of $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(5 \mathrm{~mol} \%)$ and $\mathrm{dppb}(6 \mathrm{~mol} \%)$ in various solvents at $80{ }^{\circ} \mathrm{C}$ on 0.1 mmol scale. It was found that the aforementioned problem regarding reproducibility of yields disappeared when $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ was used and yields were significantly increased.

Table S2. Cyclotrimerization of triynediol 1a to 2a in various solvents.

${ }^{a}$ Isolated yield. ${ }^{b}$ Isolated with $90 \%$ purity.
III.3. Screening of different chiral phosphines.

Thus further reactions were run in the presence of mixtures of $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(5 \mathrm{~mol} \%)$ and chiral phosphines ( 6 or $12 \mathrm{~mol} \%$ ) in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ at $80^{\circ} \mathrm{C}$ on 0.1 mmol scale. Once again the crude diol was oxidized to diketone 2a prior to analysis (Table 3).

The use of monodentate $(R)$-PROPOS, phosphoramidite based ligands such as $(S)$ MonoPhos and $(S)$ - $H_{8}$-MonoPhos, and $(R, R)$-Tartrate provided 2a with unsatisfactory results: the yields as well as asymmetric induction did not exceed $20 \%$ and $36 \%$ ee ( $32: 68$ e.r) (Entries 1-4).

Then, BINAP based ligands were screened (Entries 5-8). In general, diketone 2a was obtained in good isolated yields ranging from 42 to $62 \%$ and, gratifyingly, with excellent enantioselectivity up to $92 \%$ (96:4 e.r.) when the ( $R$ )- $\mathrm{H}_{8}$-BINAP ligand was used (Entry 7). In addition, other chiral ligands such as Garphos ${ }^{\text {TM }}$, DIFLUOROPHOS and BIPHEP derivatives were evaluated as well (Entries 9-14). Unfortunately, none of these ligands provided better results than ( $R$ )- $H_{8}$ - BINAP in terms of yields and asymmetric induction (ees up to $90 \%$, e.r. up to 95:5). Finally, SEGPHOS ${ }^{\circledR}$ based ligands were tested (Entries 15-17). One of the best result was obtained with $(S)$-SEGPHOS ${ }^{\circledR}$ and giving rise to $\mathbf{2 a}$ in a very good isolated yield of $74 \%$ and $90 \%$ ee (e.r. of 5:95) (Entry 15). The use (S)-DM-SEGPHOS ${ }^{\circledR}$ which have susbtituted phenyl rings on the phosphorus atom did not have substantial effect on asymmetric induction (Entry 16). However, application of a more bulkier ligand such as ( $R$ )-DTBMSEGPHOS ${ }^{\circledR}$ gave 2a with drastically decreased asymmetric induction as well as the yield (Entry 17).

Table S3. Ligand screening for the enantioselective $[2+2+2]$ cyclotrimerization of triynediol $1 \mathbf{1 a}$.

|  |  | $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(5$ Ligand ( $6 \mathrm{~mol} \%$ ) $\mathrm{ICH}_{2} \mathrm{Cl}(0.1 \mathrm{M}), 8$ <br> 2) PCC, Celite $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry ${ }^{\text {a }}$ | Ligand | Yield (\%) ${ }^{\text {b }}$ | ee (\%) ${ }^{\text {c }}$ | e.r. (\%) ${ }^{c}$ | Config. ${ }^{\text {d }}$ |
| 1 | (R)-PROPHOS | 10 | 8 | 54:46 | M |
| 2 | (S)-MonoPhos | 20 | 36 | 32:68 | P |
| 3 | (S)- $\mathrm{H}_{8}$-MonoPhos | 20 | 34 | 67:33 | M |
| 4 | $(R, R)$-Tartrate | 20 | 22 | 61:39 | M |
| 5 | (R)-BINAP | 55 | 76 | 88:12 | M |
| 6 | (S)-DM-BINAP | 55 | 86 | 7:93 | P |
| 7 | (R)- $\mathrm{H}_{8}$ - BINAP | 62 | 92 | 96:4 | M |
| 8 | (R)-TMS-BINAP | 42 | 90 | 95:5 | M |
| 9 | (R)-Garphos ${ }^{\text {TM }}$ | 45 | 84 | 92:8 | M |
| 10 | (R)-Tol-Garphos ${ }^{\text {TM }}$ | 51 | 86 | 93:7 | M |
| 11 | (S)-DM-Garphos ${ }^{\text {TM }}$ | 50 | 90 | 5:95 | P |
| 12 | (R)-DMM-Garphos ${ }^{\text {TM }}$ | 62 | 70 | 85:15 | M |
| 13 | (S)-DIFLUOROPHOS | 48 | 86 | 7:93 | $P$ |
| 14 | (R)-DM-MeO-BIPHEP | 49 | 90 | 95:5 | M |
| 15 | (S)-SEGPHOS ${ }^{\circledR}$ | 74 | 90 | 5:95 | $P$ |
| 16 | (S)-DM-SEGPHOS ${ }^{\circledR}$ | 50 | 88 | 6:94 | $P$ |
| 17 | (R)-DTBM-SEGPHOS ${ }^{\circledR}$ | 20 | 26 | 62:38 | M |

${ }^{a}$ Reaction conditions: 1a ( 0.1 mmol ), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(5 \mathrm{~mol} \%)$, Ligand ( $6 \mathrm{~mol} \%$ ) in $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(1 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c}$ ees (e.r.) were determined by HPLC using a column with a chiral stationary phase. ${ }^{d}$ Configuration of the major enantiomer. Absolute configuration was assigned retrospectively on the basis of X-ray diffraction analysis of $\mathbf{2 d}$ (vide infra).

Although the best result in terms of asymmetric induction was obtained with $(R)-H_{8}-$ BINAP (Entry 5), the SEGPHOS ${ }^{\circledR}$ ligands ( $S$ or $R$ ) (Entry 15), were used for further experiments because of good combination of high enantioselectivity and conversion of the starting material to products.

Note: It should be stressed that for a successful course of the reaction it is necessary to use meticulously dried and purified dichloroethane. If this condition is not met, both yield as well as asymmetric induction drops down.

## List of chiral ligands


(R)-PROPHOS


(R)- $\mathrm{H}_{8}$-BINAP

(S) $-\mathrm{H}_{8}$-MonoPhos
$\mathrm{Ar}=$ xylyl
(S)-xyl-Garphos
$\mathrm{Ar}=3,5-(\mathrm{Me})_{2}-4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{2}$ (R)-DMM-Garphos

(R)-TMS-BINAP


(S)-Phosphoramidite


$$
\mathrm{Ar}=\mathrm{Ph}
$$

$$
(R) \text {-BINAP }
$$

$$
\mathrm{Ar}=\text { xylyl }
$$

(S)-xyl-BINAP

$\mathrm{Ar}=$ xylyl
(R)-MeO-BIPHEP

(S)-DIFLUORPHOS
$\mathrm{Ar}=\mathrm{Ph}$
(S)-SEGPHOS
$\mathrm{Ar}=3,5-(t-\mathrm{Bu})_{2}-4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{2}$
(R)-DTBM-SEGPHOS
III.4. Screening of different chiral phosphines.

Next, we focused our attention on other factors such as solvent, temperature or catalytic loading in order to increase asymmetric induction in the $[2+2+2]$ cyclotrimerization (SI-Table 4). It is important to highlight that $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ is a crucial parameter, in fact the reaction did not proceed in other solvents or gave lower isolated yield (see SI-Table 2). Then temperature effect on the course of reaction was evaluated. We were pleased to notice that running the reaction at $60^{\circ} \mathrm{C}$, the desired product $(P)$-2a was obtained in $76 \%$ isolated yield and the excellent enantiomeric ratio of 3:97 (Entry 2). Decreasing temperature to $50{ }^{\circ} \mathrm{C}$ substantially reduced the reaction rate giving $\mathbf{2 a}$ in trace amounts only as detected by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture (Entry 3). Trace amounts of 2a were also detected when $1 \mathrm{~mol} \%$ of the catalyst was used at 60 or $70^{\circ} \mathrm{C}$ (Entries 4 and 5).

Table S4. Optimization of the enantioselective $[2+2+2]$ cyclotrimerization of triynediol 1a.


| Entry | Cat. (mol\%) | Ligand (mol\%) | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{t}(\mathrm{h})$ | ${\text { Yield }(\%)^{a}}^{\text {ee }(\%)^{b}}$ | e.r. $(\%)^{b}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 6 | 80 | 24 | $74^{c}$ | 90 | $5: 95$ |
| 2 | 5 | 6 | 60 | 48 | $76^{c}$ | 94 | $3: 97$ |
| 3 | 5 | 6 | 50 | 48 | traces | n.d. | - |
| 4 | 1 | 1.5 | 60 | 48 | traces | n.d. | - |
| 5 | 1 | 1.5 | 70 | 48 | traces | n.d. | - |

${ }^{a} \overline{\text { Isolated yield. }{ }^{b} \text { ees were determined by HPLC using a column with a chiral stationary }}$ phase. n.d.: not determined. ${ }^{c}$ Full consumption of 2a.

## IV Enantioselective [2+2+2] Cyclotrimerization and Oxidation Reactions



General procedure for enantioselective [2+2+2] cyclotrimerization followed by oxidation reaction (GP-A). A dry microwave vial was charged with $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(0.05 \mathrm{mmol}, 20.3 \mathrm{mg})$ and $(S)$ - or $(R)$-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(11 \mathrm{~mL})$ under argon atmosphere. $\mathrm{H}_{2}$ gas was bubbled into the reaction mixture for $45 \mathrm{~min} .{ }^{4}$ Afterwards, the corresponding triynediol $\mathbf{1}(1 \mathrm{mmol})$ was added under argon atmosphere. The reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 hours unless otherwise mentioned. Then, the reaction mixture was concentrated under reduced pressure. The crude diols were directly oxidized to the corresponding diketone 2 without any further purification. To a solution of the crude diols in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ under argon atmosphere, pyridinium chlorochromate $(3.0 \mathrm{mmol}, 647$ mg ) and Celite ${ }^{\circledR}(700 \mathrm{mg})$ were added. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 hours. Afterwards, the reaction mixture was filtered through a pad of 1:4 silica gel/Celite ${ }^{\circledR}$. Then, the pad was washed using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was concentrated under reduced pressure. Column chromatography of the residue on silica gel provided products 2.

The absolute configuration of helical 3d possessing two para-chlorophenyl moieties was determined to be $P$ by the anomalous dispersion method. This find allowed us to retrospectively assess configuration of all obtained helical compounds.

[^2]$(P)-8,9-B i s(4-m e t h o x y p h e n y l) b e n z o[c] b e n z o[6,7] i n d e n o[1,2-g] f l u o r e n e-7,10-d i o n e \quad((P)-$


2a). According to the general procedure GP-A with $\mathbf{1 a}(1.0 \mathrm{mmol}, 600$ $\mathrm{mg})$ and $(S)$-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$. Column chromatography on silica gel ( $5 / 1 / 1$ hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $416 \mathrm{mg}(70 \%)$ of the title compound as a red solid.
$R_{f}\left(5 / 1 / 1\right.$ hexanes/EtOAc/CH2Cl $\left.{ }_{2}\right)=0.33$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+1939\left(c 0.56, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}$, $4 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.65$ (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.4$ (2C), 159.0 (2C), 145.1 (2C), 142.3 (2C), 138.6 (2C), 137.8 (2C), 137.2 (2C), 134.2 (2C), 131.8 (2C), 130.9 (2C), 128.8 (2C), 128.7 (2C), 128.5 (2C), 128.4 (2C), 127.1 (2C), 126.7 (2C), 125.7 (2C), 119.8 (2C), 113.2 (2C), 113.0 (2C), 55.1 (2C).

IR (KBr) v 3052, 2930, 2833, 1704, 1609, 1516, 1441, 1291, 1249, 1178, 1109, 1035, 901, 835, 800, $777 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$): $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{27} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 595.19039$, found: 595.19049.
HPLC analysis: 8:92 e.r. (column YMC CHIRAL Cellulose-SB (Heptane/i-PrOH $=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV $\left.254 \mathrm{~nm}, \mathrm{t}_{\text {min }}=14.5 \mathrm{~min} ; \mathrm{t}_{\text {major }}=21.1 \mathrm{~min}\right)$.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 8:92 e.r |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \cdot$ |  |  | $1 .$ |  | $\xrightarrow[\square]{\square}$ |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 14.6 | 49.6 | 1 | 14.5 | 7.7 |
| 2 | 21.2 | 50.4 | 2 | 21.1 | 92.3 |

( $M$ )-8,9-Bis(4-methoxyphenyl)benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione (( $M$ )-


2a). According to the general procedure GP-A with $\mathbf{1 a}(1.0 \mathrm{mmol}, 600$ $\mathrm{mg})$ and $(R)$-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$. Column chromatography on silica gel ( $5 / 1 / 1$ hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $315 \mathrm{mg}(53 \%)$ of the title compound as a red solid.
$R_{f}\left(5 / 1 / 1\right.$ hexanes $\left./ E t \mathrm{OAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.33$.
$[\alpha]_{D}{ }^{20}-2784\left(c 0.23, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 94:6 e.r. (column YMC CHIRAL Cellulose-SB (Heptane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {major }}=14.6$ $\left.\min ; \mathrm{t}_{\text {min }}=21.5 \mathrm{~min}\right)$.

| Racemic |  |  | (R)-SEGPHOS ${ }^{\circledR}$, 94:6 e.r |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I" |  |  | 1 |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 14.6 | 49.6 | 1 | 14.6 | 93.5 |
| 2 | 21.2 | 50.4 | 2 | 21.5 | 6.5 |

( $P$ )-8,9-Diphenylbenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(\boldsymbol{P})$-2b). According
 to the general procedure GP-A with 1b ( $1.0 \mathrm{mmol}, 539 \mathrm{mg}$ ) and ( $S$ )SEGPHOS $^{\circledR}$ ( $0.06 \mathrm{mmol}, 36.6 \mathrm{mg}$ ). Column chromatography on silica gel ( $8 / 1 / 1$ hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $470 \mathrm{mg}(88 \%)$ of the title compound as a red solid. $R_{f}\left(8 / 1 / 1\right.$ hexanes $\left./ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.40$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+1824\left(c 0.39, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.69 (ddd, $J=8.3,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 191.3,145.3,142.2,138.8,137.9,137.4,135.0,134.2,131.0$, 130.3, 129.4, 128.9, 128.8, 128.6, 127.7, 127.61, 127.55, 126.8, 125.8, 119.9.

IR (KBr) v 3054, 2919, 1710, 1617, 1570, 1464, 1419, 1375, 1304, 1197, 1074, 1025, 936, 830, 766, 752, 716, $701 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$): $m / z$ calcd for $\mathrm{C}_{40} \mathrm{H}_{23} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 535.16926$, found: 535.16935.

## $1^{\text {st }}$ batch:

HPLC analysis: 9:91 e.r. (column YMC Chiral Cellulose-SB, Heptane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {min }}=8.3 \mathrm{~min} ; \mathrm{t}_{\text {major }}=12.2 \mathrm{~min}$ ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 9:91 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\frac{80}{200}}$ |  |  | 8 |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 8.1 | 50.1 | 1 | 8.3 | 9.1 |
| 2 | 12.1 | 49.9 | 2 | 12.2 | 90.9 |

## $2^{\text {nd }}$ batch:

HPLC analysis: 16:84 e.r. (Column Daicel Chiralpak IB, Heptane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 16:84 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ammam | Nanmer |  | - |  |
|  |  |  |  |  |  |
|  | - |  |  |  |  |
| ${ }_{\substack{200}}$ | - |  |  | 2 |  |
| ${ }_{4}^{20}$ |  | - |  |  |  |
|  |  | 30, 35 |  |  | צ. |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 7.5 | 50.0 | 1 | 7.6 | 16.2 |
| 2 | 9.3 | 50.0 | 2 | 9.2 | 83.8 |

(P)-8,9-Bis(4-(trifluoromethyl)phenyl)benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-

dione ( $(\boldsymbol{P})$-2c). According to the general procedure GP-A with 1c (1.0 $\mathrm{mmol}, 675 \mathrm{mg})$ and (S)-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$. Column chromatography on silica gel ( $8 / 1 / 1$ hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $536 \mathrm{mg}(80 \%)$ of the title compound as a red solid.
$R_{f}\left(8 / 1 / 1\right.$ hexanes $\left./ E t O A c / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.42$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+1573\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3$
$\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2 H ), 6.71 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.0$ (2C), 145.2 (2C), 139.9 (2C), 139.4 (2C), 138.4 (2C), $138.1(2 \mathrm{C}), 137.5(2 \mathrm{C}), 134.0(2 \mathrm{C}), 131.6(2 \mathrm{C}), 130.7(2 \mathrm{C}), 130.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right)(2 \mathrm{C})$, 129.8 (2C), 129.1 (2C), 129.0 (2C), 128.6 (2C), 126.7 (2C), 126.1 (2C), 124.9 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.8$ $\mathrm{Hz})(2 \mathrm{C}), 124.1\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.2 \mathrm{~Hz}\right)(2 \mathrm{C}), 119.9(2 \mathrm{C})$; one signal of two carbons is missing probably due to the overlapped signals.
${ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.57$.
IR (KBr) v 3072, 3041, 2920, 1711, 1605, 1469, 1404, 1329, 1170, 1127, 1067, 1019, 934, $855,757,721 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$): $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~F}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 671.14403$, found: 671.14394.
HPLC analysis: 90:10 e.r. (column YMC Chiral Cellulose-SB (Heptane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV $\left.254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.6 \mathrm{~min} ; \mathrm{t}_{\text {min }}=8.1 \mathrm{~min}\right)$.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 90:10 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\text {m }}$ |  |  | 1. |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 5.7 | 50.4 | 1 | 5.6 | 89.9 |
| 2 | 8.0 | 49.6 | 2 | 8.1 | 10.1 |

$(P)-8,9-B i s(4-c h l o r o p h e n y l) b e n z o[c] b e n z o[6,7] i n d e n o[1,2-g] f l u o r e n e-7,10-d i o n e \quad((P)-2 d)$.
 According to the general procedure GP-A with $\mathbf{1 d}(1.0 \mathrm{mmol}, 608 \mathrm{mg})$ and $(S)$-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$. Column chromatography on silica gel ( $10 / 1 / 1$ hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished 341 mg ( $57 \%$ ) of the title compound as a red solid.
$R_{f}\left(10 / 1 / 1\right.$ hexanes $\left./ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.35$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+2026\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.26$ (m, 2H), 7.247.20 (m, 4H), 7.10 (dd, $J=8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (dd, $J=8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (ddd, $J=8.4$, $6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 190.9$ (2C), 144.9 (2C), 140.3 (2C), 138.9 (2C), 137.8 (2C), 137.3 (2C), 133.9 (2C), 133.8 (2C), 133.0 (2C), 131.7 (2C), 131.2 (2C), 130.7 (2C), 128.9 (2C), 128.8 (2C), 128.4 (2C), 128.01 (2C), 127.97 (2C), 126.5 (2C), 125.8 (2C), 119.7 (2C).
IR (KBr) v 3061, 2923, 2851, 1706, 1616, 1583, 1440, 1371, 1302, 1266, 1237, 1096, 1015, $905,833,776 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{40} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 603.09131, found: 603.09092.
HPLC analysis: 4:96 e.r. (column YMC CHIRAL Cellulose-SB (Heptane/i-PrOH $=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV $\left.254 \mathrm{~nm}, \mathrm{t}_{\text {min }}=8.2 \mathrm{~min} ; \mathrm{t}_{\text {major }}=11.0 \mathrm{~min}\right)$.

| Racemic |  | $(S)$ SEGPHOS ${ }^{\circledR}$, 4:96 e.r. |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |

( $\boldsymbol{P}$ )-Benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(\boldsymbol{P})$-2f). (Pathway A) According
 to the general procedure GP-A with $\mathbf{1 e}(1.0 \mathrm{mmol}, 531 \mathrm{mg})$ and $(S)$ SEGPHOS $^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$. Afterwards, the crude mixture was concentrated under reduced pressure, then dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(40 / 1)$ and stirred in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{mmol}, 415 \mathrm{mg})$ for 2 hours at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was quenched by using $\mathrm{HCl}(1 \mathrm{M})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography on silica gel ( $7 / 1 / 1$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ) furnished $76 \mathrm{mg}(20 \%)$ of the title compound as a red solid.
$[\alpha]_{\mathrm{D}}{ }^{20}-327\left(c 0.39, \mathrm{CHCl}_{3}\right)$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 2 \mathrm{H}), 7.34$ (ddd, $J=8.2,6.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.67$ (ddd, $J=8.3,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.9$ (2C), 146.4 (2C), 142.3 (2C), 139.1 (2C), 137.7 (2C), 133.9 (2C), 131.2 (2C), 129.1 (2C), 128.8 (2C), 128.7 (2C), 127.0 (2C), 125.9 (2C), 124.0 (2C), 120.1 (2C).
IR (KBr) v 3052, 2929, 2854, 1700, 1622, 1455, 1401, 1272, 1242, 1195, 1099, 1039, 994, $872,830,767 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 383.10666$, found: 383.10667.
HPLC analysis: 69:31 e.r. (column YMC Chiral Cellulose-SB, Heptane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=50 / 50$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, UV $\left.254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.7 \mathrm{~min} ; \mathrm{t}_{\text {min }}=10.0 \mathrm{~min}\right)$.

| Racemic |  |  | $(S)$-SEGPHOS ${ }^{\circledR}$, 69:31 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{1}{\text { ma }}$ m $^{\text {a }}$ |  |  | 1. |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 7.6 | 49.8 | 1 | 7.7 | 68.7 |
| 2 | 9.7 | 50.2 | 2 | 10.0 | 31.3 |

$(\boldsymbol{P})$-Benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(\boldsymbol{P})$-2f). (Pathway B) According
 to the general procedure GP-A with $\mathbf{1 f}(1.0 \mathrm{mmol}, 387 \mathrm{mg})$ and $(S)$ SEGPHOS $^{\circledR}$ ( $0.06 \mathrm{mmol}, 36.6 \mathrm{mg}$ ). Column chromatography on silica gel (7/1/1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ) furnished 164 mg ( $43 \%$ ) of the title compound as a red solid.
$[\alpha]_{\mathrm{D}}{ }^{20}-307\left(c 0.14, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 61:39 e.r. (column YMC Chiral Cellulose-SB, Heptane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=50 / 50$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\left.\mathrm{t}_{\text {major }}=7.6 \mathrm{~min} ; \mathrm{t}_{\min }=9.7 \mathrm{~min}\right)$.

| Racemic |  |  | $(S)$-SEGPHOS ${ }^{\circledR}$, 61:39 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 800 <br> 80 <br> 400 |  |  | $\frac{18}{500}$ |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 7.6 | 49.8 | 1 | 7.6 | 60.8 |
| 2 | 9.7 | 50.2 | 2 | 9.7 | 39.2 |

( $P$ )-8,9-Dipropylbenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(\boldsymbol{P})$-2g). According
 to the general procedure GP-A with $\mathbf{1 g}(1.0 \mathrm{mmol}, 471 \mathrm{mg})$ and $(S)$ SEGPHOS $^{\circledR}$ ( $0.06 \mathrm{mmol}, 36.6 \mathrm{mg}$ ). Column chromatography on silica gel (3/2 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $304 \mathrm{mg}(65 \%)$ of the title compound as a red solid.
$R_{f}\left(3 / 2\right.$ hexanes $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.35$.
$\mathrm{Mp}=108-113{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+1478\left(c 0.18, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.88-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.79(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24$ (m, 2H), 7.18 (dd, $J=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.59$ (ddd, $J=8.3,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.27$ (m, 2 H ), 3.11-3.04 (m, 2H), 1.75-1.55 (m, 4H), 1.15 ( $\mathrm{t}=7.3 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 193.4$ (2C), 145.4 (2C), 145.2 (2C), 137.7 (2C), 137.4 (2C), 137.3 (2C), 134.1 (2C), 130.5 (2C), 128.7 (2C), 128.6 (2C), 128.4 (2C), 126.8 (2C), 125.6 (2C), 119.7 (2C), 28.4 (2C), 24.6 (2C), 14.8 (2C).
IR (KBr) v 3046, 2965, 2929, 2869, 1703, 1619, 1589, 1452, 1365, 1269, 1237, 1204, 1030, 982, 869, 833, 779, $755 \mathrm{~cm}^{-1}$.
HRMS (MALDI): $m / z$ calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 466.19273$, found: 466.19270.

## $1^{\text {st }}$ batch:

HPLC analysis: 81:19 e.r. (column Daicel Chiralpak ${ }^{\circledR}$ AD-H (Heptane $i$ - $\operatorname{PrOH}=98 / 2$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$, UV $\left.254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=15.2 \mathrm{~min} ; \mathrm{t}_{\min }=17.0 \mathrm{~min}\right)$.


## $2^{\text {nd }}$ batch:

HPLC analysis: 74:26 e.r. (column Daicel Chiralpak ${ }^{\circledR}$ AD-H (Heptane $/ i-\mathrm{PrOH}=98 / 2$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=14.8 \mathrm{~min} ; \mathrm{t}_{\text {min }}=16.4 \mathrm{~min}$ ).

$(P)$-8,9-Bis(4-chlorophenyl)-2-methoxybenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-

dione $((\boldsymbol{P})-\mathbf{2 h})$. According to the general procedure GP-A with $\mathbf{1 h}(1.0$ $\mathrm{mmol}, 638 \mathrm{mg})$ and $(S)$-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$ at $80^{\circ} \mathrm{C}$ for 48 hours. Column chromatography of the residue on silica gel (9/1/1 hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $158 \mathrm{mg}(25 \%)$ of the title compound as a red solid.
$R_{f}\left(9 / 1 / 1\right.$ hexanes $\left./ E t O A c / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.32$.
Mp (decomp) $161{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+796\left(c 0.14, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=9.1$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39$ (m, 2H), 7.29-7.21 (m, 4H), 7.14-7.10 $(\mathrm{m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{ddd}, J=8.3,7.0,1.2 \mathrm{~Hz}$, 1 H ), 6.57 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.3,191.2,158.1,145.3,143.6,140.5,140.3,139.8,138.6$, $138.3,138.2,137.5,134.7,134.0,133.95$ (2C), 133.2, 133.13, 133.12, 131.7, 131.1, 130.81 (2C), 130.79, 130.7, 130.4, 130.0, 129.5, 129.1, 128.7, 128.2 (2C), 128.1, 126.6, 126.2, 122.4, 120.1, 117.9, 104.9, 76.8, 54.1.

IR (KBr) v 3058, 3025, 2998, 2956, 2926, 2833, 1709, 1628, 1580, 1494, 1467, 1431, 1395, $1371,1314,1299,1266,1234,1222,1204,1171,1096,1030,1015,845,833,767,743 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{41} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 633.10188$, found: 633.10151.
HPLC analysis: 82:18 e.r. (column Chiralpak IA (Heptane $/ i-\mathrm{PrOH}=80 / 20$, flow rate 0.5 $\left.\mathrm{mL} / \mathrm{min}, \mathrm{UV} 281 \mathrm{~nm}, \mathrm{t}_{\text {maj }}=10.9 \mathrm{~min} ; \mathrm{t}_{\text {min }}=15.9 \mathrm{~min}\right)$.

(P)-8,9-Bis(4-chlorophenyl)-2,15-dimethoxybenzo[c]benzo[6,7]indeno[1,2-g]fluorene-


7,10-dione $((\boldsymbol{P}) \mathbf{- 2 i})$. According to the general procedure GP-A with $\mathbf{1 i}(1.0$ $\mathrm{mmol}, 668 \mathrm{mg})$ and $(S)$-SEGPHOS ${ }^{\circledR}(0.06 \mathrm{mmol}, 36.6 \mathrm{mg})$ at $80^{\circ} \mathrm{C}$ for 7 days. Column chromatography of the residue on silica gel (linear gradient: $10 / 1 / 1$ to $8 / 1 / 1$ hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $164 \mathrm{mg}(23 \%)$ of the title compound as a red solid. $R_{f}\left(8 / 1 / 1\right.$ hexanes $\left./ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.35$.
$\mathrm{Mp}=371^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+1297\left(c 0.29, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.69 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.12$ (dd, $J=8.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (dd, $J=9.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 191.3$ (2C), 158.2 (2C), 143.6 (2C), 140.3 (2C), 139.3 (2C), 138.4 (2C), 134.6 (2C), 134.0 (2C), 133.23 (2C), 133.15 (2C), 131.7 (2C), 130.8 (2C), 130.6 (2C), 130.5 (2C), 130.2 (2C), 128.24 (2C), 128.16 (2C), 123.0 (2C), 118.1 (2C), 104.7 (2C), 54.3 (2C).

IR (KBr) v 3061, 3001, 2956, 2932, 2830, 1709, 1622, 1583, 1467, 1431, 1377, 1302, 1272, $1225,1204,1177,1162,1132,1093,1015,848,815 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{42} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 663.11244$, found: 663.11227 .

## $1^{\text {st }}$ batch:

HPLC analysis: 81:19 e.r. (column Chiralpak IA (Heptane $/ i-\mathrm{PrOH}=80 / 20$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, UV $\left.285 \mathrm{~nm}, \mathrm{t}_{\text {maj }}=11.1 \mathrm{~min} ; \mathrm{t}_{\text {min }}=21.1 \mathrm{~min}\right)$.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 81:19 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Smmmen | Nextemetr 100739 |  |  | mextenesy |
| ${ }^{125} 5$ |  |  |  |  |  |
| 100 | $\cdots+$ |  | ${ }^{100}$ |  |  |
| 75 |  | - | ${ }_{\text {rs }}$; |  |  |
|  | + $+\square+\square$ |  | 5 |  |  |
| ${ }^{26}$, |  |  | ${ }^{25}$; |  | $\stackrel{8}{3}$ |
|  |  |  |  |  |  |
|  |  | $2{ }^{2}$ |  | ${ }_{25}{ }^{25}$ |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 11.0 | 50.1 | 1 | 11.1 | 81.3 |
| 2 | 21.1 | 49.9 | 2 | 21.1 | 18.7 |

## 2nd batch:

HPLC analysis: 88:12 e.r. (column Chiralpak IA (Heptane $/ i-\mathrm{PrOH}=80 / 20$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}$, UV $\left.285 \mathrm{~nm}, \mathrm{t}_{\text {maj }}=11.1 \mathrm{~min} ; \mathrm{t}_{\text {min }}=21.1 \mathrm{~min}\right)$.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 88:12 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 30 ${ }^{\text {ma }}$ | mammom | $\square$ |
| ${ }^{\text {com }}$ | $\square+1$ |  | ${ }^{25}$ | $\square \square$ |  |
| , | $\square$ | $\stackrel{3}{1}$ | ${ }_{20}^{285}$ |  |  |
| $\cdots$ | $\square+$ |  | ${ }^{5}$ |  |  |
| ${ }^{*}$ |  |  |  | - | ${ }^{5}$ |
|  | \%o | 200- 23. |  | 30-75 | - |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 11.0 | 50.1 | 1 | 11.1 | 88.5 |
| 2 | 21.1 | 49.9 | 2 | 21.1 | 11.5 |



The conversion of $\mathbf{2}$ to $\mathbf{3}$ was carried out in two steps. In the first step was arylated $\mathbf{2}$ to alcohol S4 (GP-B). The crude alcohol S4 was without characterization and further purification converted to spiro compounds $\mathbf{3}$ under various conditions (GP-C1-4).

General procedure for conversion of $\mathbf{2}$ to $\mathbf{S 4}$ (GP-B). ${ }^{5} n$-BuLi 1.6 M ( 6.0 equiv.) was added dropwise to a solution of 2-bromobiphenyl ( 6.0 equiv.) in dry THF at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 hour at the same temperature, followed by the dropwise addition of $\mathbf{2}$ (1.0 equiv.) in dry THF and stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ and afterwards, it was allowed to reach ambient temperature and stirred overnight. Then, the reaction mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Flash column chromatography on silica gel was performed to yield the corresponding crude alcohol S4.

General procedures for conversion of S4 to 3 (GP-C). Preparative scale carried out with the 1 st batch of 2 .
GP-C1 The alcohol S4 was dissolved in acetic acid ( 25 mL ) and $\mathrm{HCl}(12 \mathrm{M}, 0.5 \mathrm{~mL}$ ) and refluxed for 2 hours. The resulting mixture was neutralized with a saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Column chromatography on silica gel of the residue afforded desired bispiro-compounds $\mathbf{3}$.

Reaction on analytical scale were carried out with crude alcohols S4 obtained from the 2nd batch of 2.

GP-C2 The alcohol S4 ( 0.1 mmol ) was dissolved in acetic acid ( 5 mL ) and $\mathrm{HCl}(12 \mathrm{M}$, 0.1 mL ) and refluxed for 2 hours. The resulting mixture was neutralized with the saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.
Column chromatography on silica gel of the residue afforded 3.

GP-C3 The alcohol S4 ( 0.1 mmol ) was dissolved in acetic acid ( 5 mL ) and $\mathrm{HCl}(12 \mathrm{M}$, 0.1 mL ) and refluxed for 2 hours. The resulting mixture was neutralized with the saturated

[^3]aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.
Preparative thin layer chromatography on silica gel of the residue afforded 3.

GP-C4 The alcohol $\mathbf{S 4}(0.1 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ then trifluoroacetic anhydride ( $0.22 \mathrm{mmol}, 40 \mu \mathrm{~L}$ ) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 hour. Afterwards, the reaction was heated at $50{ }^{\circ} \mathrm{C}$ for 2 hours. After complete consumption of the alcohol, the reaction was cooled down to room temperature and washed by $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.
Preparative thin layer chromatography on silica gel of the residue afforded 3 .
$(P)$-8',9'-Bis(4-methoxyphenyl)dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]-

fluorene-10',9'-fluorene] ( $(\boldsymbol{P})$-3a). According to the GP-B and GP$\mathbf{C 1}$ with $(\boldsymbol{P})-\mathbf{2 a}(0.25 \mathrm{mmol}, 150 \mathrm{mg}), n-\mathrm{BuLi}(1.5 \mathrm{mmol}, 0.94 \mathrm{~mL})$ and 2-bromobiphenyl ( $1.5 \mathrm{mmol}, 260 \mu \mathrm{~L}$ ) in THF ( 15 mL ). Column chromatography of the residue on silica gel ( $8 / 1$ hexanes/EtOAc) furnished $178 \mathrm{mg}(82 \%)$ of the title compound as a yellowish solid.
$R_{f}(8 / 1$ hexanes $/ \mathrm{EtOAc})=0.28 . \mathrm{Mp}($ decomp $)>260{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
$[\alpha]_{\mathrm{D}}{ }^{20}+363\left(c 0.63, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, 4 H ), 7.07 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.70(\mathrm{~m}, 6 \mathrm{H}), 5.90(\mathrm{dd}, J=8.4$, $2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.6$ (2C), 148.6 (2C), 148.3 (2C), 147.8 (2C), 147.4 (2C), 142.9 (2C), 142.1 (2C), 139.1 (2C), 138.0 (2C), 136.4 (2C), 133.5 (2C), 131.6 (2C), 129.9 (2C), 129.7 (2C), 129.0 (2C), 128.9 (2C), 128.2 (2C), 127.5 (2C), 127.4 (2C), 127.3 (2C), 127.2 (2C), 127.1 (2C), 125.2 (2C), 124.6 (2C), 124.2 (2C), 124.0 (2C), 121.4 (2C), 120.3 (2C), 119.6 (2C), 111.6 (2C), 111.2 (2C), 67.0 (2C), 55.1 (2C).
IR (KBr) v 3052, 3052, 2832, 1611, 1516, 1448, 1364, 1285, 1244, 1175, 1107, 1035, 815, $739 \mathrm{~cm}^{-1}$.
HRMS (ESI ${ }^{+}$): $m / z$ calcd for $\mathrm{C}_{66} \mathrm{H}_{43} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 867.32576$, found: 867.32593 .
HPLC analysis: 93:7 e.r. (column YMC CHIRAL Cellulose-SB (Heptane/i-PrOH $=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=4.5 \mathrm{~min} ; \mathrm{t}_{\text {min }}=5.2 \mathrm{~min}$ ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 93:7 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I" |  |  | - |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 4.5 | 48.8 | 1 | 4.5 | 92.6 |
| 2 | 5.3 | 51.2 | 2 | 5.2 | 7.4 |

After precipitation from the $\mathbf{C H}_{2} \mathbf{C l}_{2}$ solution by $\mathbf{~ M e O H}$ :

| Racemic |  |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 97:3 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Mole |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  | 50 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  | 250 |  |  |
|  |  |  |  |  |  | 営。 |
|  |  |  |  |  |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) $\quad$ Relative area (\%) |  |  | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 |  |  | 49.1 | 1 | 5.4 | 97.3 |
| 2 |  |  | 50.9 | 2 | 6.4 | 2.7 |

(M)-8',9'-Bis(4-methoxyphenyl)dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]-
 fluorene-10',9'-fluorene] ((M)-3a). According to GP-B and GP-C1 with ( $\boldsymbol{M}$ )-2a ( $0.25 \mathrm{mmol}, 150 \mathrm{mg}$ ), $n$ - $\mathrm{BuLi}(1.5 \mathrm{mmol}, 0.94 \mathrm{~mL}$ ) and 2bromobiphenyl ( $1.5 \mathrm{mmol}, 260 \mu \mathrm{~L}$ ) in THF ( 15 mL ). Column chromatography of the residue on silica gel ( $8 / 1$ hexanes/EtOAc) furnished $147 \mathrm{mg}(68 \%)$ of the title compound as a yellowish solid. $[\alpha]_{\mathrm{D}}{ }^{20}-258\left(c 0.88, \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 6:94 e.r. (column YMC CHIRAL Cellulose-SB (Heptane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {min }}=4.5$
$\left.\mathrm{min} ; \mathrm{t}_{\text {major }}=5.2 \mathrm{~min}\right)$.

| Racemic |  |  | (R)-SEGPHOS ${ }^{\circledR}$, 6:94 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I' |  |  |  |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 4.5 | 48.8 | 1 | 4.5 | 6.5 |
| 2 | 5.3 | 51.2 | 2 | 5.2 | 93.5 |

After precipitation from the $\mathbf{C H}_{2} \mathbf{C l}_{2}$ solution by $\mathbf{M e O H}$ :
Column Chiralpak IB, Heptane $/ i-\mathrm{PrOH}=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm

| Racemic |  |  | (R)-SEGPHOS ${ }^{\circledR}$, 1:99 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | " |  | $5$ | *m(a) | \% |
|  |  | $\frac{\square}{2} \quad \square$ |  |  |  |
|  | $\square \square$ |  |  |  |  |
|  | $\square \times$ |  |  |  |  |
|  |  |  |  | - - - |  |
|  |  |  | - | 3 | ( |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 5.4 | 49.1 | 1 | 5.4 | 0.6 |
| 2 | 6.4 | 50.9 | 2 | 6.4 | 99.4 |

( $P$ )-8',9'-Diphenyldispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-
 fluorene] ( $(\boldsymbol{P})$-3b). According to the GP-B and GP-C1 with $(\boldsymbol{P})$-2b $(0.20 \mathrm{mmol}, 120 \mathrm{mg}), n-\mathrm{BuLi}(1.2 \mathrm{mmol}, 0.75 \mathrm{~mL})$ and $2-$ bromobiphenyl ( $1.2 \mathrm{mmol}, 210 \mu \mathrm{~L}$ ) in THF ( 12 mL ). Column chromatography of the residue on silica gel ( $10 / 1$ hexanes/EtOAc) furnished $72.6 \mathrm{mg}(45 \%)$ of the title compound as a yellowish solid.
$R_{f}(10 / 1$ hexanes/EtOAc $)=0.58$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+140\left(c 0.43, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.37-7.31 (m, 4H), 7.27-7.21 (m, 6H), 7.05 (dt, $J=7.5$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{dt}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 6 \mathrm{H}), 6.50(\mathrm{dt}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.18$ (dt, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.6$ (2C), 148.2 (2C), 147.6 (2C), 146.8 (2C), 142.9 (2C), 142.1 (2C), 139.0 (2C), 137.9 (2C), 136.5 (2C), 136.1 (2C), 133.5 (2C), 130.5 (2C), 129.7 (2C), 129.2 (2C), 129.1 (2C), 128.2 (2C), 127.5 (2C), 127.45 (2C), 127.38 (2C), 127.2 (2C), 127.1 (2C), 125.7 (2C), 125.5 (2C), 125.2 (2C), 124.7 (2C), 124.6 (2C), 124.2 (2C), 124.0 (2C), 121.4 (2C), 120.4 (2C), 119.7 (2C), 67.0 (2C).
IR (KBr) v 3049, 3018, 2956, 2922, 2853, 1602, 1515, 1446, 1280, 1239, 1215, 1177, 1149, 1032, $810,741,696 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{64} \mathrm{H}_{39}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 807.30463$, found: 807.30471.
SFC analysis: 66:34 e.r. (Column CHIRAL ART Cellulose-SB ( $150 \times 3 \mathrm{~mm}$ I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\mathrm{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=16.2 \mathrm{~min} ; \mathrm{t}_{\text {min }}=18.4$ min ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 66:34 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| z |  |  | come |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 16.1 | 50.06 | 1 | 16.2 | 65.8 |
| 2 | 18.3 | 49.94 | 2 | 18.4 | 34.2 |

According to the GP-C2.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 81:19 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (ex |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 16.1 | 50.06 | 1 | 15.6 | 81.0 |
| 2 | 18.3 | 49.94 | 2 | 17.6 | 19.0 |

According to the GP-C3.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 85:15 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\gtrless^{\text {ama }}$ |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 16.1 | 50.06 | 1 | 15.6 | 84.8 |
| 2 | 18.3 | 49.94 | 2 | 17.5 | 15.2 |

According to the GP-C4.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 88:12 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (emmen |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 16.1 | 50.06 | 1 | 15.6 | 87.9 |
| 2 | 18.3 | 49.94 | 2 | 17.5 | 12.1 |

(P)-8',9'-Bis(4-(trifluoromethyl)phenyl)dispiro[fluorene-9,7'-
benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene] ( $(\boldsymbol{P})$-3c). According to the GP-B

and GP-C1 with ( $\boldsymbol{P}$ )-2c $(0.30 \mathrm{mmol}, 120 \mathrm{mg}), n-\mathrm{BuLi}(1.8 \mathrm{mmol}, 1.13$ mL ) and 2-bromobiphenyl ( $1.8 \mathrm{mmol}, 310 \mu \mathrm{~L}$ ) in THF ( 15 mL ). Column chromatography of the residue on silica gel (15/1 hexanes/Acetone) furnished 219 mg ( $77 \%$ ) of the title compound as a yellowish solid.
$R_{f}(15 / 1$ hexanes/Acetone $)=0.30$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+246\left(c 0.36, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{td}, J=7.5$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ $(\mathrm{m}, 2 \mathrm{H}), 6.55-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.4$ (2C), 147.5 (2C), 147.2 (2C), 147.1 (2C), 142.8 (2C), 142.0 (2C), 139.5 (2C), 138.6 (2C), 137.2 (2C), 135.6 (2C), 133.6 (2C), 130.6 (2C), 129.72 (2C), 129.67 (2C), 129.3 (2C), 128.4 (2C), 128.0 (2C), 127.6 (4C), 127.35 (2C), 127.31 (2C), $127.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.0 \mathrm{~Hz}\right)(2 \mathrm{C}), 125.5(2 \mathrm{C}), 125.45(2 \mathrm{C}), 124.8$ (2C), 124.14 (2C), 124.11 (q, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.0 \mathrm{~Hz}\right)(2 \mathrm{C}), 124.08(2 \mathrm{C}), 122.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right)(2 \mathrm{C}), 121.4(2 \mathrm{C}), 120.5(2 \mathrm{C})$, 120.0 (2C), 66.8 (2C).
${ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-62.93.
IR (KBr) v 3056, 2922, 2866, 1619, 1446, 1405, 1325, 1246, 1166, 1125, 1079, 1018, 810, $738 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{66} \mathrm{H}_{37} \mathrm{~F}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 943.27940$, found: 943.27954.
SFC analysis: 91:9 e.r. (Column CHIRAL ART Cellulose-SB (150 x 3 mm I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\mathrm{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {major }}=3.9 \mathrm{~min} ; \mathrm{t}_{\text {min }}=5.3 \mathrm{~min}$ ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 91:9 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| comem |  |  | com |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 4.0 | 52.07 | 1 | 3.9 | 90.9 |
| 2 | 5.3 | 47.93 | 2 | 5.3 | 9.1 |

( $P$ )-8',9'-Bis(4-chlorophenyl)dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-

g]fluorene-10',9'-fluorene] ( $(\boldsymbol{P})$-3d). According to the GP-B and GP$\mathbf{C 1}$ with ( $\boldsymbol{P}$ )-2d ( $0.20 \mathrm{mmol}, 120 \mathrm{mg}$ ), $n$ - $\mathrm{BuLi}(1.2 \mathrm{mmol}, 0.75 \mathrm{~mL}$ ) and 2-bromobiphenyl ( $1.2 \mathrm{mmol}, 210 \mu \mathrm{~L}$ ) in THF ( 12 mL ). Column chromatography of the residue on silica gel ( $10 / 1$ hexanes/EtOAc) furnished $71 \mathrm{mg}(40 \%)$ of the title compound as a yellowish solid.
$R_{f}(10 / 1$ hexanes $/ \mathrm{EtOAc})=0.42$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+396\left(c 0.40, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dt}, J=7.6$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32$ (m, 4H), 7.29-7.20 (m, 6H), 7.12 (td, $J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (td, $J=$ $7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.18 (dd, $J=8.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.68$ (ddt, $J=6.4,4.3,2.0 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.4$ (2C), 147.7 (2C), 147.4 (2C), 147.3 (2C), 142.9 (2C), 142.1 (2C), 138.8 (2C), 136.9 (2C), 136.2 (2C), 134.4 (2C), 133.5 (2C), 131.7 (2C), 131.1 (2C), 130.3 (2C), 129.7 (2C), 129.5 (2C), 128.3 (2C), 127.8 (2C), 127.53 (2C), 127.49 (2C), 127.34 (2C), 127.26 (2C), 126.1 (2C), 125.8 (2C), 125.4 (2C), 124.7 (2C), 124.2 (2C), 124.0 (2C), 121.4 (2C), 120.5 (2C), 119.8 (2C), 66.9 (2C).
IR (KBr) v 3049, 2498, 1715, 1497, 1449, 1395, 1365, 1222, 1093, 1021, 815, $737 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{64} \mathrm{H}_{37} \mathrm{Cl}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 875.22668$, found: 875.22685.
SFC analysis: 99:1 e.r. (Column CHIRAL ART Cellulose-SB (150 x 3 mm I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\operatorname{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=12.7 \mathrm{~min} ; \mathrm{t}_{\text {min }}=16.9$ min ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 99:1 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (emm |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 12.6 | 50.41 | 1 | 12.7 | 99.4 |
| 2 | 16.6 | 49.59 | 2 | 16.9 | 0.6 |

$(P)$-Dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene] ( $(P)$ -


3f). According to the GP-B and GP-C1 with $(\boldsymbol{P})$-2f $(0.4 \mathrm{mmol}, 150$ mg ), $n$ - $\mathrm{BuLi}(2.4 \mathrm{mmol}, 1.5 \mathrm{~mL}$ ) and 2-bromobiphenyl ( $2.4 \mathrm{mmol}, 410$ $\mu \mathrm{L}$ ) in THF ( 20 mL ). Column chromatography of the residue on silica gel ( $9 / 1 / 1$ hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished $78.6 \mathrm{mg}(30 \%)$ of the title compound as a colorless solid.
$R_{f}\left(9 / 1 / 1\right.$ hexanes $\left./ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.47$.
Mp (decomp) $>260^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}-174\left(c 0.35, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.84(\mathrm{~m}, 6 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{dt}, J=$ $7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{ddd}, J=8.4,6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H})$, 6.58 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 150.4$ (2C), 148.3 (2C), 148.1 (2C), 147.9 (2C), 142.5 (2C), 141.9 (2C), 139.8 (2C), 136.8 (2C), 133.7 (2C), 129.7 (2C), 129.2 (2C), 128.3 (2C), 128.1 (2C), 128.03 (2C), 127.98 (2C), 127.9 (2C), 127.6 (2C), 125.4 (2C), 124.7 ( 4 C ), 124.0 (2C), 121.6 (2C), 121.5 (2C), 120.5 (2C), 120.1 (2C), 66.9 (2C).

IR (KBr) v 3055, 2974, 2929, 2851, 1580, 1476, 1449, 1437, 1359, 1269, 1213, 1177, 1111, 1078, 815, 749, $698 \mathrm{~cm}^{-1}$.
HRMS (MALDI): $m / z$ calcd for $\mathrm{C}_{52} \mathrm{H}_{30}\left[\mathrm{M}^{+}\right]: 654.23475$, found: 654.23480.
SFC analysis: 27.5:72.5 e.r. (Column CHIRAL ART Cellulose-SB ( $150 \times 3 \mathrm{~mm}$ I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\mathrm{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {min }}=12.8 \mathrm{~min} ; \mathrm{t}_{\text {major }}=$ 14.6 min ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 27.5:72.5 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | come |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 12.7 | 50.0 | 1 | 12.8 | 27.5 |
| 2 | 14.4 | 50.0 | 2 | 14.6 | 72.5 |

(P)-8',9'-Dipropyldispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-
 fluorene] ( $(\boldsymbol{P})-\mathbf{3 g})$. According to the GP-B and GP-C1 with $(\boldsymbol{P})-\mathbf{2 g}$ ( $0.30 \mathrm{mmol}, 140 \mathrm{mg}$ ), $n$-BuLi ( $1.8 \mathrm{mmol}, 1.15 \mathrm{~mL}$ ) and 2bromobiphenyl ( $1.8 \mathrm{mmol}, 310 \mu \mathrm{~L}$ ) in THF ( 18 mL ). Column chromatography of the residue on silica gel ( $15 / 1$ hexanes/EtOAc) furnished $154 \mathrm{mg}(69 \%)$ of the title compound as a orange solid.
$R_{f}(15 / 1$ hexanes $/ \mathrm{EtOAc})=0.40$.
$\mathrm{Mp}=238-240{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+38\left(c 0.54, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{ddt}, J=7.6,3.1,0.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.77(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72$ (dd, $J=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.14$ (m, $6 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.65(\mathrm{~m}, 2 \mathrm{H})$, 0.28-0.17 (m, 8H).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.9$ (2C), 148.5 (2C), 148.2 (2C), 147.1 (2C), 142.5 (2C), 141.8 (2C), 139.0 (2C), 137.2 (2C), 135.7 (2C), 133.3 (2C), 129.5 (2C), 128.6 (2C), 128.08 (2C), 128.06 (2C), 128.0 (2C), 127.9 (2C), 127.8 (2C), 127.4 (2C), 125.1 (2C), 124.5 (2C), 124.4 (4C), 121.1 (2C), 120.5 (2C), 120.1 (2C), 67.3 (2C), 30.4 (2C), 24.1 (2C), 14.7 (2C).

IR (KBr) v 3052, 3016, 2959, 2920, 2869, 1718, 1619, 1601, 1583, 1571, 1515, 1452, 1365, $1281,1245,1222,1159,1084,1033,1006,818,737 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{58} \mathrm{H}_{43}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 739.33593$, found: 739.33548.

SFC analysis: 63:37 e.r. (Column CHIRAL ART Cellulose-SB (150 x 3 mm I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\mathrm{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {major }}=9.0 \mathrm{~min} ; \mathrm{t}_{\text {min }}=10.6 \mathrm{~min}$ ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 63:37 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | come |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 8.9 | 49.94 | 1 | 9.0 | 62.6 |
| 2 | 10.5 | 50.06 | 2 | 10.5 | 37.4 |

According to the GP-C2.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 74:26 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | com |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 8.9 | 49.94 | 1 | 9.1 | 74.2 |
| 2 | 10.5 | 50.06 | 2 | 10.6 | 25.8 |

According to the GP-C3.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 74.5:25.5 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| come |  |  |  |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 8.9 | 49.94 | 1 | 9.1 | 74.5 |
| 2 | 10.5 | 50.06 | 2 | 10.6 | 25.5 |

According to the GP-C4.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 76:24 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 8.9 | 49.94 | 1 | 9.1 | 75.8 |
| 2 | 10.5 | 50.06 | 2 | 10.6 | 24.2 |

(P)-8',9'-Bis(4-chlorophenyl)-2'-methoxydispiro[fluorene-9,7'-

benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene] ((P)-3h). According to the GP-B and GP-C1 with ( $\boldsymbol{P}$ )-2h $(0.2 \mathrm{mmol}, 130 \mathrm{mg})$, $n-\mathrm{BuLi}(1.2 \mathrm{mmol}, 0.75 \mathrm{~mL})$ and 2-bromobiphenyl ( $1.2 \mathrm{mmol}, 210$ $\mu \mathrm{L})$ in THF ( 12 mL ). Column chromatography of the residue on silica gel (linear gradient: $4 / 1$ to $3 / 1$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) furnished 54 mg ( $30 \%$ ) of the title compound as a yellowish solid.
$R_{f}\left(3 / 1\right.$ hexanes/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.17$.
Mp (decomp) $>350^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+183\left(c 0.39, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=14.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.12$ (m, 3H), 7.12 (tdd, $J=7.6,4.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72-6.60(\mathrm{~m}, 3 \mathrm{H}), 6.37-6.29(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{dt}, J=8.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.73-5.62(\mathrm{~m}, 4 \mathrm{H}), 2.76$ ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.2$ (C), 149.1 (C), 148.7 (C), 148.0 (C), 147.9 (C), 147.6 (C), 147.33 (C), 147.29 (C), 147.2 (C), 142.9 (C), 142.8 (C), 142.1 (C), 138.9 (C), 138.0 (C), 137.2 (C), 136.5 (C), 136.1 (C), 135.8 (C), 134.4 (C), 134.4 (C), 133.6 (C), 131.8 (C), 131.7 (C), 131.13 (C), 131.10 (C), 130.9 (C), 130.2 (2C), 130.1 (C), 129.8 (C), 129.2 (C), 129.04 (C), 128.96 (C), 128.2 (C), 127.9 (C), 127.8 (C), 127.6 (C), 127.53 (2C), 127.46 (C), 127.3 (C), 127.2 (C), 127.0 (C), 126.19 (C), 126.16 (C), 125.8 (2C), 125.1 (C), 124.3 (C), 124.2 (C), 124.0 (C), 123.5 (C), 121.72 (C), 120.66 (C), 120.5 (C), 119.84 (C), 119.78 (C), 119.2 (C), 118.5 (C), 106.0 (C), 67.00 (C), 66.96 (C), 53.9 (3C).

IR (KBr) v 3061, 3052, 3034, 3010, 2953, 2932, 1619, 1512, 1494, 1461, 1426, 1392, 1362, $1228,1210,1168,1087,1027,1015,888,824,740 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{65} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{O}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 905.23725, found: 905.23761.
SFC analysis: 85:15 e.r. (Column CHIRAL ART Cellulose-SB (150 x 3 mm I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\mathrm{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=12.8 \mathrm{~min} ; \mathrm{t}_{\text {min }}=16.5$ $\min )$.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 85:15 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | \%om |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 12.8 | 50.12 | 1 | 12.8 | 84.7 |
| 2 | 16.3 | 49.88 | 2 | 16.5 | 15.3 |

(P)-8',9'-Bis(4-chlorophenyl)-2',15'-dimethoxydispiro[fluorene-9,7'-

benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene] ((P)-3i). According to the GP-B and GP-C1 with (P)-2i ( $0.2 \mathrm{mmol}, 130 \mathrm{mg}$ ), $n$ $\operatorname{BuLi}(1.2 \mathrm{mmol}, 0.75 \mathrm{~mL})$ and 2-bromobiphenyl ( $1.2 \mathrm{mmol}, 210 \mu \mathrm{~L}$ ) in THF ( 12 mL ). Column chromatography of the residue on silica gel ( $25 / 1$ hexanes/EtOAc) furnished 50 mg ( $36 \%$ ) of the title compound as a yellowish solid.
$R_{f}(25 / 1$ hexanes $/ \mathrm{EtOAc})=0.26$.
$\mathrm{Mp}=255^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$[\alpha]_{\mathrm{D}}{ }^{20}+18\left(c 0.17, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.88$ (m, 4H), 6.66 (dd, $J=15.9,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.40-6.32(\mathrm{~m}, 2 \mathrm{H}), 6.23-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.62(\mathrm{~m}$, 4 H ), 2.83 ( $\mathrm{s}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) $\delta 157.7$ (2C), 149.7 (2C), 148.3 (2C), 147.7 (2C), 147.5 (2C), 143.1 (2C), 142.3 (2C), 138.3 (2C), 137.2 (2C), 135.9 (2C), 134.9 (2C), 132.2 (2C), 131.6 (2C), 131.3 (2C), 130.6 (2C), 129.9 (2C), 129.2 (2C), 129.0 (2C), 128.2 (2C), 127.9 (2C), 127.8 (2C), 127.6 (2C), 126.3 (2C), 126.1 (2C), 124.5 (2C), 123.8 (2C), 120.9 (2C), 120.1 (2C), 119.4 (2C), 119.0 (2C), 105.9 (2C), 67.4 (2C), 54.3 (2C).
IR (KBr) v 3058, 3031, 3010, 2962, 2923, 2851, 2830, 1625, 1586, 1500, 1473, 1449, 1434, 1326, 1272, 1234, 1210, 1171, 1156, 1102, 1072, 1042, 1012, 830, 758, 731, $701 \mathrm{~cm}^{-1}$.
HRMS (APCI): $m / z$ calcd for $\mathrm{C}_{66} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 935.24781, found: 935.24771.

SFC analysis: 56:44 e.r. (Column CHIRAL ART Cellulose-SB (150 x 3 mm I.D., particle size 3um), column temperature $40^{\circ} \mathrm{C}$, sample temperature $10^{\circ} \mathrm{C}$, back pressure 2000 psi , carbone dioxide $/ i-\mathrm{PrOH}=80: 20$, flow rate $2.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=13.0 \mathrm{~min} ; \mathrm{t}_{\text {min }}=14.2$ min ).

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 56:44 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (emem |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 13.0 | 55.7 |
| 2 | 14.1 | 49.34 | 2 | 14.2 | 44.3 |

According to the GP-C2.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 37:63 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\qquad$ |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 13.0 | 36.5 |
| 2 | 14.1 | 49.34 | 2 | 14.2 | 63.5 |

According to the GP-C3.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 34:66 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 8000 |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 13.0 | 34.1 |
| 2 | 14.1 | 49.34 | 2 | 14.2 | 65.9 |

According to the GP-C4.

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 53:47 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | cosm |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 13.0 | 53.0 |
| 2 | 14.1 | 49.34 | 2 | 14.2 | 47.0 |

## Chromatographic charts from column chromatography of $\boldsymbol{P}-3 \mathrm{i}$

a) Fraction X1 (25/1 hexanes/EtOAc)

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 55:45 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 12.8 | 54.7 |
| 2 | 14.1 | 49.34 | 2 | 14.1 | 45.3 |

b) Fraction X2 (25/1 hexanes/EtOAc)

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 52:48 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{3}$ |  |  | (tame |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 12.8 | 51.6 |
| 2 | 14.1 | 49.34 | 2 | 14.0 | 48.4 |

c) Fraction X3 (20/1 Hexanes/EtOAc)

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 49:51 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ₹ |  |  | (10003 |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 12.9 | 48.8 |
| 2 | 14.1 | 49.34 | 2 | 14.0 | 51.2 |

d) Fraction X 4 (elution of the column with neat EtOAc)

| Racemic |  |  | (S)-SEGPHOS ${ }^{\circledR}$, 43:57 e.r. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) | $\mathrm{N}^{\circ}$ | Retention time (min) | Relative area (\%) |
| 1 | 13.0 | 50.66 | 1 | 12.9 | 43.2 |
| 2 | 14.1 | 49.34 | 2 | 14.0 | 56.8 |

## VI Determination of the Racemization Barrier of 2a and 3a

General procedure. A solution of compound $\mathbf{2 a}$ or $\mathbf{3 a}(1.2 \mathrm{mg})$ in a solvent ( 5 mL ) was refluxed under the argon atmosphere. In time intervals, a small sample ( 0.1 mL ) of the solution was taken. It was cooled to r.t. and immediately analysed using HPLC on a chiral column (YMC Chiral Cellulose SB, $250 \times 4.6 \mathrm{~mm}$ ). Dependences of $\%$ of the major enantiomer on time are shown in SI-Figures 1 and 3).

Enantiomerization rate constant $\boldsymbol{k}_{\text {enant }}$ was calculated using first order kinetics with the equation:

$$
\ln \frac{[M]_{0}-[M]_{e q}}{[M]_{t}-[M]_{e q}}=2 k_{\text {enant }} t
$$

where $[M]_{0}$ is initial concentration of major enantiomer, $[M]_{\text {eq }}$ is equilibrium concentration, $[M]_{t}$ is concentration of major enantiomer at time $t$.

Dependences of $\ln \frac{[M]_{0}-[M]_{e q}}{[M]_{t}-[M]_{e q}}$ on time $t$ are shown in SI-Figures 2 and 4. Activation energy $\Delta G^{\#}$ for interconversion of enantiomers was calculated from the Eyring equation. Experimental conditions and results are summarized in SI-Table 5.

Table S5. Experimental conditions and results of determination of racemisation barrier

| Compound | Solvent | Temperature <br> $(\mathrm{K})$ | Mobile phase for HPLC <br> analysis | $k_{\text {enant }}$ <br> $\left(\mathrm{s}^{-1}\right)$ | $\Delta G^{\#}$ <br> $\left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(P)$-2a | toluene | 383.75 | heptane/propan-2-ol $8 / 2$ <br> flowrate $1.0 \mathrm{ml} / \mathrm{min}$ | $2.602 \times 10^{-6}$ | 135.8 |
| $(P) \mathbf{- 3 a}$ | o-xylene | 417.65 | heptane $/$ propan-2-ol 9/1 <br> flowrate $0.5 \mathrm{ml} / \mathrm{min}$ | $8.466 \times 10^{-5}$ | 136.0 |



Figure S1. Dependence of \% of the major enantiomer of 2a on time.


Figure S2. Dependence of $\ln \frac{[M]_{0}-[M]_{e q}}{[M]_{t}-[M]_{e q}}$ on time $t$ for compound 2a.


Figure S3. Dependence of \% of the major enantiomer of 3a on time.


Figure S4. Dependence of $\ln \frac{[M]_{0}-[M]_{e q}}{[M]_{t}-[M]_{e q}}$ on time $t$ for compound 3a.

## VII X-Ray Diffraction Analysis

The crystal structures of $\mathbf{2 a}, \mathbf{2 d}, \mathbf{3 d}$ and $\mathbf{3 f}$ were determined by x-ray diffraction experiment carried on Bruker D8 VENTURE Kappa Duo PHOTON100 by I $\mu$ S micro-focus sealed tube $\mathrm{CuK} \alpha(\lambda=1.54178 \AA)$ at low temperature. The structures were solved by direct methods $\left(\mathrm{XT}^{3}\right)^{6}$ and refined by full matrix least squares based on $F^{2}$ (SHELXL2018 ${ }^{39 b}$ ). ${ }^{6}$ The hydrogen atoms on carbon were fixed into idealized positions (riding model) and assigned temperature factors either $\mathrm{H}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}$ (pivot atom) or $\mathrm{H}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}$ (pivot atom) for methyl moiety. Crystals of $\mathbf{3 f}$ and $\mathbf{3 d}$ contain in their unit cells molecules of solvents so seriously disordered that position of individual atoms can not be properly resolved and refined. To improve the precision of main molecules, the contribution of solvents were removed from diffraction patter using SQUEEZE procedure of PLATON ${ }^{40} 7$ software before final refinement.
The structure determination of $\mathbf{3 d}$ requires more detailed explanation. The crystal was measured at temperature 200 K since at lower temperature undergoes phase transition accompany by destruction of the crystal probably due to a change of disordered solvent arrangement. The space group symmetry enables the presence of only one enantiomer in the crystal, therefore the absolute structure determination was point of interest, even if the disorder of dichloromethane solvent significantly hampered the precision of refined parameters. Two means of improving the resulting model were applied. In the first approach, the contribution of solvents was removed by SQUEEZE procedure as described above. The chirality parameter was refined to the value $0.042(7)^{418}$ confirming well the model chirality. In the second approach the atomistic solvent model was used to describe electron density in the voids. The partially occupied positions of atoms were added to the model without any aspiration on the correct geometry of the solvent until residual electron density was below $0.70 \mathrm{e} / \AA^{3}$. The obtained value of chirality parameter $0.002(3)$ leads to the conclusion, that presented enantiomer is correct.

X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Centre under deposition number CCDC 2024649, 2024650, 2024651 and 2024652 for $\mathbf{2 a}, \mathbf{2 d}, \mathbf{3 d}$ and 3f, respectively and can be obtained free of charge from the Centre via its website (www.ccdc.cam.ac.uk/getstructures).

[^4]Table S6. X-Ray crystallographic data

|  | Compound | 2a | 2d | 3 f | 3d |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Formula | $2\left(\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{O}_{4}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{C}_{40} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$ | $\mathrm{C}_{52} \mathrm{H}_{30}[+$ solvent] | $\mathrm{C}_{64} \mathrm{H}_{36} \mathrm{Cl}_{2}[+$ solvent] |
|  | M.w. | 1274.18 | 603.46 | 654.76 | 437.91 |
|  | Crystal system | Triclinic | Monoclinic | Orthorhombic | Orthorhombic |
|  | Space group [No.] | $P^{-} 1$ (No 2) | C2/c (No.15) | Pbca (No 61) | $P 22_{12}$ (No 18) |
|  | $a[\AA]$ | 9.7177 (3) | 14.3954 (5) | 18.6716 (5) | 14.2931 (4) |
|  | $b$ [ $\AA$ ] | 12.1649 (4) | 13.0354 (4) | 15.5429 (4) | 28.0024 (7) |
|  | $c[\AA]$ | 14.1681 (5) | 14.9474 (5) | 23.7224 (7) | 12.9710 (3) |
|  | $\left.\alpha{ }^{[ }\right]$ | 65.924 (1) |  |  |  |
|  | $\beta\left[{ }^{\circ}\right]$ | 86.865 (1) | 92.861 (2) |  |  |
|  | $\gamma\left[{ }^{\circ}\right]$ | 86.516 (1) |  |  |  |
|  | Z | 1 | 4 | 8 | 8 |
|  | $\mathrm{V}\left[\AA^{3}\right]$ | 1525.53 (9) | 2801.38 (16) | 6884.5 (3) | 5191.5 (2) |
|  | $D_{x}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$ | 1.387 | 1.431 | 1.263 | 1.121 |
|  | Crystal size [mm] | $0.32 \times 0.30 \times 0.05$ | $0.13 \times 0.07 \times 0.05$ | $0.33 \times 0.23 \times 0.15$ | $0.26 \times 0.25 \times 0.10$ |
|  | Crystal shape, colour | Plate, red | Bar, purple | Plate, colourless | Prism, violet |
|  | $\mu\left[\mathrm{mm}^{-1}\right]$ | 1.48 | 2.38 | 0.55 | 1.41 |
|  | $\theta_{\max }\left[{ }^{\circ}\right]$ | 72.1 | 72.3 | 72.2 | 70.2 |
|  | Measured reflections | 27096 | 20007 | 58107 | 58886 |
|  | Independent diffractions ( $R_{\text {int }}{ }^{a}$ ) | 5978 (0.028) | 2753 (0.123) | 6775 (0.058) | 9878 (0.027) |
|  | Observed diffract. [ $I>2 \sigma(I)$ ] | 5426 | 2198 | 6482 | 9571 |
|  | $T_{\text {min }}, T_{\text {max }}$ | 0.79, 0.93 | 0.74, 0.90 | 0.83,0.92 | 0.70, 0.88 |
|  | No. of parameters | 444 | 199 | 469 | 595 |
|  | $w_{l}, w_{2}{ }^{\text {b }}$ | 0.0485, 0.6397 | 0.0302, 9.1237 | 0.0547, 12.3426 | 0.0606, 0.835 |
|  | Absolut. structure param. (Flack) |  |  |  | 0.042 (7) |
|  | $R^{c}\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$ | 0.039 | 0.067 | 0.067 | 0.034 |
|  | $\mathrm{w} R\left(F^{2}\right)$ for all data | 0.100 | 0.128 | 0.164 | 0.096 |
|  | GOF ${ }^{d}$ | 1.02 | 1.15 | 1.07 | 1.04 |
|  | Residual electron density [ $\left.\mathrm{e} / \AA^{3}{ }^{3}\right]$ | 0.35, -0.43 | 0.36, -0.35 | 0.89, -0.31 | 0.35, -0.34 |
|  | CCDC | 2024649 | 2024650 | 2024651 | 2024652 |



Figure S5. The ORTEP plot of 2a. Elipsoids are shown with $30 \%$ probability.


Figure S6. The ORTEP plot of 2d. Elipsoids are shown with 30\% probability.


Figure S7. The ORTEP plot of 3d. Elipsoids are shown with 30\% probability.


Figure S8. The ORTEP plot of 3f. Elipsoids are shown with $30 \%$ probability.

## VIII Photophysical Properties

The UV/Vis absorption spectra were recorded using Thermo Helios Beta spectrometer as a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions ( $10^{-5} \mathrm{M}$ ). Fluorescence emmision spectra and emmision absolute quantum yields were measured using Hamamatsu Quantaurus-QY Plus UV-NIR absolute PL quantum yield spectrometer C 13534 with integrating sphere as a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions $\left(10^{-6} \mathrm{M}\right.$, $\lambda_{\text {exc }}=350 \mathrm{~nm}$ ).


Figure S9. Absorption spectra $\left(10^{-5} \mathrm{M}\right)$ of 3a-d, 3f-g in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


Figure S10. Normalized and corrected emission spectra ( $10^{-6} \mathrm{M}$ ) of $\mathbf{3 a - d}, \mathbf{3 f} \mathbf{- g}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using $\lambda_{\text {exc }}=350 \mathrm{~nm}$.

Table S7. Photophysical properties of 3a-d, 3f-g in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

| 3 | $\lambda_{\mathrm{abs}} / \mathrm{nm}\left(\varepsilon / 10^{4} \mathrm{~mol}^{-1} \cdot \mathrm{dm}^{3} \cdot \mathrm{~cm}^{-1}\right)$ | $\lambda_{\mathrm{em}} / \mathrm{nm}$ | $\Phi_{\mathrm{s}}{ }^{a}$ |
| :---: | :---: | :---: | :---: |
| 3a | $301(4.11), 314(4.32), 335(3.67), 374(4.60), 391(3.99)$ | 431 | 0.85 |
| 3b | $301(2.84), 314(3.04), 335(2.49), 374(3.27), 391(2.84)$ | 417,430 | 0.87 |
| 3c | $301(3.87), 314(4.16), 335(3.77), 371(4.57), 391(4.00)$ | 415,430 | 0.78 |
| 3d | $301(2.86), 314(3.06), 335(2.71), 373(3.22), 391(2.76)$ | 415,429 | 0.75 |
| 3f | $299(1.71), 312(2.06), 333(1.27), 370(2.45), 388(2.10)$ | 409,423 | 0.87 |
| 3g | $314(1.70), 335(1.54), 374(2.32), 393(2.05)$ | 412,428 | 0.86 |
| 3h | $313(3.83), 334(3.02), 352(3.06), 375(3.33), 395(2.65)$ | 437 | 0.97 |
| 3i | $312(2.44), 352(2.01), 368(1.78), 393(0.98)$ | 433 | 0.82 |

${ }^{a}$ Absolute quantum yields of $\mathbf{3}\left(10^{-6} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\text {exc }}=350 \mathrm{~nm}$.

## IX Circular Dichroism Measurement of ( $P$ )- and ( $M$ )-3a

The ECD, absorption and fluorescence spectra were measured on a Jasco 1500 spectropolarimeter equipped with a fluorescence emission monochromator (FMO522) and separate fluorescence emission detector (FDT-538). The ECD and absorption spectra were measured over a spectral range of 210 nm to 500 nm in dichloromethane ( $1.0 \times 10^{-4}$ solutions). Measurements were made in a quartz cell with a 0.1 cm path length using a scanning speed of $20 \mathrm{~nm} / \mathrm{min}$, a response time of 4 seconds, standard instrument sensitivity. After a baseline substraction, spectra were expressed in terms of differential molar extinction ( $\Delta \varepsilon$ ). Fluorescence spectra were measured with constant emission slit ( 10 nm ) and excitation slit (5 nm ) with excitation wavelength 390 nm .


Figure S11. ECD (left) and absorption (right) spectra of heptahelicenic derivatives $(P)$ - and (M)-3a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


Figure S12. Normalized emission spectra $\left(10^{-4} \mathrm{M}\right)$ of $(P)$ - (black) and $(M)$-3a (red) in dichloromethane using $\lambda_{\text {exc }}=390 \mathrm{~nm}$

## X. Circularly Polarized Luminescence (CPL) measurements of (P)- and (M)-3a

The circularly polarized luminescence (CPL) measurements were performed using a home-built CPL spectrofluoropolarimeter. The samples were excited using a $90^{\circ}$ geometry with a Xenon ozone-free lamp 150 W LS. The following parameters were used: emission slit width $\approx 2 \mathrm{~mm}$, integration time $=4 \mathrm{sec}$, scan speed $=50 \mathrm{~nm} / \mathrm{min}$, accumulations $=5$. The concentration of all the samples was $\sim 10^{-5} \mathrm{M}$. Excitation of the samples were performed at 360 nm .


Figure S13a. CPL (upper) and emission (bottom) spectra of heptahelicenic derivatives $(P)$ - and $(M)$ 3a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


Figure S13b. $g_{\text {lum }}$ spectra for $(P)$ and $(M)-3 \mathrm{a}$.



Table S8. Energies of intermediates

| Isomer | Total energy [a.u.] | Relative energy WRT P0 [kJ/mol]/ <br> Boltzmann ratio WRT P0 at 298.15 K |
| :---: | :---: | :---: |
| P0 | -4245.97803323 | $0.000 / 100.000 \%$ |
| P1 | -4245.97180006 | $16.365 / 0.136 \%$ |
| P2 | -4245.96999825 | $21.096 / 0.020 \%$ |
| P3 | -4245.97656023 | $3.867 / 17.400 \%$ |
| M0 | -4245.92993924 | $126.271 / 0.000 \%$ |

## Experimental

Computational studies were carried out using Gaussian16, Revision C.01. ${ }^{9}$ All computations utilized the M11 functional, ${ }^{10}$ the LANL2DZ core potential ${ }^{11}$ for the Rh atoms and the 6$31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set ${ }^{12}$ for all other atoms. Geometry optimizations utilized Hessians estimated prior the first optimization steps.

[^5]

Figure S14. Drawing of P0-( $P, S, R, S_{\text {ligand })}$-isomer.


Figure S15. Drawing of P1- $\left(P, S, S, S_{\text {ligand })}\right.$-isomer.


Figure S16. Drawing of P2-( $P, R, S, S_{\text {ligand })}$-isomer.


Figure S17. Drawing of P3-( $P, R, R, S_{\text {ligand })}$-isomer.


Figure S18. Drawing of M0-( $P, S, R, S_{\text {ligand })}$-isomer.

XII Copies of 1H and 13C NMR spectra
1-ethynyl-2-naphthaldehyde (S2a).



## 1,1'-(Ethyne-1,2-diyl)bis(2-naphthaldehyde) (S3a).



## 1-bromo-7-methoxy-2-naphthaldehyde (S1b).

(

 $\underbrace{\mathrm{H}_{2} \mathrm{O}}$ 1



1-ethynyl-7-methoxy-2-naphthaldehyde (S2b).


## 1-((2-formylnaphthalen-1-yl)ethynyl)-7-methoxy-2-naphthaldehyde (S3b).



1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(4-methoxyphenyl)prop-2-yn-1-ol) (1a).





1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-phenylprop-2-yn-1-ol) (1b).


[^6]

1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-ol) (1c).




## 1,1'-(ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(4-chlorophenyl)prop-2-yn-1-ol)

 (1d).


1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(3-(trimethylsilyl)prop-2-yn-1-ol) (1e).








1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(prop-2-yn-1-ol) (1f).


1,1'-(Ethyne-1,2-diylbis(naphthalene-1,2-diyl))bis(hex-2-yn-1-ol) (1g).


$\underbrace{\text { NNNNNirinirinioiolioso }}$








3-(4-chlorophenyl)-1-(1-((2-(3-(4-chlorophenyl)-1-hydroxyprop-2-yn-1-yl)-7-methoxynaphthalen-1-yl)ethynyl)naphthalen-2-yl)prop-2-yn-1-ol (1h).



1,1'-(ethyne-1,2-diylbis(7-methoxynaphthalene-1,2-diyl))bis(3-(4-chlorophenyl)prop-2-yn-1-ol) (1i).


| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

( $P$ )-8,9-Bis(4-methoxyphenyl)benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ((P)2a).

$(P)$-8,9-Diphenylbenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(P)$-2b).


( $P$ )-8,9-Bis(4-(trifluoromethyl)phenyl)benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10dione ( $(P)-2 c)$.

$(P)$-8,9-bis(4-chlorophenyl)benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(P)$-2d).




| 148 | 146 | 144 | 142 | 140 | 138 | 136 | 134 | 132 | 130 | 128 | 126 | 124 | 122 | 120 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


(P)-Benzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(P)$-2f).


(P)-8,9-Dipropylbenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(P)$-2g).

 $\iint$


| J. 0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | $\stackrel{1}{0.5}$ | 0.0 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\underbrace{2}$ |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |

( $P$ )- 8,9-bis(4-chlorophenyl)-2-methoxybenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10dione ( $(P)-2 h)$.


(P)-8,9-bis(4-chlorophenyl)-2,15-dimethoxybenzo[c]benzo[6,7]indeno[1,2-g]fluorene-7,10-dione ( $(\boldsymbol{P})$-2i).

$\underset{\substack{\text { i } \\ i}}{ }$


ome


(P)-8',9'-Bis(4-methoxyphenyl)dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]-fluorene-10',9' '-fluorene] ((P)-3a).


(P)-8',9'-diphenyldispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'fluorene] ( $(\boldsymbol{P})$-3b).


( $P$ )-8', $\mathbf{9}^{\prime}$-bis(4-(trifluoromethyl)phenyl)dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9' '-fluorene]

(P)-8',9'-bis(4-chlorophenyl)dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene]
( $(P)$-3d).


(P)-Dispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene] ((P)3f).



(P)-8',9'-dipropyldispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'fluorene] ( $(\boldsymbol{P})-\mathbf{3 g})$.


(P)-8',9'-bis(4-chlorophenyl)-2'-methoxydispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9'-fluorene] ( $(P)$-3h).


(P)-8',9'-bis(4-chlorophenyl)-2',15'-dimethoxydispiro[fluorene-9,7'-benzo[c]benzo[6,7]indeno[1,2-g]fluorene-10',9''-fluorene] ((P)-3i).




[^7]



$\begin{array}{lllllllllllllllll}150 & 148 & 146 & 144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118\end{array}$ $\qquad$



[^0]:    ${ }^{1}$ D. Peña, D. Pérez, E. Guitián, L. Castedo, Eur. J. Org. Chem. 2003, 1238-1243.
    ${ }^{2}$ D. Schweinfurth, M. Zalibera, M. Kathan, C. Shen, M. Mazzolini, N. Trapp, J. Crassous, G. Gescheidt, F. Diederich, J. Am. Soc. Chem. 2014, 136, 13045-13052.

[^1]:    ${ }^{3}$ R. P. Kaiser, D. Nečas, T. Cadart, R. Gyepes, I. Císařová, J. Mosinger, L. Pospíšil, M. Kotora, Angew. Chem. Int. Ed. 2019, 58, 17169-17174.

[^2]:    ${ }^{4}$ I. Thiel, M. Horstmann, P. Jungk, S. Keller, F. Fisher, H.-J. Drexler, D. Heller, M. Hapke, Chem. Eur. J., 2017, 23, 17048-17057.

[^3]:    ${ }^{5}$ Z. Jiang, H. Yao, Z. Zhang, C. Yang, Z. Liu, Y. Tao, J. Qin, D. Ma; Org. Lett. 2009, 11 2607-2610.

[^4]:    ${ }^{6}$ SHELXT: G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
    ${ }^{7}$ A. L. Speck, Acta Cryst. 2015, C71, 9-18-
    ${ }^{8}$ S. Parsons, H. D. Flack, T. Wagner, Acta Cryst. 2013, B69, 249-259

[^5]:    ${ }^{9}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
    ${ }^{10}$ R. Peverati, D. G. Truhlar, "Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation," J. Phys. Chem. Lett. 2011, 2, 2810-2817.
    ${ }^{11}$ P. J. Hay, W. R. Wadt, "Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg," J. Chem. Phys. 1985, 82, 270-283.
    ${ }^{12}$ R. Ditchfield, W. J. Hehre, J. A. Pople, "Self-Consistent Molecular Orbital Methods. 9. Extended Gaussiantype basis for molecular-orbital studies of organic molecules," J. Chem. Phys. 1971, 54, 724.

[^6]:    

[^7]:    Acetone

