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Abstract

A multi-scale model is developed for modeling of plastic deformation and induced damage

in rock-like materials containing pores and mineral inclusions. An analytical macroscopic

plastic yield criterion is first determined from three steps of homogenization. This criterion

explicitly takes into account respective effects of two populations of pores and mineral in-

clusions at three different scales. The accuracy of criterion is evaluated by comparisons with

numerical results issued from direct simulations on representative volume elements. Then,

an induced damage evolution law is defined to describe the onset and growth of micro-cracks

inside the solid matrix of materials. The induced damage affects both elastic and strength

properties of the solid matrix and its evolution is coupled with the plastic deformation. The

performance of the proposed model is first assessed through a series of numerical examples,

clearly showing influences of pores and inclusions on macroscopic responses of heterogeneous

materials. Finally, the proposed model is applied to describe mechanical behaviors of clayey

rocks. Comparisons between numerical results and experimental data are presented.

Keywords: Plasticity, Damage, Porosity, Mineral inclusions, Multi-scale, Homogenization,

Rock-like materials

1. Introduction

Rock-like materials are natural heterogeneous continua with different kinds of multi-

scale heterogeneities. Their macroscopic mechanical and physical properties are inherently

affected by the presence and evolution of those heterogeneities. Experimental studies and nu-

merical simulations have revealed empirical correlations of several mineralogical and textural

characteristics [1, 2, 3, 4, 5, 6], and porosity [7, 8, 9, 10, 11] with the physical and mechanical

properties of rocks. As a representative example, hard clayey rocks are specifically studied in

this work. This class of rocks are widely involved in different engineering fields such as civil
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and mining engineering, oil industry and especially unconventional hydrocarbon production,

as well as geological disposal of nuclear waste. For instance, the Callovo-Oxfordian (COx)

claystone is selected as the geological barrier of underground disposal of radioactive waste

in France. Based on mineralogical and micro-structural analyses performed on the COx

claystone [12, 13] and other clayey rocks [14], heterogeneities are embedded at several scales.

Basically, at the mesoscopic scale, mineral grains (carbonate, quartz, kerogen) are embedded

in a nearly continuous clay matrix. At the microscopic scale, there is a distribution of large

pores and fine mineral particles. Finally, at the nanoscopic scale, small pores are embedded

inside a solid phase composed of clay particle. As a first approximation, two populations of

pores should be considered ranging from 1nm to 100µm [15]. The objective here is to develop

a multi-scale model for modeling plastic deformation and induced damage in clayey rocks by

considering two populations of pores and mineral inclusions at three representative scales.

The relationships between mineral compositions, textural parameters and macroscopic

unconfined compressive strength have firstly been established by simple regression analyses.

On the other hand, in the framework of micro-mechanics, a series of research works have

been devoted to establishing analytical macroscopic strength criteria by using homogeniza-

tion theories of heterogeneous materials and by considering mineral inclusions and pores

at different scales [16, 17, 18, 19, 20]. The effective strength can be explicitly determined

as a function of porosity and inclusions volume fraction. On the other hand, in order to

consider geometrical effects (size and shape) of inclusions and pores, analytical and numer-

ical methods are combined. For instance, closed-form solutions are used at the microscopic

scale [21, 22] while computational homogenization methods are employed at the mesoscopic

scale such as Finite Element Method [23, 24, 25]) and Fast Fourier Transform technique

[26, 27, 9, 10]. With these methods, it is also possible to account for interactions between

different kinds of heterogeneities at the same scale. Further, extended incremental meth-

ods are developed for describing full mechanical responses of rock-like materials containing

mineral inclusions and pores [28].

However, most previous studies have mainly focused on the estimation of macroscopic

strength or plastic behavior. In rock-like materials, damage due to micro-cracking is another

important process to consider. In [29], a state of the art was presented on the strategies

available to relate the micro-scale of crystals, cracks and pores to the scale of a Representative

Elementary Volume. A high number of phenomenological plastic damage models have also

been proposed in the framework of thermodynamics and continuum damage mechanics [30,

31, 32, 33, 34, 35]. The damage evolution is generally driven by stored elastic and plastic

energy. But the physical origin of damage at the microscopic scale is not clearly identified.

At the same time, micro-mechanical damage models have also been developed with the help
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of linear homogenization methods for elastic brittle materials [36, 37, 38, 39]. These models

are able to consider unilateral effects related to crack closure, damage-friction coupling,

induced anisotropy [40, 41, 42, 43]. Some studies are focused on the nonlocal damage or

gradient damage model [44, 45, 46, 47, 48], which provide an objective description of strain

localization behavior. However, the influences of multi-scale characters of the rock-like

materials such as pores and inclusions still require much more effort to take into account,

since these characters play important roles on the macroscopic mechanical behavior.

The objective of the present study is to develop a micro-mechanics based constitutive

model for plastic deformation and damage evolution in rock-like materials containing two

populations of pores and mineral inclusions at three different scales. An analytical plastic

yield criterion is first established by using a three-step homogenization procedure based on

a modified secant method [22, 28]. A specific plastic hardening law is also proposed by

combining the evolutions of porosity and frictional coefficient of the solid matrix. Further,

a time-dependent damage law is introduced to describe the degradation of both the elastic

and plastic properties of solid matrix. The proposed model is assessed through a series of

numerical examples and comparisons with experimental data obtained on typical claystone

and shale with different mineral compositions.

2. Microstructure and elastic properties of materials

In this study, we consider materials characterized by three representative scales, such as

claystone and cement-based materials. At the mesoscopic scale, mineral inclusions (quartz

and calcite grains, aggregates etc. of several hundreds of micrometers) are embedded into a

matrix continuum (clay matrix or cement paste for example). At the microscopic scale, large

pores (inter-particle pores of a few hundreds of nanometers to micrometers) are distributed

inside the matrix phase. At the nanometric scale, small pores (intra-particle pores of a few

nanometers) are found. Therefore, the typical representative volume element(RVE) of those

materials can be characterized by three scale as shown in Fig.1. It is needed to homogenize

the porous medium at the first two scales and the inclusion-reinforced composite material at

the last scale. A three-step upscaling method should be developed. For the sake of simplicity,

it is here assumed that all the inclusions and pores are of spherical form. Geometrical effects

of pores and inclusions will be investigated in an extended study. One denotes ω as the

total volume of the RVE, ωi the volume of inclusions at the level 2, ωm the volume of matrix

phase at the level 2, ω1 the volume of large pores at the level 1, ω0 the volume of small pores

at the level 0, and ωs the volume of solid grains at the level 0. Thus, the volume fraction of

inclusions ρ, the porosity of large pores φ at the level 1, the porosity f of small pores at the
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level 0 and the total porosity Γ at the macroscopic scale can be given as:

ρ =
ωi

ω
, φ =

ω1

ωm
=

ω1

ωs + ω1 + ω0
, f =

ω0

ωs + ω0

Γ =
ω0 + ω1

ω
= [ f (1 − φ) + φ](1 − ρ)

(1)

Inclusions Inter-particle pores Intra-particle pores

Porous matrix Particle

(a) Level 2 (b) Level 1 (c) Level 0

Figure 1: Representative volume element of studied rock-like materials

The effective macroscopic elastic properties of material are obtained by making three

steps of homogenization with the standard [49] scheme. The effective elastic properties of

the porous matrix (ωs+ω0) at the level 0, denoted as κm0 and µm0, are given by the first step

of homogenization:

κm0 =
4(1 − f )κsµs

4µs + 3 f κs
; µm0 =

(1 − f )µs

1 + 6 f
κs + 2µs

9κs + 8µs

(2)

where κs and µs are the bulk and shear muduli of the solid phase. By making a second step

of homogenization, the effective elastic properties of the porous matrix (ω1+ωs+ω0) at the

level 1 can determined and denoted as κpm, µpm:

κpm =
4(1 − φ)κm0µm0

4µm0 + 3φκm0
; µpm =

(1 − φ)µm0

1 + 6φ
κm0 + 2µm0

9κm0 + 8µm0

(3)

Finally, the third step of homogenization allows the estimation of macroscopic elastic prop-

erties of heterogeneous materials by taking into account the effect of inclusions at the level

2:

κhom =

(1−ρ)κpm

3κpm+4µpm +
ρκi

3κi+4µpm

(1−ρ)
3κpm+4µpm +

ρ

3κi+4µpm

; µhom =

(1−ρ)µpm

µpm(9κpm+8µpm)+6µs(κpm+2µpm) +
ρµi

µpm(9κpm+8µpm)+6µi(κpm+2µpm)
(1−ρ)

µpm(9κpm+8µpm)+6µpm(κpm+2µpm) +
ρ

µpm(9κpm+8µpm)+6µi(κpm+2µpm)

(4)

3. Formulation of plastic damage model

3.1. Macroscopic plastic yield criterion

It is assumed that the solid phase at the level 0 is a pressure sensitive material and obeys

to the standrad Drucker-Prager type yield criterion:

F s = σ̃d + T (σ̃m − h) ≤ 0 (5)
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in which σ̃ denotes the stress tensor of the solid phase. σ̃m = trσ̃/3 is the mean stress. σ̃d

is the equivalent shear stress defined as σ̃d =
√
σ̃′ : σ̃′, with σ̃′ being the deviatoric part of

stress tensor. The parameter T denotes the frictional coefficient and h the yield stress under

hydrostatic tension of the solid phase.

As illustrated in Figure 1, the porous matrix is contains two populations of pores at

two different scales. Therefore, two steps of non-linear homogenization are also needed to

determine its effective plastic yield criterion. By using a modified secant method in [22], the

elastic plastic yield criterion has been derived to consider the effects of small pore f and the

dilatation of the solid phase at the level 0:

F p =
1 + 2 f /3

T 2
˜̃σ2

d + (
3 f
2T 2 − 1) ˜̃σ2

m + 2(1 − f )h ˜̃σm − (1 − f )2h2 ≤ 0 (6)

where ˜̃σd and ˜̃σm represent the equivalent shear stress and mean stress at the scale level

0. This criterion (6) explicitly depends on the small porosity f and the pressure sensitivity

parameter T of the solid phase. Based on this criterion and again by using the modified

secant method in [28], the effective plastic yield criterion can be obtained considering the

influence of large pore φ at the level 1:

Fmp = Aσ2
d + Bσ2

m + Cσm − D ≤ 0 (7)

with the following coefficients:

A =
1 + 2 f /3

T 2 (
6T 2 − 13 f − 6
4T 2 − 12 f − 9

φ + 1), B =
3/2 + f

T 2 φ +
3 f
2T 2 − 1

C = 2(1 − f )(1 − φ)h, D = (1 − φ)2(1 − f )2h2

(8)

In this criterion, σm and σd denote the mean and equivalent shear stresses at the scale level

1.

With the criterion (7) in hand, the objective here is now to determine an analytical

macroscopic plastic yield criterion of composite material at the level 2 by considering the

influence of rigid inclusions by a third step of homogenization. To this end, the modified

secant method is again used and the main steps are presented bellow. By assuming an

associated plastic flow rule, the local plastic strain rate of porous matrix is determined by:

d = λ̇
∂Fmp

∂σ
=

1
A

dd

2σd
(2Aσ′ +

2Bσm

3
1 +

C
3

1) (9)

in which dd =
√

d′ : d′ and d′ = d − dm1. The mean plastic strain rate dm is defined by:

dm = trd/3 =
1
A

dd

2σd
[
2σm

3
B +

C
3

] (10)
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Accordingly the equivalent deviatoric strain rate is equal to:

dd

σd
=

√
A2d2

v + ABd2
d

BD + C2

4

(11)

Hence the support function defined as πmp = σ : d can be written in the following form:

πmp = −
C
2B

dv +

√
4BD + C2

4AB

√
A
B

d2
v + d2

d (12)

where dv = trd = 3dm is the plastic volumetric strain rate in the porous matrix at the level

2.

The local stress tensor σ is derived from the support function πmp by:

σ =
∂πmp

∂d
= 2µmpd′ + kmpdv1 + σp1 (13)

with the following secant bulk and shear moduli and an isotropic pre-stress tensor:

kmp =
A
B

N
M
, 2µmp =

N
M
, σp = −

C
2B

M =

√
A
B

d2
v + d2

d, N =

√
4BD + C2

4AB

(14)

The secant moduli in (14) are non-uniform due to the non-uniform field of local strain rate

d inside the porous matrix. Following the work in [22], the values of secant moduli are

calculated in terms of an effective stain rates de f f
d and de f f

v defined as follows:

de f f
v =

√
〈d2

v〉ωm , de f f
d =

√
〈d2

d〉ωm (15)

Therefore, the local stress-stain relations can be written as:

σ = Cmp(de f f
v , de f f

d ) : d + σp
eq1; Cmp(de f f

v , de f f
d ) = 3kmp

eq J + 2µmp
eq K; σp

eq = σp (16)

Owing to the assumption of plastically rigid inclusions, the macroscopic pre-stress simply

reads Σp = σ
p
eq. Considering the effective free energy function of the composite with the

form of:

W =
1
2

D : Chom : D + ΣptrD (17)

the corresponding state equations can be deduced as:

Σm = khom(Dv + Σp); Σd = 2µhomDd (18)
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Following the study of [50], the macroscopic free energy in the RVE is associated with the

effective strain rate of porous matrix as follows:

1
2

(1 − ρ)de f f
v

2
=

1
2
∂khom

∂kmp
eq

D2
v +

∂µhom

∂kmp
eq

D2
d

1
2

(1 − ρ)de f f
d

2
=

1
2
∂khom

∂µ
mp
eq

D2
v +

∂khom

∂µ
mp
eq

D2
d

(19)

By combing (15), (14), (18) and (19), one gets the following macroscopic plastic yield crite-

rion of the composite material:

F =
A +

2Bρ
3

1 +
3ρ
2 −

5ρ
6( A

B +1)

Σ2
d + BΣ2

m + CΣm − (D +
4BD + C2

6A
ρ) ≤ 0 (20)

A first assessment of this criterion can be made. One first considers the particular case of

f = 0, φ = 0 and ρ = 0. The macroscopic criterion reduces to the standard Drucker-Prager

criterion of the solid phase at the scale level 0. When the material contains one population

of pores either at the Level 0 or Level 1 (ρ = 0, and f = 0 or φ = 0), one recovers the

plastic criterion given by [22]. For the case of two populations of pores ( f , 0, φ , 0 and

ρ = 0), this criterion is consistent with that proposed by [28] and given in (7). In Fig.2, one

shows the yield surfaces of a material with two populations of pores but without inclusions.

For a given total porosity of Γ = 15%, different ratios of two porosities are considered

( f /φ = 0, 0.2, 2,∞). It is seen that the compressive yield stress increases when the small

porosity f decreases while the tensile yield stress is nearly insensitive to the ratio f /φ. In

Fig.3, for the same value of total porosity Γ = 15%, the volume fraction of inclusions is

taken as ρ = 20%. Again, four different values of the ratio f /φ are used and one confirms

the result given in Fig.2 about the effect of f /φ on the yield stress. However, for the same

value of total porosity, the macroscopic yield stresses obtained in Fig.3 are systematically

smaller than those in Fig.2. Indeed, due to the presence of mineral inclusions, the volume of

matrix phase is reduced and the values of local porosities f and φ are increased. This leads

to the reduction of macroscopic yield stresses. Finally, for the given values of two porosities,

the influence of inclusion volume fraction is studied and presented in Fig.4. It is observed

that the increase of ρ mainly enhances the macroscopic yield stress for deviatoric loading

paths.
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4
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 f  = 2 . 6 % ,    φ=12.8%
 f  = 1 0 . 4 % ,  φ=5. 2 %
 f  = 1 5 % ,     φ=0%

 

Σ m ( M P a )

Σ 1 1 - Σ 3 3 ( M P a )

Figure 2: Macroscopic yield surfaces of materials with two populations of pores for different

values of f /φ : Γ = 15%, ρ = 0.0%,T = 0.3, h = 10MPa

- 1 4 - 1 2 - 1 0 - 8 - 6 - 4 - 2 0 2 4

- 4
- 3
- 2
- 1
0
1
2
3
4  f  = 0 . 0 % ,      φ=18.75 %

  f  = 3 . 2 1 % ,    φ=16.05 %
  f  = 13.07 % ,  φ=6 . 5 3 %
  f  = 1 8 . 7 5 % ,  φ=0.0%

Σ 1 1 - Σ 3 3 ( M P a )

Σ m ( M P a )

Figure 3: Macroscopic yield surfaces of materials with two populations of pores and mineral

inclusions for different values of f /φ : Γ = 15%, ρ = 20%,T = 0.3, h = 10MPa

8



- 1 2 - 1 0 - 8 - 6 - 4 - 2 0 2 4

- 4
- 3
- 2
- 1
0
1
2
3
4 ρ=0.0%

 ρ=10%
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Figure 4: Macroscopic yield surfaces of materials with two populations of pores and inclu-

sions for different inclusion volume fractions: f = 13.07%, φ = 6.53%,T = 0.3, h = 10MPa

3.2. Evolution of porosity and hardening law

As defined above, the macroscopic plastic yield criterion is a function of two porosities.

During a loading history, there is an evolution of those porosity. A decrease of porosities

generally leads to an increase of yield stress and then a plastic hardening process, while an

increase of porosities leads to a material softening. These phenomena have been observed in

experimental studies of porous rocks [51, 52]. Therefore, it is needed to define the evolution

laws for two porosities, allowing to describing the plastic hardening or softening. In this

study, the nucleation of new pores is not considered. According to the first term of equation

(1), the evolution rates of two porosities are given by:

ḟ = d(
ω0

ωs + ω0
) = (1 − f )(

dωs + dω0

ωs + ω0
−

dωs

ωs
) (21)

φ̇ = d(
ω1

ωs + ω0 + ω1
) = (1 − φ)(

dωm

ωm
−

dωs + dω0

ωs + ω0
) (22)

In these relations, dωs
ωs

corresponds to the volumetric strain rate of solid phase (d̃v) while
dωs+dω0
ωs+ω0

to the volumetric strain rate of the porous matrix at the scale level 1 ( ˜̃dv). Further,
dωm
ωm

denotes the volumetric strain rate of the porous matrix at the scale level 2 (dv). It is

now assumed that the plastic strain of the solid phase is described by an associated flow rule

with the Drucker-Prager type yield function defined by (5). The rate of plastic strain d̃ is

thus calculated by:

d̃ = Λ̇
∂F s

∂σ̃
; d̃′ = Λ̇

σ̃′

σ̃d
; d̃m =

1
3

Λ̇T (23)
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where d̃′ is the deviatoric part of plastic strain rate tensor with d̃ = d̃′ + d̃mδ. Λ̇ is the

non-negative plastic multiplier. The equivalent plastic strain rate ε̇ p of the solid phase takes

the following form:

ε̇ p =
√

d̃′ : d̃′ = Λ̇ (24)

By applying the energy equivalence condition for upscaling methods [21], it is possible to

associate the macroscopic plastic strain rate with that of the solid phase, that is:

Σ : Dp =
1
ω

∫
ωs

σ̃ : d̃dV =
1
ω

∫
ωs

ε̇ p(σ̃d + T σ̃m)dV = (1 − ρ)(1 − φ)(1 − f )Thε̇ p (25)

Therefore the equivalent strain rate of the solid phase ε̇ p is calculated by:

ε̇ p =
Σ : Dp

(1 − ρ)(1 − φ)(1 − f )Th
(26)

On the other hand, the energy equivalence condition can also be applied to the porous

matrix at the scale level 0 described by the yield criterion (6) so that:

Σ : Dp =
1
ω

∫
ωs+ω1

˜̃σ : ˜̃ddV =
1
ω

∫
ωs+ω1

T 2

1 + 2
3 f

˜̃dd

2 ˜̃σd
[(1 − f )2h2 − 2(1 − f )h ˜̃σm]dV (27)

One can obtain:
˜̃dd

˜̃σd
=

(1 +
2 f
3 )

T 2

2Σ : Dp

(1 − ρ)(1 − φ)[(1 − f )2h2 − 2(1 − f )h ˜̃σm]
(28)

˜̃dv =
( 3 f

2T 2 − 1) 2Σm
(1−ρ)(1−φ) + 2(1 − f )h

(1 − f )2h2 − 2(1 − f )h Σm
(1−ρ)(1−φ)

Σ : Dp

(1 − ρ)(1 − φ)
(29)

Further, according to the relations (23) and (24), the plastic volume strain rate of the solid

phase is related to the equivalent plastic strain rate by d̃v = T ε̇ p. Finally, the evolutions of

porosities in (21) can be determined from the following kinematical compatibility conditions:

ḟ = (1 − f )( ˜̃dv − T ε̇ p) (30)

φ̇ = (1 − φ)(
trDp

1 − ρ
− ˜̃dv) (31)

However, as it is well shown below, the evolutions of porosities alone cannot fully describe

the plastic hardening process in porous rock-like materials. It is generally found that the

local strength parameters of the solid phase such as frictional coefficient and cohesion evolve

during plastic deformation process [53]. In this study, it is assumed that the frictional

coefficient of the solid phase T̄ is a function of the equivalent plastic strain:

T̄ = Tm − (Tm − T0)e−bε p
(32)

T0 and Tm are the initial and asymptotic values of T̄ . The parameter b controls the plastic

hardening rate.
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3.3. Evolution of damage

The induced damage in rock-like materials is generally related to the evolution of their

micro-structure [30, 54], and such an evolution is a time dependent process, which would be

induced by mechanical or physical and chemical interactions, for instance, the microcracking

[55], weathering-induced [56], chemical corrosion [57, 58] and so on. As a consequence, we

introduce here a scalar damage variable ζ to represent the evolution state of micro-structure.

It is assumed that there exists an asymptotic state of micro-structure evolution which is

represented by a stationary value of the damage variable denoted as ζ̄ ∈ [0, 1]. As for most

chemical reaction processes, the rate of evolution is governed by the distance between the

current value ζ and stationary values ζ̄. Thus one gets:

ζ̇ = γ(ζ̄ − ζ), ζ ∈ [0, ζ̄] (33)

where γ is a parameter that controls the rate of micro-structure evolution. By using Laplace

transform and convolution theorem and taking ζ(0) = 0, the damage variable ζ can be

expressed in the following integral form:

ζ(t) =

∫ t

0
γζ̄(τ)e−γ(t−τ)dτ (34)

Due to the time-dependency of the stationary value ζ̄(τ), it is generally delicate to solve

this integral equation. To this end, a simplified explicit scheme by using the rectangular

integration rule has been proposed in [59]. In this study, that explicit scheme is modified by

using a trapezoid rule to get a more accurate estimate. For a given time increment ∆tn+1,

the variable ζ at the time step tn+1 is calculated by:

ζn+1 =
γ

2
ζ̄n+1∆tn+1 + (ζn +

γ

2
ζ̄n∆tn+1)e−γ∆tn+1 (35)

Further, in the present study, the stationary value of microstructure evolution ζ̄ is taken as

the ratio of the current value of friction coefficient and its asymptotic value as defined in

(32) so that:

ζ̄ =
T̄
Tm

(36)

On the other hand, the evolution of micro-structure leads to degradation of both elastic

and plastic properties of materials. It is here assumed that the micro-structure degradation

mainly occurs in the solid phase which mainly induced by the cracking behavior during the

deformation process. From the point of micromechanics, sliding wing cracks seem to be the

principal propagation mode of microcracks under compressive stresses [60]. Due to roughness

of crack surfaces in geomaterials, crack sliding may induce an associated aperture which is
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the origin of volumetric dilatancy in these materials [61]. Therefore, a direct relationship

is established to consider the influence of microcracking or frictional sliding damage on the

macroscopic mechanical behavior though the degradation of elastic and friction parameters

of the solid phase. Similar consideration can also be found in [62, 63]. Therefore, the elastic

properties and the frictional coefficient are functions of the damage variable ζ. For the sake

of simplicity, the following linear relations are adopted:

kd = (1 − αζ)ks, µd = (1 − αζ)µs (37)

and

T = (1 − αζ)T̄ (38)

where α is a parameter controlling the degradation rate of elastic and plastic properties.

3.4. Macroscopic plastic damage constitutive relations

By including plastic deformation and damage evolution, the incremental macroscopic

constitutive relations can be expressed as:

dΣ = Chom
d : (D − Dp) +

∂Chom
d

∂ζ
: (D̃ − D̃p)dζ (39)

where D̃ and D̃p are the accumulated total strain and plastic strain tensors. The accumulated

elastic strain tensor is given by D̃e = D̃ − D̃p. The fourth order tensor Chom
d denotes the

current macroscopic elastic stiffness of damage material with respect to damage variable ζ.

By adopting an associated flow rule, the macroscopic plastic strain rate is given by:

Dp = dλ
∂F
∂Σ

(40)

The plastic multiplier dλ is determined by the consistency condition:

dF =
∂F
∂Σ

: dΣ +
∂F
∂ f

d f +
∂F
∂φ

dφ +
∂F
∂T

(
∂T
∂ε p : dε p +

∂T
∂ζ

dζ) = 0 (41)

Substituting (26), (29), (30), (31), (39) and (40) for (41), one obtains:

dλ =

∂F
∂Σ

: Chom
d : D + ∂F

∂Σ
: ∂Chom

d
∂ζ

: D̃edζ + ∂F
∂T

∂T
∂ζ

dζ

∂F
∂Σ

: Chom : ∂F
∂Σ
− ∂F

∂ f (1 − f )[ ˜̃d f − T ˜̃dp] − ∂F
∂φ

(1 − φ)(
∂F
∂Σm
1−ρ −

˜̃d f ) − ∂F
∂T

∂T
∂ε p

˜̃dp

(42)

with

˜̃d f =
( 3 f

2T 2 − 1) 2Σm
(1−ρ)(1−φ) + 2(1 − f )h

(1 − f )2h2 − 2(1 − f )h Σm
(1−ρ)(1−φ)

Σ : ∂F
∂Σ

(1 − ρ)(1 − φ)
(43)

˜̃dp =
Σ : ∂F

∂Σ

(1 − ρ)(1 − φ)(1 − f )Th
(44)
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3.5. Numerical implementation

With these relations in hand, the proposed plastic damage constitutive model can be

implemented in a standard finite element code by using an appropriate return-mapping

scheme. In the present work, only instantaneous mechanical problems are taken into account.

Then the whole loading process is divided into a limit numbers of steps. The integration

algorithm at time interval [tk−1, tk] can be summarized as follows:

(1) At the end of the time step tk−1, the current values of stress and strain as well as

those of internal variables such as accumulated equivalent plastic strain and damage

are known: Σk−1, D̃k−1, ε
p
k−1, ζ̄k−1, ζk−1, fk−1, φk−1, Tk−1.

(2) Given an strain increment ∆D̃ in time increment ∆tk, a new trial stress can be deter-

mined by Σtr
k,0 = Σtr

k−1 + ∆Σk at time step tk, with tk = tk−1 + ∆tk.

(3) Set j as the loop iterate step of return-mapping scheme, and impose the initial values

of ζ̄k,0 = ζ̄k−1, ε
p
k,0 = ε

p
k−1, fk,0 = fk−1, φk,0 = φk−1, Tk,0 = Tk−1.

(4) Using Eq.(35) to calculate the damage variable ζk,0 at initial iterative step .

(5) Calculate the plastic criterion F(Σtr
k, j, fk, j, φk−1, ε

p
k, j, ζk, j) in Eq.(20). If F(Σtr

k , fk, j, φk, j, ε
p
k, j, ζk, j) ≤

0, it has Σk = Σtr
k, j, then goto step (9).

(6) If F(Σtr
k , fk, j, φk−1, ε

p
k, j, ζk, j) > 0, start the loop to determine the multiplier though Eq.(42),

then calculate the plastic strain D̃k, j and equivalent plastic strain rate ε̇ p
k, j by Eq.(26).

(7) Update the internal variables ε p
k, j+1, ζ̄k, j+1, fk, j+1, φk, j+1, Tk, j+1, the stress tensor Σk, j+1

and damage ζk, j+1.

(8) Set j = j + 1, then goto step (5) until F(Σtr
k , fk, j, φk−1, ε

p
k, j, ζk, j) ≤ 0 and exit the loop.

(9) One can get the internal variables ζ̄k = ζ̄k, j+1, ε
p
k = ε

p
k, j+1, fk = fk, j+1, φk = φk, j+1,

Tk = Tk, j+1, the stress tensor Σk = Σk, j+1 and the damage variable ζk = ζk, j+1 at time

step tk. Then enter the next loading time step tk+1.

Though above integration algorithm, the plastic and damage behavior of multi-scale

rock-like materials can be well determined. This will be presented and discussed in detail in

the following section.
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4. Numerical assessment of the proposed model

4.1. Assessment of macroscopic yield criterion

The accuracy of the analytical macroscopic yield criterion (20) is first assessed by com-

paring the predicted yield stresses with those obtained by the Fast Fourier Transform (FFT)

based numerical homogenization method. The basic principle and numerical implementation

of FFT-based method can be found in [64, 65] for metal materials and in [9, 10] for rock-like

materials. Due to the fact that the effects of inclusion size, distributions and shape have

very slightly influences on the plastic yield stress [9], for simplicity, the cubic unit cell with

one centered spherical inclusion embedded in a double porous matrix is adopted for all the

FFT-based simulations. It is assumed that the double porous matrix obeys the plastic yield

criterion in Eq.(7) with a perfect elasto-plastic behavior. This criterion can well describe

the homogenized mechanical properties of scale 0 and scale 1 for materials with two popula-

tions of pores embedded in a DP type matrix. Then the inclusion is assumed to be elastic,

thus the macroscopic behavior can be determined by using the FFT-based homogenization

method. Within the FFT-based framework and the analytical homogenization criterion, we

show the results of yield stress predicted by these two methods for different values of inclu-

sion volume fraction and porosity in Fig.5 and Fig.6. As shown in these figures, for the given

values of two porosities, the increase of inclusion volume fraction mainly enhances the yield

strength with low and middle triaxiality. For a given value of inclusion volume fraction, the

macroscopic yield strength is reduced by the increase of one of both porosities for the whole

loading domain including hydrostatic tension and compression. For all the cases shown,

there is a very good concordance between the analytical predictions and numerical results.

- 1 0 - 8 - 6 - 4 - 2 0 2 4

- 5
- 4
- 3
- 2
- 1
0
1
2
3
4
5

 

Σ m ( M P a )

 ρ=0.1- A n a l y t i c a l  C r i t e r i o n   ρ=0.1- F F T
 ρ=0.2- A n a l y t i c a l  C r i t e r i o n   ρ=0.2- F F T
 M a t r i x

Σ 1 1 - Σ 3 3 ( M P a )

Figure 5: Comparison of macroscopic yield strength between the analytical predictions and

FFT-based numerical results for different values of inclusion volume fraction: f = 0.1, φ =

0.1,T = 0.3, h = 20 MPa
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Figure 6: Comparison of macroscopic yield strength between the analytical predictions and

FFT-based numerical results for different values of porosities: ρ = 0.1,T = 0.3, h = 20 MPa

4.2. Assessment of macroscopic response

By using the plastic hardening and damage laws proposed above, the macroscopic me-

chanical response of heterogeneous materials is here assessed. As an advantage of the

micro-mechanics based model, it is possible to explicitly investigate the influences of micro-

structural parameters on the macroscopic response, for instance the small porosity, the large

porosity and the volume fraction of mineral inclusions. For this purpose, a series of numerical

simulations are performed under uniaxial compression loading. The set of basic parameters

used in the simulations are given in Table 1.

In Fig.7, we show the macroscopic axial and lateral strains versus the differential stress

for four different values of the ratio between the small and large porosities ( f /φ = 0, 0.2,

2, ∞) but with the same total porosity of Γ = 15% and without mineral inclusions ρ = 0.

It is found that the peak differential stress is reduced by the increase of the small porosity.

It seems that the macroscopic strength is more sensitive to the small porosity at the scale

level 0 than to the large one at the level 1. The same kind of results are obtained in the

composite material containing mineral inclusions as shown in Fig.8 for a volume fraction of

ρ = 20%. Finally, the numerical results for different values of mineral inclusions fraction are

shown in Fig.9. It is clear that the macroscopic peak strength is significantly reinforced by

the presence of rigid inclusions at the scale level 2. On the other hand, the material softening

behavior due to the growth of micro-cracks in the post-peak regime is also correctly described

by the proposed model.
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Figure 7: Macroscopic stress-strain curves uniaxial compression test for different values of

porosity ratio f /φ without mineral inclusions: Γ = 15%, ρ = 0.0%
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Figure 8: Macroscopic stress-strain curves in uniaxial compression test for different values

of porosity ratio f /φ with the presence of mineral inclusions: Γ = 15%, ρ = 20%
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Figure 9: Macroscopic stress-strain curves in uniaxial compression test for different values

of inclusions fraction and fixed porosities: f = 10%, φ = 10%

5. Experimental verification with laboratory tests

5.1. Callovo-Oxfordian claystone

In this section, the proposed model is applied to study the mechanical behavior of the

Callovo-Oxfordian claystone (COx). As mentioned above, this rock has been widely inves-

tigated as a potential geological barrier for underground disposal of radioactive waste in

France [66]. This material is composed of 40 to 50% of clay minerals, 20 to 27% of quartz

and 23 to 25% of calcite [12]. The mechanical behavior of the COx claystone was strongly

influenced by the mineral compositions, water content and temperature [67, 68, 69]. The

average total porosity is about 11.04-13.84%. The quasi totality of pores are distributed

inside the clay minerals and their size ranges from 1 nm to 100 µm across different scales.

According to [12] and as a first approximation, two populations of pores are here considered,

respectively at the scale levels 0 and 1. A critical size of the pores nearly 8 nm is adopted by

[70] to distinguish the small pores (corresponding to the porosity at level 0) from the large

pores (corresponding to the porosity at level 1) for the claystone. As a consequence, the

large pores has an average pore size 28 ± 5 nm. The rest pores are configured at a smaller

scale. Therefore, the majority of pores are embedded at the level 1 and represent 95% of

all pores. Only 5% of pores are at the level 0 according to the pore size distribution curves

as presented in [70]. In addition, as indicated by [71], the size of the grains is usually larger
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than 4 µm with a mean around 10-20 µ m. It is much larger than the pores in clay matrix.

Therefore, the inclusions are assumed to be embedded at level 2. Thus these three-scale

characters can be well described by the proposed model in this work.

As the elastic properties of quartz and calcite are quite close to each other, for the sake

of simplicity, they are merged into a single inclusion phase as used in some previous studies

[19]. The elastic properties of the inclusion phase are taken as the average values of the ones

of quartz and calcite as Ei = 98 GPa and νi = 0.15. The plastic and damage parameters are

calibrated by a numerical optimization method as indicated in [28]. The set of parameters

are iteratively fitted from macroscopic responses obtained in a laboratory test with known

mineralogical compositions. These parameters are then used in simulations of other tests

with different mineral compositions. The parameters used in this study for the studied

claystone are given in Table 1.

Table 1: Typical values of parameters for the COx claystone

Parameter Clay matrix Inclusion

Elastic parameters Es = 5.027 GPa, vs = 0.33 Ei = 98 GPa, vi = 0.15
Plastic parameters T0 = 0.0001, Tm = 0.84, b = 170,

h = 34 MPa

Damage parameters α = 0.34, γ = 4 × 10−4

Porosity f1 = 1.6%, φ = 23.75%
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(c) ρ = 56%,Σ33 =-5 MPa
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(d) ρ = 45%,Σ33 =-10 MPa
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(f) ρ = 40%,Σ33 =-10 MPa

Figure 10: Comparison of stress-strain curves between numerical results and experimental

data: f = 1.6%, φ = 23.75% under different confining pressure
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In Fig.10, one presents the comparisons of macroscopic stress-strain curves between nu-

merical results and experimental data for triaxial compression tests with different confining

pressures (Σ33 = 0,−5,−10 MPa) and performed on samples with different micro-structural

compositions. For these tests, the applied axial strain rate was 2 × 10−6s−1. From these

comparisons, it is seen that the proposed model well reproduces the mechanical behavior

for all the tests. On the other hand, by taking into account the damage evolution in the

present model, the post-peak behavior of the COx claystone is properly described. This is

a significant improvement of previous micro-mechanics based models for this kind of rocks,

for instance the modified incremental model proposed in [28].

5.2. Vaca Muerta shale rock

The shale rock is an organic rich fine-grained sedimentary rock, containing complex min-

eralogy and pore networks [72]. Two and three dimensional microscopic observations have

revealed that three representative length scales should be taken into account, as illustrated in

Fig.11. At the scale level 2, different kinds of minerals, including quartz, carbonate, feldspar,

kerogen and pyrite are embedded in a matrix phase. The size of those mineral grains varies

from a few hundred micrometers to one or two millimeters [73]. At the scale level 1, fine

calcite and kerogen grains are distributed in a solid phase. The majority of pores are found

at the scale level 0 and their size is of a few nanometers [74, 72]. Therefore, by assuming

again that all mineral inclusions and pores are of spherical form, the three-scale represen-

tative elementary volume (REV) of the shale is presented in Fig.11. For convenience, the

porosity at the level 0 is denoted by f . The volume fraction of fine kerogen and calcite grains

at the level 1 are defined as f5 and f6. At the level 2, the big calcite is denoted by f1, the

quartz/albite by f2, the pyrite by f3 and the kerogen grains by f4.

Quartz+albite Fine kerogen Intra-particle pores

Porous matrix Particle

(b) Level 1 (c) Level 0

Fine calcite

Kerogen

Calcite Pyrite

(a) Level 2

Figure 11: Representative volume element of an organic rich shale shale

As for the COx claystone, a linear elastic behavior is assumed for all the mineral inclu-

sions. This is a strong assumption for the kerogen particles for the sake of simplicity. A

more appropriate behavior should be considered in future studies. On the other hand, as a

difference with the COx claystone, the elastic properties of different phases of inclusions at
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the scales levels 1 and 2 can be significantly different. In order to keep an analytical homog-

enized model for both the elastic and plastic modeling. A simplified method is adopted. The

inclusions at the scale level 1 (or 2) are first homogenized into an equivalent inclusion phase

by using a self-consistent scheme [75]. The equivalent inclusion phase is then embedded into

the porous matrix at the level 1 (or 2). Finally, the effective elastic properties of inclusion

reinforced composite at the level 1 (or 2) shown in Fig. 11 are determined by using the

Mori-Tanaka scheme given in (4) by replacing the elastic properties of inclusion phase κi

and µi by those of the equivalent inclusion phase κeq
i and µ

eq
i , which are determined by the

following iterative calculation:

κ
eq
i =

N∑
r=0

fr
κr(3κ

eq
i + 4µeq

i )
3κr + 4µeq

i

; µ
eq
i =

N∑
r=0

fr
5µrµ

eq
i (3κeq

i + 4µeq
i )

µ
eq
i (9κeq

i + 8µeq
i ) + 6µr(κ

eq
i + 2µeq

i )
(45)

fr is the volume fraction of the r− th inclusion phase and κr and µr denote its elastic moduli.

The elastic properties of the mineral inclusions are taken from literature [74, 72] and listed

in Table 2.

Table 2: Typical values of parameters for the model

Mineral Elastic modulus(GPa) Poisson

Quartz/albite 95.5 0.155
Pyrite 311 0.15
Kerogen 2 0.25
Calcite 95 0.27
Clay 5 0.27

Due to the presence of small inclusions at the scale level 1 instead of pores, the plastic

model is also adapted for the shale. By making two steps of homogenization with the

modified secant method as presented in [19], the macroscopic plastic yield criterion keeps

the same form as that given in (20). However, the coefficients in that equation are changed

by taking into account of the small inclusion volume fraction at the scale level 1 (ρs = f5 + f6):

A =

1+2 f /3
T 2 + 2

3ρs(
3 f

2T 2 − 1)
6T 2−13 f−6
4T 2−12 f−9ρs + 1

, B =
3 f
2T 2 − 1

C = 2(1 − f )h, D =
3 + 2 f + 3 fρs

3 + 2 f
(1 − f )2h2

(46)

In the present case, only one population of pores exists at the level 0. By making the similar

derivation as that presented above for two populations of pores, its evolution is described
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by:

ḟ = (1 − f )(
trDp

(1 − ρ)(1 − ρs)
− T ε̇ p) (47)

The damage evolution law remains unchanged. The modified elastic-plastic damage

model can now be applied to materials with two populations of inclusions at two different

scales. It is here applied to describe the mechanical behavior of the Vaca Muerta shale rock.

Again, a series of triaxial compression tests have been performed with different mineralogical

compositions and confining pressures. The applied axial strain rate was 10−6s−1. The set of

parameters used for the solid phase is given in Table 3:

Table 3: Typical values of parameters for the solid phase of Vaca Muerta shale

Parameter Clay matrix

Elastic parameters Es = 5.027 GPa, vs = 0.33
Plastic parameters T0 = 0.0001, Tm = 0.75, b = 600,

h = 68MPa
Damage parameters α = 0.4, γ = 6 × 10−4

In Fig.12, we present the comparisons of macroscopic stress-strain curves between the

numerical results and experimental data. In a general way, a good agreement is found. The

proposed micro-mechanics based model is able to well describe the dependency of macro-

scopic behavior of shale rocks on micro-structural compositions. Further, the post-peak

behavior due to damage evolution is also correctly reproduced.
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Figure 12: Comparison of stress-strain curves of shale rock between numerical results and

experimental data under different confining pressure

6. Concluding remarks

In this work, a unified analytical macroscopic yield criterion has been developed for a

class of rock-like materials containing pores and inclusions at three different scales from a

rigorous homogenization method. This criterion can cover a large range of rock-like mate-

rials with different multi-scale characters. The accuracy of the criterion was well verified

by the numerical results issued from FFT-based simulations. Together with the plastic

hardening and a damage evolution law acting on the solid phase of micro-structure, a new

micromechanical-based plastic damage model is established and explicitly considers both the

effects of pores and mineral inclusions at different scales. Then it was successfully applied
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to predict the mechanical behaviors of two typical heterogeneous rocks, the COx claystone

with two populations of pores and one family of inclusions, and the Vaca Muerta shale rock

containing two populations of inclusions and one family of pores. The modeling results re-

veal a good agreement with the experimental data of triaxial compression test. It is found

that the proposed model quantitatively well reproduce the main features of those materials

responses. In future studies, time-dependent behaviors related to the damage evolution on

visco-plastic deformation of solid phase as well as viscosity of kerogen particles should be

taken into account.

Acknowledgements:

This study was supported by the the National Key RD Program of China (Grant No.

2017YFC1501101), Programme B18019 of Discipline Expertise to Universities MOE & MST

and the National Natural Science Foundation of China (Grant No. 11672343).

References
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