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A multi-scale model is developed for modeling of plastic deformation and induced damage in rock-like materials containing pores and mineral inclusions. An analytical macroscopic plastic yield criterion is first determined from three steps of homogenization. This criterion explicitly takes into account respective effects of two populations of pores and mineral inclusions at three different scales. The accuracy of criterion is evaluated by comparisons with numerical results issued from direct simulations on representative volume elements. Then, an induced damage evolution law is defined to describe the onset and growth of micro-cracks inside the solid matrix of materials. The induced damage affects both elastic and strength properties of the solid matrix and its evolution is coupled with the plastic deformation. The performance of the proposed model is first assessed through a series of numerical examples, clearly showing influences of pores and inclusions on macroscopic responses of heterogeneous materials. Finally, the proposed model is applied to describe mechanical behaviors of clayey rocks. Comparisons between numerical results and experimental data are presented.

Introduction

Rock-like materials are natural heterogeneous continua with different kinds of multiscale heterogeneities. Their macroscopic mechanical and physical properties are inherently affected by the presence and evolution of those heterogeneities. Experimental studies and numerical simulations have revealed empirical correlations of several mineralogical and textural characteristics [START_REF] Tugrul | Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from turkey[END_REF][START_REF] Tandon | The control of mineral constituents and textural characteristics on the petrophysical & mechanical (pm) properties of different rocks of the himalaya[END_REF][START_REF] Ündül | Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks[END_REF][START_REF] Liu | Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression[END_REF][START_REF] Meng | Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass[END_REF][START_REF] Meng | Multiscale strength reduction method for heterogeneous slope using hierarchical fem/dem modeling[END_REF], and porosity [START_REF] Baud | Effects of porosity and crack density on the compressive strength of rocks[END_REF][START_REF] Heidari | Effect of porosity on rock brittleness[END_REF][START_REF] Cao | Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials[END_REF][START_REF] Cao | Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials[END_REF][START_REF] Shen | Evaluation and improvement of macroscopic yield criteria of porous media having a drucker-prager matrix[END_REF] with the physical and mechanical properties of rocks. As a representative example, hard clayey rocks are specifically studied in this work. This class of rocks are widely involved in different engineering fields such as civil and mining engineering, oil industry and especially unconventional hydrocarbon production, as well as geological disposal of nuclear waste. For instance, the Callovo-Oxfordian (COx) claystone is selected as the geological barrier of underground disposal of radioactive waste in France. Based on mineralogical and micro-structural analyses performed on the COx claystone [START_REF] Robinet | Minéralogie, porosité et diffusion des solutés dans l'argilite du callovo-oxfordien de bure (meuse, haute-marne, france) de l'échelle centimétrique à micrométrique[END_REF][START_REF] Robinet | Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the callovo-oxfordian mudstone (bure, france)[END_REF] and other clayey rocks [START_REF] Abedi | Nanochemo-mechanical signature of organic-rich shales: a coupled indentation-edx analysis[END_REF], heterogeneities are embedded at several scales. Basically, at the mesoscopic scale, mineral grains (carbonate, quartz, kerogen) are embedded in a nearly continuous clay matrix. At the microscopic scale, there is a distribution of large pores and fine mineral particles. Finally, at the nanoscopic scale, small pores are embedded inside a solid phase composed of clay particle. As a first approximation, two populations of pores should be considered ranging from 1nm to 100µm [START_REF] Cariou | An original constitutive law for callovo-oxfordian argillite, a two-scale double-porosity material[END_REF]. The objective here is to develop a multi-scale model for modeling plastic deformation and induced damage in clayey rocks by considering two populations of pores and mineral inclusions at three representative scales.

The relationships between mineral compositions, textural parameters and macroscopic unconfined compressive strength have firstly been established by simple regression analyses. On the other hand, in the framework of micro-mechanics, a series of research works have been devoted to establishing analytical macroscopic strength criteria by using homogenization theories of heterogeneous materials and by considering mineral inclusions and pores at different scales [START_REF] Gȃrȃjeu | Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations[END_REF][START_REF] Vincent | Effective flow surface of porous materials with two populations of voids under internal pressure: I. a gtn model[END_REF][START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF][START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF]. The effective strength can be explicitly determined as a function of porosity and inclusions volume fraction. On the other hand, in order to consider geometrical effects (size and shape) of inclusions and pores, analytical and numerical methods are combined. For instance, closed-form solutions are used at the microscopic scale [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part i-yield criteria and flow rules for porous ductile media[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] while computational homogenization methods are employed at the mesoscopic scale such as Finite Element Method [START_REF] Khdir | Computational homogenization of plastic porous media with two populations of voids[END_REF][START_REF] Julien | A semi-analytical model for the behavior of saturated viscoplastic materials containing two populations of voids of different sizes[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: Ii. growth and coalescence of voids[END_REF]) and Fast Fourier Transform technique [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Vincent | Effective flow surface of porous materials with two populations of voids under internal pressure: Ii. full-field simulations[END_REF][START_REF] Cao | Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials[END_REF][START_REF] Cao | Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials[END_REF]. With these methods, it is also possible to account for interactions between different kinds of heterogeneities at the same scale. Further, extended incremental methods are developed for describing full mechanical responses of rock-like materials containing mineral inclusions and pores [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF].

However, most previous studies have mainly focused on the estimation of macroscopic strength or plastic behavior. In rock-like materials, damage due to micro-cracking is another important process to consider. In [START_REF] Arson | Micro-macro mechanics of damage and healing in rocks[END_REF], a state of the art was presented on the strategies available to relate the micro-scale of crystals, cracks and pores to the scale of a Representative Elementary Volume. A high number of phenomenological plastic damage models have also been proposed in the framework of thermodynamics and continuum damage mechanics [START_REF] Shao | Modeling of creep in rock materials in terms of material degradation[END_REF][START_REF] Shao | A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions[END_REF][START_REF] Salari | A coupled elastoplastic damage model for geomaterials[END_REF][START_REF] Zhou | A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks[END_REF][START_REF] Parisio | Plastic-damage modeling of saturated quasi-brittle shales[END_REF][START_REF] Huang | An elasto-plastic damage model for rocks based on a new nonlinear strength criterion[END_REF]. The damage evolution is generally driven by stored elastic and plastic energy. But the physical origin of damage at the microscopic scale is not clearly identified. At the same time, micro-mechanical damage models have also been developed with the help of linear homogenization methods for elastic brittle materials [START_REF] Zhu | Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks[END_REF][START_REF] Xie | Micromechanical analysis of damage in saturated quasi brittle materials[END_REF][START_REF] Zhu | A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression[END_REF][START_REF] Dormieux | A micromechanical analysis of damage propagation in fluidsaturated cracked media[END_REF]. These models are able to consider unilateral effects related to crack closure, damage-friction coupling, induced anisotropy [START_REF] Qi | Damage and plastic friction in initially anisotropic quasi brittle materials[END_REF][START_REF] Zhu | Analytical and numerical analysis of frictional damage in quasi brittle materials[END_REF][START_REF] Zhu | Micromechanics of rock damage: Advances in the quasi-brittle field[END_REF][START_REF] Jin | Micromechanics based discrete damage model with multiple non-smooth yield surfaces: Theoretical formulation, numerical implementation and engineering applications[END_REF]. Some studies are focused on the nonlocal damage or gradient damage model [START_REF] Bazant | Nonlocal damage theory based on micromechanics of crack interactions[END_REF][START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Challamel | A variationally based nonlocal damage model to predict diffuse microcracking evolution[END_REF][START_REF] Giry | Stress-based nonlocal damage model[END_REF][START_REF] Jin | Nonlocal enrichment of a micromechanical damage model with tensile softening: Advantages and limitations[END_REF], which provide an objective description of strain localization behavior. However, the influences of multi-scale characters of the rock-like materials such as pores and inclusions still require much more effort to take into account, since these characters play important roles on the macroscopic mechanical behavior.

The objective of the present study is to develop a micro-mechanics based constitutive model for plastic deformation and damage evolution in rock-like materials containing two populations of pores and mineral inclusions at three different scales. An analytical plastic yield criterion is first established by using a three-step homogenization procedure based on a modified secant method [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF]. A specific plastic hardening law is also proposed by combining the evolutions of porosity and frictional coefficient of the solid matrix. Further, a time-dependent damage law is introduced to describe the degradation of both the elastic and plastic properties of solid matrix. The proposed model is assessed through a series of numerical examples and comparisons with experimental data obtained on typical claystone and shale with different mineral compositions.

Microstructure and elastic properties of materials

In this study, we consider materials characterized by three representative scales, such as claystone and cement-based materials. At the mesoscopic scale, mineral inclusions (quartz and calcite grains, aggregates etc. of several hundreds of micrometers) are embedded into a matrix continuum (clay matrix or cement paste for example). At the microscopic scale, large pores (inter-particle pores of a few hundreds of nanometers to micrometers) are distributed inside the matrix phase. At the nanometric scale, small pores (intra-particle pores of a few nanometers) are found. Therefore, the typical representative volume element(RVE) of those materials can be characterized by three scale as shown in Fig. 1. It is needed to homogenize the porous medium at the first two scales and the inclusion-reinforced composite material at the last scale. A three-step upscaling method should be developed. For the sake of simplicity, it is here assumed that all the inclusions and pores are of spherical form. Geometrical effects of pores and inclusions will be investigated in an extended study. One denotes ω as the total volume of the RVE, ω i the volume of inclusions at the level 2, ω m the volume of matrix phase at the level 2, ω 1 the volume of large pores at the level 1, ω 0 the volume of small pores at the level 0, and ω s the volume of solid grains at the level 0. Thus, the volume fraction of inclusions ρ, the porosity of large pores φ at the level 1, the porosity f of small pores at the level 0 and the total porosity Γ at the macroscopic scale can be given as: The effective macroscopic elastic properties of material are obtained by making three steps of homogenization with the standard [START_REF] Mori | Average stress in a matrix and average elastic energy of materials with misfitting inclusions[END_REF] scheme. The effective elastic properties of the porous matrix (ω s +ω 0 ) at the level 0, denoted as κ m0 and µ m0 , are given by the first step of homogenization:

ρ = ω i ω , φ = ω 1 ω m = ω 1 ω s + ω 1 + ω 0 , f = ω 0 ω s + ω 0 Γ = ω 0 + ω 1 ω = [ f (1 -φ) + φ](1 -ρ) (1) 
κ m0 = 4(1 -f )κ s µ s 4µ s + 3 f κ s ; µ m0 = (1 -f )µ s 1 + 6 f κ s + 2µ s 9κ s + 8µ s (2) 
where κ s and µ s are the bulk and shear muduli of the solid phase. By making a second step of homogenization, the effective elastic properties of the porous matrix (ω 1 +ω s +ω 0 ) at the level 1 can determined and denoted as κ pm , µ pm :

κ pm = 4(1 -φ)κ m0 µ m0 4µ m0 + 3φκ m0 ; µ pm = (1 -φ)µ m0 1 + 6φ κ m0 + 2µ m0 9κ m0 + 8µ m0 (3) 
Finally, the third step of homogenization allows the estimation of macroscopic elastic properties of heterogeneous materials by taking into account the effect of inclusions at the level 2:

κ hom = (1-ρ)κ pm 3κ pm +4µ pm + ρκ i 3κ i +4µ pm (1-ρ) 3κ pm +4µ pm + ρ 3κ i +4µ pm ; µ hom = (1-ρ)µ pm µ pm (9κ pm +8µ pm )+6µ s (κ pm +2µ pm ) + ρµ i µ pm (9κ pm +8µ pm )+6µ i (κ pm +2µ pm ) (1-ρ) µ pm (9κ pm +8µ pm )+6µ pm (κ pm +2µ pm ) + ρ µ pm (9κ pm +8µ pm )+6µ i (κ pm +2µ pm ) (4)

Formulation of plastic damage model

Macroscopic plastic yield criterion

It is assumed that the solid phase at the level 0 is a pressure sensitive material and obeys to the standrad Drucker-Prager type yield criterion:

F s = σd + T ( σm -h) ≤ 0 (5) 
in which σ denotes the stress tensor of the solid phase. σm = tr σ/3 is the mean stress. σd is the equivalent shear stress defined as σd = √ σ : σ , with σ being the deviatoric part of stress tensor. The parameter T denotes the frictional coefficient and h the yield stress under hydrostatic tension of the solid phase.

As illustrated in Figure 1, the porous matrix is contains two populations of pores at two different scales. Therefore, two steps of non-linear homogenization are also needed to determine its effective plastic yield criterion. By using a modified secant method in [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF], the elastic plastic yield criterion has been derived to consider the effects of small pore f and the dilatation of the solid phase at the level 0:

F p = 1 + 2 f /3 T 2 σ2 d + ( 3 f 2T 2 -1) σ2 m + 2(1 -f )h σm -(1 -f ) 2 h 2 ≤ 0 (6) 
where σd and σm represent the equivalent shear stress and mean stress at the scale level 0. This criterion (6) explicitly depends on the small porosity f and the pressure sensitivity parameter T of the solid phase. Based on this criterion and again by using the modified secant method in [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF], the effective plastic yield criterion can be obtained considering the influence of large pore φ at the level 1:

F mp = Aσ 2 d + Bσ 2 m + Cσ m -D ≤ 0 (7) 
with the following coefficients:

A = 1 + 2 f /3 T 2 ( 6T 2 -13 f -6 4T 2 -12 f -9 φ + 1), B = 3/2 + f T 2 φ + 3 f 2T 2 -1 C = 2(1 -f )(1 -φ)h, D = (1 -φ) 2 (1 -f ) 2 h 2 (8) 
In this criterion, σ m and σ d denote the mean and equivalent shear stresses at the scale level 1.

With the criterion [START_REF] Baud | Effects of porosity and crack density on the compressive strength of rocks[END_REF] in hand, the objective here is now to determine an analytical macroscopic plastic yield criterion of composite material at the level 2 by considering the influence of rigid inclusions by a third step of homogenization. To this end, the modified secant method is again used and the main steps are presented bellow. By assuming an associated plastic flow rule, the local plastic strain rate of porous matrix is determined by: 

d = λ ∂F mp ∂σ = 1 A d d 2σ d (2Aσ + 2Bσ m 3 1 + C 3 1) (9) 
d m = trd/3 = 1 A d d 2σ d [ 2σ m 3 B + C 3 ] (10) 
Accordingly the equivalent deviatoric strain rate is equal to:

d d σ d = A 2 d 2 v + ABd 2 d BD + C 2 4 ( 11 
)
Hence the support function defined as π mp = σ : d can be written in the following form:

π mp = - C 2B d v + 4BD + C 2 4AB A B d 2 v + d 2 d ( 12 
)
where d v = trd = 3d m is the plastic volumetric strain rate in the porous matrix at the level 2.

The local stress tensor σ is derived from the support function π mp by:

σ = ∂π mp ∂d = 2µ mp d + k mp d v 1 + σ p 1 (13) 
with the following secant bulk and shear moduli and an isotropic pre-stress tensor:

k mp = A B N M , 2µ mp = N M , σ p = - C 2B M = A B d 2 v + d 2 d , N = 4BD + C 2 4AB (14) 
The secant moduli in ( 14) are non-uniform due to the non-uniform field of local strain rate d inside the porous matrix. Following the work in [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF], the values of secant moduli are calculated in terms of an effective stain rates d e f f d and d e f f v defined as follows:

d e f f v = d 2 v ω m , d e f f d = d 2 d ω m (15) 
Therefore, the local stress-stain relations can be written as:

σ = C mp (d e f f v , d e f f d ) : d + σ p eq 1; C mp (d e f f v , d e f f d ) = 3k mp eq J + 2µ mp eq K; σ p eq = σ p (16) 
Owing to the assumption of plastically rigid inclusions, the macroscopic pre-stress simply reads Σ p = σ p eq . Considering the effective free energy function of the composite with the form of:

W = 1 2 D : C hom : D + Σ p tr D (17) 
the corresponding state equations can be deduced as:

Σ m = k hom ( D v + Σ p ); Σ d = 2µ hom D d (18) 
Following the study of [START_REF] Barthélémy | A micromechanical approach to the strength criterion of drucker-prager materials reinforced by rigid inclusions[END_REF], the macroscopic free energy in the RVE is associated with the effective strain rate of porous matrix as follows:

1 2 (1 -ρ)d e f f v 2 = 1 2 ∂k hom ∂k mp eq D 2 v + ∂µ hom ∂k mp eq D 2 d 1 2 (1 -ρ)d e f f d 2 = 1 2 ∂k hom ∂µ mp eq D 2 v + ∂k hom ∂µ mp eq D 2 d ( 19 
)
By combing ( 15), ( 14), ( 18) and ( 19), one gets the following macroscopic plastic yield criterion of the composite material:

F = A + 2Bρ 3 1 + 3ρ 2 -5ρ 6( A B +1) Σ 2 d + BΣ 2 m + CΣ m -(D + 4BD + C 2 6A ρ) ≤ 0 (20) 
A first assessment of this criterion can be made. One first considers the particular case of f = 0, φ = 0 and ρ = 0. The macroscopic criterion reduces to the standard Drucker-Prager criterion of the solid phase at the scale level 0. When the material contains one population of pores either at the Level 0 or Level 1 (ρ = 0, and f = 0 or φ = 0), one recovers the plastic criterion given by [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF]. For the case of two populations of pores ( f 0, φ 0 and ρ = 0), this criterion is consistent with that proposed by [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF] and given in [START_REF] Baud | Effects of porosity and crack density on the compressive strength of rocks[END_REF]. In Fig. 2, one shows the yield surfaces of a material with two populations of pores but without inclusions. For a given total porosity of Γ = 15%, different ratios of two porosities are considered ( f /φ = 0, 0.2, 2, ∞). It is seen that the compressive yield stress increases when the small porosity f decreases while the tensile yield stress is nearly insensitive to the ratio f /φ. In Fig. 3, for the same value of total porosity Γ = 15%, the volume fraction of inclusions is taken as ρ = 20%. Again, four different values of the ratio f /φ are used and one confirms the result given in Fig. 2 about the effect of f /φ on the yield stress. However, for the same value of total porosity, the macroscopic yield stresses obtained in Fig. 3 are systematically smaller than those in Fig. 2. Indeed, due to the presence of mineral inclusions, the volume of matrix phase is reduced and the values of local porosities f and φ are increased. This leads to the reduction of macroscopic yield stresses. Finally, for the given values of two porosities, the influence of inclusion volume fraction is studied and presented in Fig. 4. It is observed that the increase of ρ mainly enhances the macroscopic yield stress for deviatoric loading paths.
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Figure 4: Macroscopic yield surfaces of materials with two populations of pores and inclusions for different inclusion volume fractions: f = 13.07%, φ = 6.53%, T = 0.3, h = 10MPa

Evolution of porosity and hardening law

As defined above, the macroscopic plastic yield criterion is a function of two porosities. During a loading history, there is an evolution of those porosity. A decrease of porosities generally leads to an increase of yield stress and then a plastic hardening process, while an increase of porosities leads to a material softening. These phenomena have been observed in experimental studies of porous rocks [START_REF] Baud | Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones[END_REF][START_REF] Baud | Compaction and failure in high porosity carbonates: Mechanical data and microstructural observations[END_REF]. Therefore, it is needed to define the evolution laws for two porosities, allowing to describing the plastic hardening or softening. In this study, the nucleation of new pores is not considered. According to the first term of equation ( 1), the evolution rates of two porosities are given by:

ḟ = d( ω 0 ω s + ω 0 ) = (1 -f )( dω s + dω 0 ω s + ω 0 - dω s ω s ) (21) 
φ = d( ω 1 ω s + ω 0 + ω 1 ) = (1 -φ)( dω m ω m - dω s + dω 0 ω s + ω 0 ) (22) 
In these relations, dω s ω s corresponds to the volumetric strain rate of solid phase ( dv ) while dω s +dω 0 ω s +ω 0 to the volumetric strain rate of the porous matrix at the scale level 1 ( dv ). Further, dω m ω m denotes the volumetric strain rate of the porous matrix at the scale level 2 (d v ). It is now assumed that the plastic strain of the solid phase is described by an associated flow rule with the Drucker-Prager type yield function defined by [START_REF] Meng | Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass[END_REF]. The rate of plastic strain d is thus calculated by:

d = Λ∂F s ∂ σ ; d = Λ σ σd ; dm = 1 3 ΛT ( 23 
)
where d is the deviatoric part of plastic strain rate tensor with d = d + dm δ. Λ is the non-negative plastic multiplier. The equivalent plastic strain rate ˙ p of the solid phase takes the following form:

˙ p = d : d = Λ (24) 
By applying the energy equivalence condition for upscaling methods [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part i-yield criteria and flow rules for porous ductile media[END_REF], it is possible to associate the macroscopic plastic strain rate with that of the solid phase, that is:

Σ : D p = 1 ω ω s σ : ddV = 1 ω ω s ˙ p ( σd + T σm )dV = (1 -ρ)(1 -φ)(1 -f )T h ˙ p (25) 
Therefore the equivalent strain rate of the solid phase ˙ p is calculated by:

˙ p = Σ : D p (1 -ρ)(1 -φ)(1 -f )T h (26) 
On the other hand, the energy equivalence condition can also be applied to the porous matrix at the scale level 0 described by the yield criterion (6) so that:

Σ : D p = 1 ω ω s +ω 1 σ : ddV = 1 ω ω s +ω 1 T 2 1 + 2 3 f dd 2 σd [(1 -f ) 2 h 2 -2(1 -f )h σm ]dV (27) 
One can obtain:

dd σd = (1 + 2 f 3 ) T 2 2Σ : D p (1 -ρ)(1 -φ)[(1 -f ) 2 h 2 -2(1 -f )h σm ] (28) 
dv = ( 3 f 2T 2 -1) 2Σ m (1-ρ)(1-φ) + 2(1 -f )h (1 -f ) 2 h 2 -2(1 -f )h Σ m (1-ρ)(1-φ) Σ : D p (1 -ρ)(1 -φ) (29) 
Further, according to the relations ( 23) and [START_REF] Julien | A semi-analytical model for the behavior of saturated viscoplastic materials containing two populations of voids of different sizes[END_REF], the plastic volume strain rate of the solid phase is related to the equivalent plastic strain rate by dv = T ˙ p . Finally, the evolutions of porosities in ( 21) can be determined from the following kinematical compatibility conditions:

ḟ = (1 -f )( dv -T ˙ p ) (30) 
φ = (1 -φ)( tr D p 1 -ρ -dv ) (31) 
However, as it is well shown below, the evolutions of porosities alone cannot fully describe the plastic hardening process in porous rock-like materials. It is generally found that the local strength parameters of the solid phase such as frictional coefficient and cohesion evolve during plastic deformation process [START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF]. In this study, it is assumed that the frictional coefficient of the solid phase T is a function of the equivalent plastic strain:

T = T m -(T m -T 0 )e -b p (32) 
T 0 and T m are the initial and asymptotic values of T . The parameter b controls the plastic hardening rate.

Evolution of damage

The induced damage in rock-like materials is generally related to the evolution of their micro-structure [START_REF] Shao | Modeling of creep in rock materials in terms of material degradation[END_REF][START_REF] Pietruszczak | Description of creep in inherently anisotropic frictional materials[END_REF], and such an evolution is a time dependent process, which would be induced by mechanical or physical and chemical interactions, for instance, the microcracking [START_REF] Brantut | Time-dependent cracking and brittle creep in crustal rocks: A review[END_REF], weathering-induced [START_REF] Shen | Mineral weathering and bedrock weakening: Modeling microscale bedrock damage under biotite weathering[END_REF], chemical corrosion [START_REF] Wang | Effects of acid solution on the mechanical behavior of sandstone[END_REF][START_REF] Wang | Experimental study on property modification of jointed rocks subjected to chemical corrosion[END_REF] and so on. As a consequence, we introduce here a scalar damage variable ζ to represent the evolution state of micro-structure. It is assumed that there exists an asymptotic state of micro-structure evolution which is represented by a stationary value of the damage variable denoted as ζ ∈ [0, 1]. As for most chemical reaction processes, the rate of evolution is governed by the distance between the current value ζ and stationary values ζ. Thus one gets:

ζ = γ( ζ -ζ), ζ ∈ [0, ζ] ( 33 
)
where γ is a parameter that controls the rate of micro-structure evolution. By using Laplace transform and convolution theorem and taking ζ(0) = 0, the damage variable ζ can be expressed in the following integral form:

ζ(t) = t 0 γ ζ(τ)e -γ(t-τ) dτ (34) 
Due to the time-dependency of the stationary value ζ(τ), it is generally delicate to solve this integral equation. To this end, a simplified explicit scheme by using the rectangular integration rule has been proposed in [START_REF] Zhao | A unified micromechanics-based damage model for instantaneous and time-dependent behaviors of brittle rocks[END_REF]. In this study, that explicit scheme is modified by using a trapezoid rule to get a more accurate estimate. For a given time increment ∆t n+1 , the variable ζ at the time step t n+1 is calculated by:

ζ n+1 = γ 2 ζn+1 ∆t n+1 + (ζ n + γ 2 ζn ∆t n+1 )e -γ∆t n+1 (35) 
Further, in the present study, the stationary value of microstructure evolution ζ is taken as the ratio of the current value of friction coefficient and its asymptotic value as defined in (32) so that:

ζ = T T m (36) 
On the other hand, the evolution of micro-structure leads to degradation of both elastic and plastic properties of materials. It is here assumed that the micro-structure degradation mainly occurs in the solid phase which mainly induced by the cracking behavior during the deformation process. From the point of micromechanics, sliding wing cracks seem to be the principal propagation mode of microcracks under compressive stresses [START_REF] Brace | A note on brittle crack growth in compression[END_REF]. Due to roughness of crack surfaces in geomaterials, crack sliding may induce an associated aperture which is the origin of volumetric dilatancy in these materials [START_REF] Shao | Modeling of anisotropic damage and creep deformation in brittle rocks[END_REF]. Therefore, a direct relationship is established to consider the influence of microcracking or frictional sliding damage on the macroscopic mechanical behavior though the degradation of elastic and friction parameters of the solid phase. Similar consideration can also be found in [START_REF] Jin | Arson, Discrete equivalent wing crack based damage model for brittle solids[END_REF][START_REF] Shen | Mechanisms of anisotropy in salt rock upon microcrack propagation[END_REF]. Therefore, the elastic properties and the frictional coefficient are functions of the damage variable ζ. For the sake of simplicity, the following linear relations are adopted:

k d = (1 -αζ)k s , µ d = (1 -αζ)µ s (37) 
and

T = (1 -αζ) T ( 38 
)
where α is a parameter controlling the degradation rate of elastic and plastic properties.

Macroscopic plastic damage constitutive relations

By including plastic deformation and damage evolution, the incremental macroscopic constitutive relations can be expressed as:

dΣ = C hom d : (D -D p ) + ∂C hom d ∂ζ : ( D -Dp )dζ (39) 
where D and Dp are the accumulated total strain and plastic strain tensors. The accumulated elastic strain tensor is given by De = D -Dp . The fourth order tensor C hom d denotes the current macroscopic elastic stiffness of damage material with respect to damage variable ζ. By adopting an associated flow rule, the macroscopic plastic strain rate is given by:

D p = dλ ∂F ∂Σ (40) 
The plastic multiplier dλ is determined by the consistency condition:

dF = ∂F ∂Σ : dΣ + ∂F ∂ f d f + ∂F ∂φ dφ + ∂F ∂T ( ∂T ∂ p : d p + ∂T ∂ζ dζ) = 0 (41) 
Substituting ( 26), ( 29), ( 30), ( 31), ( 39) and ( 40) for [START_REF] Zhu | Analytical and numerical analysis of frictional damage in quasi brittle materials[END_REF], one obtains:

dλ = ∂F ∂Σ : C hom d : D + ∂F ∂Σ : ∂C hom d ∂ζ : De dζ + ∂F ∂T ∂T ∂ζ dζ ∂F ∂Σ : C hom : ∂F ∂Σ -∂F ∂ f (1 -f )[ df -T dp ] -∂F ∂φ (1 -φ)( ∂F ∂Σm 1-ρ -df ) -∂F ∂T ∂T ∂ p dp (42) 
with

df = ( 3 f 2T 2 -1) 2Σ m (1-ρ)(1-φ) + 2(1 -f )h (1 -f ) 2 h 2 -2(1 -f )h Σ m (1-ρ)(1-φ) Σ : ∂F ∂Σ (1 -ρ)(1 -φ) (43) dp = Σ : ∂F ∂Σ (1 -ρ)(1 -φ)(1 -f )T h (44) 

Numerical implementation

With these relations in hand, the proposed plastic damage constitutive model can be implemented in a standard finite element code by using an appropriate return-mapping scheme. In the present work, only instantaneous mechanical problems are taken into account. Then the whole loading process is divided into a limit numbers of steps. The integration algorithm at time interval [t k-1 , t k ] can be summarized as follows:

(1) At the end of the time step t k-1 , the current values of stress and strain as well as those of internal variables such as accumulated equivalent plastic strain and damage are known:

Σ k-1 , Dk-1 , p k-1 , ζk-1 , ζ k-1 , f k-1 , φ k-1 , T k-1 .
(2) Given an strain increment ∆ D in time increment ∆t k , a new trial stress can be determined by Σ tr k,0 = Σ tr k-1 + ∆Σ k at time step t k , with t k = t k-1 + ∆t k .

(3) Set j as the loop iterate step of return-mapping scheme, and impose the initial values of ζk,0

= ζk-1 , p k,0 = p k-1 , f k,0 = f k-1 , φ k,0 = φ k-1 , T k,0 = T k-1 .
(4) Using Eq.( 35) to calculate the damage variable ζ k,0 at initial iterative step .

(5) Calculate the plastic criterion

F(Σ tr k, j , f k, j , φ k-1 , p k, j , ζ k, j ) in Eq.(20). If F(Σ tr k , f k, j , φ k, j , p k, j , ζ k, j ) ≤ 0, it has Σ k = Σ tr k, j
, then goto step (9).

(6) If F(Σ tr k , f k, j , φ k-1 , p k, j , ζ k, j ) > 0, start the loop to determine the multiplier though Eq.( 42), then calculate the plastic strain Dk,j and equivalent plastic strain rate ˙ p k, j by Eq.( 26).

(7) Update the internal variables p k, j+1 , ζk,j+1 , f k, j+1 , φ k, j+1 , T k, j+1 , the stress tensor Σ k, j+1 and damage ζ k, j+1 .

(8) Set j = j + 1, then goto step (5) until F(Σ tr k , f k, j , φ k-1 , p k, j , ζ k, j ) ≤ 0 and exit the loop.

(9) One can get the internal variables ζk = ζk,j+1 Though above integration algorithm, the plastic and damage behavior of multi-scale rock-like materials can be well determined. This will be presented and discussed in detail in the following section.

, p k = p k, j+1 , f k = f k, j+1 , φ k = φ k, j+1 , T k = T k,

Numerical assessment of the proposed model

Assessment of macroscopic yield criterion

The accuracy of the analytical macroscopic yield criterion ( 20) is first assessed by comparing the predicted yield stresses with those obtained by the Fast Fourier Transform (FFT) based numerical homogenization method. The basic principle and numerical implementation of FFT-based method can be found in [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] for metal materials and in [START_REF] Cao | Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials[END_REF][START_REF] Cao | Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials[END_REF] for rock-like materials. Due to the fact that the effects of inclusion size, distributions and shape have very slightly influences on the plastic yield stress [START_REF] Cao | Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials[END_REF], for simplicity, the cubic unit cell with one centered spherical inclusion embedded in a double porous matrix is adopted for all the FFT-based simulations. It is assumed that the double porous matrix obeys the plastic yield criterion in Eq.( 7) with a perfect elasto-plastic behavior. This criterion can well describe the homogenized mechanical properties of scale 0 and scale 1 for materials with two populations of pores embedded in a DP type matrix. Then the inclusion is assumed to be elastic, thus the macroscopic behavior can be determined by using the FFT-based homogenization method. Within the FFT-based framework and the analytical homogenization criterion, we show the results of yield stress predicted by these two methods for different values of inclusion volume fraction and porosity in Fig. 5 and Fig. 6. As shown in these figures, for the given values of two porosities, the increase of inclusion volume fraction mainly enhances the yield strength with low and middle triaxiality. For a given value of inclusion volume fraction, the macroscopic yield strength is reduced by the increase of one of both porosities for the whole loading domain including hydrostatic tension and compression. For all the cases shown, there is a very good concordance between the analytical predictions and numerical results. 

Assessment of macroscopic response

By using the plastic hardening and damage laws proposed above, the macroscopic mechanical response of heterogeneous materials is here assessed. As an advantage of the micro-mechanics based model, it is possible to explicitly investigate the influences of microstructural parameters on the macroscopic response, for instance the small porosity, the large porosity and the volume fraction of mineral inclusions. For this purpose, a series of numerical simulations are performed under uniaxial compression loading. The set of basic parameters used in the simulations are given in Table 1.

In Fig. 7, we show the macroscopic axial and lateral strains versus the differential stress for four different values of the ratio between the small and large porosities ( f /φ = 0, 0.2, 2, ∞) but with the same total porosity of Γ = 15% and without mineral inclusions ρ = 0. It is found that the peak differential stress is reduced by the increase of the small porosity. It seems that the macroscopic strength is more sensitive to the small porosity at the scale level 0 than to the large one at the level 1. The same kind of results are obtained in the composite material containing mineral inclusions as shown in Fig. 8 for a volume fraction of ρ = 20%. Finally, the numerical results for different values of mineral inclusions fraction are shown in Fig. 9. It is clear that the macroscopic peak strength is significantly reinforced by the presence of rigid inclusions at the scale level 2. On the other hand, the material softening behavior due to the growth of micro-cracks in the post-peak regime is also correctly described by the proposed model.
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Figure 7: Macroscopic stress-strain curves uniaxial compression test for different values of porosity ratio f /φ without mineral inclusions: Γ = 15%, ρ = 0.0% 
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Experimental verification with laboratory tests

Callovo-Oxfordian claystone

In this section, the proposed model is applied to study the mechanical behavior of the Callovo-Oxfordian claystone (COx). As mentioned above, this rock has been widely investigated as a potential geological barrier for underground disposal of radioactive waste in France [START_REF] Armand | Fundamental aspects of the hydromechanical behaviour of callovo-oxfordian claystone: from experimental studies to model calibration and validation[END_REF]. This material is composed of 40 to 50% of clay minerals, 20 to 27% of quartz and 23 to 25% of calcite [START_REF] Robinet | Minéralogie, porosité et diffusion des solutés dans l'argilite du callovo-oxfordien de bure (meuse, haute-marne, france) de l'échelle centimétrique à micrométrique[END_REF]. The mechanical behavior of the COx claystone was strongly influenced by the mineral compositions, water content and temperature [START_REF] Hu | Influences of mineralogy and water content on the mechanical properties of argillite[END_REF][START_REF] Zhang | Experimental study of poromechanical behavior of saturated claystone under triaxial compression[END_REF][START_REF] Liu | Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression[END_REF]. The average total porosity is about 11.04-13.84%. The quasi totality of pores are distributed inside the clay minerals and their size ranges from 1 nm to 100 µm across different scales. According to [START_REF] Robinet | Minéralogie, porosité et diffusion des solutés dans l'argilite du callovo-oxfordien de bure (meuse, haute-marne, france) de l'échelle centimétrique à micrométrique[END_REF] and as a first approximation, two populations of pores are here considered, respectively at the scale levels 0 and 1. A critical size of the pores nearly 8 nm is adopted by [START_REF] Leroy | Modeling the composition of the pore water in a clayrock geological formation (callovo-oxfordian, france)[END_REF] to distinguish the small pores (corresponding to the porosity at level 0) from the large pores (corresponding to the porosity at level 1) for the claystone. As a consequence, the large pores has an average pore size 28 ± 5 nm. The rest pores are configured at a smaller scale. Therefore, the majority of pores are embedded at the level 1 and represent 95% of all pores. Only 5% of pores are at the level 0 according to the pore size distribution curves as presented in [START_REF] Leroy | Modeling the composition of the pore water in a clayrock geological formation (callovo-oxfordian, france)[END_REF]. In addition, as indicated by [START_REF] Jougnot | Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach[END_REF], the size of the grains is usually larger than 4 µm with a mean around 10-20 µ m. It is much larger than the pores in clay matrix. Therefore, the inclusions are assumed to be embedded at level 2. Thus these three-scale characters can be well described by the proposed model in this work.

As the elastic properties of quartz and calcite are quite close to each other, for the sake of simplicity, they are merged into a single inclusion phase as used in some previous studies [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF]. The elastic properties of the inclusion phase are taken as the average values of the ones of quartz and calcite as E i = 98 GPa and ν i = 0.15. The plastic and damage parameters are calibrated by a numerical optimization method as indicated in [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF]. The set of parameters are iteratively fitted from macroscopic responses obtained in a laboratory test with known mineralogical compositions. These parameters are then used in simulations of other tests with different mineral compositions. The parameters used in this study for the studied claystone are given in Table 1. In Fig. 10, one presents the comparisons of macroscopic stress-strain curves between numerical results and experimental data for triaxial compression tests with different confining pressures (Σ 33 = 0, -5, -10 MPa) and performed on samples with different micro-structural compositions. For these tests, the applied axial strain rate was 2 × 10 -6 s -1 . From these comparisons, it is seen that the proposed model well reproduces the mechanical behavior for all the tests. On the other hand, by taking into account the damage evolution in the present model, the post-peak behavior of the COx claystone is properly described. This is a significant improvement of previous micro-mechanics based models for this kind of rocks, for instance the modified incremental model proposed in [START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF].

Vaca Muerta shale rock

The shale rock is an organic rich fine-grained sedimentary rock, containing complex mineralogy and pore networks [START_REF] Saif | Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using x-ray micro-tomography, automated ultra-high resolution sem, maps mineralogy and fib-sem[END_REF]. Two and three dimensional microscopic observations have revealed that three representative length scales should be taken into account, as illustrated in Fig. 11. At the scale level 2, different kinds of minerals, including quartz, carbonate, feldspar, kerogen and pyrite are embedded in a matrix phase. The size of those mineral grains varies from a few hundred micrometers to one or two millimeters [START_REF] Monfared | A molecular informed poroelastic model for organic-rich, naturally occurring porous geocomposites[END_REF]. At the scale level 1, fine calcite and kerogen grains are distributed in a solid phase. The majority of pores are found at the scale level 0 and their size is of a few nanometers [START_REF] Ma | Multi-scale 3d characterisation of porosity and organic matter in shales with variable toc content and thermal maturity: Examples from the lublin and baltic basins, poland and lithuania[END_REF][START_REF] Saif | Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using x-ray micro-tomography, automated ultra-high resolution sem, maps mineralogy and fib-sem[END_REF]. Therefore, by assuming again that all mineral inclusions and pores are of spherical form, the three-scale representative elementary volume (REV) of the shale is presented in Fig. 11. For convenience, the porosity at the level 0 is denoted by f . The volume fraction of fine kerogen and calcite grains at the level 1 are defined as f 5 and f 6 . At the level 2, the big calcite is denoted by f 1 , the quartz/albite by f 2 , the pyrite by f 3 and the kerogen grains by f 4 . As for the COx claystone, a linear elastic behavior is assumed for all the mineral inclusions. This is a strong assumption for the kerogen particles for the sake of simplicity. A more appropriate behavior should be considered in future studies. On the other hand, as a difference with the COx claystone, the elastic properties of different phases of inclusions at the scales levels 1 and 2 can be significantly different. In order to keep an analytical homogenized model for both the elastic and plastic modeling. A simplified method is adopted. The inclusions at the scale level 1 (or 2) are first homogenized into an equivalent inclusion phase by using a self-consistent scheme [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF]. The equivalent inclusion phase is then embedded into the porous matrix at the level 1 (or 2). Finally, the effective elastic properties of inclusion reinforced composite at the level 1 (or 2) shown in Fig. 11 are determined by using the Mori-Tanaka scheme given in (4) by replacing the elastic properties of inclusion phase κ i and µ i by those of the equivalent inclusion phase κ eq i and µ eq i , which are determined by the following iterative calculation:

Quartz+albite

κ eq i = N r=0 f r κ r (3κ eq i + 4µ eq i ) 3κ r + 4µ eq i ; µ eq i = N r=0
f r 5µ r µ eq i (3κ eq i + 4µ eq i ) µ eq i (9κ eq i + 8µ eq i ) + 6µ r (κ eq i + 2µ eq i )

f r is the volume fraction of the rth inclusion phase and κ r and µ r denote its elastic moduli. The elastic properties of the mineral inclusions are taken from literature [START_REF] Ma | Multi-scale 3d characterisation of porosity and organic matter in shales with variable toc content and thermal maturity: Examples from the lublin and baltic basins, poland and lithuania[END_REF][START_REF] Saif | Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using x-ray micro-tomography, automated ultra-high resolution sem, maps mineralogy and fib-sem[END_REF] and listed in Table 2. Due to the presence of small inclusions at the scale level 1 instead of pores, the plastic model is also adapted for the shale. By making two steps of homogenization with the modified secant method as presented in [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF], the macroscopic plastic yield criterion keeps the same form as that given in [START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF]. However, the coefficients in that equation are changed by taking into account of the small inclusion volume fraction at the scale level 1 (ρ s = f 5 + f 6 ):

A = 1+2 f /3 T 2 + 2 3 ρ s ( 3 f 2T 2 -1) 6T 2 -13 f -6 4T 2 -12 f -9 ρ s + 1 , B = 3 f 2T 2 -1 C = 2(1 -f )h, D = 3 + 2 f + 3 f ρ s 3 + 2 f (1 -f ) 2 h 2 (46) 
In the present case, only one population of pores exists at the level 0. By making the similar derivation as that presented above for two populations of pores, its evolution is described by:

ḟ = (1 -f )( tr D p (1 -ρ)(1 -ρ s ) -T ˙ p ) (47) 
The damage evolution law remains unchanged. The modified elastic-plastic damage model can now be applied to materials with two populations of inclusions at two different scales. It is here applied to describe the mechanical behavior of the Vaca Muerta shale rock. Again, a series of triaxial compression tests have been performed with different mineralogical compositions and confining pressures. The applied axial strain rate was 10 -6 s -1 . The set of parameters used for the solid phase is given in Table 3: In Fig. 12, we present the comparisons of macroscopic stress-strain curves between the numerical results and experimental data. In a general way, a good agreement is found. The proposed micro-mechanics based model is able to well describe the dependency of macroscopic behavior of shale rocks on micro-structural compositions. Further, the post-peak behavior due to damage evolution is also correctly reproduced. 

Concluding remarks

In this work, a unified analytical macroscopic yield criterion has been developed for a class of rock-like materials containing pores and inclusions at three different scales from a rigorous homogenization method. This criterion can cover a large range of rock-like materials with different multi-scale characters. The accuracy of the criterion was well verified by the numerical results issued from FFT-based simulations. Together with the plastic hardening and a damage evolution law acting on the solid phase of micro-structure, a new micromechanical-based plastic damage model is established and explicitly considers both the effects of pores and mineral inclusions at different scales. Then it was successfully applied to predict the mechanical behaviors of two typical heterogeneous rocks, the COx claystone with two populations of pores and one family of inclusions, and the Vaca Muerta shale rock containing two populations of inclusions and one family of pores. The modeling results reveal a good agreement with the experimental data of triaxial compression test. It is found that the proposed model quantitatively well reproduce the main features of those materials responses. In future studies, time-dependent behaviors related to the damage evolution on visco-plastic deformation of solid phase as well as viscosity of kerogen particles should be taken into account.
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 1 Figure 1: Representative volume element of studied rock-like materials

in which d d = √ d : d and d = d -d m 1 .

 1 The mean plastic strain rate d m is defined by:
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 2 Figure 2: Macroscopic yield surfaces of materials with two populations of pores for different values of f /φ : Γ = 15%, ρ = 0.0%, T = 0.3, h = 10MPa
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 3 Figure 3: Macroscopic yield surfaces of materials with two populations of pores and mineral inclusions for different values of f /φ : Γ = 15%, ρ = 20%, T = 0.3, h = 10MPa

  j+1 , the stress tensor Σ k = Σ k, j+1 and the damage variable ζ k = ζ k, j+1 at time step t k . Then enter the next loading time step t k+1 .
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 551416 Figure 5: Comparison of macroscopic yield strength between the analytical predictions and FFT-based numerical results for different values of inclusion volume fraction: f = 0.1, φ = 0.1, T = 0.3, h = 20 MPa 14
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 8 Figure 8: Macroscopic stress-strain curves in uniaxial compression test for different values of porosity ratio f /φ with the presence of mineral inclusions: Γ = 15%, ρ = 20%
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 9 Figure 9: Macroscopic stress-strain curves in uniaxial compression test for different values of inclusions fraction and fixed porosities: f = 10%, φ = 10%

Table 1 :Ε 33 5

 1335 Typical values of parameters for the COx claystone Parameter Clay matrix Inclusion Elastic parameters E s = 5.027 GPa, v s = 0.33 E i = 98 GPa, v i = 0.15 Plastic parameters T 0 = 0.0001, T m = 0.84, b = 170, h = 34 MPa Damage parameters α = 0.34, γ = 4 × 10 -4 Porosity f 1 = 1.6%, φ = 23.75% e r i m e n t a l d a t a M o d e l i n g r e s u l t Σ 11 -Σ 33 (M P a ) (a) ρ = 49%, Σ 33 =0 MPa 33 (M P a ) E x p e r i m e n t a l d a t a M o d e l i n g r e s u l t ρ = 51%, Σ 33 =-5 MPa e r i m e n t a l d a t a M o d e l i n g r e s u l t Σ 33 (M P a ) (c) ρ = 56%, Σ 33 =-MPa e r i m e n t a l d a t a M o d e l i n g r e s u l t Σ 33 (M P a ) (d) ρ = 45%, Σ 33 =-10 MPa Σ 33 (M P a ) E x p e r i m e n t a l d a t a M o d e l i n g r e s u l t (e) ρ = 53%, Σ 33 =-10 MPa e r i m e n t a l d a t a M o d e l i n g r e s u l t Σ 33 (M P a ) (f) ρ = 40%, Σ 33 =-10 MPa
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 10 Figure 10: Comparison of stress-strain curves between numerical results and experimental data: f = 1.6%, φ = 23.75% under different confining pressure
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 211 Figure 11: Representative volume element of an organic rich shale shale

Table 3 :

 3 Typical values of parameters for the solid phase of Vaca Muerta shale Parameter Clay matrix Elastic parameters E s = 5.027 GPa, v s = 0.33 Plastic parameters T 0 = 0.0001, T m = 0.75, b = 600, h = 68MPa Damage parameters α = 0.4, γ = 6 × 10 -4

Figure 12 :

 12 Figure 12: Comparison of stress-strain curves of shale rock between numerical results and experimental data under different confining pressure

Table 2 :

 2 Typical values of parameters for the model

	Mineral	Elastic modulus(GPa) Poisson
	Quartz/albite 95.5	0.155
	Pyrite	311	0.15
	Kerogen	2	0.25
	Calcite	95	0.27
	Clay	5	0.27
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