Supporting information

Functionalization of N, N-Dialkylferrocenesulfonamides toward Substituted Derivatives

Vadim E. Matulis, ${ }^{\text {c }}$ Thierry Roisnel ${ }^{\mathrm{a}}$ and Vincent Dorcet ${ }^{\mathrm{a}}$
${ }^{a}$ Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
${ }^{b}$ UNESCO Chair of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus
${ }^{c}$ Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk 220030, Belarus
E-mails: william.erb@univ-rennes1.fr, hys@tut.by

Table of Contents

Putative reaction sequence to rationalize the unsuccessful attempt to use deuterium as
protecting group in the 'halogen dance' reaction
Selected calculated NPA charges of potential donor centers p. S2
Molecular electrostatic potential mapped on an SCF density (isoval $=0.0004$ p. S3
Calculated values of the Gibbs energies $\Delta_{\text {acid }} G\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$ for the deprotonation at the corresponding positions of the investigated compounds (gas-phase acidities)

NMR spectra of compounds 2a-j, 4a,b, 4c1, 4c2, 4d-g, 5, 6a-c, 7, 8, 9, 10a-c, 11, 12, 13a,b, 14, 15, 16a,b, 17ab and 18a,b

NMR NOESY correlations of compounds 2b, 2d-f, 2h,i, 4b, 4c1, 4c2, 4e, 4g, 5, 6a-c, 9, 10a-c, 11, 13a,b, 16b and 18a,b

Scheme S1. Putative reaction sequence to rationalize the unsuccessful attempt to use deuterium as protecting group in the 'halogen dance' reaction

Table S1. Selected calculated NPA charges of potential donor centers

Structure	P	$\mathrm{O}(1)$	$\mathrm{O}(2)$	N
$\mathbf{2 h}$	+0.956	-0.939	-0.956	-0.717
$\mathbf{2 i}$	+0.938	-0.944	-0.947	-0.718
$\mathbf{1 8 a}$	+0.934	-0.949	-0.952	-0.713
$\mathbf{1 8 b}$	+0.906	-0.951	-0.951	-0.712

-0.055
Figure S1. Molecular electrostatic potential mapped on an SCF density (isoval $=0.0004$).

1

6a

10a

12

Figure S2. Calculated values of the Gibbs energies $\Delta_{\text {acid }} G\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$ for the deprotonation at the corresponding positions of the investigated compounds (gas-phase acidities).

NMR spectra

Figure S3. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$ (racemic mixture)

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$ (racemic mixture)

Figure S5. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2a (racemic mixture)

Figure S6. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2a (racemic mixture)

Figure $\mathbf{S} 7$. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$ (racemic mixture)

Figure S8. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$ (racemic mixture)

Figure S9. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$ (racemic mixture)

Figure S10. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$ (racemic mixture)

Figure S11. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$ (racemic mixture)

Figure S12. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$ (racemic mixture)

Figure S13. $\mathrm{HSQC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$ (racemic mixture)

Figure S14. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 b}$ (racemic mixture)

Figure S15. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$ (racemic mixture)

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$ (racemic mixture)

Figure S17. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2c (racemic mixture)

Figure S18. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$ (racemic mixture)

Figure S19. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$ (racemic mixture)

Figure S20. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$ (racemic mixture)

Figure S21. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 c}$ (racemic mixture)

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$ (racemic mixture)

Figure S23. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$ (racemic mixture)

Figure S24. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d (racemic mixture)

Figure S25. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$ (racemic mixture)

Figure S26. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d (racemic mixture)

Figure S27. HMBC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d (racemic mixture)

Figure S28. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$ (racemic mixture)

Figure S29. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 e}$ (racemic mixture)

Figure S30. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 e}$ (racemic mixture)

Figure S31. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2e (racemic mixture)

Figure S32. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 e}$ (racemic mixture)

Figure S33. $\mathrm{HSQC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{2 e}$ (racemic mixture)

Figure S34. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 e}$ (racemic mixture)

Figure S35. NOESY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 e}$ (racemic mixture)

Figure S36. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$ (racemic mixture)

Figure S37. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$ (racemic mixture)

Figure S38. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$ (racemic mixture)

Figure S39. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$ (racemic mixture)

Figure S40. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$ (racemic mixture)

Figure S41. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 f}$ (racemic mixture)

Figure S42. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$ (racemic mixture)

Figure S43. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$ (racemic mixture)

Figure S44. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$ (racemic mixture)

Figure S45. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$ (racemic mixture)

Figure S46. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$ (racemic mixture)

Figure S47. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$ (racemic mixture)

Figure S48. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$ (racemic mixture)

Figure S49. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 h}$ (racemic mixture)

Figure S50. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$ (racemic mixture)

Figure S51. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$ (racemic mixture)

Figure S52. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$ (racemic mixture)

Figure S53. $\mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 h}$ (racemic mixture)

Figure S54. HMBC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$ (racemic mixture)

Figure S55. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$ (racemic mixture)

Figure S56. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$ (racemic mixture)

Figure S57. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 i}$ (racemic mixture)

Figure S58. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 i}$ (racemic mixture)

Figure S59. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$ (racemic mixture)

Figure S60. $\mathrm{COSY}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{2 i}$ (racemic mixture)

Figure S61. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$ (racemic mixture)

Figure S62. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 i}$ (racemic mixture)

Figure S63. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$ (racemic mixture)

Figure S64. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$ (racemic mixture)

Figure S65. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$ (racemic mixture)

Figure S66. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2} \mathbf{j}$ (racemic mixture)

Figure S67. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$ (racemic mixture)

Figure S68. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$ (racemic mixture)

Figure S69. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 j}$ (racemic mixture)

Figure S70. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2} \mathbf{j}$ (racemic mixture)

Figure S71. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$ (racemic mixture)

Figure S72. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$ (racemic mixture)

Figure S73. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 a}$ (racemic mixture)

Figure S74. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 a}$ (racemic mixture)

Figure S75. $\mathrm{HSQC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{4 a}$ (racemic mixture)

Figure S76. HMBC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 a}$ (racemic mixture)

Figure S77. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$ (racemic mixture)

Figure S78. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$ (racemic mixture)

Figure S79. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$ (racemic mixture)

Figure S80. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$ (racemic mixture)

Figure S81. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$ (racemic mixture)

Figure S82. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 b}$ (racemic mixture)

Figure S83. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 b}$ (racemic mixture)

Figure S84. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c} 1$ (racemic mixture)

Figure S85. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c} \mathbf{1}$ (racemic mixture)

Figure S86. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c} \mathbf{1}$ (racemic mixture)

Figure S87. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c 1}$ (racemic mixture)

Figure S88. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 c} \mathbf{1}$ (racemic mixture)

Figure S89. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c} \mathbf{1}$ (racemic mixture)

Figure S90. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 c 2}$ (racemic mixture)

Figure S91. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c 2}$ (racemic mixture)

Figure S92. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c 2}$ (racemic mixture)

Figure S93. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c 2}$ (racemic mixture)

Figure S94. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c 2}$ (racemic mixture)

Figure S95. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 c 2}$ (racemic mixture)

Figure S96. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 c 2}$ (racemic mixture)

Figure S97. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 d}$ (racemic mixture)

Figure S98. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 d}$ (racemic mixture)

Figure S99. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 d}$ (racemic mixture)

Figure S100. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 d}$ (racemic mixture)

Figure S101. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 d}$ (racemic mixture)

Figure S102. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 d}$ (racemic mixture)

Figure S103. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 e}$ (racemic mixture)

Figure S104. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 e}$ (racemic mixture)

Figure S105. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 e}$ (racemic mixture)

Figure S106. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 e}$ (racemic mixture)

Figure S107. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 e}$ (racemic mixture)

Figure S108. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 e}$ (racemic mixture)

Figure S109. NOESY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 e}$ (racemic mixture)

Figure S110. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 f}$ (racemic mixture)

Figure S111. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 f}$ (racemic mixture)

Figure S112. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 f}$ (racemic mixture)

Figure S113. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 f}$ (racemic mixture)

Figure S114. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 f}$ (racemic mixture)

Figure S115. $\mathrm{HMBC}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{4 f}$ (racemic mixture)

Figure S116. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$ (racemic mixture)

Figure S117. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$ (racemic mixture)

Figure S118. DEPT 135 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$ (racemic mixture)

Figure S119. COSY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$ (racemic mixture)

Figure S120. HSQC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$ (racemic mixture)

Figure S121. HMBC ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{~} \mathbf{g}$ (racemic mixture)

Figure S122. NOESY ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 g}$ (racemic mixture)

Figure S123. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5}$ (racemic mixture)

Figure S124. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5}$ (racemic mixture)

Figure S125. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5}$ (racemic mixture)

Figure S126. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5}$ (racemic mixture)

Figure S127. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5}$ (racemic mixture)

Figure S128. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5}$ (racemic mixture)

Figure S129. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5}$ (racemic mixture)

Figure S130. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S131. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S132. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S133. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S134. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S135. HMBC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S136. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$ (racemic mixture)

Figure S137. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$ (racemic mixture)

Figure S138. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 b}$ (racemic mixture)

Figure S139. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$ (racemic mixture)

Figure S140. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$ (racemic mixture)

Figure S141. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$ (racemic mixture)

Figure S142. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 b}$ (racemic mixture)

Figure S143. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$ (racemic mixture)

Figure S144. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 c}$ (racemic mixture)

Figure S145. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$ (racemic mixture)

Figure S146. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$ (racemic mixture)

Figure S147. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$ (racemic mixture)

Figure S148. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$ (racemic mixture)

Figure S149. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 c}$ (racemic mixture)

Figure S150. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$ (racemic mixture)

Figure S151. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 (main diastereoisomer, racemic mixture)

Figure S152. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 (main diastereoisomer, racemic mixture)

Figure S153. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 (main diastereoisomer, racemic mixture)

Figure S154. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 (main diastereoisomer, racemic mixture)

Figure S155. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 (main diastereoisomer, racemic mixture)

Figure S156. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7 (main diastereoisomer, racemic mixture)

Figure S157. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$ (racemic mixture)

Figure S158. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$ (racemic mixture)

Figure S159. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$ (racemic mixture)

Figure S160. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$ (racemic mixture)

Figure S161. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8}$ (racemic mixture)

Figure S162. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8}$ (racemic mixture)

Figure S163. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9 (racemic mixture)

Figure S164. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9 (racemic mixture)

Figure S165. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9 (racemic mixture)

Figure S166. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9 (racemic mixture)

Figure S167. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9 (racemic mixture)

Figure S168. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9 (racemic mixture)

Figure S169. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9 (racemic mixture)

Figure S170. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 a}$ (racemic mixture)

Figure S171. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 a}$ (racemic mixture)

Figure S172. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 10a (racemic mixture)

Figure S173. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 a}$ (racemic mixture)

Figure S174. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 a}$ (racemic mixture)

Figure S175. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 a}$ (racemic mixture)

Figure S176. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 a}$ (racemic mixture)

Figure S177. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 b}$ (racemic mixture)

Figure S178. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 b}$ (racemic mixture)

Figure S179. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 b}$ (racemic mixture)

Figure S180. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 b}$ (racemic mixture)

Figure S181. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 b}$ (racemic mixture)

Figure S182. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 b}$ (racemic mixture)

Figure S183. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 b}$ (racemic mixture)

Figure S184. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 c}$ (racemic mixture)

Figure S185. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 c}$ (racemic mixture)

Figure S186. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 c}$ (racemic mixture)

Figure S187. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 c}$ (racemic mixture)

Figure S188. $\mathrm{HSQC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 c}$ (racemic mixture)

Figure S189. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 c}$ (racemic mixture)

Figure S190. NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 c}$ (racemic mixture)

Figure S191. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S192. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S193. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S194. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S195. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S196. HMBC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S197. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ (racemic mixture)

Figure S198. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2}$ (racemic mixture)

Figure S199. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2}$ (racemic mixture)

Figure S200. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2}$ (racemic mixture)

Figure S201. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2}$ (racemic mixture)

Figure S202. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 2}$ (racemic mixture)

Figure S203. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2}$ (racemic mixture)

Figure S204. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3 a}$ (racemic mixture)

Figure S205. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 a}$ (racemic mixture)

Figure S206. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 13a (racemic mixture)

Figure S207. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 a}$ (racemic mixture)

Figure S208. $\mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3 a}$ (racemic mixture)

Figure S209. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 13a (racemic mixture)

Figure S210. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 a}$ (racemic mixture)

Figure S211. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3 b}$ (racemic mixture)

Figure S212. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 b}$ (racemic mixture)

Figure S213. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 b}$ (racemic mixture)

Figure S214. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 b}$ (racemic mixture)

Figure S215. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 b}$ (racemic mixture)

Figure S216. HMBC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 b}$ (racemic mixture)

Figure S217. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 13b (racemic mixture)

Figure S218. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$ (racemic mixture)

Figure S219. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$ (racemic mixture)

Figure S220. DEPT 135 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$ (racemic mixture)

Figure S221. COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$ (racemic mixture)

Figure S222. HSQC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4}$ (racemic mixture)

Figure S223. $\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4}$ (racemic mixture)

Figure S224. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}$ (racemic mixture)

Figure S225. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$ (racemic mixture)

Figure S226. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$ (racemic mixture)

Figure S227. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$ (racemic mixture)

Figure S228. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$ (racemic mixture)

Figure S229. HMBC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5}$ (racemic mixture)

Figure S230. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 a}$ (racemic mixture)

Figure S231. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 a}$ (racemic mixture)

Figure S232. DEPT 135 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 16a (racemic mixture)

Figure S233. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 a}$ (racemic mixture)

Figure S234. $\mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{1 6 a}$ (racemic mixture)

Figure S235. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6 a}$ (racemic mixture)

Figure S236. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 a}$ (racemic mixture)

Figure S237. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 a}$ (racemic mixture)

Figure S238. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6 b}$ (racemic mixture)

Figure S239. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 b}$ (racemic mixture)

Figure S240. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 b}$ (racemic mixture)

Figure S241. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 b}$ (racemic mixture)

Figure S242. $\operatorname{HSQC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6 b}$ (racemic mixture)

Figure S243. HMBC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 b}$ (racemic mixture)

Figure S244. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6 b}$ (racemic mixture)

Figure S245. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7 a}$ (racemic mixture)

Figure S246. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 a}$ (racemic mixture)

Figure S247. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 a}$ (racemic mixture)

Figure S248. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 a}$ (racemic mixture)

Figure S249. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 a}$ (racemic mixture)

Figure S250. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7 a}$ (racemic mixture)

Figure S251. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 a}$ (racemic mixture)

Figure S252. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7 b}$ (racemic mixture)

Figure S253. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 b}$ (racemic mixture)

Figure S254. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 b}$ (racemic mixture)

Figure S255. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 b}$ (racemic mixture)

Figure S256. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7 b}$ (racemic mixture)

Figure S257. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7 b}$ (racemic mixture)

Figure S258. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 8 a}$ (racemic mixture)

Figure S259. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 a}$ (racemic mixture)

Figure S260. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 18a (racemic mixture)

Figure S261. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 a}$ (racemic mixture)

Figure S262. $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 8 a}$ (racemic mixture)

Figure S263. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 18a (racemic mixture)
${ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3})

Figure S264. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 a}$ (racemic mixture)

Figure S265. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 8 b}$ (racemic mixture)

Figure S266. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Figure S267. DEPT 135 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Figure S268. COSY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Figure S269. HSQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Figure S270. HMBC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Figure S271. NOESY ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Figure S272. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$ (racemic mixture)

Comound $2 f$

Compound 4b

Compound 4e

Compound 6a

Compound 2d

Compound 2h

Compound 4c1

Compound 49

Compound 6b

Compound 2i

Compound 4c2

Compound $\mathbf{5}$

Compound 6c

Figure S273. NMR NOESY correlations

Compound 9

Compound 10a

Compound 10b

Compound 13a

Compound 10c

Compound 13b

Compound 11

Compound 16b

Compound 18b

Figure S273 (continued). NMR NOESY correlations

