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Neuron-PUF: Physical Unclonable Function Based
on a Single Spiking Neuron

Mohamed Elshamy and Haralampos-G. Stratigopoulos
Sorbonne Université, CNRS, LIP6, Paris, France

Abstract—We propose a novel Physical Unclonable Function
(PUF) concept based on a single spiking neuron. The inherent
variability of the neuron results in a chip-unique analog spiking
pattern that is digitized to produce a chip-unique digital key. A
stability booster is also employed based on self-masking to obtain
a fully stable digital key. The PUF is area and power effective since
a single PUF cell is used to produce an arbitrarily sized digital
key. We demonstrate PUF quality metrics close to ideal values and
argue that the PUF is resilient against various physical attacks.

I. INTRODUCTION

Physical Unclonable Functions (PUFs) are a class of hard-
ware security primitives that find several applications [1], [2].
A PUF is a circuit that leverages statistical manufacturing
variations of circuit parameters to generate a chip-unique sig-
nature. When queried with an input, referred to as challenge,
it generates an output, referred to as response, that typically
is a bitstring composing a digital key. Ideally, a PUF should
be reliable, i.e., in the presence of temperature and voltage
variations, noise, and aging the key-bits should be stable.
It should also be random providing a chip-unique response,
i.e., PUFs into any two different chips should give different
responses for the same challenge. An additional demand is
resiliency against attacks, i.e., modeling attacks that leverage
machine learning and side-channel information to model the
PUF behavior [3], [4] and memory attacks aiming at stealing
the key [5]. PUFs are also characterized by the energy per bit
and area per bit, which are especially important metrics for
PUFs embedded in resource-constrained devices.

PUF applications include among others device authentica-
tion, secret key generation, hardware anti-piracy, security in
Internet-of-Things (IoT) devices, etc. In device authentication,
the PUF is used as a silicon biometric to generate a unique
fingerprint or ID per chip [6], [7]. In secret key generation, a
PUF is used to generate the key on-the-fly at power-on, thus
avoiding explicit key storage [6]. In hardware anti-piracy, the
PUF can be used to provide each chip an ID such that it can
be traced along its lifetime for anti-counterfeiting purposes [8],
[9]. In addition, a PUF can be used in the key management
scheme of chip locking techniques [10]–[13]. In a resource-
constrained smart IoT edge device, a PUF can be used for
lightweight low-cost authentication protocols [14], [15].

The PUF concept was originally introduced in [16]–[18] and
several silicon PUF implementations have been proposed since
then. The most popular PUFs are delay-based PUFs, such as the
arbiter [18]–[21] and ring oscillator (RO) [6], [18], [22] PUFs,
and memory-based PUFs, such as the SRAM [23]–[25], flip-
flop [26], [27], and latch [28], [29] PUFs. Delay-based PUFs

exploit some race condition that is built-up inside the circuit,
while memory-based PUFs exploit the natural tendency of a
memory cell towards one of its two states. There exist several
variations of those PUFs, as well as several other PUF designs
based on different concepts [30]–[38].

No PUF is inherently robust and a percentage of PUF cells
may generate unstable bits that should be handled accordingly.
Stability boosting techniques include temporal majority voting
to stabilize noisy bits, burn-in hardening to accelerate aging,
self-masking of “dark” bits that are unstable across varying
operating conditions, and error correcting codes (ECCs) circuits
[35], [39]–[42]. For this reason, PUFs typically generate an
excess number of bits which can be thereafter down-sampled
to a fully stable key.

Another categorization of PUFs takes into consideration the
number of challenge-response pairs (CRPs) that the PUF can
support. A PUF that can support only a small number of CRPs
is called a weak PUF, while a PUF that can support a very
large number of CRPs that cannot be tried out in a reasonable
time frame is called a strong PUF.

In this paper, we propose a novel PUF class, called neuron-
PUF, that uses a single spiking neuron as the source of
entropy. A spiking neuron produces a pulse wave whose pre-
set duty cycle and periodicity will depend on random process
variations. This analog signature is processed by a key extractor
to generate the digital key. A stability-enhancement technique
based on self-masking is used to drop native unstable bits
identified during testing. Neuron-PUF uses a composite and
multidimensional challenge which makes it a candidate for
implementing a strong PUF.

Previously proposed PUFs use space redundancy, i.e., multi-
ple PUF cells, to generate the PUF response. For example, the
arbiter uses n delay path circuits built by a serial connection of
multiplexers to generate an n-bit PUF response. The RO PUF
consists of N ROs from which a maximum of n = log(N !)
PUF response bits can be extracted. For SRAM PUFs, an
n-bit PUF response can be extracted by selecting the logic
state of n SRAM cells. In contrast, the proposed neuron-PUF
uses a single PUF cell based on a single spiking neuron and
extracts an arbitrarily long PUF response in a serialized fashion
using temporal redundancy. Therefore, the proposed neuron-
PUF significantly reduces area and power overheads.

The rest of the paper is structured as follows. In Section
II, we discuss spiking neurons focusing on the specific spiking
neuron that we employed. In Section III, we present the neuron-
PUF architecture. In Section IV, we present the PUF quality



metrics used to characterize the proposed PUF. In Section V,
we present the results. Section VI concludes the paper.

II. SPIKING NEURONS

Spiking neurons are biologically-inspired neuron models
that serve as the fundamental building block of neuromor-
phic systems. Neuromorphic systems aim at emulating the
brain functionality for efficiently solving cognitive tasks, i.e.,
visual recognition and motion control. A large number of
neuromorphic systems have been demonstrated in the recent
years [43]–[46]. Spiking Neural Networks (SNNs) constitute
the third generation of neural networks aiming at bridging the
gap between the biological brain and machine learning in terms
of recognition speed and power consumption [47], [48].

There are several spiking neuron models of different com-
plexities, ranging from biophysical models to phenomenolog-
ical models, such as the most popular Integrate & Fire (I&F)
model, which can have a hardware-friendly implementation
and can still be designed to reproduce a large variety of
spiking firing patterns observed in biological neurons [49]. An
I&F spiking neuron receives and integrates input spikes from
neurons in the previous layer via the synaptic connections. If
its state reaches a certain threshold, then it fires a spike of its
own that propagates to the neurons in the next layer via the
synaptic connections. In addition, it resets its state so that it
can fire again.

There are several hardware implementations of I&F spiking
neurons of different complexities [49]. For the purpose of this
work, as a proof of concept, we use the axon hillock circuit
proposed in [50], whose schematic is shown in Fig. 1(a).

When Vstart = 0, the input is disconnected and the capacitor
C1 is discharged to 0. When Vstart = Vdd, the switch S2

turns on and the switch S1 turns off. The input current Iin
starts charging the capacitor C1, which models the membrane
capacitance of the neuron’s cell. When the membrane voltage
Vm reaches the threshold V` of the first inverter, then the
inverters switch state and the output fires a pulse, i.e., Vout
goes to Vdd. The capacitor C2 models the inherent positive
feedback of the neuron cell. As Vout increases, Vm increases
due to the positive feedback even faster. Setting a Vbias higher
than the threshold voltage of transistor M2 introduces a leaking
mechanism that helps the neuron to reset itself once it has fired
a spike. In particular, when Vout increases to Vdd, C1 starts
discharging to 0 via the current Ir flowing through transistors
M1 and M2, until a point where Vm drops below the inverter’s
threshold. At this point, the output voltage goes rapidly to
ground and the pulse is terminated. Then, for a constant input
current the neuron starts again the integration process to fire
another pulse. A simulation of this circuit is shown in Fig. 1(b).

It can be shown that the spike duration is given by

Thigh '
C2 × Vdd

Ir(Vbias)− Iin
, (1)

and the time between two consecutive spikes is given by

Tlow '
C1 + C2

Iin
V`. (2)

(a)

(b)

Fig. 1. The axon hillock circuit: (a) schematic; (b) transient response.

III. NEURON-PUF ARCHITECTURE

The architecture of the proposed neuron-PUF is illustrated in
Fig. 2. It consists of the PUF core, which takes the challenge
as input and produces the PUF raw response, and the stability
booster, which enhances the stability of the PUF final response.

The PUF core consists of the spiking neuron, which gener-
ates an analog signature, and the key extractor, which processes
the analog signature to generate the digital PUF response. In
more detail, the PUF starts generating its response when Vstart
goes high. The spiking neuron integrates a current Iin, and
produces at its output a spiking pattern in the form of a pulse
wave, whose duty cycle and periodicity are defined by Thigh
and Tlow in Eqs. (1)-(2). The key extractor consists of a linear-
feedback shift register (LFSR) and an edge triggered flip-flop.
The flip-flop receives its input from the LFSR and is clocked
with the pulse wave, producing a serialized raw digital PUF
response in the form of a bitstring.

Since the sampling is non-coherent, the raw response can
be arbitrarily long. Therefore, fixed time windows on the raw
response starting with any delay td with respect to Vstart can be
considered to extract an nr-bit raw response. The time window
equals nr/fs, where fs is the system clock. Notice that the
time window could also be divided into multiple intervals.



Fig. 2. Neuron-PUF architecture.

The challenge of the PUF is composed of the input current
Iin, the bias voltage Vbias which controls the leaking mecha-
nism of the neuron, the seed of the LFSR, and the delay td
with respect to Vstart. The input current Iin can be generated
using a well-matched programmable current mirror controlled
with a digital word of d1 bits. Such a current mirror has d1
mirroring branches, each composed of the mirroring transistor
and a pass transistor controlled by one bit of the digital word.
The bias voltage Vbias can be generated from a resistive ladder
with equal resistors forming a voltage divider, which can be
trimmed for precision. Using d2 resistors we can program d2
different Vbias values. The space of seeds is 2d3 , where d3 is
the length of the LFSR. The delay td can take any value of
d4 clock cycles. Considering a single time window, the CRP
space is equal to 2d1 · d2 · 2d3 · d4. The CRP space can be
further increased by segmenting the time window into multiple
parts. The CRP space can be made very large, which makes
the neuron-PUF a good candidate for implementing a strong
PUF.

The main source of entropy is process variations within the
spiking neuron affecting capacitor values, leakage current Ir,
and inverter threshold V`, which in turn alter the period and
duty cycle of the firing pattern as shown in Eqs. (1)-(2).

The stability booster consists of a linear drop-out (LDO)
regulator and a self-masking circuit. The LDO regulator sta-
bilizes the supply for all the sub-blocks against temperature
and external power supply variations. An already existing
LDO inside the chip can be used to power the PUF. In our
implementation, we use a standard LDO architecture composed
of a sub-bandgap reference (SBGR) voltage generator, an error
amplifier implemented with an operational transconductance
amplifier (OTA), a power p-MOS transistor, and a feedback
resistor network [51]. The bitmask is chip-specific and is
computed during testing time. In particular, the chip is exercised

by varying temperature and power supply and the nr-bit PUF
response is collected several times. The bitmask is a bitstring
of length nr that has 1 when the corresponding bit has been
shown to be stable and 0 otherwise. The bitmask is stored inside
the chip in a non-volatile memory (NVM) and loaded into a
shift-register at power-up. When the time window starts, the
raw PUF response is driven into a shift-register that is clocked
with the bitmask. Thus, only the stable bits are serially shifted
into the register, while the unstable bits are dropped. At the
completion of the time window, the stable n-bit PUF response,
where n ≤ nr, is latched using negative edge-triggered flip-
flops.

The advantageous property of the proposed neuron-PUF is
that it uses a single compact cell to produce an arbitrarily long
key, thus it can offer significant power and area cost savings
compared to existing PUFs that use one cell per key-bit.

Since the neuron-PUF generates serially the key and the key-
bits are closely spaced, the key cannot be easily correlated
to power traces, thus reading-out the key at run-time via
side-channel analysis is unworkable. The neuron also presents
complex dynamics albeit having a simple structure, i.e., the
challenge is related to the derivative of the membrane potential
that defines the spike firing. These two properties, combined
with the composite and very large CRP space, make the neuron-
PUF highly resilient against modelling attacks. Finally, the
neuron-PUF is resilient to memory attacks for stealing the key.
Stealing the bitmask from the NVM only reveals the position of
stable bits and not the key itself, but this also requires knowing
part of the challenge, i.e., the delay td.

IV. PUF QUALITY METRICS

There are several PUF quality metrics proposed in the litera-
ture [52], [53]. Herein, we use a distinct set of metrics that are
the most vital for characterizing the reliability and randomness



of a PUF. The set of metrics includes uniformity, uniqueness
(or inter-PUF variation), diffuseness, and stability (or intra-
PUF variation). The first three metrics also characterize the
unpredictability of the PUF against modeling attacks.

We use the following notation in describing PUF metrics:
• N is the number of PUFs evaluated on N different chips.
• n is the number of bits in the PUF response.
• m is the number of challenges of the PUF.
• rijk is bit j in the PUF response of chip i for challenge
k.

• Rik is the n-bit PUF response of chip i for challenge k,
i.e., Rik = [ri1k, · · · , rink].

• T is the number of PUF response measurements over time
and different operating conditions, i.e., changes in ambient
temperature and supply voltage fluctuations.

• HD(Rik,Rjk) is the Hamming distance (HD) of the PUF
responses in chips i and j for challenge k. Similarly,
HD(Rik1

,Rik2
) is the HD of the PUF responses in chip i

for two different challenges k1 and k2, and HD(Rt1
ik,R

t2
ik)

is the HD of the PUF responses in chip i for challenge k
for two different measurements t1 and t2.

Uniformity estimates how uniform the proportion of 0 and
1 is in the PUF response bits. For a given chip i and challenge
k it is expressed as:

Uniformity =
1

n

n∑
j=1

rijk × 100%. (3)

Ideally, uniformity should be equal to 50%.
Uniqueness represents the ability of a PUF to uniquely

distinguish a chip among a set of identical chips. For a given
challenge k it is expressed as:

Uniqueness =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

HD(Rik,Rjk)

n
× 100% (4)

Ideally, uniqueness should be equal to 50%.
Diffuseness measures the difference in the PUF responses

when the PUF is queried with different challenges. For a given
chip i it is expressed as:

Diffuseness =
1(
m
2

) m−1∑
k1=1

m∑
k2=k1+1

HD(Rik1
,Rik2

)

n
× 100% (5)

Ideally, diffuseness should be equal to 50%.
Stability captures the capability of the PUF to reproduce

its response bits under temperature variations, power supply
fluctuations, noise, and aging. For a given chip i and challenge
k it is expressed as:

Stability =

(
1− 1

T

T∑
t=1

HD(R0
ik,R

t
ik)

n

)
× 100%, (6)

where R0
ik denotes an enrollment of the PUF response at

nominal operating condition and is used as a reference. Ideally,
stability should be equal to 100%.

V. RESULTS

The neuron-PUF is designed in the 65nm CMOS technology
by STMicroelectronics. For the purpose of simplicity, in our
demonstration we consider that the PUF challenge is defined
only based on Iin, i.e., Vbias, seed of LFSR, and delay td of
the time window with respect to Vstart are fixed.

For the spiking neuron we use minimum size transistors so
as to increase the impact of process variations. We set Iin =
14.6µA and Vbias = 0.6V .

We used an LFSR with feedback polynomial x5 + x4 + 1
and seed “01110”, resulting in a pattern that is repeated every
22 clock cycles. It turns out that the choice of the LSFR,
i.e., length, polynomial, and seed, affects the PUF metrics. For
example, increasing the LFSR length from 3 to 6 bits increases
uniqueness by 10-25% and changing the seed can offer a further
4-7% improvement. The chosen LFSR results by performing
such trials, but this is a quick analysis since PUF metrics close
to their ideal values can be obtained in just a handful of trials.

We opt for generating a 256-bit raw PUF response. Consid-
ering a clock period of 2.56ns, this sets the time window to
0.4µs. We consider that the rising edge of the time window
comes td = 3 clock cycles after Vstart goes high.

The output of the LDO stabilizes around VLDO = 1.2V
for the nominal power supply Vdd = 1.6V. In particular, it
shows a 33.4mV variation when Vdd varies from 1.4V to 3V
and a 10mV variation when temperature varies from -55◦C to
125◦C. The transient response for a variation of load current
from 50mA to 0mA and then from 0mA to 50mA, shows a
maximum overshoot of 44.9mV and settles after 875ns, while
the maximum undershoot is 53.2mV and response settles after
800ns.

Fig. 3 shows a transistor-level transient simulation of the
neuron-PUF using the above settings. We plot all the relevant
signals and at the bottom we show the raw PUF response and
cross out the unstable bits. Bit α1 corresponds to the output of
the first flip-flop of the shift register, as shown in Fig. 2. When
the bit of the bitmask is 1, α1 is shifted by one position, i.e.,
α2 = α1, and α1 is updated to store the bit of the current raw
PUF response. When the bit of the bitmask is 0, α1 retains its
value. Thus, the first bit in the α1 bitstring shown in Fig. 3
corresponds to bit bn of the stable PUF response, and the last
bit in the α1 bitstring shown in Fig. 3 corresponds to bit b1 of
the stable PUF response.

A set of N = 100 PUF instances emulating PUFs from 100
different chips is generated by performing a Monte Carlo (MC)
analysis with 100 runs, considering both mismatch and inter-
die variations, and using the actual statistical process design kit
(PDK) of the technology.

Uniqueness and average uniformity and diffuseness across
the 100 PUF instances are calculated by simulating the PUF
instances at nominal conditions of 25◦C and Vdd = 1.6V. For
diffuseness, we change Iin from 13.8µA to 15.3µA with step
size of 0.15µA. Stability for each instance is calculated by
changing temperature from -25◦C to 100◦C in steps of 25◦C
and Vdd from 1.3V to 1.9V in steps of 0.1V. Thereafter, we
report average stability across all instances.



Fig. 3. Transient simulation of neuron-PUF showing relevant signals.

TABLE I
NEURON-PUF QUALITY METRICS.

Uniformity Uniqueness Diffuseness Stability Stability
(T ) (Vdd)

PUF core 53.83% 48.54% 54.07% 61% 60.51%
With LDO only 53.8 48.54% 49.43% 90.04% 96.11%
With complete
stability booster 47.49% 48.42% 46.25% 100% 100%

The four PUF quality metrics are summarized in Table I
considering the PUF raw response at the output of the PUF
core, and the PUF response after stability boosting using the
LDO only and the complete stability booster. As it can be
seen, for the complete system, uniformity, uniqueness and
diffuseness are 47.49%, 48.42%, and 46.25%, respectively, i.e.
close to their ideal 50% value. Without the stability booster
uniformity increases to 53.38% and diffuseness increases to
54.07%. Without the stability booster, the percentage of stable
bits under Vdd and temperature variations is around 60.5% and
61%, respectively. Adding the LDO enhances the stability by
around 35.6% and 29% against Vdd and temperature variations,
respectively. With the complete stability booster in place, we
obtain a fully stable 199-bit PUF response.

The PUF core consumes only 44.39nW/bit or 0.114fJ/bit,
considering a clock period of 2.56ns and that there are 256
raw bits. For the same technology node, corresponding reported
values for SRAM and RO PUFs are 1100fJ/bit and 474.8fJ/bit,
respectively [37]. Using the stability booster, power consump-
tion raises to 0.64µW/bit, but a stability booster is needed
in all PUF architectures and can be excluded from the direct
comparison.

Finally, the layout area of the PUF core is 13.4µm×20.2µm.

Considering that there are 199 stable bits, area per bit is 322F2,
where F=65nm is the minimum feature size. For the same
technology node, corresponding reported values for SRAM and
RO PUFs are 806F2 and 39000F2, respectively, computed as
the ratio of the array area and the number of stable bits [37].

In summary, the neuron-PUF offers significant reductions in
area and power overheads compared to SRAM and RO PUFs.

VI. CONCLUSIONS

We proposed neuron-PUF, a novel PUF design that uses a
single spiking neuron as the source of entropy. Neuron-PUF is
a single-cell PUF that uses temporal redundancy to generate a
digital key of arbitrary size. It has a composite and large CRP
space making it a candidate for implementing a strong PUF.
Simulation results show that the neuron-PUF achieves close
to ideal PUF metrics. It also has high potential for resisting
modeling and memory attacks. The single-cell property results
in minimum energy per bit and area per bit compared to all
popular PUFs.

In terms of future work, we are planning to continue the
verification and experimental validation towards proving PUF
robustness and resilience to mainstream attacks. We are also
planning to investigate the use of different types of spiking
neurons [49] in the context of the neuron-PUF architecture.
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