Xuhui Lu 
  
Yingmin Jia 
  
Yongling Fu 
  
Fumitoshi Matsuno 
  
Some Properties on the Cooperative-Competitive Networks of the Multi-Agent Systems

Keywords: Multi-agent systems, Bipartite consensus, Cooperative-competitive network

In this paper, some properties on the cooperativecompetitive networks of the multi-agent systems are presented and rigorously proved, which can facilitate the bipartite consensus control scheme design of the multi-agent systems.

I. INTRODUCTION

In this paper, some properties on the cooperativecompetitive networks of the multi-agent systems are presented and rigorously proved, which can facilitate the bipartite consensus control scheme design of the multi-agent systems.

This remaining part of this paper is organized as follows. Section 2 is the preliminaries. The properties on the cooperative-competitive networks of the multi-agent systems and the associated proofs are shown in Section 3. Section 4 is the conclusions of this paper.

II. PRELIMINARIES

A. Notations

First, N is the nonnegative integer set, N * is the positive integer set, R is the real number set, C is the set of complex numbers, R n is the real n-dimensional vector space, and R m×n is the real (m × n)-dimensional matrix space. 0 n ∈ R n is the zero vector, and E n ∈ R n×n is the identity matrix. For the vector v ∈ R n , ∥v∥ is its 2-norm. For the matrix B ∈ R n×n , rank(B) and ∥B∥ are the associated rank and 2-norm. Besides, e m,i ∈ R m is a unit vector where the ith element is 1 and the other elements is 0. Additionally, denote C(n c , r c ) nc! rc!(nc-rc)! , where n c ∈ N * , r c ∈ N and 0 ≤ r c ≤ n c .

B. Basic Introduction on Graph Theory
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cooperative-competitive network can be described by a signed graph G (V, E, A). Here V {1, 2, . . . , n} is the node set, E ⊆ V × V is the edge set, and A = [a i,j ] ∈ R n×n is the corresponding weighted adjacency matrix. If (i, j) ∈ E, the node j can send information to the node i with a i,j ̸ = 0. Correspondingly, denote N i {j ∈ V | (i, j) ∈ E} as the neighbor set of the node i. Here the graph G is assumed undirected, which implies that (i, j) ∈ E if and only if (j, i) ∈ E, and correspondingly a i,j = a j,i . Notice that the interaction from the node i to the node j is competitive (cooperative) if a i,j < 0 (a i,j > 0), and correspondingly the edge (i, j) is negative edge (positive edge). The node i is said reachable from the node j, if there exists a set of edges (i, j 1 ), (j 1 , j 2 ), . . ., (j m , j) in the graph G. The undirected graph G is said connected, as long as for any nodes i and j, the node i is reachable from the node j.

Besides, the Laplacian matrix of the graph G is denot-

ed as L = [l i,j ] n×n = D -A ∈ R n×n , where D = diag( ∑ n j=1 |a 1,j |, . . . , ∑ n j=1 |a n,j |) ∈ R n×n .
According to the definition of the Laplacian matrix L, it is obtained that l i,i = ∑ n j=1 |a i,j | for any i ∈ V and l i,j = -a i,j for any i ∈ V and j ∈ V with i ̸ = j. Note that when the graph G is undirected, it is obtained that A = A T , L = L T , and accordingly the matrix L is positive semi-definite. Moreover, the signed graph G is structurally balanced, if there exist two sets

V 1 and V 2 satisfying V 1 ∩ V 2 = ∅ and V 1 ∪ V 2 = V,
such that a i,j ≤ 0 for any i ∈ V m , j ∈ V q (m ̸ = q and m, q ∈ {1, 2}) and a i,j ≥ 0 for any i, j ∈ V m (m ∈ {1, 2}).

Additionally, for the signed graph G, the following lemma is satisfied [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF].

Lemma 1:

The signed graph G is structurally balanced if and only if there exists a diagonal matrix

Q = diag(σ 1 , . . . , σ n ) ∈ R n×n satisfying |σ i | = 1 for any i = 1, . . .

, n, such that

A * = QAQ is nonnegative matrix, and accordingly all the off-diagonal elements of the matrix L * QLQ = D -A * are nonpositive. In addition, if the signal graph G is connected, structurally balanced and undirected, then the matrices L and L * are both positive semi-definite and possess only one zero eigenvalue, with the according zero eigenvectors being v q = col(σ 1 , . . . , σ n ) and 1 n respectively.

Notice that according to the structure of the matrix Q, the matrices L * = QLQ and L are isospectral. Hence, according to Lemma 1, for the connected, structurally balanced and undirected graph G, λ L,max > 0 and λ L,min > 0 are denoted as the largest eigenvalue and the second smallest eigenvalue of the matrices L * and L.

C. Useful Lemma

First, denote

A =      1 h 0 • • • 0 0 1 h • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1      ∈ R m×m , (1a) B = [ 0 0 0 • • • h ] T ∈ R m , ( 1b 
)
where h > 0. Then the following lemma can be obtained. Lemma 2: Consider the matrix

A g A -BK g , (2) 
where

K T g col(k g,1 , k g,2 , . . . , k g,m ), k g,j = C(m, j - 1) β m+1-j g h m+1-j , j = 2, 3, . . . , m, k g,1 ∈ [0, β m g h m ]
and β g ∈ (0, 1). Then the following two properties are satisfied for the matrix

A g . 1). If k g,1 ∈ (0, β m g h m ]
, it is obtained that all the eigenvalues of the matrix A g will be located in the unit circle, and

∥A g ∥ = m √ β m g -k g,1 h m + 1 -β g < 1.
2). If k g,1 = 0, it is obtained that all the eigenvalues of the matrix A will be located in the unit circle except an eigenvalue 1 with multiplicity 1, and the according left and right eigenvectors of

1 are v g col(1, kg,3 kg,2 , . . . , 1 kg,2
) and e m,1 . In addition, for the matrix

Āg A g -e m,1 v T g , (3) it is obtained that ∥ Āg ∥ = √ 1 + 2β g (1 -β g )(cos( 2π m ) -1) < 1,
and the according left and right 0 eigenvectors are v g and e m,1 respectively.

The proof of Lemma 2 can be seen in Appendix A.

III. SOME PROPERTIES ON THE COOPERATIVE-COMPETITIVE NETWORKS

First, denote

L K K p L ∈ R n×n , ( 4 
)
where

K p diag(k p,1 , . . . , k p,n ) ∈ R n×n , ( 5 
) with k p,i ∈ (0, 1 2li,i ( β h ) m ] for i = 1, . . . , n.
Accordingly, the following theorem can be obtained for the matrix L K (4).

Theorem 1: Consider the signed graph G that is undirected, structurally balanced and connected. Then the following properties on the matrix L K are satisfied:

1). The matrix

L K meets rank(L K ) = n -1 and L K v q = L T K K -1 p v q = 0 n . 2). The matrix L K is diagonalizable and satisfies L K = U -1 L Ψ L U L , ( 6 
)
where U L ∈ R n×n is an invertible matrix and

Ψ L diag(ψ L,1 , ψ L,2 , . . . , ψ L,n ) ∈ R n×n meets 0 = ψ L,1 < ψ L,2 ≤ . . . ≤ ψ L,n ≤ ( β h ) m , which implies that c L ∥L K ∥ ≤ ( β h ) m . Proof:
The proof of this theorem is divided into two parts: 1). The proof of Property 1.

First, since the graph G is undirected, structurally balanced and connected, it follows from Lemma 1 that rank(L) = n-1. This means that the matrix L K (4) also satisfies rank(L K ) = n -1.

Besides, since Lv q = 0 n , it follows from (4) that

L K v q = K p Lv q = 0 n , ( 7a 
)
L T K K -1 p v q = Lv q = 0 n . (7b)
2). The proof of Property 2. First, denote

LK K 1 2 p LK 1 2 p . ( 8 
)
It follows from (4)-( 5) and (8) that

L K = K 1 2 p LK K -1 2 p . ( 9 
)
Since the matrix L is the positive semidefinite with rank(L) = n -1, it follows from (8) that the matrix LK is also positive semidefinite with rank( LK ) = n -1. Correspondingly, it follows that the matrix LK is diagonalizable where the associated eigenvalues are denoted as

0 = ψ L,1 < ψ L,2 ≤ . . . ≤ ψ L,n .
Besides, based on (9), it follows that the matrices L K and LK are similar, which means that the matrix L K is also diagonalizable and its eigenvalues are

0 = ψ L,1 < ψ L,2 ≤ . . . ≤ ψ L,n .
Then, based on the structure of L K (4), it follows from Gershgorin circle theorem [START_REF] Horn | Matrix Analysis[END_REF] that all the eigenvalues of L K (that is, ψ L,i , i ∈ V) is located in the set Θ L defined as

Θ L Θ L,1 ∪ Θ L,2 ∪ • • • ∪ Θ L,n , (10) 
where Θ L,i {z ∈ C | |z -k p,i l i,i | ≤ k p,i l i,i }, for i = 1, . . . , n. Since all the eigenvalues of the matrix L K are nonnegative and k p,i ∈ (0, 1 2li,i ( β h ) m ], it follows from (10) that all the eigenvalues ψ L,i , i ∈ V, lie in the following set

Θ r Θ r,1 ∪ Θ r,2 ∪ • • • ∪ Θ r,n , (11) 
where

Θ r,i [0, 2k p,i l i,i ] ⊆ [0, ( β h ) m ]. This means that all the eigenvalues ψ L,i , i ∈ V, satisfy 0 = ψ L,1 < ψ L,2 ≤ . . . ≤ ψ L,n ≤ ( β h ) m , and accordingly c L = ∥L K ∥ = ψ L,n ≤ ( β h ) m .
In all, it is obtained that for the matrix L K , there is an invertible matrix U L and the associated diagonal matrix Ψ L = diag(ψ L,1 , ψ L,2 , . . . , ψ L,n ) so that Eq. ( 6) holds, where 0

= ψ L,1 < ψ L,2 ≤ . . . ≤ ψ L,n ≤ ( β h ) m . Besides, c L ≤ ( β h ) m . The proof of this theorem is complete.
Then, denote

A c      1 h 0 • • • 0 0 1 h • • • 0 . . . . . . . . . . . . . . . 0 -k v,1 h -k v,2 h • • • 1 -k v,m-1 h      ∈ R m×m , ( 12 
) B m,1      0 0 • • • 0 . . . . . . . . . . . . 0 0 • • • 0 h 0 • • • 0      ∈ R m×m , ( 13 
)
where k v,j = C(m, j)( β h ) m-j > 0 and β ∈ (0, 1). It can be obtained from (12) that A c e m,1 =e m,1 , (14a)

A T c v A =v A , ( 14b 
)
where

v A col(1, kv,2 kv,1 , . . . , kv,m kv,1 ). Accordingly, denote H E n ⊗ A c -L K ⊗ B m,1 ∈ R mn×mn , ( 15a 
) H H - 1 c p v q v T q K -1 p ⊗ e m,1 v T A ∈ R mn×mn , ( 15b 
)
where c p ∑ n i=1 1 kp,i . In view of (15a) and

L K v q = L T K K -1 p v q = 0 n , it is further obtained that H(v q ⊗ e m,1 ) =v q ⊗ e m,1 , ( 16a 
)
H T (K -1 p v q ⊗ v A ) =K -1 p v q ⊗ v A . ( 16b 
)
It follows from (16a)-( 16b) and e T m,

1 v A = 1 that H(v q ⊗ e m,1 ) = HT (K -1 p v q ⊗ v A ) = 0 mn . ( 17 
)
In addition, the following theorem can be obtained for the matrices H (15a) and H (15b).

Theorem 2: If the graph G is connected, structurally balanced and undirected, then the following properties can be obtained:

1). The matrix H (15a) has only one eigenvalue of 1 with multiplicity 1, and its other eigenvalues are located in the unit circle.

2). All the eigenvalues of the matrix H (15b) are also located in the unit circle, which means that λ H,max = ∥ H∥ < 1.

Proof: First, according to Lemma 3, it is obtained that the matrix L K can be diagonalized as (6). Based on the structure of the invertible matrix U L , denote

U T L = [U L,1 , . . . , U L,n ] and U -1 L = [U C,1 , . . . , U C,n ] with U L,i ∈ R n and U C,i ∈ R n . Based on (6) and Ψ L = diag(ψ L,1 , . . . , ψ L,n ), it follows that U L,i is the left eigenvector of L K with the eigenvalue ψ L,i , U C,i is the right eigenvector of L K with the eigenvalue ψ L,i . Notice that U T L,i U C,j = 0 for any i ∈ V and j ∈ V with i ̸ = j, and U T L,i U C,i = 1 for any i ∈ V. Especially, from L K v q = L T K K -1 p v q = 0 n , it follows that U L,1 = λL,1 K -1
p v q and U C,1 = λL,2 v q with λL,1 ̸ = 0 and λL,2 ̸ = 0, and accordingly

U L v q = λL,1 c p e n,1 , (18a) 
U -T L K -1 p v q = λL,2 c p e n,1 . (18b) Besides, from U T L,1 U C,1 = 1, it is obtained that U T L,1 U C,1 = λL,1 λL,2 v T q K -1 p v q = λL,1 λL,2 c p = 1. Accordingly, it further follows from (18a)-(18b) that (U L ⊗ E m )( 1 c p v q v T q K -1 p ⊗ e m,1 v T A )(U -1 L ⊗ E m ) =e n,1 e T n,1 ⊗ e m,1 v T A . (19) 
Then, denote H s (U L ⊗E m )H(U -1 L ⊗E m ), and it follows from (15a) and (6) that

H s =E n ⊗ A c -Ψ L ⊗ B m,1 =diag(A c , Ãc,2 , . . . , Ãc,n ), (20) 
where Ãc,i

A c -ψ L,i B m,1 for i = 2, . . . , n. Similarly, denote Hs (U L ⊗ E m ) H(U -1
L ⊗ E m ), and from (15b) and ( 19)-(20), it follows that

Hs =E n ⊗ A c -Ψ L ⊗ B m,1 -e n,1 e T n,1 ⊗ e m,1 v T A =diag(A c -e m,1 v T A , Ãc,2 , . . . , Ãc,n ). (21) 
Moreover, from the structure of Ãc,i , 0

< ψ L,2 ≤ . . . ≤ ψ L,n ≤ ( β h ) m , k v,j = C(m, j)( β h
) m-j for j = 1, . . . , m, β ∈ (0, 1) and Property 1 of Lemma 2, it follows that

∥ Ãc,i ∥ =1 -β + m √ β m -ψ L,i h m < 1, (22) 
for any i = 2, . . . , n. Besides, for the matrices A c and A ce m,1 v T A , it is further obtained from Property 2 of Lemma 2 that all the eigenvalues of A c lie inside the unit circle except an eigenvalue of 1 with multiplicity 1, and

∥A c -e m,1 v T A ∥ = √ 1 + 2β(1 -β)(cos 2π m -1) < 1. (23)
Therefore, according to (20) and the properties of the matrices A c and Ãc,i , i = 2, . . . , n, it is obtained that both the matrix H s and the matrix H have only one eigenvalue of 1 with multiplicity 1, and their other eigenvalues lie inside the unit circle, which completes of the proof of Property 1. Besides, according to (21)-( 23), it is obtained that λ H,max = ∥ H∥ = ∥ Hs ∥ < 1. Hence, all the eigenvalues of H lie inside the unit circle, which completes the proof of Property 2.

IV. CONCLUSIONS

This paper presents some properties on the cooperativecompetitive network of the multi-agent systems. The associated rigorous proofs are also provided. The presented properties can facilitate the bipartite consensus control scheme design of the multi-agent systems.

APPENDIX A THE PROOF OF LEMMA 2

First, the characteristic polynomial of the matrix A g is

∆ g (ψ) = (ψ -1 + β g ) m + k g,1 h m -β m g . ( 24 
) Since k g,1 ∈ [0, β m g h m ]
, it is obtained from (24) that the eigenvalues of the matrix A g are

ψ i =1 -β g + m √ β m g -k g,1 h m (cos( 2iπ m ) + j sin( 2iπ m )). (25) 
for i = 0, 1, . . . , m-1. Then the properties of this lemma will be verified one by one. 1). Proof of Property 1. First, notice that

|ψ i | ≤ m √ β m g -k g,1 h m + 1 -β g , (26) 
for any i = 0, 1, . . . , m -1, and the equality in (26) holds if and only if i = 0. Moreover, since k g,1 ∈ (0,

β m g h m ], it is obtained from (26) that ∥A g ∥ = m √ β m g -k g,1 h m + 1 -β g < 1. (27) 
2). Proof of Property 2. First, if k g,1 = 0, it is obtained from (25) that

ψ i =1 -β g + β g (cos( 2iπ m ) + j sin( 2iπ m )), (28) 
for i = 0, 1, . . . , m -1. It is obtained from (28) that ψ 0 = 1 and

|ψ i | ≤ √ 1 + 2β g (1 -β g )(cos( 2π m ) -1), (29) 
for any i = 1, . . . , m-1. The equality in (29) holds if and only if i = 1 or i = m-1. It can be seen in ( 29) that the matrix A g has only one eigenvalue of 1, and its other eigenvalues (that is, ψ i , i = 1, . . . , m -1) lie inside the unit circle.

Besides, it can be seen in ( 2) that

A g e m,1 =e m,1 , (30a)

A T g v g =v g , ( 30b 
)
meaning that the vectors v g and e m,1 are the left and right eigenvectors of 1 of the matrix A g respectively.

In addition, for the matrix Āg = A g -e m,1 v T g (3), it is obtained from (30a)-(30b) that Āg e m,1 = 0 m and ĀT g v g = 0 m , meaning that the vectors v g and e m,1 are the left and right zero eigenvectors of the matrix Āg . Since the matrix A g has only one eigenvalue of 1 with the associated left and right eigenvectors being v g and e m,1 , it is obtained from the structures of A g and Āg that the eigenvalues of the matrix Āg are 0 and ψ i , i = 1, . . . , m -1. Accordingly, it further follows from (29) that

∥ Āg ∥ = √ 1 + 2β g (1 -β g )(cos( 2π m ) -1) < 1. (31) 
This proof of this lemma is complete.