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Abstract

SAR tomography is a powerful 3D reconstruction method. Nevertheless, in urban areas, results are usually rather sparse
and some post-processing is needed to obtain 3D buildings. In this paper, external information about building footprints
is introduced in the 3D reconstruction process. This is done by extending the recent method REDRESS based on a graph-
cut method (Rambour et al., Computer Vision and Image Understanding 2019). The graph construction is modified
to take into account spatially variable weights depending on the footprints location. Experimental results show a clear
improvement of the retrieved shapes.

1 Introduction

Thanks to the phase of the complex backscattered signal,
SAR imaging has great capacities to recover information
on the elevation and the movement of the illuminated struc-
tures. Nevertheless, in urban areas, this information is of-
ten sparse, restricted to specific local configurations like
dihedral or trihedral shapes that back-scattering a strong
echo. To "densify" the measurements, a possible solution
is to combine SAR images with heterogeneous data like
optical images or GIS information. One can cite the use
of optical data for elevation recovery using single SAR im-
age [1], interferometric [2] or radargrammetric data [3], or
information provided by a GIS [4]. The shape information
provided by the external source helps to regularize the SAR
measurements.
In this paper, we investigate how the building footprints
can improve the 3D information recovery in a tomographic
framework. To this aim, we propose to extend our recently
proposed approach [5], to take into account this informa-
tion. This is done by locally modifying the weights in the
graph in order to favor cuts in agreement with the foot-
prints.

2 Urban SAR tomography

A SAR tomographic stack is built from a set of N co-
registered images of size Nx ×Nr. In the absence of scat-
terer motion and after proper phase calibration, the com-
plex value of a pixel in the image n at the azimuth-range
position (x, r) is given by:

Figure 1 Principle of SAR tomography. Using different
sensor positions, it is possible to unmixe the backscat-
tered signals in ∆r and recover the different contributions
inside the resolution cell.

vn(x, r) =

∫∫

(y,z)∈∆r

u(x, y, z)e−jξnzdydz . (1)

As depicted in Fig.1, the 3-D reflectivity function
u(x, y, z) is summed along the radar resolution cell extent
∆r to model the value vn(x, r) at the pixel with range r and
azimuth x. The complex exponential contains the interfer-
ometric information that relates the nth antenna position to
the height z of the scatterers. Under some classical approx-
imations [6], the interferometric phase can be considered
directly proportional to z. The parameter ξn =

4πb⊥n

λr sin θ cor-
responds to the angular frequency associated to the antenna
n, with b⊥n the orthogonal baseline, θ the incidence angle
and λ the wavelength.
Estimators such as MUSIC [7] can be used to recover



u from an estimate of the complex covariance matrix
computed at the pixel (x, r). The Compressive Sensing
(CS) approach directly inverts the scattering vector v =
[v1, . . . , vN ]t. It has been shown to be more adapted to
dense urban landscapes [8, 9]. It is based on a regularized
inversion with a sparsity-promoting `1 term:

û = arg min
u

‖Pu− v‖22 + µ‖u‖1 . (2)

The vector u ∈ C(Nx·Nr·Nz) contains the estimated
3D distribution of reflectivities. The parameter µ con-
trols the sparsity of the estimation. The matrix P ∈
C(N ·Nx·Nr)×(Nx·Nr·Nz) performs the projection of the
voxels in u onto the SAR image stack and accounts for
the phase shift induced in each image by the optical path
length. Here, the matrix P is defined like in the REDRESS
method [5] as a mapping from voxels uniformly sampled
in the 3D ground coordinates system (x, y, z) to pixels in
the SAR coordinates (x, r).

3 Urban surface segmentation

Raw reconstructions of dense urban areas obtained with
SAR tomography are generally difficult to interpret for
non-experts. Extracting meaningful information from
these estimations is still a challenging task and generally
requires good priors on the observed scene. For urban ar-
eas, a recent approach consists of modeling the spatial dis-
tribution of the scatterers as a surface corresponding to the
ground, the walls and rooftops [5, 10]. These methods have
proved to work well for urban areas and show promising
result in dense urban areas. Here we propose to extend the
REDRESS algorithm [5] to take into account additional in-
formation on the 3-D scene.
The original version of REDRESS alternatively performs
an estimation of the reflectivity of the scene and a segmen-
tation of the urban surface. To perform the segmentation,
a cost function composed of a data fidelity term Pd and a
regularization term Ps is defined on all possible segmenta-
tions. First, to enforce a good fidelity to the tomographic
estimation, surface S located near high intensity voxels
are favored. Since the radar wave does not penetrate inside
the buildings, along each ray that emerges from the radar,
only one intersection with the visible surface is possible.
To account for these considerations, we define a cost func-
tion D that is applied to all incident rays:

D(ρ) =

∫ ρ

ρmin

[Cf (s)− Cb(s)]+ds (3)

+

∫ ρ

ρmin

[Cb(s)− Cf (s)]+ds , (4)

where ρ is the position along the ray and [.]+ stands for the
so-called relu function (i.e., the positive part). The func-
tions Cf and Cb are the the forward and backward cumu-
lative sum of the reflectivity defined as:

Cf (ρ) =

∫ ρ

ρmin

|u(ρ)|dρ Cb(ρ) =

∫ ρmax

ρ

|u(ρ)|dρ (5)

The functionD has a unique minimum which is met where
the reflectivity is equal to its median along the ray. The
global data penalty term Pd is then defined for a surface
S as the sum of the cost function D over the set R of all
incident rays in the scene:

Pd(S ) =

∫
R

Dτ (ρτ→S )dτ , (6)

where τ is a ray, Dτ is the cost function D defined for
that ray, and ρτ→S is the distance from the sensor to the
surface S along ray τ .
To take into account the typical geometrical patterns ob-
served in urban areas, the surface should also favor smooth
vertical and horizontal regions. This kind of behavior is
introduced by penalizing the `1 norm of its variations (i.e.,
the area of the surface):

Ps(S ) =

∫∫∫
‖∇S (x, y, z)‖ dxdydz (7)

with ∇ the gradient of the surface. Finally, the estimated
urban surface should be the solution of the following opti-
mization problem:

Ŝ = arg min
S

Pd(S ) + βPs(S ) (8)

The parameter β sets the importance of the data fidelity
term with respect to the spatial regularization. The opti-
mization problem (8) is solved using a graph-cut approach.
We detail the structure of the graph in the next part.

4 Adaptive spatial regularization
using the buildings footprint

The correct segmentation of the surface may be hard to
achieve in configurations where large parts of walls do not
backscatter any signal. In such cases, the spatial regular-
ization may favor surfaces that skip isolated building parts
(which is favored by the regularization term). The result
may then show only the bottom part of these buildings.
The buildings footprint can be used to reduce the regular-
ization parameter β where discontinuities of the surface are
expected.
The structure of the graph is illustrated in Fig. 2. It is
constructed based on the discretized volume of reflectivi-
ties and has a node for each voxel in û, plus two terminal
nodes: the source and the sink. All the nodes are con-
nected to their horizontal neighbors with edges of constant
capacity β except at the border of the footprints where β is
replaced by a small value ε � β. In our experiments, we
have set ε = 10−2. Finally, infinite-capacity edges connect
each node to its next vertical neighbor in order to forbid
the surface to intersect twice a vertical line (such a surface
is deemed unlikely in urban areas). The graph is built in
such a way that the cuts, i.e., the partition of the nodes into
two distinct subsets, one containing the source, the other
containing the sink, have associated costs that match the
value of the cost function for the corresponding 3D sur-
face. An efficient min-cut/max-flow algorithm can identify
the minimal cut, i.e., the optimal surface according to the
cost function that we designed.



(a)

(b)

Figure 2 (a) The graph is built from the reconstructed
volume with one node for each voxel of the volume.
Nodes are connected to the source, the sink and their im-
mediate spatial neighbors. The value of a cut in the graph
corresponds to the sum of the terms [Cf − Cb]

+ for the
nodes above the cut, the terms [Cb − Cf ]

+ for the nodes
below the cut, and β times the number of horizontal edges
cut. The optimal surface is defined by the minimal cut in
the graph. Infinite capacity edges connect each node to
its upper neighbor to ensure that the surface does not in-
tersect twice any given vertical line. (b) The value of the
spatial regularization parameter β is spatially adapted: it
is reduced in the vicinity of the buildings footprint.

5 Results

The validation of the proposed approach is performed us-
ing a dataset of 20 TerraSAR-X images of Paris1 and a map
of the buildings footprint provided by the french National
Institute of Geographic and Forest Information (IGN). The
average image of the stack and the footprints are presented
in Fig. 3. This dataset contains four buildings with a
height above 75 meters and large footprints. Two of them
backscatter a high-intensity signal and are clearly visible
in the SAR images. However, only parts of the walls of
the building in the left of the images are visible and the
one in the middle is almost invisible in the SAR image.
The result obtained with a spatially variant parameter β is
shown in Fig. 4. It is clear that the footprints provide an
important additional information for the reconstruction of
the scene. In the final version of the paper, a comparison
and discussion on different strategies for the choice of β

1These data have been obtained in the framework of the DLR project
LAN-176.

will be provided.

6 Conclusion

In this paper, we presented an extension to the urban
surface and tomographic inversion algorithm REDRESS
[5]. This extension includes exogenous information such
as building footprints within the surface segmentation
method. This kind of information is particularly useful
when large parts of a building are not visible in the tomo-
graphic inversion. Improvement in the reconstruction were
illustrated on a set of 20 TerraSAR-X images of Paris.
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Figure 3 From left to right: the optical image of the scene, the average of the SAR images stack and the available
buildings footprint.

Figure 4 From left to right: the urban surface ground truth, the surface obtained with a spatially-variant regularization
parameter β based on the footprints knowledge.




