Appendix 1 Mathematical proof of the equivalence between Rényi entropy and Shannon's H given $\alpha \rightarrow 1$ rasterdiv - an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back

December 12, 2020

- ¹⁰ Theorem (De l'Hôpital). Let $f, g: (a, b) \mapsto \mathbb{R}$ be two functions such that
- $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$
- f and g are derivable in (a, b) with $g'(x) \neq 0$ for every $x \in (a, b)$
- the limit $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$ with $L \in \mathbb{R}$
- 14 then

9

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

¹⁵ We now verify if the hypothesis hold in our case. Let $f: (1, +\infty) \mapsto \mathbb{R}$ ¹⁶ and $g: (1, +\infty) \mapsto \mathbb{R}$ be functions such that $f(x) = \log(\sum_{i=1}^{N} p_i^x)$ and g(x) =¹⁷ 1-x for every $x \in (1, +\infty)$. Since p_i is a fixed number in (0, 1) for every ¹⁸ $i \in \{1, \ldots, \}$ with $\sum_{i=1}^{N} p_i = 1$, then

$$f(1) = \log(\sum_{i=1}^{N} p_i) = 0.$$

¹⁹ Moreover, since f is a composition of derivable functions in $(1, +\infty)$, f²⁰ is derivable in the definition domain. It is trivial that g(1) = 0, that g is derivable in the domain set and that $g'(x) \neq 0$ for every $x \in (1, +\infty)$. The limit of the derivatives ratio is:

$$\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{(\sum_{i=1}^{N} p_i^x)^{-1} (\sum_{i=1}^{N} p_i^x \log p_i)}{1} = \sum_{i=1}^{N} p_i \log p_i$$

which is finite due to the hypothesis over p_i . Since all the hypotheses of De l'Hôpital's Theorem hold, the thesis follows, i.e.

$$\lim_{\alpha \to 1} H_{\alpha} = H,$$

or Rényi 's entropy equals to Shannon's H for $\alpha \to 1$.