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In this paper, we provide an overview of the existingmethods for integrating human advice

into a reinforcement learning process. We first propose a taxonomy of the different forms

of advice that can be provided to a learning agent. We then describe the methods that

can be used for interpreting advice when its meaning is not determined beforehand.

Finally, we review different approaches for integrating advice into the learning process.
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1. INTRODUCTION

Teaching a machine through natural interaction is an old idea dating back to the foundations of
AI, as it was already stated by Alan Turing in 1950: “It can also be maintained that it is best to
provide the machine with the best sense organs that money can buy, and then teach it to understand
and speak English. That process could follow the normal teaching of a child. Things would be pointed
out and named, etc.” (Turing, 1950). Since then, many efforts have been made for endowing robots
and artificial agents with the capacity to learn from humans in a natural and unconstrained manner
(Chernova and Thomaz, 2014). However, designing human-like learning robots still raises several
challenges regarding their capacity to adapt to different teaching strategies and their ability to take
advantage of the variety of teaching signals that can be produced by humans (Vollmer et al., 2016).

The interactive machine learning literature references a plethora of teaching signals such as
instructions (Pradyot et al., 2012b; Najar et al., 2020b), demonstrations (Argall et al., 2009), and
feedback (Knox and Stone, 2009; Najar et al., 2016). These signals can be categorized in several
ways depending on what, when, and how they are produced. For example, a common taxonomy
is to divide interactive learning methods into three groups: learning from advice, learning from
evaluative feedback (or critique), and learning from demonstration (LfD) (Knox and Stone, 2009,
2011b; Judah et al., 2010).While this taxonomy is commonly used in the literature, it is not infallible
as these categories can overlap. For example, in some papers, evaluative feedback is considered as a
particular type of advice (Judah et al., 2010; Griffith et al., 2013). In more rare cases, demonstrations
(Whitehead, 1991; Lin, 1992) were also referred to as advice (Maclin and Shavlik, 1996;Maclin et al.,
2005a). The definition of advice in the literature is relatively vague with no specific constraints
on what type of input can be provided to the learning agent. For example, it has been defined as
“concept definitions, behavioral constraints, and performance heuristics” (Hayes-Roth et al., 1981),
or as “any external input to the control algorithm that could be used by the agent to take decisions
about and modify the progress of its exploration or strengthen its belief in a policy” (Pradyot and
Ravindran, 2011). Although more specific definitions can be found, such as “suggesting an action
when a certain condition is true” (Knox and Stone, 2009), in other works advice also represents
state preferences (Utgoff and Clouse, 1991), action preferences (Maclin et al., 2005a), constraints
on action values (Maclin et al., 2005b; Torrey et al., 2008), explanations (Krening et al., 2017),
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instructions (Clouse and Utgoff, 1992; Maclin and Shavlik, 1996;
Kuhlmann et al., 2004; Rosenstein et al., 2004), feedback (Judah
et al., 2010; Griffith et al., 2013; Celemin and Ruiz-Del-Solar,
2019), or demonstrations (Whitehead, 1991; Lin, 1992; Maclin
and Shavlik, 1996). In some papers, the term feedback is used
as a shortcut for evaluative feedback (Thomaz and Breazeal,
2006; Leon et al., 2011; Griffith et al., 2013; Knox et al., 2013;
Loftin et al., 2016). However, the same term is sometimes used
to refer to corrective feedback (Argall et al., 2011). While these
two types of feedback, evaluative and corrective, are sometimes
designated by the same label, they are basically different. The
lack of consensus about the terminology in the literature makes
all these concepts difficult to disentangle, and represents an
obstacle toward establishing a systematic understanding of how
these teaching signals relate to each other from a computational
point of view. The goal of this survey is to clarify some of the
terminology used in the interactive machine learning literature
by providing a taxonomy of the different forms of advice,
and to review how these teaching signals can be integrated
into a reinforcement learning (RL) process (Sutton and Barto,
1998). In this survey, we define advice as teaching signals that
can be communicated by the teacher to the learning system
without executing the task. Thus, we do not cover LfD, since
demonstration is different from advice given this definition, and
comprehensive surveys on this topic already exist (Argall et al.,
2009; Chernova and Thomaz, 2014).

Although the methods we cover belong to various
mathematical frameworks, we mainly focus on the RL
perspective. We equivalently use the terms of “agent,” “robot,”
and “system,” by making abstraction of the support over which
the RL algorithm is implemented. Throughout this paper, we use
the term “shaping” to refer to the mechanism by which advice
is integrated into the learning process. Although this concept
has been mainly used within the RL literature as a method
for accelerating the learning process by providing the learning
agent with intermediate rewards (Gullapalli and Barto, 1992;
Singh, 1992; Dorigo and Colombetti, 1994; Knox and Stone,
2009; Judah et al., 2014; Cederborg et al., 2015), the general
meaning of shaping is equivalent to training, which is to make
an agent’s “behavior converge to a predefined target behavior”
(Dorigo and Colombetti, 1994).

The paper is organized as follows. We first introduce some
background about RL in section 2. We then provide an overview
of the existing methods for integrating human advice into an
RL process in section 3. The different methods are discussed in
section 4, before concluding the paper in section 5.

2. REINFORCEMENT LEARNING

RL refers to family of problems where an autonomous agent has
to learn a sequential decision-making task (Sutton and Barto,
1998). These problems are generally represented as Markov
decision process (MDP), defined as a tuple < S,A,T,R, γ >.
S represents the state-space over which the problem is defined
and A is the set of actions the agent is able to perform on
every time-step. T : S × A→ Pr(s′|s, a) defines a state-transition

probability function, where Pr(s′|s, a) represents the probability
that the agent transitions from state s to state s′ after executing
action a. R : S × A → R is a reward function that defines the
reward r(s, a) that the agent gets for performing action a in state
s. When at time t, the agent performs an action at from state st , it
receives a reward rt and transitions to state st+1. The discount
factor, γ , represents how much future rewards are taken into
account for the current decision.

The behavior of the agent is represented as a policy π that
defines the probability to select each action in every state: ∀s ∈ S,
π(s) = {π(s, a); a ∈ A} = {Pr(a|s); a ∈ A}. The quality of a
policy is measured by the amount of rewards it enables the agent
to collect over the long run. The expected amount of cumulative
rewards, when starting from a state s and following a policy π , is
given by the state-value function and is written as:

Vπ (s) =
∑

a

π(s, a)[R(s, a)+ γ
∑

s′

Pr(s′|s, a)Vπ (s′)]. (1)

Another form of value function, called action-value function and
noted Qπ , provides more directly exploitable information than
Vπ for decision-making, as the agent has direct access to the
value of each possible decision:

Qπ (s, a) = R(s, a)+γ
∑

s′

Pr(s′|s, a)Vπ (s′) ; ∀s ∈ S, a ∈ A. (2)

To optimize its behavior, the agent must find the optimal policy
π∗ that maximizes Vπ and Qπ . When both the reward and
transition functions are unknown, the optimal policy must be
learnt from the rewards the agent obtains by interacting with
its environment using an RL algorithm. RL algorithms can be
decomposed into three categories: value-based, policy-gradient,
and Actor-Critic (Sutton and Barto, 1998).

2.1. Value-Based RL
In value-based RL, the optimal policy is obtained by iteratively
optimizing the value function. Examples of value-based
algorithms include Q-learning (Watkins and Dayan, 1992) and
SARSA (Sutton, 1996).

In Q-learning, the action-value function of the optimal policy
π∗ is computed iteratively. On every time-step t, when the agent
transitions from state st to state st+1 by performing an action at ,
and receives a reward rt , the Q-value of the last state-action pair
is updated using:

Q(st , at)← Q(st , at)+α[rt + γ max
a′∈A

Q(st+1, a
′)−Q(st , at)], (3)

where α ∈ [0, 1] is a learning rate.
At decision time, the policy π can be derived from the

Q-function using different action-selection strategies. The ǫ-
greedy action-selection strategy consists of selecting most of
the time the optimal action with respect to the Q-function,
at = maxa∈A Q(st , a), and selecting with a small probability ǫ

a random action. With the softmax action-selection strategy, the
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policy π is derived at decision-time by computing a softmax
distribution over the Q-values:

π(s, a) = Pr(at = a|st = s) =
eQ(s,a)

∑
b∈A eQ(s,b)

. (4)

The SARSA algorithm is similar to Q-learning, with one
difference at the update function of the Q-values:

Q(st , at)← Q(st , at)+ α[rt + γQ(st+1, at+1)− Q(st , at)], (5)

where at+1 is the action the agent selects at time-step t + 1.
At decision time, the same action-selection strategies can be
implemented as for Q-learning.

2.2. Policy-Gradient RL
In contrast to value-based RL, policy-gradient methods do not
compute a value function (Williams, 1992). Instead, the policy is
directly optimized from the perceived rewards. In this approach,
the policy π is controlled with a set of parameters w ∈ R

n, such
that πw(s, a) is differentiable in w; ∀s ∈ S, a ∈ A. For example,
w can be defined so that w(s, a) reflects the preference for taking
an action in a given state by expressing the policy as a softmax
distribution over the parameters:

πw(s, a) = Pr(at = a|st = s) =
ew(s,a)

∑
b∈A ew(s,b)

. (6)

A learning iteration is composed of two stages. First, the
agent estimates the expected returns, G, by sampling a set of
trajectories. Then, the policy πw is updated using the gradient
of the expected returns with respect to w. For example, in the
REINFORCE algorithm (Williams, 1992), a trajectory of T time-
steps is first sampled from one single episode. Then, for every
time-step t of the trajectory, the return G is computed as G ←∑T

k=t+1 γ k−t−1rt , and the policy parameters are updated with:

w← w+ γ tG∇w lnπw(at|st). (7)

2.3. Actor-Critic RL
Actor-Critic architectures constitute a hybrid approach between
value-based and policy-gradient methods by computing both
the policy (the actor) and a value function (the critic) (Barto
et al., 1983). The actor can be represented as a parameterized
softmax distribution as in Equation (6). The critic computes a
value function that is used for evaluating the actor. The reward
rt received at time t is used for computing a temporal difference
(TD) error:

δt = rt + γV(st+1)− V(st). (8)

The TD error is then used for updating both the critic and the
actor, using respectively, Equations (9) and (10):

V(st)← V(st)+ αδt , (9)

w(st , at)← w(st , at)+ βδt , (10)

where α ∈ [0, 1] and β ∈ [0, 1] are two learning rates. A positive
TD error increases the probability of selecting at in st , while a
negative TD error decreases it.

The main advantage of RL algorithms is the autonomy of the
learning process. Given a predefined reward function, they allow
an agent to optimize its behavior without the intervention of
a human supervisor. However, they present several limitations.
For instance, they involve a time-consuming iterative process
that limits their applicability to complex real-world problems
(Kober et al., 2013). Some existing techniques, such as
reward shaping, aim at overcoming this limitation by defining
intermediate rewards (Gullapalli and Barto, 1992; Mataric,
1994). However, they generally require expert knowledge for
designing an appropriate reward shaping function (Ng et al.,
1999; Wiewiora et al., 2003). Also, the exploration aspect
of autonomous learning methods raises several safety issues
(Garcia and Fernandez, 2015).

Interactive learning constitutes a complementary approach
that aims at overcoming these limitations by involving a human
teacher in the learning process. In the next section, we show
how a human teacher can provide an RL agent with various
forms of advice to convey different information about the task.
We then show how advice can be interpreted by the agent, for
instance by grounding its meaning in the learning process using
either the reward function, the value function or the policy.
Finally, we show how advice can be used, in turn, to intervene
at different levels of the learning process, by influencing either
the reward function, the value function, the policy, or the action-
selection strategy.

3. REINFORCEMENT LEARNING WITH
HUMAN ADVICE

In one of the first papers of artificial intelligence, John McCarthy
described an “Advice Taker” system that could learn by being
told (McCarthy, 1959). This idea was then elaborated in Hayes-
Roth et al. (1980) and Hayes-Roth et al. (1981), where a
general framework for learning from advice was proposed. This
framework can be summarized in the following five steps (Cohen
and Feigenbaum, 1982; Maclin and Shavlik, 1996):

1. Requesting or receiving the advice.
2. Converting the advice into an internal representation.
3. Converting the advice into a usable form (operationalization).
4. Integrating the reformulated advice into the agent’s

knowledge base.
5. Judging the value of the advice.

The first step describes how human advice can be provided to
the system. Different forms of advice can be distinguished based
on this criterion. Step 2 refers to the encoding the perceived
advice into an internal representation. Most of existing advice-
taking systems assume that the internal representation of advice
is predetermined by the system designer. However, some recent
works tackle the problem of letting the system learn how to
interpret raw advice in order to make the interaction protocol
less constraining for the human teacher (Vollmer et al., 2016).
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FIGURE 1 | Taxonomy of advice.

Steps 3–5 describe how human advice can be used by the agent for
learning. These three steps are often confounded into one single
process, that we call shaping, which consists of integrating advice
into the agent’s learning process.

In the remainder of this section, we first propose a taxonomy
of different categories of advice based on how they can be
provided to the system (step 1). Then we detail how advice can
be interpreted (step 2). Finally, we present how advice can be
integrated into an RL process (steps 3–5).

3.1. Providing Advice
The means by which teaching signals can be communicated
to a learning agent vary. They can be provided via natural
language (Kuhlmann et al., 2004; Cruz et al., 2015; Paléologue
et al., 2018), computer vision (Atkeson and Schaal, 1997; Najar
et al., 2020b), hand-written programs (Maclin and Shavlik, 1996;
Maclin et al., 2005a,b; Torrey et al., 2008), artificial interfaces
(Abbeel et al., 2010; Suay and Chernova, 2011; Knox et al.,
2013), or physical interaction (Lozano-Perez, 1983; Akgun et al.,
2012). Despite the variety of communication channels, we can
distinguish two main categories of teaching signals based on
how they are produced: advice and demonstration. Even though
advice and demonstration can share the same communication
channels, like computer vision (Atkeson and Schaal, 1997; Najar
et al., 2020b) and artificial interfaces (Abbeel et al., 2010; Suay
and Chernova, 2011; Knox et al., 2013), they are fundamentally
different from each other in that demonstration requires the
task to be executed by the teacher (demonstrated), while advice
does not. In rare cases, demonstration (Whitehead, 1991; Lin,
1992) has been referred to as advice (Maclin and Shavlik, 1996;
Maclin et al., 2005a). However, it is more common to consider
demonstration and advice as two distinct and complementary
approaches for interactive learning (Dillmann et al., 2000; Argall
et al., 2008; Knox and Stone, 2009, 2011b; Judah et al., 2010).

TABLE 1 | Types of advice.

Category References

General constraints Hayes-Roth et al., 1981; Kuhlmann et al., 2004;

Mangasarian et al., 2004; Maclin et al., 2005a,b; Torrey

et al., 2008

General instructions Maclin and Shavlik, 1996; Kuhlmann et al., 2004;

Branavan et al., 2009, 2010; Vogel and Jurafsky, 2010

Guidance Thomaz, 2006; Thomaz and Cakmak, 2009; Suay and

Chernova, 2011; Chu et al., 2016; Subramanian et al.,

2016

Contextual

instructions

Utgoff and Clouse, 1991; Clouse and Utgoff, 1992;

Nicolescu and Mataric, 2003; Rosenstein et al., 2004;

Rybski et al., 2007; Thomaz and Breazeal, 2007b;

Branavan et al., 2010; Tenorio-Gonzalez et al., 2010;

Pradyot et al., 2012b; Grizou et al., 2013; MacGlashan

et al., 2014a; Cruz et al., 2015; Mathewson and Pilarski,

2016; Najar et al., 2020b

Corrective feedback Nicolescu and Mataric, 2003; Chernova and Veloso,

2009; Argall et al., 2011; Celemin and Ruiz-Del-Solar,

2019

Evaluative feedback Dorigo and Colombetti, 1994; Colombetti et al., 1996;

Isbell et al., 2001; Kaplan et al., 2002; Thomaz et al.,

2006; Kim and Scassellati, 2007; Knox and Stone, 2009,

2010, 2011a, 2012a,b; Judah et al., 2010;

Tenorio-Gonzalez et al., 2010; Lopes et al., 2011; Grizou

et al., 2013

Griffith et al., 2013; Grizou et al., 2014b; Loftin et al.,

2014, 2016; Ho et al., 2015; Mathewson and Pilarski,

2016; Najar et al., 2016, 2020b; MacGlashan et al., 2017

Based on this distinction, we define advice as teaching signals that
can be communicated by the teacher to the learning system without
executing the task.

We mainly distinguish two forms of advice depending on how
it is provided to the system: general advice and contextual advice
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(Figure 1, Table 1). General advice can be communicated to the
system, non-interactively, prior to the learning process (offline).
This type of advice represents information about the task that do
not depend on the context in which they are provided. They are
self-sufficient in that they include all the required information
for being converted into a usable form (operationalization).
Examples include specifying general constraints about the task
and providing general instructions about the desired behavior.
Contextual advice, on the other hand, is context-dependent, in
that the communicated information depends on the current
state of the task. So, unlike general advice, it must be provided
interactively along the task (Knox and Stone, 2009; Celemin and
Ruiz-Del-Solar, 2019; Najar et al., 2020b). Contextual advice can
also be provided in an offline fashion, with the teacher interacting
with previously recorded task executions by the learning agent
(Judah et al., 2010; Argall et al., 2011). Even in this case, each
piece of advice has to be provided at a specific moment of the
task execution. Examples of contextual advice include evaluative
feedback (Knox and Stone, 2009; Najar et al., 2016), corrective
feedback (Argall et al., 2011; Celemin and Ruiz-Del-Solar, 2019),
guidance (Thomaz and Breazeal, 2006; Suay and Chernova,
2011), and contextual instructions (Clouse and Utgoff, 1992;
Rosenstein et al., 2004; Pradyot et al., 2012a; Najar et al., 2020b).

3.1.1. General Advice
Advice can be used by the human teacher to provide the agent
with general information about the task prior to the learning
process. These information can be provided to the system in a
written form (Hayes-Roth et al., 1980; Maclin and Shavlik, 1996;
Kuhlmann et al., 2004; Branavan et al., 2009; Vogel and Jurafsky,
2010).

General advice can specify general constraints about the
task such as domain concepts, behavioral constraints, and
performance heuristics. For example, the first ever implemented
advice-taking system relied on general constraints that were
written as LISP expressions, to specify concepts, rules and
heuristics for a card-playing agent (Hayes-Roth et al., 1981).

A second form of general advice, general instructions,
explicitly specifies to the agent what actions to perform in
different situations. It can be provided either in the form of if-
then rules (Maclin and Shavlik, 1996; Kuhlmann et al., 2004),
or as detailed action plans describing the step-by-step sequence
of actions that should be performed in order to solve the task
(Branavan et al., 2009; Vogel and Jurafsky, 2010). Action plans
can be seen as a sequence of low-level or high-level contextual
instructions (cf. definition below). For example, a sequence like
(e.g., “Click start, point to search, and then click for files or
folders.”), can be decomposed into a sequence of three low-level
contextual instructions (Branavan et al., 2009).

3.1.2. Contextual Advice
In contrast to general advice, a contextual advice depends on the
state in which it is provided. To use the terms of the advice-
taking process, a part of the information that is required for
operationalization is implicit, and must be inferred by the learner
from the current context. Consequently, contextual advice must
be progressively provided to the learning agent along the task.

Contextual advice can be divided into two main categories:
guidance and feedback. Guidance informs about future actions,
whereas feedback informs about past ones.

3.1.3. Guidance
Guidance is a term that is encountered in many papers and
has been made popular by the work of Thomaz (2006) about
socially guided machine learning. In the broad sense, guidance
represents the general idea of guiding the learning process of
an agent. In this sense, all interactive learning methods can be
considered as a form of guidance. A bit more specific definition of
guidance is when human inputs are provided in order to bias the
exploration strategy (Thomaz and Cakmak, 2009). For instance,
in Subramanian et al. (2016), demonstrations were provided in
order to teach the agent how to explore interesting regions of the
state space. In Chu et al. (2016), kinesthetic teaching was used for
guiding the exploration process for learning object affordances.
In the most specific sense, guidance constitutes a form of advice
that consists of suggesting a limited set of actions from all the
possible ones (Thomaz and Breazeal, 2006; Suay and Chernova,
2011).

3.1.4. Contextual Instructions
One particular type of guidance is to suggest only one action
to perform. We refer to this type of advice as contextual
instructions. For example, in Cruz et al. (2015), the authors used
both terms of advice and guidance for referring to contextual
instructions. Contextual instructions can be either low-level
or high-level (Branavan et al., 2010). Low-level instructions
indicate the next action to perform (Grizou et al., 2013), whereas
high-level instructions indicate a more extended goal without
explicitly specifying the sequence of actions that should be
executed (MacGlashan et al., 2014a). High-level instructions
were also referred to as commands (MacGlashan et al., 2014a;
Tellex et al., 2014). In RL terminology, high-level instructions
would correspond to performing options (Sutton et al., 1999).
Contextual instructions can be provided through speech (Grizou
et al., 2013), gestures (Najar et al., 2020b), or myoelectric (EMG)
interfaces (Mathewson and Pilarski, 2016).

3.1.5. Feedback
We distinguish two main forms of feedback: evaluative and
corrective. Evaluative feedback, also called critique, consists
in evaluating the quality of the agent’s actions (Knox and
Stone, 2009; Judah et al., 2010). Corrective feedback, also called
instructive feedback, implicitly implies that the performed action
is wrong (Argall et al., 2011; Celemin and Ruiz-Del-Solar, 2019).
However, it goes beyond simply criticizing the performed action,
by informing the agent about the correct one.

3.1.6. Corrective Feedback
Corrective feedback can be either a corrective instruction
(Chernova and Veloso, 2009) or a corrective demonstration
(Nicolescu and Mataric, 2003). The main difference with
instructions (respectively, demonstrations) is that they are
provided after an action (respectively, a sequence of actions) is
executed by the agent, not before. So, operationalization is made
with respect to the previous state instead of the current one.
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So far, corrective feedback has been mainly used for
augmenting LfD systems (Nicolescu and Mataric, 2003;
Chernova and Veloso, 2009; Argall et al., 2011). For example,
in Chernova and Veloso (2009), while the robot is reproducing
the provided demonstrations, the teacher could interactively
rectify any incorrect action. In Nicolescu and Mataric (2003),
corrective demonstrations were delimited by two predefined
verbal commands that were pronounced by the teacher. In
Argall et al. (2011), the authors presented a framework based on
advice-operators, allowing a teacher to correct entire segments
of demonstrations through a visual interface. Advice-operators
were defined as numerical operations that can be performed on
state-action pairs. The teacher could choose an operator from a
predefined set, and apply it to the segment to be corrected. In
Celemin and Ruiz-Del-Solar (2019), the authors took inspiration
from advice-operators to propose learning from corrective
feedback as a standalone method, contrasting with other
methods for learning from evaluative feedback such as TAMER
(Knox and Stone, 2009).

3.1.7. Evaluative Feedback
Teaching an agent by evaluating its actions is an alternative
solution to the standard RL approach. Evaluative feedback can
be provided in different forms: a scalar value f ∈ [−1, 1] (Knox
and Stone, 2009), a binary value f ∈ {−1, 1} (Thomaz et al., 2006;
Najar et al., 2020b), a positive reinforcer f ∈ {“Good!′′, “Bravo!′′}
(Kaplan et al., 2002), or a categorical information f ∈

{Correct,Wrong} (Loftin et al., 2016). These values can be
provided through buttons (Kaplan et al., 2002; Suay and
Chernova, 2011; Knox et al., 2013), speech (Kim and Scassellati,
2007; Grizou et al., 2013), gestures (Najar et al., 2020b), or
electroencephalogram (EEG) signals (Grizou et al., 2014a).

Another form of evaluative feedback is to provide preferences
between demonstrated trajectories (Christiano et al., 2017;
Sadigh et al., 2017; Cui and Niekum, 2018). Instead of critiquing
one single action or a sequence of actions, the teacher provides
a ranking for demonstrated trajectories. The provided human
preferences are then aggregated in order to infer the reward
function. This form of evaluative feedback has been mainly
investigated within the LfD community as an alternative to the
standard Inverse Reinforcement Learning approach (IRL) (Ng
and Russell, 2000), by relaxing the constraint for the teacher to
provide demonstrations.

3.2. Interpreting Advice
The second step of the advice-taking process stipulates that
advice needs to be converted into an internal representation.
Predefining the meaning of advice by hand-coding the mapping
between raw signals and their internal representation has been
widely used in the literature (Clouse and Utgoff, 1992; Nicolescu
and Mataric, 2003; Lockerd and Breazeal, 2004; Rosenstein et al.,
2004; Rybski et al., 2007; Thomaz and Breazeal, 2007b; Chernova
and Veloso, 2009; Tenorio-Gonzalez et al., 2010; Pradyot et al.,
2012a; Cruz et al., 2015; Celemin and Ruiz-Del-Solar, 2019).
However, this solution has many limitations. First, programming
the meaning of raw advice signals for new tasks requires expert
programming skills, which is not accessible to all human users.

Second, it limits the possibility for different teachers to use their
own preferred signals.

One way to address these limitations is to teach the system
how to interpret the teacher’s raw advice signals. This way,
the system would be able to understand advice that can be
expressed through natural language or non-verbal cues, without
predetermining the meaning of each signal. In this case, we
talk about learning with unlabeled teaching signals (Grizou
et al., 2014b; Najar et al., 2020b). To achieve this goal, different
approaches have been taken in the literature. Table 2 summarizes
the literature addressing the question of interpreting advice.
We categorize them according to the type of advice, the
communication channel, the interpretation method, and the
inputs given to the system for interpretation.

3.2.1. Supervised Interpretation
Some methods relied on interpreters trained with supervised
learning methods (Kate and Mooney, 2006; Zettlemoyer and
Collins, 2009; Matuszek et al., 2013). For example, in Kuhlmann
et al. (2004), the system was able to convert general instructions
expressed in a constrained natural language into a formal
representation using if-then rules, by using a parser that was
previously trained with annotated data. In Pradyot et al. (2012b),
two different models of contextual instructions were learned in
the first place using Markov logic networks (MLN) (Domingos
et al., 2016), and then used for guiding a learning agent in
a later phase. The most likely interpretation was taken from
the instruction model with the highest confidence. In Kim and
Scassellati (2007), a binary classification of prosodic features was
performed offline, before using it to convert evaluative feedback
into a numerical reward signal for task learning.

3.2.2. Grounded Interpretation
More recent approaches take inspiration from the grounded
language acquisition literature (Mooney, 2008) to learn a model
that grounds the meaning of advice into concepts from the task.
For example, general instructions expressed in natural language
can be paired with demonstrations of the corresponding tasks
to learn the mapping between low-level contextual instructions
and their intended actions (Chen and Mooney, 2011; Tellex
et al., 2011; Duvallet et al., 2013). In MacGlashan et al. (2014a),
the authors proposed a model for grounding general high-level
instructions into reward functions from user demonstrations.
The agent had access to a set of hypotheses about possible tasks,
in addition to command-to-demonstration pairings. Generative
models of tasks, language, and behaviors were then inferred
using expectation maximization (EM) (Dempster et al., 1977).
In addition to having a set of hypotheses about possible reward
functions, the agent was also endowed with planning abilities that
allowed it to infer a policy according to the most likely task. The
authors extended their model in MacGlashan et al. (2014b) to
ground commandmeanings in reward functions using evaluative
feedback instead of demonstrations.

In a similar work (Grizou et al., 2013), a robot learned to
interpret both low-level contextual instructions and evaluative
feedback, while inferring the task using an EM algorithm.
Contextual advice was interactively provided through speech. As
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TABLE 2 | Interpreting advice.

References Advice Channel Method Inputs

Kate and Mooney, 2006 GI Text SVM Demonstration*

Kim and Scassellati, 2007 EFB Speech kNN Binary EFB classes

Chen and Mooney, 2011 GLI Text SVM Demonstration

Tellex et al., 2011 GHI Text Graphical model Demonstration

Artzi and Zettlemoyer, 2013 GHI Text Perceptron Rewards or demonstration + language model

Duvallet et al., 2013 GLI Text MCC Demonstration + language model

Tellex et al., 2014 GHI Text Gradient descent Demonstration

Pradyot et al., 2012b CLI Gestures MLN Demonstration*

Lopes et al., 2011 EFB and CFB Simulation IRL EFB and CFB

Grizou et al., 2013 EFB or CLI Speech EM Task models

Grizou et al., 2014b EFB EEG EM Task models

MacGlashan et al., 2014a GHI Text EM Task and language models

MacGlashan et al., 2014b GHI Text EM EFB + language model

Loftin et al., 2016 EFB Buttons EM Task models

Branavan et al., 2009 GLI Text PGRL Rewards

Branavan et al., 2010 GHI Text MB-PGRL Rewards

Vogel and Jurafsky, 2010 GLI Text SARSA Demonstration

Najar et al., 2015b CLI Simulation XCS Rewards

Najar et al., 2015a CLI Gestures XCS EFB

Najar et al., 2016 CLI Gestures Q-learning EFB

Mathewson and Pilarski, 2016 CLI EMG ACRL Rewards and/or EFB

Najar et al., 2020b CLI Gestures ACRL Rewards and/or EFB

GI, General instruction; GLI, general low-level instruction; GHI, general high-level instruction; CLI, contextual low-level instruction; EFB, evaluative feedback; CFB, corrective feedback;

SVM, Support Vector Machines; kNN, k-nearest neighbors; MCC, multi-class classification; MLN, Markov Logic Networks; IRL, Inverse Reinforcement Learning; PGRL, policy-gradient

RL; MB-PGRL, model-based policy-gradient RL; ACRL, Actor-Critic RL. *The term demonstration here is taken in the general sense as a trajectory, not necessarily the optimal one.

in MacGlashan et al. (2014b), the robot knew the set of possible
tasks, and was endowed with a planning algorithm allowing it to
derive a policy for each possible task. Thismodel was also used for
interpreting evaluative feedback provided through EEG signals
(Grizou et al., 2014b). In Lopes et al. (2011), a predefined set
of known feedback signals, both evaluative and corrective, were
used for interpreting additional signals with IRL.

3.2.3. RL-Based Interpretation
A different approach relies on RL for interpreting advice
(Branavan et al., 2009, 2010; Vogel and Jurafsky, 2010;
Mathewson and Pilarski, 2016; Najar et al., 2020b). In Branavan
et al. (2009), the authors used a policy-gradient RL algorithm
with a predefined reward function to interpret general low-level
instructions for a software application. This model was extended
in Branavan et al. (2010) to allow for the interpretation of high-
level instructions by learning a model of the environment. In
Vogel and Jurafsky (2010), a similar approach was used for
interpreting general low-level instructions, in a path-following
task, using the SARSA algorithm. The rewards were computed
according to the deviation from a provided demonstration.

In Mathewson and Pilarski (2016), contextual low-level
instructions were provided to a prosthetic robotic arm in
the form of myoelectric control signals and interpreted using
evaluative feedback with an Actor-Critic architecture. In Najar
et al. (2015b), a model of contextual low-level instructions was
built using the XCS algorithm (Butz and Wilson, 2001) in order

to predict task rewards, and used simultaneously for speeding-
up the learning process. This model was extended in Najar
et al. (2015a) to predict action values instead of task rewards.
In Najar et al. (2016), interpretation was based on evaluative
feedback using the Q-learning algorithm. In Najar (2017), several
methods for interpreting contextual low-level instructions were
compared. Each contextual low-level instruction was defined as
a signal policy representing a probability distribution over the
action-space in the same way as an RL policy:

π(i) = {π(i, a); a ∈ A} = {Pr(a|i); a ∈ A}, (11)

where i is an observed instruction signal, such as a pointing
gesture or a vocal command. Two types of interpretation
methods were proposed: batch and incremental. The main idea
of batch interpretation methods is to derive a state policy for an
instruction signal by combining the policies of every task state in
which it has been observed. Different combination methods were
investigated. The Bayes optimal solution derives the signal policy
by marginalizing the state policies over all the states where the
signal has been observed:

π(i, a) = Pr(a|i) =
∑

s∈S

Pr(a|s)× Pr(s|i) (12)

=
∑

s∈S

π(s, a)× Pr(i|s)× Pr(s)/Pr(i), (13)
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where Pr(i|s), Pr(s), and Pr(i) represent, respectively, the
probability of observing the signal i in state s, the probability of
being in state s and the probability of observing the signal i.

Other batch interpretation methods were inspired from
ensemble methods (Wiering and van Hasselt, 2008), which have
been classically used for combining the policies of different
learning algorithms. These methods compute preferences p(i, a)
for each action, which are then transformed into a policy
using the softmax distribution as in Equation (6). Boltzmann
Multiplication consists in multiplying the policies:

p(i, a) =
∏

s∈S;i∗(s)=i

π(s, a), (14)

where i∗(s) represents the instruction signal associated to the
state s.

Boltzmann Addition consists in adding the policies:

pt(i, a) =
∑

s∈S;i∗(s)=i

πt(s, a). (15)

In Majority Voting, the most preferred interpretation for a
signal i is the action that is optimal the most often over all its
contingent states:

p(i, a) =
∑

s∈S;i∗(s)=i

I(π∗(s), a), (16)

where I(x, y) is the indicator function that outputs 1 when x = y
and 0 otherwise.

In Rank Voting, the most preferred action for i is the one that
has the highest cumulative ranking over all its contingent states:

p(i, a) =
∑

s∈S;i∗(s)=i

R(s, a), (17)

where R(s, a) is the rank of action a in state s, such that if aj
and ak denote two different actions and π(s, aj) ≥ π(s, ak) then
R(s, aj) ≥ R(s, ak).

Incremental interpretation methods, on the other hand,
incrementally update the meaning of each instruction signal
using information from the task learning process such as the
rewards, the TD error, or the policy gradient. With Reward-based
Updating, instruction signals constitute the state space for an
alternative MDP which is solved using a standard RL algorithm.
This approach is similar to the one used in Branavan et al. (2010),
Branavan et al. (2009), and Vogel and Jurafsky (2010). In Value-
based Updating, the meaning of an instruction is updated with
the same amount as the Q-values of its corresponding state:

δpt(i, at) = δQ(st , at), (18)

whereas in Policy-based Updating, it is updated using the
policy update:

δπ(i, at) = δπ(st , at). (19)

These methods were compared using both a reward function and
evaluative feedback. Policy-based Updating presented the best
compromise in terms of performance and computation cost.

3.3. Shaping With Advice
We can distinguish several strategies for integrating advice into
an RL system, depending on which stage of the learning process
is influenced by the advice. The overall RL process can be
summarized as follows. First, the main source of information
to an RL agent is the reward function. In value-based RL, the
reward function is used for computing a value function, which
is then used for deriving a policy. In policy-based RL, the policy
is directly derived from the reward function without computing
any value function. Finally, the policy is used for decision-
making. Advice can be integrated into the learning process at
any of these four different stages: the reward function, the value
function, the policy, or the decision.

We qualify the methods used for integrating advice as shaping
methods. In the literature, this term has been used exclusively
for evaluative feedback, especially as a technique for providing
extra-rewards. For example, we find different terminologies such
as reward shaping (Tenorio-Gonzalez et al., 2010), interactive
shaping (Knox and Stone, 2009), and policy shaping (Griffith
et al., 2013; Cederborg et al., 2015). In some works, the term
shaping is not even adopted (Loftin et al., 2016). In this survey,
we generalize this term to all types of advice by considering
the term shaping in its general meaning as influencing an RL
agent toward a desired behavior. In this sense, all methods for
integrating advice into an RL process are considered as shaping
methods, especially that similar shaping patterns can be found
across different categories of advice.

We distinguish four main strategies for integrating advice into
an RL system: reward shaping, value shaping, policy shaping,
and decision biasing, depending on the stage in which advice is
integrated into the learning process (cf. Table 3). Orthogonal to
this categorization, we distinguish model-free from model-based
shaping strategies. In model-free shaping, the perceived advice
is directly integrated into the learning process, whereas model-
based shaping methods build a model of the teacher that is kept
in parallel with the agent’s own model of the task. Both models
can be combined using several combination techniques that we
review in this section.

3.3.1. Reward Shaping
Traditionally, reward shaping has been used as a technique for
providing an RL agent with intermediate rewards to speed-
up the learning process (Gullapalli and Barto, 1992; Mataric,
1994; Ng et al., 1999; Wiewiora, 2003). One way for providing
intermediate rewards is to use evaluative feedback (Isbell et al.,
2001; Thomaz et al., 2006; Tenorio-Gonzalez et al., 2010;
Mathewson and Pilarski, 2016). In these works, evaluative
feedback was considered in the same way as the feedback
provided by the agent’s environment in RL; so intermediate
rewards are homogeneous to MDP rewards. After converting
evaluative feedback into a numerical value, it can be considered as
a delayed reward, just likeMDP rewards, and used for computing
a value function using standard RL algorithms (cf. Figure 2)
(Isbell et al., 2001; Thomaz et al., 2006; Tenorio-Gonzalez et al.,
2010; Mathewson and Pilarski, 2016). This means that the effect
of the provided feedback extends beyond the last performed
action. When the RL agent has also access to a predefined reward
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TABLE 3 | Shaping methods.

Shaping method Model Advice References

Reward shaping Model-free Contextual instructions Clouse and Utgoff, 1992

Evaluative feedback Isbell et al., 2001; Thomaz et al., 2006; Tenorio-Gonzalez et al., 2010; Mathewson and Pilarski, 2016

Model-based Contextual instructions Najar et al., 2015b

Evaluative feedback Knox and Stone, 2010, 2011a, 2012b

Value shaping Model-free General instructions Utgoff and Clouse, 1991; Maclin and Shavlik, 1996; Kuhlmann et al., 2004; Maclin et al., 2005a,b; Torrey

et al., 2008

Evaluative feedback Dorigo and Colombetti, 1994; Colombetti et al., 1996; Najar et al., 2016

Model-based Contextual instructions Najar et al., 2015a, 2016

Evaluative feedback Knox and Stone, 2010, 2011a, 2012b

Policy shaping Model-free Contextual instructions Rosenstein et al., 2004

Evaluative feedback Ho et al., 2015; MacGlashan et al., 2017; Najar et al., 2020b

Model-based Contextual instructions Pradyot et al., 2012b; Grizou et al., 2013; Najar et al., 2020b

Evaluative feedback Knox and Stone, 2010, 2011a, 2012b; Lopes et al., 2011; Griffith et al., 2013; Loftin et al., 2016

Corrective feedback Lopes et al., 2011

Decision biasing Guidance Thomaz and Breazeal, 2006; Suay and Chernova, 2011

Contextual instructions Nicolescu and Mataric, 2003; Rosenstein et al., 2004; Rybski et al., 2007; Thomaz and Breazeal, 2007b;

Tenorio-Gonzalez et al., 2010; Cruz et al., 2015

FIGURE 2 | Shaping with evaluative feedback. 1: model-free reward shaping. 2: model-based reward shaping. 3: model-free value shaping. 4: model-based value

shaping. 5: model-free policy shaping. 6: model-based policy shaping.

function R, a new reward function R′ is computed by summing
both forms of reward: R′ = R + Rh, where Rh is the human
delivered reward. This way of shaping with is model-free in that
the numerical values provided by the human teacher are directly
used for augmenting the reward function.

Reward shaping can also be performed with instructions (cf.
Figure 3). For example, in Clouse and Utgoff (1992), contextual
instructions were integrated into an RL algorithm by positively
reinforcing the proposed actions in a model-free fashion.

Other works considered building an intermediate model of
human rewards to perform model-based reward shaping. In

the TAMER framework (Knox and Stone, 2009), evaluative
feedback was converted into rewards and used for computing a
regressionmodel Ĥ, called the “Human Reinforcement Function.”
This model predicted the amount of rewards Ĥ(s, a) that the
human provided for each state-action pair (s, a). Knox and
Stone (2010, 2011a, 2012b) proposed eight different shaping
methods for combining the human reinforcement function Ĥ with
a predefined MDP reward function R. One of them, Reward
Shaping, generalizes the reward shaping method by introducing
a decaying weight factor β that controls the contribution of Ĥ
over R:
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FIGURE 3 | Shaping with contextual instructions. 1: model-free reward shaping. 2: model-based reward shaping. 3: model-free value shaping. 4: model-based value

shaping. 5: model-free policy shaping. 6: model-based policy shaping. 7: decision biasing.

R′(s, a) = R(s, a)+ β ∗ Ĥ(s, a). (20)

Model-based reward shaping can also be performed with
contextual instructions. In Najar et al. (2015b), a human teacher
provided social cues to humanoid robot about the next action to
perform. A model of these cues was built in order to predict task
rewards and used simultaneously for reward shaping.

3.3.2. Value Shaping
While investigating reward shaping, some authors pointed out
the fundamental difference that exists between immediate and
delayed rewards (Dorigo and Colombetti, 1994; Colombetti et al.,
1996; Knox and Stone, 2012a). Particularly, they considered
evaluative feedback as an immediate information about the
value of an action, as opposed to standard MDP rewards (Ho
et al., 2017). For example, in Dorigo and Colombetti (1994),
the authors used a myopic discounting scheme by setting the
discount factor γ to zero. In this way, evaluative feedback
constituted immediate reinforcements in response to the actions of
the learning agent, which comes to consider rewards as equivalent
to action values. So, value shaping constitutes an alternative to
reward shaping by considering evaluative feedback as an action-
preference function. The work of Dorigo and Colombetti (1994)
was one of the earliest examples of model-free value-shaping.
Another example can be found in Najar et al. (2016), where
evaluative feedback was directly used for updating a robot’s action
values withmyopic discounting.

Model-free value shaping can also be done with general advice.
For example, if-then rules can be incorporated into a kernel-
based regression model by using the Knowledge-Based Kernel
Regression (KBKR) method (Mangasarian et al., 2004). This
method was used for integrating general constraints into the value

function of a SARSA agent using Support Vector Regression
for value function approximation (Maclin et al., 2005b). In this
case, advice was provided in the form of constraints on action
values (e.g., if condition then Q(s, a) ≥ 1), and incorporated into
the value function through the KBKR method. This approach
was extended in Maclin et al. (2005a) by proposing a new way
of defining constraints on action values. In the new method,
pref-KBKR (preference KBKR), the constraints were expressed
in terms of action preferences (e.g., if condition then prefer
action a to action b). This method was also used in Torrey
et al. (2008). Another possibility is given by the Knowledge-Based
Neural Network (KBANN) method, which allows incorporating
knowledge expressed in the form of if-then rules into a neural
network (Towell and Shavlik, 1994). This method was used in
RATLE, an advice-taking system based on Q-learning that used
a neural network to approximate its Q-function (Maclin and
Shavlik, 1996). General instructions written in the form of if-
then rules and while-repeat loops were incorporated into the Q-
function using an extension of KBANN method. In Kuhlmann
et al. (2004), a SARSA agent was augmented with an Advice
Unit that computed additional action values.General instructions
were expressed in a specific formal language in the form of if-
then rules. Each time a rule was activated in a given state, the
value of the corresponding action was increased or decreased
by a constant in the Advice Unit, depending on whether the
rule advised for or against the action. These values were then
used for augmenting the values generated by the agent’s value
function approximator.

Model-based value shaping with evaluative feedback has been
investigated by Knox and Stone (2012a) by comparing different
discount factors for the human reinforcement function Ĥ. The
authors demonstrated that setting the discount factor to zero
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was better suited, which came to consider Ĥ as an action-
value function more than a reward function.1 The numerical
representation of evaluative feedback is used for modifying the
Q-function rather than the reward function. One of the shaping
methods that they proposed, Q-Augmentation (Knox and Stone,
2010, 2011a, 2012b), uses the human reinforcement function Ĥ
for augmenting the MDP Q-function using:

Q′(s, a) = Q(s, a)+ β ∗ Ĥ(s, a), (21)

where β is the same decaying weight factor as in Equation (20).
Model-based value shaping can also be done with contextual

instructions. In Najar et al. (2015a) and Najar et al. (2016), a robot
built a model of contextual instructions in order to predict action
values, which were used in turn for updating the value function.

3.3.3. Policy Shaping
The third shaping strategy is to integrate the advice directly into
the agent’s policy. Examples of model-free policy shaping with
evaluative feedback can be found in MacGlashan et al. (2017)
and Najar et al. (2020b). In both methods, evaluative feedback
was used for updating the actor of an Actor-Critic architecture.
In MacGlashan et al. (2017), the update term was scaled by the
gradient of the policy:

w← w+ α∇w lnπw(at|st)ft , (22)

where ft is the feedback provided at time t. In Najar et al. (2020b),
however, the authors did not consider a multiplying factor for
evaluative feedback:

w← w+ αft . (23)

Model-free policy shaping with contextual instructions was
considered in Rosenstein et al. (2004), in the context of an Actor-
Critic architecture, where the error between the instruction and
the actor’s decision was used as an additional term to the TD error
for updating the actor’s parameters:

w← w+ α[kδt(a
E − aA)+ (1− k)(aS − aA)]∇wπA(s), (24)

where aE is the actor’s exploratory action, aA is its deterministic
action, aS is the teacher’s action, πA(s) is the actor’s deterministic
policy, and k is an interpolation parameter.

Knox and Stone proposed two model-based policy shaping
methods for evaluative feedback (Knox and Stone, 2010,
2011a, 2012b). Action Biasing uses the same equation as Q-
Augmentation (Equation 21) but only in decision-making, so
that the agent’s Q-function is not modified:

a∗ = argmaxa[Q(s, a)+ β ∗ Ĥ(s, a)]. (25)

The second method, Control Sharing, arbitrates between the
decisions of both value functions based on a probability criterion.

1The authors proposed another mechanism for handling temporal credit

assignment in order to alleviate the effect of highly dynamical tasks (Knox

and Stone, 2009). In their system, human-generated rewards were distributed

backward to previously performed actions within a fixed time window.

A parameter β is used as a threshold for determining the
probability of selecting the decision according to Ĥ:

Pr(a = argmaxa[Ĥ(s, a)]) = min(β , 1). (26)

Otherwise, the decision is made according to the MDP policy.
Other model-based policy shaping methods do not convert

evaluative feedback into a scalar but into a categorical
information (Lopes et al., 2011; Griffith et al., 2013; Loftin
et al., 2016). The distribution of provided feedback is used
within a Bayesian framework in order to derive a policy.
The method proposed in Griffith et al. (2013) outperformed
Action Biasing, Control Sharing, and Reward Shaping. After
inferring the teacher’s policy from the feedback distribution, it
computed the Bayes optimal combination with the MDP policy
by multiplying both probability distributions: π ∝ πR × πF ,
where πR is the policy derived from the reward function and
πF the policy derived from evaluative feedback. In Lopes et al.
(2011), both evaluative and corrective feedback were considered
under a Bayesian IRL perspective.

Model-based policy shaping can also be performed with
contextual instructions. For example, in Pradyot et al. (2012b), the
RL agent arbitrates between the action proposed by its Q-learning
policy and the one proposed by the instruction model based on a
confidence criterion:

κπ (s) = max
a∈A

π(s, a)− max
b∈A;b6=a

π(s, b). (27)

The same arbitration criterion was used in Najar et al. (2020b)
to decide between the outputs of an Instruction Model and a
Task Model.

3.3.4. Decision Biasing
In the previous paragraphs, we said that policy shaping methods
can be either model-free, by directly modifying the agent’s policy,
or model-based, by building a model that is used at decision-time
to bias the output of the policy. A different approach consists of
using advice to directly bias the output of the policy at decision-
time without corrupting the policy nor modeling the advice.
This strategy, that we call decision biasing, is the simplest way
of using advice as it only biases the exploration strategy of the
agent, without modifying any of its internal variables. In this case,
learning is done indirectly by experiencing the effects of following
the advice.

This strategy has been mainly used in the literature with
guidance and contextual instructions. For example, in Suay and
Chernova (2011) and Thomaz and Breazeal (2006) guidance
reduces the set of actions that the agent can perform at a
given time-step.

Contextual instructions can also be used for guiding a
robot along the learning process (Thomaz and Breazeal, 2007b;
Tenorio-Gonzalez et al., 2010; Cruz et al., 2015). For example,
in Nicolescu and Mataric (2003) and Rybski et al. (2007), an
LfD system was augmented with verbal instructions in order to
make the robot perform some actions during the demonstrations.
In Rosenstein et al. (2004), in addition to model-free policy
shaping, the provided instruction was also used for decision
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biasing. The robot executed a composite real-valued action that
was computed as a linear combination of the actor’s decision and
the supervisor’s instruction:

a← kaE + (1− k)aS, (28)

where aE is the actor’s exploratory action, aS the supervisor’s
action, and k an interpolation parameter.

4. DISCUSSION

In this section, we first discuss the difference between the various
forms of advice introduced in section 3.1. We then discuss
the approaches presented in sections 3.2 and 3.3. Finally, we
open some perspectives toward a unified view of interactive
learning methods.

4.1. Comparing Different Forms of Advice
When designing an advice-taking system, one may ask which
type of advice is best suited (Suay et al., 2012). In this survey,
we categorized different forms of advice according to how they
are provided to the system. Even though the same interpretation
and shaping methods can be applied to different categories
of advice, each form of advice requires a different level of
involvement from the human teacher and provides a different
level of control over the learning process. Some of them provide
poor information about the policy, so the learning process relies
mostly on autonomous exploration. Others are more informative
about the policy, so the learning process mainly depends on the
human teacher.

This aspect has been described in the literature as the
guidance-exploration spectrum (Breazeal and Thomaz, 2008). In
section 3.1, we presented guidance as a special type of advice.
So, in order to avoid confusion about the term guidance, we will
use the term exploration-control spectrum instead of guidance-
exploration (Figure 4). In the following paragraphs, we compare
different forms of advice along this spectrum, by putting them
into perspective with respect to other learning schemes such as
autonomous learning and LfD.

4.1.1. Autonomous Learning
At one end of the exploration-control spectrum, autonomous
learning methods assume that the robot is able to autonomously
evaluate its performance on the task, through a predefined
evaluation function, such as a reward function. The main
advantage of this approach is the autonomy of the learning
process. The evaluation function being integrated on board, the
robot is able to optimize its behavior without requiring help from
a supervisor.

However, this approach has some limitations when deployed
in real-world settings. First, it is often hard to design, especially
in complex environments, an appropriate evaluation function
that could anticipate all aspects of a task (Kober et al., 2013).
Second, this approach relies on autonomous exploration, which
raises some practical challenges. For example, exploring the space
of behaviors makes the convergence of the learning process
very slow, which limits the feasibility of such approach in

complex problems. Also, autonomous exploration may lead to
dangerous situations. So, safety is an important issue that has
to be considered when designing autonomous learning systems
(Garcia and Fernandez, 2015).

4.1.2. Evaluative Feedback
Evaluative feedback constitutes another way to evaluate the
agent’s performance that has many advantages over predefined
reward functions. First, like all other types of teaching signals, it
can alleviate the limitations of autonomous learning, by allowing
faster convergence rates and safer exploration. Whether it is
represented as categorical information (Griffith et al., 2013)
or as immediate rewards (Dorigo and Colombetti, 1994), it
provides a more straightforward evaluation of the policy, as it
directly informs about the optimality of the performed action
(Ho et al., 2015). Second, from an engineering point of view,
evaluative feedback is generally easier to implement than a
reward function. If designing a proper reward function can
be challenging in practice, evaluative feedback generally takes
the form of binary values that can be easily implemented
(Knox et al., 2013).

Nevertheless, the informativeness of evaluative feedback is
still limited, as it is only given as a reaction to the agent’s
actions, without communicating the optimal one. So, the agent
still needs to explore different actions, with trial-and-error, as
in the autonomous learning setting. The main difference is that
exploration is not required any more once the agent tries the
optimal action and gets a positive feedback. So, the trade-off
between exploration and exploitation is less tricky to address than
in autonomous learning. The limitation in the informativeness of
evaluative feedback can lead to poor performance. In fact, when
it is the only available communicative channel, people tend to use
it also as a form of guidance, in order to inform the agent about
future actions (Thomaz et al., 2006). This violates the assumption
about how evaluative feedback should be used, which affects
learning performance. Performance significantly improves when
teachers are provided with an additional communicative channel
for guidance (Thomaz and Breazeal, 2006). This reflects the
limitations of evaluative feedback and demonstrates that human
teachers also need to provide guidance.

4.1.3. Corrective Feedback
One possibility for improving the feedback channel is to
allow for corrections and refinements (Thomaz and Breazeal,
2007a). Corrective instructions improve the informativeness of
evaluative feedback by allowing the teacher to inform the agent
about the optimal action (Celemin and Ruiz-Del-Solar, 2019).
Being also reactive to the agent’s actions, they still require
exploration. However, they prevent the agent fromwaiting until it
tries the correct action by its own, so they require less exploration
compared to evaluative feedback.

On the other hand, corrective instructions require more
engineering efforts than evaluative feedback, as they are generally
more than a binary information. Since they operate over the
action space, they require from the system designer to encode
the mapping between contextual instruction signals and their
corresponding actions.
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FIGURE 4 | Exploration-control spectrum. As we move to the right, teaching signals inform more directly about the optimal policy and provide more control to the

human over the learning process.

An even more informative form of corrective feedback is
provided by corrective demonstrations, which extend beyond
correcting one single action to correcting a whole sequence of
actions (Chernova and Veloso, 2009). Corrective demonstrations
operate on the same space as demonstrations, which require
more engineering than contextual instructions and also provide
more control over the learning process (cf. the paragraph about
demonstrations below).

4.1.4. Guidance
The experiments of Thomaz and Breazeal have shown that
human teachers want to provide guidance (Thomaz and Breazeal,
2006). In contrast to feedback, guidance allows the agent to
be informed about future aspects of the task, such as the next
action to perform (contextual instruction) (Cruz et al., 2015),
an interesting region to explore (demonstration) (Subramanian
et al., 2016) or a set of interesting actions to try (guidance)
(Thomaz and Breazeal, 2006).

Even though guidance requires less exploration compared
to feedback by informing about future aspects of the task,
the control over the learning process is exerted indirectly
through decision biasing (cf. section 3.3). By performing the
communicated guidance, the agent does not directly integrate
this information as being the optimal behavior. Instead, it
will be able to learn only through the experienced effects, for
example by receiving a reward. So guidance is only about
limiting exploration, without providing full control over the
learning process, as it still depends on the evaluation of the
performed actions.

4.1.5. Instructions
With respect to guidance, instructions inform more directly
about the optimal policy in two main aspects. First, instructions
are a special case of guidance where the teacher communicates
only the optimal action. Second, the information about
the optimal action can be integrated more directly into
the learning process via reward shaping, value shaping, or
policy shaping.

In section 3.1, we presented two main strategies for providing
instructions: providing general instructions in the form of if-
then rules, or interactively providing contextual instructions
as the agent progresses in the task. The advantage of general
instructions is that they do not depend on the dynamics of
the task. Even though in the literature they are generally
provided offline prior to the learning process, there is no reason
they cannot be integrated at any moment of the task. For

example, in works like (Kuhlmann et al., 2004), we can imagine
that different rules being activated and deactivated at different
moments of the task. Their integration into the learning process
will only depend on the validity of their conditions, not on
the moment of their activation by the teacher. This puts less
interactive load on the teacher as he/she does not need to stay
concentrated in order to provide the correct information at the
right moment.

General instructions also present some drawbacks. First,
they can be difficult to formulate. The teacher needs to gain
insight about the task and the environment dynamics in order
to take into account different situations in advance and to
formulate relevant rules (Kuhlmann et al., 2004). Furthermore,
they require from the teacher to know about the robot’s
sensors and effectors in order to correctly express the desired
behaviors. So, formulating rules requires expertise about the task,
the environment, and the robot. Second, general instructions
can be difficult to communicate. They require either expert
programming skills from the teacher or sophisticated natural
language understanding capabilities from the agent.

Contextual instructions, on the other hand, communicate
a less sophisticated message at a time, which makes them
easier to formulate and to provide. Compared to general
instructions, they only inform about the next action to perform,
without expressing the condition, which can be inferred
by the agent from the current task state. However, this
makes them more prone to ambiguity. For instance, writing
general instructions by hand allows the teacher to specify
the features that are relevant to the application of each rule,
i.e., to control generalization. With contextual instructions,
however, generalization has to be inferred by the agent from
the context.

Finally, interactively providing instructions makes it easy for
the teacher to adapt to changes in the environment’s dynamics.
So they provide more control over the learning process with
respect to general instructions. However, this can be challenging
in highly dynamical tasks, as the teacher needs a lapse of time to
communicate each contextual instruction.

4.1.6. Demonstration
Formally, a demonstration is defined as a sequence of state-action
pairs representing a trajectory in the task space (Argall et al.,
2009). So, from a strictly formal view, a demonstration is not
very different from a general instruction providing a sequence
of actions to perform (Branavan et al., 2009; Vogel and Jurafsky,
2010). The only difference is the sequence of states that the
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robot is supposed to experience. In many LfD settings, such
as teleoperation (Abbeel et al., 2010) and kinesthetic teaching
(Akgun et al., 2012), the states visited by the robot are controlled
by the human. So, controlling a robot through these devices
can be seen as providing a continuous stream of contextual
instructions: the commands sent via the joystick or the forces
exerted on the robot’s kinesthetic device. So the difference
between action plans and demonstrations provided under these
settings goes beyond their formal definitions as sequences of
actions or state-action pairs.

The main difference between demonstrations and general
instructions (actually, all forms of advice) is that demonstrations
provide control not only over the learning process but also over
task execution. When providing demonstrations, the teacher
controls the robot joints, so the communicated instruction
is systematically executed. With instructions, however, the
robot is in control of its own actions. Even though the
instruction can be integrated into the learning process, via any
shaping methods, the robot is still free to execute or not the
communicated action.

One downside of this control is that demonstrations involve
more human load than instructions. Demonstrations require
from the teacher to be active in executing the task, while
instructions involve only communication. This aspect confers
some advantages to instructions in that they offer more
possibilities in terms of interaction. Instructions can be provided
with different modalities such as speech or gesture, and by
using a wider variety of words or signals. Demonstrations,
however, are constrained by the control interface. Moreover,
demonstrations require continuous focus in providing complete
trajectories, while instructions can be sporadic, like with
contextual instructions.

Therefore, instructions can be better suited in situations
where demonstrations can be difficult to provide. For example,
people with limited autonomy may be unable to demonstrate
a task by themselves, or to control a robot’s joints. In these
situations, communication is more convenient. On the other
hand, demonstrations are more adapted for highly dynamical
tasks and continuous environments, since instructions require
some time to be communicated.

4.2. Comparing Different Interpretation
Methods
In section 3.2, we presented three main approaches for
interpreting advice. The classical approach, supervised
interpretation, relies on annotated data for training linguistic
parsers. Even though this approach can be effective for building
systems that are able to take into account natural language
advice, they come at the cost of constituting large corpora of
language-to-command alignments.

The second approach, grounded interpretation, relaxes this
constraint by relying on examples of task executions instead
of perfectly aligned commands. This approach is easier to
implement by taking advantage of crowd-sourcing platforms
like Amazon Mechanical Turk. Also, the annotation process is
facilitated as it can be performed in the reverse order compared

to the standard approach. First, various demonstrations of the
task are collected, for example in the form of videos (Tellex
et al., 2011, 2014). Then, each demonstration is associated
to a general instruction. Even though this approach is more
affordable than standard language-to-command annotation, it
still comes at the cost of providing demonstrations, which can
be challenging to provide in some contexts, as discussed in the
previous section.

The third approach, RL-based interpretation, relaxes these
constraints even more by relying only on a predefined
performance criterion to guide the interpretation process
(Branavan et al., 2009, 2010). Some intermediate methods
also exists, for example by deriving a reward function from
demonstrations and then using an RL algorithm to interpret
advice (Vogel and Jurafsky, 2010; Tellex et al., 2014). Given
that reward functions can also be challenging to design, some
methods rely on predefined advice for interpreting other advice
(Lopes et al., 2011; Mathewson and Pilarski, 2016; Najar et al.,
2016), or a combination of both advice and reward functions
(Mathewson and Pilarski, 2016; Najar et al., 2020b).

Orthogonal to the difference between supervised, grounded,
and RL-based interpretation methods, we can distinguish two
different strategies for teaching the system how to interpret
unlabeled advice. The first strategy is to teach the system how
to interpret advice without using it in parallel for task learning.
For example, a human can teach an agent how to interpret
continuous streams of contextual instructions by using evaluative
feedback (Mathewson and Pilarski, 2016). Here, the main task
for the agent is to learn how interpret unlabeled instructions,
not to use them for learning another task. Another example is
when the agent is first provided with general instructions, either
in the form of if-then rules or action plans, and then teaching it
how to interpret these instructions using either demonstrations
(Tellex et al., 2011; MacGlashan et al., 2014a), evaluative feedback
(MacGlashan et al., 2014b) or a predefined reward function
(Branavan et al., 2009, 2010; Vogel and Jurafsky, 2010). In
this case, even though the agent is allowed to interact with its
environment, the main task is still to learn how to interpret
advice, not to use it for task learning.

The second strategy consists of guiding a task-learning process
by interactively providing the agent with unlabeled contextual
advice. In this case, the agent learns how to interpret advice at
the same time as it learns to perform the task (Grizou et al.,
2013; Najar et al., 2020b). For example, in Grizou et al. (2013),
the robot is provided with a set of hypotheses about possible
tasks and advice meanings. The robot then infers the task and
advice meanings that are the most coherent with each other
and with the history of observed advice signals. In Najar et al.
(2020b), task rewards are used for grounding the meaning of
contextual instructions, which are used in turn for speeding-up
the task-learning process.

It is important to understand the difference between
these two strategies. First, when the agent learns how to
interpret advice while using it for task learning, we must
think about which shaping method to use for integrating the
interpreted advice into the task-learning process (cf. section
3.3). Second, when the goal is only to interpret advice, there
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is no challenge about the optimality nor the sparsity of the
unlabeled advice.

With the first strategy, advice cannot be erroneous as it
constitutes the reference for the interpretation process. Even
though the methods implementing this strategy do not explicitly
assume perfect advice, the robustness of the interpretation
methods against inconsistent advice is not systematically
investigated. When advice is also used for task learning, however,
we need to take into account whether or not advice is correct
with respect to the target task. For example, in Grizou et al.
(2013), the authors report the performance of their system under
erroneous evaluative feedback. In Najar et al. (2020b), the system
is evaluated in simulation against various levels of error for both
evaluative feedback and contextual instructions. Also with the
first strategy, advice signals cannot be sparse since they constitute
the state-space of the interpretation process. For instance, the
standard RL methods that have been used for interpreting
general instructions (Branavan et al., 2009, 2010; Vogel and
Jurafsky, 2010) cannot be used for interpreting sparse contextual
instructions. In these methods, instructions constitute the state-
space of an MDP over which the RL algorithm is deployed, so
they need to be instantiated on every time-step. This problem
has been addressed in Najar et al. (2020b), where the system was
able to interpret sporadic contextual instructions by using the TD
error of the task-learning process.

4.3. Comparing Different Shaping Methods
In section 3.3, we presented different methods for integrating
advice into an RL process: reward shaping, value shaping,
policy shaping, and decision biasing. The standard approach,
reward shaping, has been effective in many domains (Clouse and
Utgoff, 1992; Isbell et al., 2001; Thomaz et al., 2006; Tenorio-
Gonzalez et al., 2010; Mathewson and Pilarski, 2016). However,
this way of providing intermediate rewards has been shown to
cause sub-optimal behaviors such as positive circuits (Knox and
Stone, 2012a; Ho et al., 2015). Even though these effects have
been mainly studied under the scope of evaluative feedback,
they can also be extended to other forms of advice such as
instructions, since the positive circuits problem is inherent to the
reward shaping scheme regardless of the source of the rewards
(Mahadevan and Connell, 1992; Randlov and Alstrom, 1998; Ng
et al., 1999; Wiewiora, 2003).

Consequently, many authors considered value shaping as an
alternative solution to reward shaping (Knox and Stone, 2012b;
Ho et al., 2017). However, when comparing different shaping
methods for evaluative feedback, Knox and Stone observed that
“the more a technique directly affects action selection, the better
it does, and the more it affects the update to the Q function for
each transition experience, the worse it does” (Knox and Stone,
2012b). In fact, this can be explained by the specificity of the
Q-function with respect to other preference functions. Unlike
other preference functions (e.g., Advantage function, Harmon
et al., 1994), a Q-function also informs about the proximity to
the goal via temporal discounting. Contextual advice such as
evaluative feedback and contextual instructions, however, only
inform about local preferences like the last or the next action,
without including such information (Ho et al., 2015). So, like

reward shaping, value shaping with contextual advice may also
lead to convergence problems.

Overall, policy shaping methods show better performance
compared to other shaping methods (Knox and Stone, 2012b;
Griffith et al., 2013; Ho et al., 2015). In addition to performance,
another advantage of policy shaping is that it is applicable to
a wider range of methods that directly derive a policy, without
computing a value function or even using rewards.

4.4. Toward a Unified View
Overall, all forms of advice overcome the limitations of
autonomous learning by providing more control over the
learning process. Since more control comes at the cost of
more interaction load, the autonomy of the learning process
is important for minimizing the burden on the human
teacher (Najar et al., 2020b). Consequently, many advice-taking
systems combine different learning modalities in order to
balance between autonomy and control. For example, RL can
be augmented with evaluative feedback (Judah et al., 2010;
Sridharan, 2011; Knox and Stone, 2012b), corrective feedback
(Celemin et al., 2019), instructions (Maclin and Shavlik, 1996;
Kuhlmann et al., 2004; Rosenstein et al., 2004; Pradyot et al.,
2012b), instructions and evaluative feedback (Najar et al., 2020b),
demonstrations (Taylor et al., 2011; Subramanian et al., 2016),
demonstrations and evaluative feedback (Leon et al., 2011), or
demonstrations, evaluative feedback, and instructions (Tenorio-
Gonzalez et al., 2010). Demonstrations can be augmented
with corrective feedback (Chernova and Veloso, 2009; Argall
et al., 2011), instructions (Rybski et al., 2007), instructions and
feedback, both evaluative and corrective (Nicolescu and Mataric,
2003), or with prior RL (Syed and Schapire, 2007). In Waytowich
et al. (2018), the authors proposed a framework for combining
different learning modalities in a principled way. The system
could balance autonomy and human control by switching from
demonstration to guidance to evaluative feedback using a set of
predefined metrics such as performance.

Integrating different forms of advice into one single and
unified formalism remains an active research question. So far,
different forms of advice have beenmainly investigated separately
by different communities. For example, some shaping methods
have been designed exclusively for evaluative feedback and
were not tested with other forms of advice such as contextual
instructions, and the converse is also true. In this survey,
we extracted several aspects that were shared across different
forms of advice. Regardless of the type of advice, we must
ask the same computational questions as we go through the
same overall process (Figure 5): First, we must think about
how advice will be represented and whether its meaning will
be predetermined or interpreted by the learning agent. Second,
we must decide whether to aggregate advice into a model, or
directly use it for influencing the learning process (model-based
vs. model-free shaping). Finally, we must choose a shaping
method for integrating advice (or its model) into the learning
process. From this perspective, all shaping methods that were
specifically designed for evaluative feedback could also be used
for instructions and vice versa. For example, all the methods
proposed by Knox and Stone for learning from evaluative
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FIGURE 5 | Shaping with advice, a unified view. When advice is provided to the learning agent, it has first to be encoded into an appropriate representation. If the

mapping between teaching signals and their corresponding internal representation is not predetermined, then advice has to be interpreted by the agent. Then advice

can be integrated into the learning process (shaping), either in a model-free or a model-based fashion. Optional steps, interpretation and modeling, are sketched in

light gray.

feedback (Knox and Stone, 2010, 2011a, 2012b), can be recycled
for learning from instructions. Similarly, the confidence criterion
used in Pradyot et al. (2012b) for learning from contextual
instructions constitutes another Control Sharing mechanism,
similar to the one proposed in Knox and Stone (2010), Knox and
Stone (2011a), and Knox and Stone (2012b) for learning from
evaluative feedback.

It is also interesting to think about the relationship between
interpretation and shaping. For example, we can notice the
similarity between interpretation and shaping methods. In
Section 3.2, we mentioned that some interpretation methods
relying on the task-learning process can be either reward-based,
value-based, or policy-based. This scheme is reminiscent of
the different shaping methods: reward shaping, value shaping,
and policy shaping. For instance, the policy shaping method
proposed in Griffith et al. (2013) for combining evaluative
feedback with a reward function is mathematically equivalent
to the Boltzmann Multiplication method used in Najar (2017)
for interpreting contextual instructions. So by extension, the
other ensemble methods that have been used for interpreting
contextual instructions could also be used for shaping. We also
note that the confidence criterion in Pradyot et al. (2012b)
was used for both interpreting instructions and policy shaping.
So, we can think of the relationship between shaping and
interpretation as a reciprocal influence scheme, where advice
can be interpreted from the task-learning process in a reward-
based, value-based, or a policy-based way, and in turn can
influence the learning process in a reward-based, value-based,
or policy-based shaping way (Najar, 2017). This view contrasts
with the standard flow of the advice-taking process, where advice
is interpreted before being integrated into the learning process
(Hayes-Roth et al., 1981). In fact in many works, interpretation
and shaping happen simultaneously, sometimes by using the
same mechanisms (Pradyot and Ravindran, 2011; Najar et al.,
2020a).

Under this perspective, we can extend the similarity between
all forms of advice to include also other sources of information
such as demonstration and reward functions. At the end, even
though these signals can sometimes contradict each other, they
globally inform about one same thing, i.e., the task (Cederborg
and Oudeyer, 2014). Until recently, advice and demonstration
have been mainly considered as two complementary but distinct
approaches, i.e., communication vs. action (Dillmann et al.,
2000; Argall et al., 2008; Knox and Stone, 2009, 2011b; Judah
et al., 2010). However, these two approaches share many
common aspects. For example, the counterpart of interpreting
advice in the LfD literature is the correspondence problem,

which is the question of how to map the teacher’s states
an actions into the agent’s own states and actions. With
advice, we also have a correspondence problem that consists of
interpreting the raw advice signals. So, we can consider a more
general correspondence problem that consists of interpreting
raw teaching signals, independently from their nature. So
far, the correspondence problem has been mainly addressed
within the community of learning by imitation. Imitation is a
special type of social learning in which the agent reproduces
what it perceives. So, there is an assumption about the fact
that what is seen has to be reproduced. Advice is different
from imitation in that the robot has to reproduce what is
communicated by the advice and not what is perceived. For
instance, saying “turn left,” requires from the robot to perform
the action of turning left, not to reproduce the sentence “turn
left”. However, evidence from neuroscience gave rise to a
new understanding of the emergence of human language as a
sophistication of imitation throughout evolution (Adornetti and
Ferretti, 2015). In this view, language is grounded in action, just
like imitation (Corballis, 2010). For example, there is evidence
that the mirror neurons of monkeys also fire to the sounds of
certain actions, such as the tearing of paper or the cracking
of nuts (Kohler et al., 2002), and that spoken phrases about
movements of the foot and the hand activate the corresponding
mirror-neuron regions of the pre-motor cortex in humans
(Aziz-Zadeh et al., 2006).

So, one challenging question is whether we could unify the
problem of interpreting any kind of teaching signal under the
scope of one general correspondence problem. This is a relatively
new research question, and few attempts have been made in
this direction. In Cederborg and Oudeyer (2014), the authors
proposed a mathematical framework for learning from different
sources of information. The main idea is to relax the assumptions
about the meaning of teaching signals by taking advantage of the
coherence between the different sources of information. When
comparing demonstrations with instructions, we mentioned that
some demonstration settings could be considered as a way of
providing continuous streams of contextual instructions, with the
subtle difference that demonstrations are systematically executed
by the robot. Considering this analogy, the growing literature
about interpreting instructions (Branavan et al., 2010; Vogel
and Jurafsky, 2010; Grizou et al., 2013; Najar et al., 2020b)
could provide insights for designing new ways of solving the
correspondence problem in imitation.

Unifying all types of teaching signals under the same view is
a relatively recent research question (Cederborg and Oudeyer,
2014; Waytowich et al., 2018), and this survey aims at pushing
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toward this direction by clarifying some of the concepts used in
the interactive learning literature and highlighting the similarities
that exist between different approaches. The computational
questions covered in this survey extend beyond the boundaries
of Artificial Intelligence, as similar research questions regarding
the computational implementation of social learning strategies
are also addressed by the Cognitive Neuroscience community
(Biele et al., 2011; Najar et al., 2020a; Olsson et al., 2020). We
hope this survey will contribute in bridging the gap between
both communities.

5. CONCLUSION

In this paper, we provided an overview of the existing methods
for integrating human advice into an RL process. We first
proposed a taxonomy of the different forms of advice that can

be provided to a learning agent. We then described different
methods that can be used for interpreting advice, and for
integrating it into the learning process. Finally, we discussed
the different approaches and opened some perspectives toward
a unified view of interactive learning methods.
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