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Single pass computation of first seismic wave travel time in
three dimensional heterogeneous media with general anisotropy

François Desquilbet∗, Jian Cao†, Paul Cupillard ‡, Ludovic Métivier§, Jean-Marie Mirebeau¶

June 1, 2021

Abstract

We present a numerical method for computing the first arrival time of seismic waves in
media defined by a general Hooke tensor, in contrast with previous methods which are lim-
ited to a specific subclass such as the "tilted transversally isotropic" (TTI) model or "tilted
orthorhombic" (TOR) model [WYF15, LBBMV19]. Our method proceeds in a single pass
over the discretized domain, similar to the Fast Marching method, whereas existing meth-
ods for these types of anisotropies require multiple iterations, similar to the Fast Sweeping
method. We introduce a new source factorization model, allowing us to achieve third order
accuracy in smooth test cases. We also validate our solver by comparing it with the solution
of the elastic wave equation on a 3D medium with general anisotropy.

Keywords eikonal equation · travel-time computation · fast marching schemes · anisotropy
· 3D

1 Introduction

The eikonal equation characterizes the first arrival time of a front, propagating inside a domain
at a speed dictated by a given metric. In geophysics, an eikonal equation can be obtained as
the high-frequency approximation of a wave equation, with the underlying metric defined by the
properties of the geological medium.

Computing the solution of the wave equation in three dimensional complex media can be
expensive. Indeed, the scale of the discretization grid needs to be substantially smaller than
the oscillation wavelength, while the time step is itself bounded due to the Courant-Friedrichs-
Levy stability condition. In contrast, the eikonal equation is a static (no time dependency)
partial differential equation, whose solution is non-oscillatory. For this reason, efficient schemes
for the eikonal equation have been developed along the years, with several applications in mind:
earthquake hypocenter relocation through backpropagation of the data recorded at the surface by
seismic stations [MvN92], asymptotic approximation of Green’s functions for Kirchhoff migration
to build high resolution images in seismic exploration [Bey87, Ble87, LOP+03], or tomographic
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inversions to determine seismic wave velocities from global and regional scale [Nol08] to explo-
ration and near surface scale targets [BL98, TNCC09] .

However, the metrics from geophysics are often anisotropic, which has been a technical chal-
lenge for the numerical solvers designed for the eikonal equation. Anisotropy can occur from
the shape of minerals, with for example the olivine that can be found in the uppermost mantle
under oceans [Hes64] and can lead to a preferred direction up to 25% faster than other direc-
tions. Besides, thin sedimentary layers of isotropic materials can also be treated as an anisotropic
medium in order to smooth strong heterogeneities. It usually leads to a homogenized medium
with a faster horizontal speed compared with vertical speed, which is called "vertical transverse
isotropy" (VTI) in terms of symmetry in the Hooke tensor. Some shifts can also occur with tec-
tonic movements, leading to the "tilted transverse isotropy" (TTI). More complex anisotropies
have been considered in the case of fractures, leading to "tilted orthorhombic" (TOR) symmetry
or a fully general Hooke tensor.

One option to compute first arrival traveltimes is the well-established ray-tracing
method [Cer05]. However, several drawbacks have been identified: one ray does not nec-
essarily correspond to the first arrival time, the computation cost increases strongly when many
travel paths to many points are needed, and calculations can be difficult in shadow zones which
can occur even in a smooth medium. These issues no longer occur when solving the eikonal equa-
tion with finite-difference schemes. Note that, conversely, computing second or later arrival times
with an eikonal solver is a non-trivial problem [RS04], which is not further discussed in this paper.

The first finite-difference scheme for the eikonal equation has been developed by Vidale
[Vid88], in the isotropic case only and with first-order accuracy, and it has later been extended
to anisotropy [Lec93]. This solver works by induction on the boundary of a square expanding
from the source point, but it has no guarantee of success in the case of strong heterogeneity or
anisotropy: causality cannot be guaranteed if ever a ray goes back into the expanding square.
This method lacks the robustness and guarantees of an approach based on strong theoretical
foundations.

In [OS91], the isotropic eikonal equation is solved by treating it as a dynamic (time-
dependent) Hamilton-Jacobi equation, with an "essentially non-oscillatory" (ENO) scheme.
This approach has been extended to VTI anisotropy and high-order accuracy in [DS97], with the
"down & out" (DNO) strategy. A post-treatment (PS) is added in [KC99], with second-order
accuracy, resulting in the ENO-DNO-PS scheme, which was extended to TTI anisotropy in
[Kim99]. However, the method is computationally expensive. Some other algorithms have
been considered to solve the dynamic eikonal equation, but algorithms for the static (time-
independent) eikonal equation have been found to be more efficient [LBBMV17].

More efficient algorithms have then been developed thanks to the level-set framework [Set96],
and the numerical solution of the static eikonal equation as considered in this paper. These nu-
merical methods can be divided into two classes: iterative methods and single pass methods,
which respectively generalize the algorithms of Bellman-Ford and of Dijkstra for graph distance
computation. The best known iterative method is presumably the Fast Sweeping Method (FSM).
Originally introduced in the isotropic setting [Zha05], the FSM has been extended to 2D elliptic
anisotropy [TCOZ03], 2D TTI symmetry [LCZ14], 3D TTI symmetry [PWZ17] with a third-order
Lax-Friedrich fast sweeping scheme, 3D TOR symmetry [WYF15] treated as an iterative problem
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on elliptic anisotropy, and more recently [LBBMV19] for the 3D TOR symmetry with high-order
accuracy. Other iterative methods include the Adaptive Gauss-Siedel Iteration (AGSI) [BR06],
or the Buffered Fast Marching (BFM) method [Cri09], which can both handle some amount of
anisotropy. Recently, iterative methods have been proposed that take advantage of massively
parallel computational architectures, graphics processing units in particular, in the isotropic set-
ting [JW08], and for elliptic anisotropy [GHZ18].

On the other hand, the best single pass method is presumably the Fast Marching Method
(FMM) [Tsi95, Set96], but the extension of the FMM to anisotropic geometries proved more
difficult. Early works [KS98, SV01, AM12] involve wide stencil numerical schemes, leading to
increased computation times and reduced accuracy, and therefore negating many of the advan-
tages of the FMM, see the end of this introduction. More recently [bW20], an algorithm using
the FMM has been developed for the 3D TTI anisotropy: it works by solving a fixed point
problem on VTI elliptic anisotropy. While the authors illustrate numerically that the algorithm
can converge when the target anisotropy is not too far from an elliptic VTI anisotropy, there is
no formal proof of convergence of the fixed point iteration they implement.

In the past years, one of the authors has proposed extensions of the FMM to 2D anelliptic
anisotropy [Mir14b], and 3D elliptic anisotropy [Mir14a, Mir19], as well as various types of degen-
erate anelliptic anisotropy related with curvature penalization [Mir18]. In these works, techniques
from lattice geometry allow to keep the size of the discretization stencil under tight control, thus
preventing any loss in computation time and accuracy, even for very strong anisotropies (with
propagation speed 10× faster in some directions than others). In this paper, we propose a nu-
merical solver using the FMM to solve the eikonal equation with an anelliptic anisotropy defined
by a general Hooke tensor. Such a general anisotropy is usually mildly pronounced in absolute
terms (with propagation speed at most twice faster in some directions than others) but never-
theless it raises a number of specific computational challenges. The method we develop here can
be implemented up to third order accuracy, as illustrated in the numerical experiments §4.

When discussing about the anisotropy of a metric, we make a distinction between two con-
cepts: its “strength” and its “complexity”. The strength of the anisotropy refers to the ratio
between the highest and lowest achievable speed, depending on the orientation at a given posi-
tion. The complexity of the anisotropy refers to the number of parameters needed to characterize
the metric: for three-dimensional media, 1 parameter is needed for isotropic metrics, 6 parame-
ters for Riemannian metrics (elliptic anisotropy), 8 parameters for TTI metrics, 12 parameters
for orthorhombic metrics, and finally 21 parameters for metrics defined by a fully general Hooke
tensor. For two-dimensional media, 1 parameter is needed for isotropic metrics, 3 for Riemanian
metrics, 5 for TTI metrics and 6 for a fully general Hooke tensor. Our numerical scheme can
handle the most complex metrics with all 21 parameters from the Hooke tensor. Such fully gen-
eral Hooke tensors can arise from homogenization procedures, see [CC18] and §4.2. However, we
still have a limitation on the strength of the anisotropy that we can handle: the fast marching
method is applicable to our scheme as long as the strength of anisotropy is lower than a given
bound, depending on the discretization stencils, see §2.3. (In the event where this condition fails,
the correct solution to our scheme can nevertheless be computed using an iterative method such
as fast sweeping, see Appendix D.) We checked that we could tackle the strength of anisotropy
from most cases found in seismical media, see Table 1 and Figure 2.

Throughout this paper, Rd denotes the usual Euclidean space, where d ∈ {2, 3} is the ambient

3



dimension. A closed, bounded and connected subset Ω ⊂ Rd is fixed, representing the physical
domain. It is equipped with a positive density field ρ : Ω → R, as well as a field of Hooke
4th-order tensors c(x) = (cijkl(x)), where i, j, k, l ∈ {1, · · · , d}, describing the elastic properties
of the medium, with the usual symmetry assumptions (minor and major symmetries). For any
point x ∈ Ω and any p ∈ Rd, regarded as a co-vector, we define

mx(p)ik :=
1

ρ(x)

∑
j,l

cijkl(x)pjpl, N∗x(p) =
√
‖mx(p)‖. (1)

Thus mx(p) is a d×d symmetric matrix, and N∗x(p) is the square root of its spectral norm. Note
the homogeneity relations mx(λp) = λ2mx(p) and N∗x(λp) = |λ|N∗x(p) for any λ ∈ R. Unless
stated otherwise, summation as in (1) over the indices i, j, k, or l is from 1 to d. We assume that
the Hooke tensor c(x) is strictly elliptic, ensuring that mx(p) is positive definite for all p 6= 0
and that N∗x is a norm on Rd, see Definition 3.1 and Remark 3.5 in §3.1.

In this paper, we present an efficient numerical method for computing the unique viscosity
solution u : Ω→ R, see [BCD08], of the generalized eikonal equation

N∗x(∇u(x)) = 1, (2)

for all x ∈ int(Ω) \ {x0}, where x0 is a prescribed source point. This equation is complemented
with the boundary condition u(x0) = 0 at the source, and outflow boundary conditions on
∂Ω. One can rewrite (2) under the following classical form [Sla03] which stems from the high
frequency analysis of elastic waves:

det
(∑

j,l

cijkl(x)∂ju(x)∂lu(x)− ρ(x)δik

)
= 0, (3)

where δik denotes Kronecker’s symbol. Equation (2) contains the additional information that
only the fastest propagation speed is considered. Note that lower propagation speeds formally
yield an eikonal equation similar to (2) but involving a non-convex Hamiltonian in general in-
stead of (1, right). Therefore their viscosity solution does not correspond to a travel time of the
P-SV modes in the elastic wave equation, but yields non-physical values corresponding to the
convex envelope of the Hamiltonian.

We introduce a discretization of the PDE (2), which is solved in a single pass over the domain,
using a variant of the FMM. As the algorithm progresses, the successive values u(x0) ≤ u(x1) ≤
u(x2) ≤ · · · of the numerical solution on Ωh are computed and then frozen, one by one and in
increasing order. The algorithm is strictly causal, in the sense that the numerical value u(xn)
computed at a given point only depends on already frozen and strictly smaller values of the so-
lution u(xm) < u(xn), m < n. This property of the discretized system reflects the deterministic
nature of the wave front motion: a present arrival time only depends on the earlier ones, and
not on the future ones.

In comparison with iterative methods, such as fast sweeping [TCO04], adaptive Gauss-Seidel
iterations [BR06], or buffer based methods [Cri09], the FMM used here has a number of appealing
properties:

• Robustness. The FMM does not require setting any stopping criterion, and is determinis-
tically guaranteed to terminate in a finite number of steps. In addition it is able to tackle
general anisotropy associated with a general Hooke tensor cijkl(x).
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• Speed. The running time of the FMM is O(N lnN), independently of the problem instance,
in contrast with sweeping methods which require a variable number of sweeps depending on
the medium complexity (dozens in a complex seismic medium, hundreds in some applica-
tions to medical image processing [Mir14a]). A variant of the FMM [Tsi95, RS07] achieves
O(N) complexity, and some level of parallelism, but due to the large hidden constant in
the complexity estimate it is rarely used.

• Accuracy. Simple enhancements to the FMM allow to formally achieve second and third
order accuracy [Set99], which is confirmed in the numerical experiments §4. Such high
order schemes are required to estimate the elastic wave amplitudes, or the curvature of the
front, whose computation involves second-order spatial derivatives of the arrival times.

• Differentiability. The Jacobian matrix of the FMM has a sparse and upper triangular
structure, allowing for efficient inversion by direct substitution [MD17].

• Extensibility. Dynamic Fast Marching methods modify the numerical scheme on-line, as
the front propagation proceeds, depending on various properties of the minimal paths such
as their curvature [LRr13]. In the context of seismic imaging, this flexibility could be used
to take into account non-linear effects due to amplitude [VN18].

On the negative side, setting up the FMM for non-isotropic metrics requires substantial work,
depending on the geometrical properties of the equation solved [KS98, SV01, AM12, Mir14b,
Mir14a, Mir18, Mir19]. In the present state, our numerical method is bound by the following
limitations:

• Parallelism. The FMM is intrinsically sequential, and thus cannot take advantage of parallel
or massively parallel architectures such as [JW08, GHZ18].

• Stencil construction and size. The discretization stencils need to obey specific angular prop-
erties, depending on the nature and the strength of the anisotropy. Since the overwhelming
majority of materials encountered in seismology feature rather mild anisotropy, in absolute
terms, our generalized fast marching method can be usually instantiated with a compact
stencil known as the cut-cube, see Figures 1 and 2. However, for crystals such as mica,
which are some of the most anisotropic materials encountered in seismology, somewhat
more extended stencils must be used, see Figure 1 (right), at the possible expense of speed
and accuracy. In addition, extending our approach from Cartesian grids to unstructured
grids would require substantial effort, in the spirit of [KS98, LFH11].

Outline: An overview of the proposed numerical scheme is presented in §2. Implementation
details for the critical routines are detailed in §3. Numerical experiments presented in §4 illustrate
the method accuracy and computational efficiency. Finally, we present a conclusion with future
perspectives in §5.

2 The fast marching method

This section describes (a generalization of) the fast marching method [Tsi95], that is used in
this paper to solve the generalized eikonal equation (2). The discussion in this section applies
to general anelliptic metrics, see Definition 2.7, and the implementation details related with the
specific algebraic form (3) of the equation encountered in seismic imaging are postponed to §3.
The first two subsections §2.1 and §2.2 introduce classical mathematical tools, that are at the

5



foundation of our approach. The main contributions of this section lie in the angular distortion
estimates of §2.3, and the choice of source factorization (20) in §2.4. A summary of the method
is presented in §2.5.

The physical domain Ω is discretized on a Cartesian grid of scale h > 0,

Ωh := Ω ∩ hZd, (4)

and we assume for simplicity that the source x0 ∈ Ωh.

2.1 Geometrical formulation of the eikonal equation.

The generalized eikonal equation (2) is written in terms of a norm N∗x , at each point x ∈ Ω, on
the space of co-vectors1. Following [BCD08] we characterize its unique solution in geometrical
terms, involving a norm Nx on vectors, and a distance map between points. For any v ∈ Rd,
regarded as a vector, define

Nx(v) := max{〈p, v〉; p ∈ Rd, N∗x(p) ≤ 1}. (5)

In the context of seismic imaging, the norm Nx has no closed form expression, but is defined
by the above optimization problem in terms of the dual norm N∗x which is itself the root of a
third degree polynomial (1, right). Our numerical scheme depends on the efficient numerical
computation of Nx(v) and of its gradient, which is discussed in §3.

Denote by Γ := Lip([0, 1],Ω) the set of all paths within the domain closure, with locally
Lipschitz regularity. The length of a path γ ∈ Γ, and the distance between two points x, y ∈ Ω,
are defined as

L(γ) :=

∫ 1

0
Nγ(t)(γ

′(t)) dt, d(x, y) := min{L(γ); γ ∈ Γ, γ(0) = x, γ(1) = y}.

The unique viscosity solution to the eikonal equation (2) is the distance from the source point
[BCD08]

u(x) = d(x0, x). (6)

From this characterization, one can derive Bellman’s optimality principle, stating that for any
x ∈ Ω \ {x0}, and any neighborhood V ⊂ Ω of x not containing the source point x0, one has

u(x) = min
y∈∂V

u(y) + d(y, x). (7)

2.2 Discretization of the eikonal equation

Following [KS98, SV01, BR06, Mir14a, Mir14b], our discretization of the eikonal equation (2)
mimics and discretizes Bellman’s optimality principle (7). For that purpose, we introduce for
each x ∈ Ωh a polygonal neighborhood Vxh whose vertices lie on hZd (recall that Ωh := Ω∩hZd),
referred to as the stencil, along with a piecewise linear interpolation operator Ixh on its facets.
Given u : Ωh → R we approximate the r.h.s. of (7) by interpolating the arrival times between
the vertices of the stencil, and approximating the distance function with the local norm:

Λhu(x) = min
y∈∂Vx

h

Ixh u(y) +Nx(x− y). (8)

1In this paper, the distinction between vectors and co-vectors is kept at an informal level, and we do not
distinguish between the spaces Rd and (Rd)∗
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Figure 1: Stencils used, in dimension 2 (square) and 3 (cut-cube, cube and spiky-cube)

The function u is extended by +∞ on hZd \ Ωh in (8), which naturally implements outflow
boundary conditions on ∂Ω. The numerical computation of (8), which accounts for the bulk of
the computation time of our numerical method, is detailed in §3.3.

In this paper, the stencil Vxh is obtained by rescaling and translating one of the instances
shown in Figure 1. This is adequate because the anisotropies encountered in seismology are
rather mild in absolute terms, even for crystal materials; in contrast, a data adaptive construc-
tion is preferred for applications involving much stronger anisotropies [Mir14b, Mir14a]. The
discretization principle (8) is often referred to as semi-Lagrangian, in contrast with purely Eule-
rian finite difference approximations of the eikonal equation such as [Set96, Mir18, Mir19].

The numerical approximation of the arrival time (6) is defined as the unique solution u :
Ωh → R to the discrete system

u(x) = Λhu(x) (9)

for all x ∈ Ωh \ {x0}, and u(x0) = 0 at the source point. Both the eikonal equation and its
discretization (8) benefit from comparison principles, see Proposition D.2 in the latter case.
From these, and under mild technical assumptions, one proves that there exists a unique discrete
solution uh to (9) on Ωh, for each h > 0, which converges uniformly as h → 0 to the unique
viscosity solution of (2). This approach is standard and not detailed here, see [BR06].

The solution to the discrete non-linear system (9) may be computed using fixed point itera-
tions, see Proposition D.3, or using any of the iterative methods considered in the introduction,
such as the fast sweeping method [TCO04]. However, we advocate the fast marching method
[Tsi95] in this paper, see Algorithm 1, which benefits from a number of advantages listed in the
introduction. For that purpose, a careful choice of the stencil Vxh is needed, as described in the
next subsection.

Algorithm 1 The fast marching method (FMM)
Initialize: u(x0) = 0, and u(x) = +∞ for all x ∈ Ωh \ {x0}. Tag all points as non-accepted.
While a non-accepted point remains: 1.

Denote by y the non-accepted point minimizing u(y). 2.
Tag y as accepted. (Optionally, for e.g. higher order methods: PostProcess(y) ). 3.
For each non-accepted point x such that y ∈ Vxh : 4.

u(x)← Λ̃u(x) (modified operator using only the values from accepted points). 5.
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2.3 Acuteness and causality

In this subsection, we establish a property of the numerical scheme, known as causality. It can be
informally rephrased as follows: the arrival times (a.k.a the values of the solution to (9)) earlier
than some value τ , dictate the arrival times earlier than τ + δ1, where δ1 is a positive constant.
An abstract formulation of causality is presented in Proposition D.1, and we show in Proposition
D.3 that it enables solving the system (9) in finitely many fixed point iterations; see [Mir19,
Proposition A.2] for the proof that this system is correctly solved by the FMM, Algorithm 1.
Our definition of causality follows [SV01, AM12, Mir14a, Mir14b, Mir19] and is meant to enable
the FMM. In the literature related to fast sweeping methods, causality is often given a different
(non-equivalent) meaning, related to upwindness, stability, and to the monotony property in
Proposition D.1.

Following [SV01], causality is derived from a geometrical acuteness property of the norms
and discretization stencils, see Proposition 2.3. Finally, we discuss whether this property holds
for various choices of norms and stencils. For that purpose, we introduce the central object of
this section, which could be described as the angular width of the facets of a stencil measured
with respect to a norm. The unoriented angle ^(u, v) ∈ [0, π] between two vectors u, v ∈ Rd \{0}
is defined as

^(u, v) := arccos
( 〈u, v〉
‖u‖‖v‖

)
. (10)

Definition 2.1. Let N be a norm on Rd, differentiable on Rd \ {0}, and let V be a polygonal
neighborhood of the origin. We let

Θ(N,V) := max{^(∇N(v), w); v, w in a common facet of ∂V}.

The differentiability assumption in Definition 2.1 is not essential, and could be removed as
in [Mir14b]. It is however not restrictive for the application considered in this paper, which does
involve differentiable norms, see Lemma 3.8.

The next definition accounts for the distortion of lengths by an anisotropic norm, thus com-
pleting Definition 2.1 which is related to the distortion of angles. The length distortion of a
norm is also referred to as the strength of its anisotropy, and corresponds to the ratio between
the highest and lowest value of the norm with respect to the orientation.

Definition 2.2 (Length distortion). For any norm N on Rd, define

µ∗(N) := min
v 6=0

N(v)

‖v‖
, µ∗(N) := max

v 6=0

N(v)

‖v‖
, µ(N) :=

µ∗(N)

µ∗(N)
.

The following proposition, which has numerous variants to be found in [Tsi95, KS98, SV01],
governs the applicability of the fast marching method.

Proposition 2.3 (Acuteness implies causality). Let N and V be as in Definition 2.1. Let IV be
the linear interpolation operator on ∂V, and let u be a map defined at the vertices of V. Define

λ = min
y∈∂V

IV u(y) +N(x− y) (11)

and assume that the minimum is attained at a point y = α1y1 + · · ·+αdyd ∈ ∂V, where y1, · · · , yd
are the vertices of a common facet of V, and α1, · · · , αd are the barycentric coordinates. If
Θ(N,V) ≤ π/2, then for any 1 ≤ i ≤ d such that αi > 0 one has

λ ≥ u(yi) + ‖x− yi‖µ∗(N) cos Θ(N,V). (12)
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A proof of Proposition 2.3 is presented in §3.3. If Θ(N,V) < π/2, then the update value λ
is strictly larger than the neighbor values u(yi) which play an active role in its computation, in
the sense that αi > 0. Adopting the notation of (8), assume that

Θ(Nx,Vxh ) < π/2 (13)

for each x ∈ Ωh. Then the system (9) is strictly causal, a property that is reformulated in
an abstract manner in Proposition D.1, and enables the FMM. Note that multi-pass iterative
methods such as fast sweeping remain applicable even if (13) fails, see Appendix D for more
discussion.

The next definition and proposition bound the angle Θ(N,V) in terms of the norm and
stencil separately. When the strength of the anisotropy in a medium is sufficiently mild, as in
the case of geological media, this estimate allows to select an adequate discretization stencil for
fast marching, see Tables 1 and 2. In contrast, more pronounced anisotropies as considered in
[Mir14b, Mir14a, MD20] call for a data-adaptive and anisotropic stencil construction.

Definition 2.4. Let N and V be as in Definition 2.1. Define the angular distortion of the norm
as

Θ(N) := max
v 6=0

^(∇N(v), v), (14)

and the angular width of the stencil as

Θ(V) := max{^(v, w); v, w in a common facet of ∂V}.

In the next proposition we denote by Od the group of d × d orthogonal matrices, which are
characterized by the identity R−1 = RT. Given a norm N and R ∈ Od, we define a rotated norm
by N ◦R(x) := N(Rx) for all x ∈ Rd.

Proposition 2.5. Let N and V be as in Definition 2.1. Then

Θ(N,V) ≤ Θ(N) + Θ(V). (15)

Besides, there exists R ∈ Od such that Θ(N ◦R,V) = Θ(N) + Θ(V).

Proof. Given u, v ∈ Rd \ {0}, one has ^(∇N(u), v) ≤ ^(∇N(u), u) + ^(u, v). Thus Θ(N,V) ≤
Θ(N) + Θ(V) by definition. Besides, observing that Θ(N ◦ R) = Θ(N) for any R ∈ Od, one
obtains the relation: Θ(N ◦R,V) ≤ Θ(N) + Θ(V).

Then, let u ∈ Rd\{0} be such that Θ(N) = ^(∇N(u), u), and let v, w in a common facet of ∂V
be such that Θ(v) = ^(v, w). Up to replacingN withN◦R, for someR ∈ Od, we may assume that
u = v. Up to replacing V with its image R′(V) by a rotation R′ ∈ Rd, we may assume that w lies
in the plane generated by u and∇N(u), in such way that ^(∇N(u), w) = ^(∇N(u), u)+^(u,w).
This shows that Θ(N◦R◦R′T ,V) = Θ(N◦R,R′(V)) = Θ(N)+Θ(V), and concludes the proof.

The angular width Θ(V) of several stencils is given in Table 1, as well as the angular distortion
Θ(N) of the norm associated with some geological media, numerically computed from their
Hooke elasticity tensor as given in [BC91] and a fine sampling of (unit) vectors v in (14). In two
dimensions, the square stencil is suitable for all geological media of interest, since Θ(N)+Θ(V) <
π/2. In three dimensions, the cut-cube stencil can be used with olivine and stishovite media,
while the more anisotropic mica medium requires the refined spiky-cube stencil, see Figure 1 and
Table 2.

The angular distortion Θ(N) can also be estimated in terms of the length distortion µ(N) of
a norm, as shown in the next proposition. Two estimates are presented: a worst case estimate
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Square Cut-cube Cube Spiky-cube
Θ(V) π/4 = 0.785 . . . π/3 = 1.047 . . . acos(1/

√
3) = 0.955 . . . π/4 = 0.785 . . .

Olivine Stishovite Mica
Θ(N) 0.265 . . . 0.341 . . . 0.753 . . .

Table 1: Angular width of the stencils illustrated on Figure 1, and angular distortion of the norm
associated with several geological media. For completeness, the corresponding Hooke tensors (in
GPa units, using Voigt notation) and densities are reproduced below from [BC91].

323.7 66.4 71.6 0 0 0
66.4 197.6 75.6 0 0 0
71.6 75.6 235.1 0 0 0

0 0 0 64.6 0 0
0 0 0 0 78.7 0
0 0 0 0 0 79.0

 , ρ = 3.311g/cm3 (Olivine)

(Stishovite) ρ = 4.29g/cm3
,


453 211 203 0 0 0
211 453 203 0 0 0
203 203 776 0 0 0
0 0 0 252 0 0
0 0 0 0 252 0
0 0 0 0 0 302


178 42.4 14.5 0 0 0
42.4 178 14.5 0 0 0
14.5 14.5 54.9 0 0 0

0 0 0 12.2 0 0
0 0 0 0 12.2 0
0 0 0 0 0 12.2

 , ρ = 2.79g/cm3 (Mica)
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Square Cut-cube Cube Spiky-cube
Elliptic iff µ ≤ 1 +

√
2 iff µ ≤

√
3 iff µ ≤ (1 +

√
3)/
√

2 iff µ ≤ 1 +
√

2

Anelliptic if µ ≤
√

2 if µ ≤ 2/
√

3 if µ ≤
√

3/2 if µ ≤
√

2
Olivine, Stishovite, Mica XXX XX× XX× XXX

Table 2: Condition under which a norm N and stencil V satisfy Θ(N) + Θ(V) ≤ π/2, in terms
of the length distortion µ = µ(N). Note that the bound is sharp for elliptic norms (if and only
if), but only sufficient for anelliptic norms, see Proposition 2.6. Stencils illustrated on Figure 1.
Numerical values for the first two lines : (2.41, 1.73, 1.93, 2.41) and (1.41, 1.15, 1.22, 1.41).

in the anelliptic case in §B.1, and a sharp estimate in the elliptic case. Note that, strictly
speaking, norms defined by a Hooke tensor are anelliptic, but their anellipticity is not always
very pronounced.

Proposition 2.6. For any elliptic (resp. anelliptic) norm N one has

(µ(N) + µ(N)−1) cos Θ(N) = 2 (resp. µ(N) cos Θ(N) ≥ 1).

Definition 2.7 (Norms and elliptic norms). A norm is a function N : Rd → R such that for all
v, w ∈ Rd, (i) N(v+w) ≤ N(v)+N(w), (ii) N(λv) = λN(v) for all λ ≥ 0, (iii) N(−v) = N(v),
and (iv) N(v) ≥ 0 with equality iff v = 0. It is said elliptic if N(v) =

√
〈v,Mv〉 for all v ∈ Rd,

where M ∈ S++
d is a positive definite matrix.

The results presented in this subsection also apply if the symmetry assumption (iii) is re-
moved in Definition 2.7. Norms lacking symmetry, often referred to as quasi -norms, define quasi-
distances which can also be characterized by an eikonal equation and numerically computed using
the fast marching method or another iterative method, with straightforward applications of the
formalism presented in this paper, see [Mir14b] in two dimensions.

Causality for TTI metrics with the use of fixed stencils. We illustrate the causality
property for our stencils on the specific case of TTI anisotropy, but bear in mind that our
method can similarly handle anisotropy coming from a Hooke tensor of general complexity.

The Thomsen parameters [Tho86] denoted (Vp, Vs, ε, δ), often complemented with a rotation
R, define the TTI eikonal equation of the form

ap4
r + bp4

z + cp2
rp

2
z + dp2

r + ep2
z = 1 (16)

where p2
r = p2

x + p2
y and (px, py, pz) = R∇u, with parameters (a, b, c, d, e):

a = −(1 + 2ε)V 2
p V

2
s ,

b = −V 2
p V

2
s ,

c = −(1 + 2ε)V 4
p − V 4

s + (V 2
p − V 2

s )(V 2
p (1 + 2δ)− V 2

s ),

d = V 2
s + (1 + 2ε)V 2

p ,

e = V 2
p + V 2

s .

The PDE (16) suffers from an ambiguity, similar to (3), in the sense that two propagation speeds
are solution, in each direction. In this paper, we only consider the fastest propagation speed,
corresponding to pressure waves. From Thomsen parameters and the rotation one can define a
Hooke tensor such that (3) is equivalent to (16).
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Figure 2: Acuteness property, depending on the stencil and Thomsen parameters.

We use the criterion of Proposition 2.3 to determine whether our fixed 3D stencils provide
a causal scheme depending on the Thomsen parameters. With Proposition 2.5, we make our
criterion independent from the rotation chosen for the TTI metric. Therefore, we only need to
determine the length distortion for a set of Thomsen parameters (Vp, Vs, ε, δ).

We set Vs = 0 for an easier visualization of the results2. Besides, we can set Vp = 1 with no
loss of generality. Results are shown in Figure 2, depending on parameters (ε, δ). We also plotted
the (ε, δ) values from 58 examples of media presented in [Tho86]. Out of the 58 media, only 4 of
them are such that the cut-cube stencil does not guarantee a causal scheme: these four media are
the “Muscovite crystal”, “Biotite crystal”, “Gypsum-weathered material” and “Aluminum-lucite
composite”. From these 4 media, only the “Biotite crystal” is such that the spiky-cube stencil
does not guarantee a causal scheme. We conclude that the cut-cube stencil suffices to enable the
FMM with most practical cases of seismic anisotropy.

2.4 Source factorization, and high order finite differences

We describe enhancements of the numerical scheme (8), aimed at achieving higher accuracy,
via an additive factorization of the source singularity, and the use of higher order upwind finite
differences, in the spirit of [LQ12, TH16] and [Set99] respectively. For that purpose, we rely on
an infinitesimal variant of Bellman’s optimality principle (7):

0 = min
y∈∂V
〈∇u(x), y − x〉+Nx(x− y), (17)

where V is a neighborhood of a point x ∈ Ω. This property can be derived from (7), or alter-
natively from the eikonal equation (2) and the relation N∗x(p) = max{〈p, v〉; Nx(v) ≤ 1} which
follows from (5) and Legendre-Fenchel duality. In general, (17) should be understood in the
sense of viscosity solutions [BCD08], but for the sake of simplicity we assume in this discussion
that u is differentiable at x.

Equation (17) is discretized in a fashion similar to (8) and (9):

0 = min
y∈∂Vx

h

IxhD(u, x, y − x) +Nx(x− y), (18)

2Note that the Thomsen parameter Vs does not exactly correspond to the physical speed of the S-wave, and
so Vs does have an impact on the value of the first arrival time, as well as the geometry and anisotropy of the
equivalent Hooke tensor. However, on usual values for geophysical media, the impact of Vs is very small so the
visualisation of Figure 2 is not significantly altered.
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where D(u, x, y− x) is a finite-difference approximation of 〈∇u(x), y− x〉, defined for x, y ∈ Ωh.
Recall that Ixh denotes, as in (8), the linear interpolation operator on the polygonal stencil
boundary ∂Vxh , whose vertices lie in Ωh. For convenience, we also let Dx

hu(v) := D(u, x, hv)/h,
where v = (y − x)/h, which approximates of the directional gradient 〈∇u(x), v〉. The original
scheme (8) is recovered by letting

Dx
hu(v) =

u(x+ hv)− u(x)

h

(
equivalently D(u, x, y − x) := u(y)− u(x)

)
. (19)

Substantial improvements in accuracy can however be obtained using more complex finite differ-
ence schemes which (i) factor the solution singularity at the source point x0, and (ii) increase the
finite difference order. Note that increased accuracy is suggested by a consistency analysis, and
observed numerically §4. However, from the theoretical standpoint, we cannot guarantee that
these modifications improve numerical accuracy, but only that they do not significantly degrade
it, see Appendix D.

Additive source factorization. The solution to the eikonal equation (2) is non-differentiable
at the source point x0. As a result, the finite difference approximation of its derivatives, as
in (19), is inaccurate for x close to x0, which degrades the accuracy of the numerical results.
Source factorization methods [LQ12] subtract to the unknown u a known function u∗ which has
same singularity as the solution, but whose value and derivatives can be numerically evaluated
to machine precision at a modest cost. The following choices are considered: assuming w.l.o.g.
that x0 = 0

u1(x) := N0(x), u2(x) :=
1

2
(N0(x) +Nx(x)). (20)

The factor u2 is considered for the first time in this paper. As illustrated in the numerical
experiments §4, it is more accurate than u1, and is necessary to achieve third order accuracy.

Following the additive source factorization method [LQ12], and denoting by u∗ the chosen
factor (u1 or u2), we introduce the corrected finite difference operator

Dx
hu(v) =

u(x+ hv)− u(x)

h
+

(
〈∇u∗(x), v〉 − u∗(x+ hv)− u∗(x)

h

)
. (21)

The resulting modified scheme (18) is only a small perturbation of the original one (9), featuring
corrective terms (21, right) of magnitude O(h2/‖x − x0‖). If the original scheme was strictly
causal (13), then this perturbation also is, except possibly on a neighborhood of radius O(h)
of the source x0 where (20) is in any case an excellent approximation of the solution u. As a
result, the modified scheme can be solved in a single pass, using the Fast Marching algorithm,
see Proposition D.4 and the discussion below.

High order finite differences. High order finite differences advantageously replace first order
ones (19, left) in places where the solution is smooth. These differences should be upwind, i.e.
one sided, so as to respect the causality principle underlying the eikonal equation. Second order
upwind finite differences for instance read

Dx
hu(v) =

u(x+ hv)− u(x)

h
− u(x+ 2hv)− 2u(x+ hv) + u(x)

2h
, (22)

and third order differences incorporate the additional term

u(x+ 3hv)− 3u(x+ 2hv) + 3u(x+ hv)− u(x)

3h
. (23)
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Note that this approach requires a Cartesian grid discretization, in such way that x + 2hv and
x + 3hv are points of the discretization grid hZd, in addition to x and x + hv. Alternative
approaches to high order finite differences also exist, see e.g. [BLZ10]. Source factorization can
easily be combined with high order finite differences: similarly to (21), symbolically compute the
directional gradient 〈∇u∗(x), v〉 of the factor (20), and remove its finite difference approximation
Dx
hu∗(v).
In contrast with source factorization, the use of high order finite differences breaks the fun-

damental result of Proposition 2.3 on causality, as well as discrete comparison principles (the
modified scheme is not monotone). For this reason, they should be used with caution. In practice,
following [Set99], we introduce them in the post processing step of the Fast Marching method,
see Line 3. of Algorithm 1. At this stage the numerical scheme is re-evaluated at the accepted
point y using high order finite differences, provided they (i) only involve accepted values, and
(ii) are close enough to the standard first order differences. This avoids introducing instabilities
in the FMM, and guarantees that the accuracy is not worse than the first order scheme, see
Proposition D.5 and the discussion above.

2.5 Summary of the numerical method

This paper defines a numerical method, designed to solve the eikonal equation on a geological
medium defined with a fully general Hooke tensor (21 parameters). In this subsection, we present
a summary of each of its steps. Computer code which implements the method in this study can
also be found at: https://github.com/Mirebeau, with illustrative Python Notebooks.

Choice of discretization stencils. In order to enable the FMM, which we advocate in this
paper since it yields the fastest computation times, the stencils need to be acute w.r.t. the
metric, see (13). Some results presented in this paper allow to infer the choice of stencils from
possibly known geometric properties of the metric: the angular distortion in Proposition 2.5, and
the length distortion in Proposition 2.6. More specific examples are also considered: materials
described in terms of Thomsen parameters in Fig. 2, and a selection of minerals in Table 2.
Typically, the cut-cube stencil is acute for most metrics from geological media.

Numerical solver. Once acute stencils are set, the discrete system (9) can be solved in a single
pass by the FMM, whose in implementation is detailed in Algorithm 1. (Alternatively, if the
stencils are not acute, an iterative method such as fast sweeping may be used, see Appendix D.)
For better accuracy, we also use a source factorization, as well as high order finite differences,
see §2.4.

Computation of the update operator. The FMM requires the computation of the update
operator Λ from Definition 8, which is used to compute the arrival time at any position as
a minimization problem over arrival times estimated on the facets of the stencil at this posi-
tion. The computation of the update operator is the most expensive aspect of our numerical
method. The minimum is computed on the vertices, edges and faces of the stencil: details of the
implementation can be found in §3.4.

3 Numerical computation of the norm and update operator

We provide in this section the implementation details for the numerical computation of the norm
associated with a given Hooke tensor, which is a basic ingredient of our numerical solver of the
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eikonal equation (2). We also establish Proposition 2.3 in §3.3, on causality property of the
update operator, and discuss its numerical evaluation in §3.4. Throughout this section we fix a
Hooke tensor c, and define mc(p) ∈ Sd and N∗(p) for all p ∈ Rd

mc(p)ik :=
∑
j,l

cijkl pj pl, N∗c (p) :=
√
‖mc(p)‖, (24)

where the spectral norm (largest eigenvalue) is used in (24, right). This definition is similar
to (1), except for the density which is ignored for simplicity, w.l.o.g. up to rescaling the Hooke
tensor. The primal norm Nc is defined as maximization of a linear form subject to a non-linear
convex constraint, similar to (5): for all v ∈ Rd

Nc(v) := max{〈p, v〉; N∗c (p) ≤ 1}. (25)

We rely on SQCQP (sequential quadratically-constrained quadratic programming) to address
this problem numerically, see Appendix C, of which a variant also arises in the evaluation of the
update operator (8), see §3.4. For this method, the constraint needs to take the form “f ≤ 0”
(resp. “f ≥ 0”) (or another constant bound) where the function f is both:

(a) Strongly convex (resp. strongly concave), see Definition 3.4.

(b) Efficiently evaluated numerically, as well as its gradient and hessian.

The constraint N∗c ≤ 1 in (25) fails both of these properties. Considering (N∗c )2 ≤ 1 fixes (a),
see Theorem 3.3, but not (b) since N∗c (p) involves the spectral norm ‖mc(p)‖ which is itself the
root of a degree three polynomial. We thus consider alternative expressions of the constraint,
and denote

B∗c := {p ∈ Rd;Nc(p) ≤ 1}, fc(p) := det(Id−mc(p)), (26)

We prove in Proposition 3.7 below, under suitable assumptions, that B∗c is the connected com-
ponent of the origin in the set {fc ≥ 0}.

We can thus replace the highly non-linear constraint N∗c (p) ≤ 1 with the constraint fc(p) ≥ 0.
Since fc is a polynomial (of degree 2d in d variables, inhomogeneous), it complies with (b).
However, fc is in general not concave, thus fails (a), see nevertheless Remark 3.11. For this
reason we consider yet other alternative expressions of the constraint:

f
1
d
c ≥ 0 (27)

and, for α ≥ 0,
exp[−αfc] ≤ 1. (28)

The function f
1
d
c used in (27) is a barrier function for the set B∗c : it is strictly positive in its

interior, cancels on its boundary, and is strongly concave, see Theorem 3.3. However, it is not
defined outside of B∗c , hence its use is restricted to optimization procedures using only interior
points, which is not the case of SQCQP. Even so, it is natural to consider this expression of the
constraint before moving to (28), see proof of Theorem 3.3.

One the other hand, the function exp[−αfc] is smooth, defined over the whole of Rd, and easy
to evaluate thus complies with (b). The main result of this section, Theorem 3.3, establishes
that it is strongly convex on a neighborhood of B∗c , thus also complies with (a), when α is
sufficiently large. See Remark 3.11 on the effective choice of this constant. This reformulation of
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the constraint is thus suitable for applying the SQCQP optimization routine to compute Nc(v),
see Appendix C. For numerical stability, the exponential is taken into account in the optimization
via Remark C.3.

In order to state our results, we need to introduce some definitions. Recall that a Hooke
tensor is a 4th-order tensor c = (cijkl), i, j, k, l ∈ {1, · · · , d}, obeying the symmetry relations
cijkl = cklij = cjikl. Given two symmetric matrices m1,m2, we write m1 � m2 (resp. m1 � m2)
if m1 −m2 is positive semi-definite (resp. positive definite); this is known as the Loewner order.

Definition 3.1. A Hooke tensor c is said elliptic (resp. strictly elliptic) iff mc(p) is positive
semi-definite (resp. positive definite) for each p ∈ Rd \ {0}.

We let cell be the largest constant such that mc(p) � cell Id ‖p‖2 for all p ∈ Rd, and note that
cell ≥ 0 (resp. cell > 0) if c is elliptic (resp. strictly elliptic).

Definition 3.2. A Hooke tensor c is said separable iff the largest eigenvalue of mc(p) has
multiplicity one for all p 6= 0.

A Hooke tensor is separable, in the sense of Definition 3.2, iff the pressure waves are strictly
faster than the other modes of propagation (e.g. P-SV-waves), which is typical of the materials
encountered in seismology. The notion of Hooke tensor ellipticity is further discussed in Remark
3.5, and is unrelated with elliptic anisotropy, see Definition 2.7.

Theorem 3.3. Let c be a strictly elliptic Hooke tensor. Then (i) N∗c is a norm, and (N∗c )2

is 2cell-convex, (ii) f
1
d
c is 2cell-concave in B∗c , (iii) if in addition c is separable, and α is large

enough, then exp[−αfc] is strongly convex in a neighborhood of B∗c

A property closely related to point (i) is established in [Mus03], with a different proof.

Definition 3.4. A function f , defined on a convex domain Ω ⊂ Rd, is said δ-convex iff for all
p, q ∈ Ω and all t ∈ [0, 1] one has

f((1− t)p+ tq) ≤ (1− t)f(p) + tf(q)− δ

2
t(1− t)‖p− q‖2. (29)

A 0-convex function is simply said convex, and a δ-convex function for some δ > 0 is said
strongly convex. A function f is said δ-concave iff −f is δ-convex. If f is twice continuously
differentiable, then δ-convexity is equivalent to the property ∇2f � δ Id. If f1 and f2 are δ-
convex, then f = max{f1, f2} also is.

The following variant of the parallelogram identity, which has obvious ties to (29), is used
twice in the proof of Theorem 3.3: for any quadratic form A, any points p, q, and any t ∈ R

A((1− t)p+ tq) = (1− t)A(p) + tA(q)− t(1− t)A(p− q). (30)

Remark 3.5 (Hooke tensor positivity). Following [BST83], a Hooke tensor is said elliptic (resp.
positive) if for all p, q ∈ Rd (resp. m ∈ Sd) one has∑

i,j,k,l

cijkl pi qj pk ql ≥ 0
(
resp.

∑
i,j,k,l

cijklmijmkl ≥ 0
)
.

This notion of ellipticity is clearly equivalent with Definition 3.1. Note also that positivity implies
ellipticity, as already observed in [BST83], by choosing mij = 1

2(piqj + pjqi).

Remark 3.6 (Gradient of Nc(v)). Let c be a strictly elliptic Hooke tensor, let v ∈ Rd \ {0}, and
let p be optimal in (25). Then ∇Nc(v) = p by the envelope theorem [Car01]. This observation
allows to numerically implement source factorization, see (20) and (21).
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We conclude the introduction of this section with a description of the constraint set B∗c in
terms of the level sets of fc. Denote by CCx(X) the connected component of a point x in a set
X.

Proposition 3.7. If c is elliptic and separable, then B∗c = CC0{fc ≥ 0}.

Proof. For all p ∈ Rd, denote by λ1(p) ≥ · · · ≥ λd(p) the eigenvalues of mc(p), which depend
continuously on p. Note that λd(p) ≥ 0 since c is elliptic, and that λ1(p) > λ2(p) for all p 6= 0
since c is separable. Note also that Nc(p) =

√
λ1(p) and fc(p) = (1− λ1(p)) · · · (1− λd(p)).

Proof of the direct inclusion: if p ∈ B∗c , then 1 ≥ λ1(p). Therefore fc(σp) = (1− σ2λ1(p)) · · ·
(1− σ2λd(p)) ≥ 0 for all σ ∈ [0, 1], thus p ∈ CC0{fc ≥ 0} as announced.

Proof of the reverse inclusion: the sets B∗c = {λ1 ≤ 1} and E := {λ2 ≥ 1} are closed, and
disjoint by separability. Since {fc ≥ 0} ⊂ B∗c t E, any connected component of {fc ≥ 0} is
entirely contained in either B∗c or E. It follows that CC0{fc ≥ 0} ⊂ B∗c which concludes.

3.1 Convexity and smoothness of the dual norm N∗c

We establish point (i) of Theorem 3.3, and also discuss the smoothness and uniform convexity
properties of N∗c . Let c be an elliptic Hooke tensor. Then for any p, q ∈ Rd one has,

‖q‖2mc(p) =
∑
i,j,k,l

cijkl qi pj qk pl = ‖p‖2mc(q),

where ‖q‖m :=
√
〈q,mq〉. Therefore

N∗c (p) :=
√
‖mc(p)‖ = max

|q|=1
‖q‖mc(p) = max

|q|=1
‖p‖mc(q). (31)

Proof of point (i) of Theorem 3.3. The function p ∈ Rd 7→ ‖p‖m is convex if m is a symmetric
positive semi-definite matrix, and is a norm if m is positive definite. In the latter case, p 7→ ‖p‖2m
is δ-convex with parameter δ = 2λmin(m), as follows from the parallelogram identity (30). The
announced result follows from (31), the stability of these properties under the max operation,
and the observation that λmin(mc(q)) ≥ cell if ‖q‖ = 1.

Lemma 3.8. Let c be an elliptic and separable Hooke tensor. Then N∗c is C∞ smooth on Rd\{0}.

Proof. By construction, N∗c (p)2 is the largest root of the polynomial λ 7→ det(λ Id−mc(p)), which
by assumption is positive and simple (a.k.a. of multiplicity one). The result immediately follows
from the regularity of a polynomial’s simple roots with respect to variations in the coefficients.

The strong convexity of (N∗c )2 and its C∞ smoothness on Rd \ {0}, see Theorem 3.3 and
Lemma 3.8, imply the same properties of the norm Nc by Legendre-Fenchel duality.

3.2 Convexity of the alternative barriers for the dual unit ball

We conclude in this subsection the proof of Theorem 3.3.

Proof of point (ii) of Theorem 3.3. Each component of p 7→ mc(p) is a quadratic form by (24,
left), hence by the parallelogram identity (30) one has for any p, q ∈ Rd and any t ∈ [0, 1]

mc((1− t)p+ tq) = (1− t)mc(p) + tmc(q)− t(1− t)mc(p− q). (32)
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Recall that det
1
d is concave3 over the cone S+

d . By homogeneity, this implies super-additivity:
det(A + B)

1
d ≥ det(A)

1
d + det(B)

1
d for all A,B ∈ S+

d . Using successively (32), the super-
additivity and the concavity of det

1
d on S+

d , we obtain for any p, q ∈ B∗c , t ∈ [0, 1], and denoting
M [p] := Id−mc(p)

det(M [(1− t)p+ tq])
1
d = det

(
(1− t)M [p] + tM [q] + t(1− t)mc(p− q)

) 1
d

≥ det
(
(1− t)M [p] + tM [q]

) 1
d + t(1− t) det

(
mc(p− q)

) 1
d

≥ (1− t) det(M [p])
1
d + t det(M [q])

1
d + t(1− t)cell‖p− q‖2.

Given a twice continuously differentiable function f , and constants α, β ∈ R, we recall the
expression of the composite hessians,

∇2 exp(−αf) =
(
α∇f∇fT −∇2f

)
µ1, ∇2(fβ) =

(β − 1

f
∇f∇fT +∇2f

)
µ2, (33)

only defined where f > 0 for (33, right). We denoted µ1 := α exp(−αf) and µ2 := βfβ−1.
Proposition 3.10 below and (33, left) together imply point (iii) of Theorem 3.3. Recall that the
comatrix co(M) has polynomial entries in a matrix M , and satisfies M−1 = co(M)T/ det(M)
when M is invertible.

Lemma 3.9. Let M ∈ Sd and v ∈ Rd. Assume that 〈w,Mw〉 ≥ c‖w‖2 for all w ∈ v⊥, where
c > 0. Then M + αvvT � 0 iff α > α∗ := −det(M)/〈v, co(M)v〉. (Also, 〈v, co(M)v〉 ≥ cd−1.)

Proof. Up to a linear change of coordinates, we may assume that v = (1, 0, · · · , 0). Denote
by M̃ ∈ Sd−1 the matrix extracted from M by omitting the first line and first column, which
by assumption satisfies M̃ � c Id. Then 〈v, co(M)v〉 = det M̃ ≥ cd−1 as announced. Also
det(M + αvvT ) = det(M) + α det(M̃) = det(M) + α〈v, co(M)v〉 is positive iff α > α∗.

Assume for contradiction that there exists a sequence (wn)n≥0 such that ‖wn‖ = 1 and
〈wn, (M + nvvT )wn〉 ≤ 0 for all n ≥ 0. Up to extracting a subsequence we assume may that
wn → w∗ as n → ∞, where ‖w∗‖ = 1. Noting that 〈wn, v〉2 ≤ −〈wn,Mwn〉/n → 0 as n → ∞,
we obtain that 〈w∗, v〉 = 0. Then 0 ≥ 〈wn, (M + nvvT )wn〉 ≥ 〈wn,Mwn〉 → 〈w∗,Mw∗〉 > 0, as
n→∞, which is a contradiction. We conclude that there exists n∗ such that M + n∗vv

T � 0.
The set I = {α ∈ R; M + αvvT � 0} is the connected component of n∗ in the set J = {α ∈

R; det(M + αvvT ) > 0}. Noting that J =]α∗,∞[, we conclude the proof.

Proposition 3.10. Let c be a strictly elliptic and separable Hooke tensor. Then there exists a
constant α ≥ 0 such that g(α, p) := α∇fc(p)∇fc(p)T −∇2fc(p) is positive definite for all p in a
neighborhood of B∗c .

Proof. Let p ∈ int(B∗c ). By point (ii) of Theorem 3.3 and (33, right) one has g(α(p), p) � 0 with
α(p) := (1− 1/d)/f(p).

Let p ∈ ∂B∗c , and let λ1 ≥ · · · ≥ λd be the eigenvalues of mc(p). One has λ1 = 1 since
p ∈ ∂B∗c , and λ2 < 1 by separability. Therefore fc((1 + ε)p) = det(Id−(1 + ε)2mc(p)) =
−2ε(1− λ2) · · · (1− λd) +O(ε2), which shows that v := ∇fc(p) is nonzero. On the other hand,
the strong convexity of (N∗c )2, and the fact that the level sets N∗c = 1 and fc = 0 coincide,

3There are countless proofs of this fact, related to the Brunn-Minkowski theorem. For instance, a reduction
shows that one can suppose that one matrix is the identity and the other is diagonal, in which case the inequality
follows from the convexity of t ∈ R 7→ ln(1 + et).
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implies that 〈w,∇2fc(p)w〉 < 0 for all w ∈ v⊥. From these properties and Lemma 3.9 we obtain
that g(α(p), p) � 0 for sufficiently large α(p).

The announced result follows from the compactness of B∗c , the continuity of ∇fc and ∇2fc
and openness of S++

d , and the existence of a suitable α = α(p) at each p ∈ B∗c = int(B∗c ) ∪ ∂B∗c
as shown above.

Remark 3.11 (Effective value of α). Proposition 3.10 produces the constant α by a compactness
argument, which is not quantitative. We numerically approximated this constant, using Lemma
3.9 and a fine sampling of B∗c , for a variety of materials, and found for example that α = 40
is suitable for the Hooke tensor derived from the mica material, and α = 62 is suitable for the
Hooke tensor derived from the stishovite material (as defined in Table 1).

Numerical computation of Nc(v) = max{〈p, v〉; exp[−αfc(p)] ≤ 1} is implemented using
the SQCQP method, described in Appendix C and using Remark C.3 to avoid overflow and
underflow error associated with the evaluation of exp[−αfc]. Our experiments eventually led to
the observation that SQCQP is robust and rather insensitive to the parameter α. In particular
and to our surprise, no failure of this iterative optimization procedure was observed when letting
α → 0, which amounts to applying SQCQP with the constraint fc ≥ 0: the point p = 0 appears
to remain in the basin of attraction of the solution, even though the constraint function is non-
concave. Explaining this fortunate behavior is beyond the scope of the current work.

3.3 Proof of the causality property

This subsection is devoted to the proof of Proposition 2.3, which relates a geometrical property
of the stencils with a causality of the update operator (8) of the Fast Marching method. For that
purpose, let us recall that this operator is defined as a minimization problem over a triangulated
surface: the boundary ∂Vxh of the discretization stencil, see (8). For each k-dimensional facet of
this surface, we thus solve an optimization problem of the following form

λ = min
ξ∈Ξk

〈l, ξ〉+N(V ξ), where Ξk := {ξ ∈ [0,∞[k+1; 〈ξ,1k〉 = 1}, (34)

where 1k := (1, · · · , 1) ∈ Rk+1. We denoted by N a norm on Rd, assumed to be differentiable
on Rd \ {0}, and by V a matrix of shape d× (k + 1). Note that the norm N and the set Ξk are
convex, hence this problem is amenable to numerical optimization, see §3.4. In the context of
(8), N = Nx, the matrix V collects the vertices of the k-facet of interest of ∂Vhx , and the vector
l collects the values of the unknown u at the vertices of the facet.

Lemma 3.12. Assume that the minimum (34, left) is attained at a point ξ of the relative interior
of Ξk. Then denoting p = ∇N(V ξ) one has

λ1k = l + V Tp, N∗(p) = 1 (35)

Proof. Equation (35, right) follows from p = ∇N(V ξ) and Legendre-Fenchel duality. The
Karush-Kuhn-Tucker relations for the optimization problem (34), given that the non-negativity
constraints are inactive, yield (35, left) with an arbitrary Lagrange multiplier λ′ which in prin-
ciple needs not coincide with the value λ of the optimization problem (34). Their equality is
established as follows:

λ′ = λ′〈ξ,1k〉 = 〈ξ, l + V Tp〉 = 〈l, ξ〉+ 〈p, V ξ〉 = 〈l, ξ〉+N(V ξ) = λ.
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The next result links the acuteness of the stencil with the causality of the numerical scheme,
following [Tsi95, KS98, SV01]. For that purpose we denote, for each matrix V of shape d×(k+1)

Θ(N,V ) := max
ξ,ξ′∈Ξk

^(∇N(V ξ), V ξ′). (36)

Proposition 3.13 (Acuteness implies causality, single facet version). Assume that the minimum
(34, left) is attained at a point ξ in the relative interior of Ξk, and that Θ(N,V ) ≤ π/2. Denote
by l0, · · · , lk the components of l, and by v0, · · · , vk the columns of V . Then for any 0 ≤ i ≤ k

λ ≥ li + ‖vi‖µ∗(N) cos Θ(N,V ) (37)

Proof. Considering (35, left) componentwise, we obtain λ = li + 〈vi, p〉. Since vi and V ξ belong
to the same facet of the stencil, one obtains using the angle condition and Lemma B.1

〈vi, p〉 = 〈vi,∇N(V ξ)〉 ≥ ‖vi‖‖∇N(V ξ)‖ cos Θ(N,V )

≥ ‖vi‖µ∗(N) cos Θ(N,V ).

Proof of Proposition 2.3. Up to renumbering the vertices, and eliminating those whose barycen-
tric coordinate vanishes, we assume that the minimum of (11) is attained at a point y =
α0y0 + · · · + αkyk, where αi > 0 for all 0 ≤ i ≤ k, and y0, · · · , yk are the vertices of mini-
mal facet of ∂V containing y. (The dimension of this facet is k, with 0 ≤ k < d.) Denote by V
the matrix of columns y0 − x, · · · , yk − x, and let l = (u(y0), · · · , u(yk)). Then (37) yields (12),
since in view of Definition 2.1 one has Θ(N,V ) ≤ Θ(N,V). This concludes the proof.

3.4 Numerical computation of the update operator

The core of our numerical solver of the eikonal equation is devoted to the numerical computation
of the update operator (8), defined by the minimization problem

min
y∈∂Vx

h

Ixh u(y) +Nx(x− y).

Since the stencil boundary ∂Vxh is a triangulated surface, see Fig. 1, we can minimize over
each facet separately. Optimization over a single given facet takes the form (34), which is
a mathematically well posed problem: the minimization of a convex functional over a simplex.
However efficient numerical implementation bears importance, as it dominates the computational
cost of our method. A first optimization, specific to the FMM, is to consider only the facets
of Vxh containing the point y that was last accepted, and triggered the update see Algorithm 1.
Indeed the values of u associated to the other vertices of Vxh have not changed since the previous
update at x.

We discuss here the key ingredients of the implementation of (34), for a norm N = Nc

associated with a Hooke tensor c. We focus on the case of a three dimensional stencil (d = 3)
and distinguish cases depending on the dimensionality k of the sub-facet: a vertex (0-facet), an
edge (1-facet), or a face (2-facet) which must be a triangle.

Vertex (k=0). The optimization problem (34) associated with a vertex v0 is simplified into the
trivial expression λ = Nc(v0) + l0. The edge length Nc(v0) is numerically evaluated as described
in the introduction of this section.
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Edge (k=1). The optimization problem (34) associated with an edge [v0, v1], can be rephrased
as the minimization over the interval [0, 1] of the smooth and convex function

f(t) := (1− t)l0 + tl1 +Nc((1− t)v0 + tv1).

Our first step is to numerically evaluate f ′(0) = l1 − l0 + 〈∇Nc(v0), v1 − v0〉, and likewise f ′(1),
see Remark 3.6 for the numerical computation of ∇Nc(v). If f ′(0) ≥ 0 (resp. f ′(1) ≤ 0), then
the convex function f reaches its minimum at 0 (resp. at 1), and the problem is solved.

Otherwise, recall that the value to be computed reads

min
ξ∈Ξ1

〈l, ξ〉+Nc(V ξ) = min
ξ∈Ξ1

max
N∗c (p)≤1

〈l, ξ〉+ 〈p, V ξ〉.

Exchanging the min and max, and using the optimality relation (35, left), we rephrase (34) as

max{λ; (λ, p) ∈ R× Rd, λ11 = l + V Tp, N∗c (p) ≤ 1}. (38)

This problem has the same structure as the primal norm Nc(v) computation, see (25), up to the
additional linear equality constraint which raises no particular issue. It is solved using the same
approach, namely a reformulation of the contraint as (27, right), and SQCQP, see Appendix
C (a.k.a. we repeatedly solve, in closed form, the approximate problem where the non-linear
constraint is replaced with a second order expansion). For best efficiency, an initial guess for
(λ, p) is constructed from the norm gradients at v0 and v1, and a quadratic model.

Face (k=2). We turn to the optimization problem (34), posed on a triangle of vertices
(v0, v1, v2). Our first step is to minimize (34) over the edges [v0, v1], [v1, v2], and [v2, v0] as
described in the previous paragraph. Examining the norm gradients at these minimizers, one
can decide whether the minimum of the convex optimization problem (34) is attained on the
boundary of Ξ, in which case the problem is solved.

Otherwise, since V is a square invertible matrix, we can invert (35, left) into p = V −T(λ1−l),
and turn (35, right) into an univariate polynomial equation of degree 2d w.r.t λ ∈ R

det(Id−mc(V
−T(λ1− l))) = 0. (39)

A Newton method is used to solve this equation, with a suitable initial guess based on the result
of the minimization over the three edges [v0, v1], [v1, v2], [v2, v0], and a quadratic model.

4 Numerical experiments

In this section, we present numerical experiments to illustrate the properties of the numerical
solver introduced in this study. We first perform convergence order and computational com-
plexity analysis. To do so, we make use of particular 3D metrics computed from the conformal
transformation of constant metrics. This conformal transformation makes it possible to de-
termine an analytical solution of the eikonal equation in a 3D anisotropic medium presenting
heterogeneities (spatial variations of its elastic properties).

In a second experiment, we consider a 3D general anisotropic medium coming from the
homogenization of the 3D SEG/EAGE overthrust benchmark model, which is widespread in the
seismic exploration community. For this model, no analytical solution to the eikonal equations
exist. Therefore, we validate our approach by comparing the first-arrival travel-time we compute
with the wavefront of the 3D elastic wave equation solution computed in the same medium, using
a volumetric method (spectral element strategy).
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Figure 3: Edges of the domain Ω̃ =] − 1, 1[3 (a cube) and of its image Ω = φ(Ω̃) by the special
conformal transformation (40). See §4.1 and §A.

These two experiments also illustrate the ubiquity and various causes of anisotropy in seismic
data. Indeed the design of the first experiment involves Hooke tensors associated with crystals,
whose anisotropy originates from the atomic layout at the nanometer scale [BC91]. In contrast,
the second experiment illustrates the apparent anisotropy arising from homogeneization at the
interfaces of kilometer wide structures [CMA+20]. Let us also acknowledge that a central assump-
tion of homogeneization techniques is that the seismic waves have a limited frequency spectrum,
in apparent contradiction with the eikonal equation formalism which is derived from the high
frequency approximation; this point deserves investigation in its own right, both theoretical and
numerical, but is outside of the scope of this paper.

4.1 Convergence order and computational complexity

In order to validate the convergence order of the proposed method, we generate a non-trivial test
case with an explicit solution, obtained as the conformal transformation of a constant material.
We refer to §A for details, and simply mention here that the test is parametrized by a (single)
Hooke tensor c and a vector b ∈ R3, features a fully non-trivial metric on Ω̃ :=] − 1, 1[3, and
admits the following explicit solution:

ũ(x) = Nc(φ(x)− x∗), with φ(x) :=
x− b‖x‖2

1− 2〈b, x〉+ ‖b‖2‖x‖2
. (40)

For the numerical tests, we consider the Hooke tensors for both the olivine and mica media
as defined in Table 1. The olivine medium has orthorhombic symmetry, and an anisotropic
length distortion of approximately 0.265. The mica medium has hexagonal symmetry, and an
anisotropic length distortion of approximately 0.753. We use our numerical scheme with three
different 3D geometrical stencils (cut-cube, cube and spiky-cube), see Figure 1.

We have already shown in §2.3 that all three stencils give a causal scheme for the length
distortion of the olivine. Indeed we can see in Figure 5 that the L2-error decreases with the ex-
pected order (2 or 3) with the step size of the grid, whereas the computation time is proportional
to the total number of grid points.

However, for the mica, only the spiky-cube stencil guarantees a causal scheme. As can be
expected, we see in Figure 6 that the cut-cube and cube stencils give poor results here, with a
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Figure 4: Cross-section at Z = 0 of the arrival time for a non-trivial metric on Ω̃ (left), which
corresponds to a constant metric on the transformed domain Ω = φ(Ω̃) (right). See §4.1 and §A.

Figure 5: Convergence orders for the olivine, comparison between stencils

systematic error coming from the scheme being non causal. Conversely, the spiky-cube stencil
provides the expected order of convergence. An alternative approach to ensure convergence, not
illustrated here, would be to use the non-causal cut-cube or cube stencils in combination with
an iterative solver such as the fast sweeping method.

Remark 4.1. The complexity of the fast marching method is O(C0N lnN + C1N), where the
first term accounts for the cost of maintaining a priority queue of the non-accepted points, and
the second term accounts for the numerical evaluation of the update operator (8), see Lines 2.
and 5. respectively in Algorithm 1 in §2.2. The structure of the norm involved in the update
operator of this study is rather complex since it is defined implicitly, see Equation (5), from an
already complex algebraic expression, see Equation (1). As a result one has C1 � C0 and the
second contribution O(C1N) to the complexity is dominant in our numerical experiments (see
Fig 5 and Fig 6), typically accounting for 90% of the CPU time.

These numerical experiments on non-trivial 3D metrics confirm that our numerical solver
achieves third order convergence and a quasi-linear computation time.

4.2 Numerical validation in a 3D fully anisotropic medium

We consider here a 3D model with a fully anisotropic Hooke tensor (21 independent coefficients).
This model is obtained through the homogenization (equivalent medium theory) of a fine scale
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Figure 6: Convergence orders for the mica, comparison between stencils

isotropic model, known as the SEG/EAGE overthrust model.
The SEG/EAGE overthrust model is a 3D exploration scale benchmark subsurface model

designed in the 1990s to foster the development of wave propagation modeling and inversion
tools. It covers an area of 20 km × 20 km × 4 km. It represents an onshore structure affected by
erosion, in which can be identified faults, a salt layer, and superficial lateral velocity variations
induced by buried topography, channels and lenses. More details can be found in [ABK97].

The initial SEG/EAGE overthrust model is an isotropic model described by pressure and
shear wave velocities, and density. Recently, as an illustration of non-periodic two-scale homog-
enization for elastic media, an upscaled version of the SEG/EAGE overthrust model has been
presented [CMA+20]. This branch of homogenization, derived from micro-mechanics [BLP78],
aims at computing effective subsurface elastic models for seismic waves propagating at finite-
frequency. The leading idea is that subsurface heterogeneities smaller than the propagated
wavelengths lead to apparent anisotropy. Effective subsurface media for a given frequency range
thus correspond to smooth fully anisotropic media. This theory has now been well established
(see [CC18] and references therein). The interest is to reduce the computational cost for volu-
metric wave propagation method, the computation in a smooth anisotropic medium making it
possible to use a coarse Cartesian grid instead of the fine unstructured mesh which would be
required in the corresponding isotropic fine scale model. Homogenization starts also to be looked
at for better constraining the solution space of seismic imaging problems [CM18].

In this study, we use the homogenized version of the 3D SEG/EAGE overthrust model pre-
sented in [CMA+20], therefore a fully anisotropic medium with 21 independent coefficients, and a
density model. These models are described on a Cartesian grid containing 534×534×107 points.
This makes it possible for us to access a realistic and physically meaningful fully anisotropic stiff-
ness tensor. To assess and illustrate the accuracy of our Fast Marching based eikonal solver, we
compare the first-arrival travel-times we compute with a 3D wavefront propagating from a source
located in the middle of the medium at the surface at x = 10 km, y = 10 km, z = 0 km.

The 3D wave propagation problem is solved using the spectral-element based modeling and
inversion code SEM46 [TBM+19, CBM20]. The simulation is performed using a 10 Hz Ricker
vertical force source, on a Cartesian-based mesh using 560 × 560 × 110 elements with P 4

Lagrange polynomial. The final time for simulation is set to 2.5 s leading to 10000 time steps
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with a time sampling ∆t = 0.00025 s. The computation has been performed on the Univ.
Grenoble Alpes HPC Dahu platform on 6 nodes of 32 cores (192 cores in total) benefiting from
the domain-decomposition algorithm implemented in SEM46. Each node is equipped with two
xeon Skylake Gold Intel processors, each featuring 16 cores clocked at 2.1 GHz, and 192 GO of
RAM. The elapsed time for the computation in such settings is approximately 3.5 hours.

For the eikonal solver, the anisotropic length distortion is sufficiently small so that the cut-
cube stencil is causal. Compared to the full wave modeling using SEM46, the computation of the
eikonal solution on the 534× 534× 107 grid on a single core of a laptop (with Intel architecture
comparable to the one from the Univ. Grenoble Alpes cluster) took approximately 1600s (less
than half an hour).

We present in Figure 7 a 3D view of the superposition of the isochrones for the first-arrival
travel time computed through our eikonal solver with the wavefront computed using SEM46, at
time t = 1.5 s, t = 2 s, and t = 2.5 s. The P-wave velocity model appears in the background. As
can be seen, the isochrone contours (in red) accurately follow the elastic wavefront (in black and
white) for the different snapshots. Noticeable irregularities of the wavefront can be identified
close to the fastest variations of the P-wave velocity model, which are reproduced accordingly
using our eikonal solver. Of course, due to finite-frequency effect of the 3D wave propagation
problem, the correspondence is not expected to be perfect, however the qualitative match we
observe is a validation of our approach on a realistic 3D example.

We complete this comparison with the presentation of a seismogram in Figure 8. The seis-
mogram is extracted on a receiver line at the surface, in the place of the source, from x=0 to
x = 20 km. On this seismogram, we superpose the first-arrival travel-time computed through
our eikonal solver. Again, we can identify a qualitative match between our eikonal solver solution
and the first-break of the synthetic seismogram extracted from the wave propagation simulation.

5 Conclusion

We presented a numerical solver for the 3D eikonal equation with anisotropy coming from a
general Hooke tensor. It uses a single pass method similar to the fast marching method and
features a source factorization, which leads to a quasi-linear complexity and up to third-order
accuracy.

The scheme features one parameter, which is the choice of discretization stencil, see Figure
1. For the overwhelming majority of materials encountered in seismology, the compact cut-cube
stencil provides best results in terms of both accuracy and computation time. However if strongly
anisotropic crystalline materials are considered, such as mica, and if one insists in using the single
pass fast marching method (as opposed to e.g. the fast sweeping iterative method) to solve the
discretized PDE, then a somewhat wider stencil is needed to ensure consistency.

Future research will be devoted to (i) applications to seismic imaging by tomographic in-
version, (ii) extensions of the method (to take into account the topography, multiple arrivals,
amplitude effects, ...), and (iii) optimizations of the scheme for special classes of Hooke tensors
such as tilted transversly isotropic materials.

Code availability. A software library which implements the numerical method presented in
this study can be found at: https://github.com/Mirebeau.
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Figure 7: Elastic wavefield (black and white) computed in the 3D fully anisotropic medium com-
ing from the homogenization of the SEG/EAGE overthrust model. The background corresponds
to
√

C33
ρ , that is the P-wave velocity of this model if it had a VTI symmetry (which is not the

case, but it is still a good approximation for illustrative purposes). The red contour corresponds
to the isochrone computing through our Fast Marching eikonal solver. The different snapshots
are obtained at t = 1.5 s (top), t = 2 s (middle) and t = 2.5 s (bottom).
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Figure 8: Seismogram recorded along a receiver line located on the surface (z = 0 km), in
the source plane (y = 10 km) along the x-axis (from x = 0 km to x = 20 km). The vertical
displacement is recorded. The vertical displacement intensity is represented in black and white.
The first-arrival travel-time computing through our eikonal solver for each receiver position is
superposed to the seismogram in red. The resulting red-contour matches the synthetic first-
arrival travel-time corresponding to the 3D spectral-element simulation.
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A Construction of the synthetic test

We describe the synthetic test used §4.1 to validate the convergence order of the proposed
numerical scheme. For that purpose, we need to introduce some notations.

Definition A.1. Let Ω ⊂ Rd be a domain, equipped with a metric Nx(v) (resp. dual-metric
N∗x(p)), x ∈ Ω, p, v ∈ Rd. Their pull-back by a diffeomorphism φ : Ω̃ → Ω, whose Jacobian
matrix is denoted Φ, is defined as

Ñx(v) := Nφ(x)

(
Φ(x)v

)
,

(
resp. Ñ∗x(p) := N∗φ(x)

(
Φ−T (x)p

)
.
)

By construction, the geometrical quantities defined §2.1 and associated with the metrics Nx

and Ñx are closely related: the path-length L̃(γ) = L(γ◦φ), and distance d̃(x, y) = d(φ(x), φ(y)),
where x, y ∈ Ω̃ and γ : [0, 1]→ Ω. Likewise, if u : Ω→ R obeys the eikonal equation (2), then so
does u ◦ φ : Ω̃ → R w.r.t. the pulled-back dual-metric Ñ∗x , with the appropriate seed point and
boundary conditions. In our experiments, we use for simplicity a metric Nx = Nc defined by a
constant field of Hooke tensors c, and a star-shaped domain Ω w.r.t. the origin, which is chosen
as the seed point; the eikonal equation on Ω (resp. Ω̃) therefore admits the following explicit
solution, as announced in (40):

u(x) = Nc(x),
(
resp. ũ(x) = Nc

(
φ(x)

)
.
)

In general, the pull-back of a metric defined by a Hooke tensor is not defined by a Hooke
tensor alone, and one has in addition to keep track of the Jacobian matrix both symbolically
and numerically. A special case of interest arises however for conformal transformations, whose
Jacobian is a scaled rotation, and which thus preserve the metric structure. More precisely, let
x ∈ Ω̃ be fixed, assume that N∗φ(x) is defined as in (1) by a Hooke tensor c, and that Φ(x) = λR

is the product of a scaling λ > 0 and of a rotation R. Then Ñ∗x is defined by the Hooke tensor
of components

c̃i′j′k′l′ = λ−2
∑
i,j,k,l

cijklRii′Rjj′Rkk′Rll′ .

Another benefit of conformal transformations is that they leave invariant the length distortion
and angular width of the metric, µ(Ñx) = µ(Nφ(x)) and µ(Ñx) = µ(Nφ(x)), see Definitions 2.2
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and 2.4. Three dimensional conformal transformations include dilations, translations, rotations,
the inversion x ∈ R3 \ {0} 7→ x/‖x‖2, and compositions of these.

In our experiments we use a "special conformal transformation", see (40, right) and Figure
3, which is smooth except for a singularity at b/‖b‖2, where b ∈ R3 is a parameter. It is obtained
as the composition of an inversion, a translation by −b, and another inversion. More precisely,
we choose b = (1/6, 1/9, 1/18) and let Ω̃ :=]− 1, 1[3 with seed at the origin, so that the singular
point b/‖b‖2 /∈ Ω̃, and the image domain Ω := φ(Ω̃) is star shaped w.r.t. the origin, see Figure 3.
Besides, we use the Hooke tensors of the olivine and mica as defined in Table 1, with a constant
rotation of Euler axis (2, 1, 3) and angle 3π/5.

B Proof of proposition 2.6

We estimate in this appendix the quantity Θ(N), which measures the angular distortion associ-
ated with a norm N on Rd, in terms of its length distortion, as announced in Proposition 2.6.
Different proof techniques are used in the elliptic and anelliptic cases.

B.1 Anelliptic norms

The announced estimate, established in Corollary B.2, follows from upper and lower bounds on
the gradient of a norm, presented in the next lemma.

Lemma B.1. Let N be a norm on Rd, differentiable at v ∈ Rd \ {0}. Then

µ∗(N) ≤ ‖∇N(v)‖ ≤ µ∗(N).

Proof. Since N is 1-homogeneous, one has 〈∇N(v), v〉 = N(v) by Euler’s identity, and therefore

µ∗(N) ≤ N(v)

‖v‖
=
〈∇N(v), v〉
‖v‖

≤ ‖∇N(v)‖.

On the other hand, for any vector w one obtains using successively the convexity of N and the
triangular inequality

〈∇N(v), w〉 ≤ N(v + w)−N(v) ≤ N(w).

Choosing w := ∇N(v) yields the announced upper estimate and concludes the proof:

µ∗(N) ≥ N(∇N(v))

‖∇N(v)‖
≥ 〈∇N(v),∇N(v)〉

‖∇N(v)‖
= ‖∇N(v)‖.

Corollary B.2. For any norm N on Rd, differentiable on Rd \{0}, one has µ(N) cos Θ(N) ≥ 1.

Proof. Using Lemma B.1 we obtain as announced

cos Θ(N) =
〈v,∇N(v)〉
‖v‖‖∇N(v)‖

=
N(v)

‖v‖
1

‖∇N(v)‖
≥ µ∗(N)/µ∗(N) = 1/µ(N).

B.2 Elliptic norms

The announced estimate, established in Corollary B.4, follows from a classical inequality in
analysis, whose proof is recalled in the next lemma.
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Lemma B.3 (Weighted Pólya-Szegö inequality). Let (λi)
d
i=1 be positive numbers, and (µi)

d
i=1 be

non-negative, let λ∗ = min{λ1, · · · , λd} and let λ∗ := max{λ1, · · · , λd}. Then√ ∑
1≤i≤d

µiλi

√ ∑
1≤i≤d

µi
λi
≤ 1

2

(√
λ∗

λ∗
+

√
λ∗
λ∗

) ∑
1≤i≤d

µi.

Proof. W.l.o.g we may assume that
∑

1≤i≤d µi = 1, and denote E[γ] :=
∑

1≤i≤d µiγi for any
sequence (γi)

d
i=1. Observing that E[(λ∗ − λ)(1/λ∗ − 1/λ)] ≥ 0, and developping, we obtain

λ∗

λ∗
+ 1 ≥ E

[
λ∗

λ

]
+ E

[
λ

λ∗

]
≥ 2

√
E

[
λ∗

λ

]
E

[
λ

λ∗

]
.

The second inequality follows from the of the arithmetic-geometric mean inequality a+b
2 ≥

√
ab,

∀a, b ≥ 0. The announced result follows.

Corollary B.4. For any elliptic norm N one has 1
2(µ(N) + µ(N)−1) cos Θ(N) = 1.

Proof. Without loss of generality, up to a rotation, we may assume that for all v ∈ Rd

N(v)2 =
∑

1≤i≤d
λiv

2
i , thus N(v)∇N(v) = (λivi)

d
i=1,

where λ1, · · · , λd > 0. Denote λ∗ = min{λ1, · · · , λd} and λ∗ = max{λ1, · · · , λd}, so that µ(N) =√
λ∗/λ∗. Then letting µi := λiv

2
i one obtains by Lemma B.3

‖∇N(v)‖‖v‖
〈∇N(v), v〉

=

√∑
i λ

2
i v

2
i

√∑
i v

2
i∑

i λiv
2
i

=

√∑
i µiλi

√∑
i µi/λi∑

i µi
≤ 1

2

(√
λ∗

λ∗
+

√
λ∗
λ∗

)
. (41)

This proves 1
2(µ(N)+µ(N)−1) cos Θ(N) ≥ 1. Adequately choosing v turns (41) into an equality,

which concludes the proof. More precisely, we may assume w.l.o.g that λ∗ = λ1 and λ∗ = λ2,
and then choose v = (

√
λ2,
√
λ1, 0, · · · , 0).

C Sequential quadratically constrained programming

The numerical implementation of our eikonal equation solver involves the solution to optimization
problems of the form

max{〈p, v〉; f(p) ≤ 0}, (42)

where f is smooth and strongly convex, and the vector v is fixed. They arise in the definition
of the norm (25), which is used in the source factorization (20), as well as in evaluation of
the update operator on vertices and edges (38), with an additional linear constraint in the
latter case. In order to solve (42), we use an approach known as Sequential Quadratically
Constrained Quadratic Programming (SQCQP) [FLT03], whose basic principle is to solve a
sequence of simplified problems obtained by replacing the objective function and the constraints
with their second order Taylor expansion. We provide two basic results that are sufficient for
our application, and refer to [FLT03] for more details on this rich theory. Our first observation,
whose proof is left to the reader, is that the problem (42) has a closed form solution when f is
a suitable quadratic function.

30



Lemma C.1 (Maximization of a linear function over an ellipsoid). Let f : Rd → R be a quadratic
function such that the set {f < 0} is a non-empty ellipsoid, and let p, v ∈ Rd. Then

F (p) := p+M(p)(λ(p)v − V (p)) (43)

is the unique solution to (42), where

V (p) := ∇f(p), M(p) := (∇2f(p))−1, λ(p) :=

√
〈V (p),M(p)V (p)〉 − 2f(p)

〈v,M(p)v〉
. (44)

For convenience, the solution (43) is expressed in terms of the Taylor expansion of the
quadratic function f at a given but arbitrary point p. Note however that, if f is a quadratic
function as assumed in Lemma C.1, then the matrixM(p) in (44, center) is independent of p, and
the value of F (p) is independent of p since it solves (42). The basic SQCQP framework consists
in repeatedly evaluating (43) with a non-quadratic function f , thus generating a sequence of
points pn+1 = F (pn), n ≥ 0. This yields an iterative method for the optimization problem (42),
enjoying a quadratic (Newton-like) local convergence rate, as shown in Proposition C.2. Variants
of this method enjoy a global convergence guarantee [FLT03] under suitable assumptions, but in
our numerical experiments the basic method was adequate.

Proposition C.2. Let f : Rd → R be C3 smooth, and let v ∈ Rd. Assume that p∗ ∈ Rd and
λ∗ > 0 are such that

f(p∗) = 0 ∇f(p∗) = λ∗v ∇2f(p∗) � 0. (45)

Then p∗ is an isolated local maximum for the optimization problem (42). In addition there
exists a constant C > 0 such that, for any p0 ∈ Rd close enough to p∗, the sequence defined by
pn+1 = F (pn), see (43), satisfies for all n ≥ 0

‖pn − p∗‖ ≤ C−1(C‖p0 − p∗‖)2n . (46)

Sketch of proof. We recognize in (45) the second-order optimality conditions for the constrained
optimization problem (42). A first order Taylor expansion shows that λ(p∗ + h) = λ∗ +O(h2),
and then F (p∗ + h) = p∗ +O(h2). The estimate (46) follows by induction on n ≥ 0.

Remark C.3 (Exponential transformation, and numerical stability). Assume that the constraint
in (42) takes the form g ≤ 0, where g = exp(αf) − 1 is a strongly convex function, defined in
terms of a smooth (but non-convex) f and a positive constant α. One can check that (g,∇g,∇2g)
is positively proportional to

f̃ := (1− exp(−αf))/α, ∇f, ∇2f + α∇f∇fT .

Note also that f and f̃ vanish at the same points, and if p∗ is such a point then f̃(p∗ + h) =
f(p∗ + h) + O(‖h‖2) for small h. In the sequential quadratic iterations, see Proposition C.2,
one may thus replace (g,∇g,∇2g) with (f,∇f,∇2f +α∇f∇fT ) and preserve the local quadratic
convergence (46). This eliminates all exponentials, to the benefit of numerical stability.
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D Monotony and causality in fixed point problems

In this section, we review the properties of the numerical scheme considered in this paper, and
derive the following guarantees: existence and uniqueness of a fixed point, convergence of an
iterative method to find it, and validity of the fast-marching method subject to an acuteness
condition. We also discuss how these properties transfer to the source factored and high order
scheme variants. Closely related arguments can be found in the literature devoted to semi-
Lagrangian discretizations of the eikonal equation [Tsi95, SV01, AM12, BR06, Mir14b, Mir14a].
We fix the grid scale h > 0 in this appendix, and refer to [BR06] for a convergence analysis to
the PDE solution as it is refined. Denote X := Ωh \ {x∗} the discretization set (4) minus the
source point, and let U := RX be the set of mappings from X to R. Recall that the objective is
to find u ∈ U such that for all x ∈ X

Λu(x) = u(x), where Λu(x) := min
y∈∂Vx

h

Ixh u(y) +Nx(x− y), (47)

where Ixh denotes the piecewise linear interpolation operator, on a polytope Vxh enclosing x,
whose vertices lie on the grid hZd, see §2.2. By convention in (47, right), u ∈ U is extended to
hZd \X by u(x∗) = 0 and u = +∞ elsewhere. We make the following connectedness assumption:
for any x0 ∈ X, one can find n ≥ 1 and x1, · · · , xn ∈ X, such that xi+1 is a vertex of Vxih , for
all i < n, and x∗ is a vertex of Vxnh . Given u, v ∈ U, the strict inequality “u < v” stands for
“∀x ∈ X,u(x) < v(x)”; and likewise for weak inequality u ≤ v. Given u ∈ U and τ ∈ R we define

u≤τ (x) :=

{
u(x) if u(x) ≤ τ,
+∞ else.

Proposition D.1. The operator Λ : U → U defined by (47, right) is continuous and obeys the
following properties, where δ0, δ1 are positive constants, and where u, v ∈ U, and s, t ≥ 0, τ ∈ R
are arbitrary

• Monotone: if u ≤ v then Λu ≤ Λv.

• Subadditive: Λ(u+ t) ≤ Λu+ t.

• δ0-submultiplicative: Λ[(1 + s)u] ≤ (1 + s)Λu− δ0s.

• Existence of a super-solution: there is u ∈ U such that Λu ≤ u.

If in addition Θ(Nx,Vxh ) < π/2 for all x ∈ X, then the operator Λ is also

• δ1-causal: if u≤τ = v≤τ then (Λu)≤τ+δ1 = (Λv)≤τ+δ1.

Proof. The monotony of Λ follows from the monotony of linear interpolation Ixh . Likewise, the
subadditivitity of Λ follows from the same property of Ixh (actually Λ(u + t) = Λu + t at all
points x ∈ X whose stencil Vxh does not contain the source x∗). Submutiplicativity is established
as follows, using the 1-homogeneity of the interpolation operator Ixh

min
y∈∂Vx

h

(1 + s) Ixh u(y) +Nx(x− y) ≤ (1 + s)
[

min
y∈∂Vx

h

Ixh u(y) +Nx(x− y)
]
− s min

y∈∂Vx
h

Nx(x− y),

thus with δ0 = min{Nx(x−y); x ∈ X, y ∈ ∂Vxh}. Consider the directed graph, with an edge (x, y)
of length Nx(x− y) whenever y is a vertex of Vxh . Then the distance from a given point x0 ∈ X
to the source x∗, denoted u(x0), is finite by assumption and obeys Λu ≤ u. Finally, Proposition
2.3 establishes δ1-causality with δ1 the minimal value of ‖y− x‖µ∗(Nx) cos Θ(Nx,Vxh ) among all
x ∈ X and all vertices y of the stencil Vxh .
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In the rest of this appendix, we do not use the specific form (47, right) of the operator
Λ, but only the properties established in Proposition D.1. From monotony, subadditivity, and
δ0-submultiplicativity, one derives the discrete comparison principle.

Proposition D.2 (Discrete comparison principle). Let u, v ∈ U. If u ≤ Λu and Λv ≤ v then
u ≤ v. In addition, if either inequality is strict then u < v.

Proof. Let x ∈ X be such that t := u(x)−v(x) is maximal, so that u ≤ v+t and u(x) = v(x)+t.
Assuming that t ≥ 0 we obtain u(x) ≤ Λu(x) ≤ Λ[v + t](x) ≤ Λv(x) + t ≤ v(x) + t =
u(x), by monotony and subadditivity. If either the first or last inequality is strict, we obtain a
contradiction, thus t < 0 and therefore u < v as announced. Otherwise note that vε := (1 + ε)v
obeys vε < Λvε for any ε > 0 by δ0-submultiplicativity, thus u < vε by the previous argument,
hence u ≤ v by letting ε→ 0, which concludes the proof.

Using in addition the continuity of Λ and the existence of a supersolution, one establishes
that the fixed point problem (47, left) can be solved by iterating the operator. Finitely many
iterations are sufficient if the operator is δ1-causal.

Proposition D.3 (Convergence of the global iterative method). The operator Λ admits a unique
fixed point u, and for any u ∈ U one has Λnu→ u as n→∞. If in addition Λ is δ1-causal and
u > 0, then Λnu = u for all n ≥ max(u)/δ1.

Proof. Proposition D.2 yields the uniqueness (but not the existence) of the fixed point u. The
null function u = 0 satisfies Λu ≥ δ0 ≥ 0 = u, by δ0-submultiplicativity. Choose t ≥ 0 sufficiently
large so that v := u− t ≤ u ≤ u+ t =: v, and note that v ≤ Λv and Λv ≤ v by subadditivity of
Λ. Thus v ≤ · · · ≤ Λnv ≤ Λnu ≤ Λnv ≤ · · · ≤ v by monotonicity of Λ, and induction on n ≥ 0.
By the monotone convergence theorem, Λnv and Λnv admit limits as n → ∞. By continuity,
these limits are fixed points of Λ, thus are equal to u by uniqueness. By the squeeze theorem we
obtain Λnu→ u as announced.

Finally, assume that Λ is δ1-causal, that u > 0, and note that u ≥ Λu ≥ δ0 > 0. Then
u≤0 = u≤0, and thus by induction (Λnu)≤nδ1 = (Λnu)≤nδ1 = u≤nδ1 for all n ≥ 0. The result
follows.

Global iteration is a poor way to allocate computational ressources in front propagation
problems, and more efficient algorithms concentrate their efforts on a narrow band along the
front. The convergence of iterative methods such as fast sweeping [QZZ07], the AGSI [BR06], or
the FIM [JW08], follows from closely related arguments. The fast marching method Algorithm 1
[Tsi95] solves the fixed point problem (47, left) in finitely many steps with complexity O(N lnN),
see [Mir19, Proposition A.2] for a proof based on the properties established in Proposition D.1,
causality included. We next establish that the properties of Proposition D.1 are stable under
perturbation.

Proposition D.4 (Operator perturbation). Let α∗, α∗ ≥ 0, and for all x ∈ X let αx : X →
[−α∗, α∗]. Define Λ̃ : U → U by Λ̃u(x) := Λ[u + αx](x). Then Λ̃ is continuous, monotone,
subadditive, is (δ0−α∗)-submultiplicative if δ0 > α∗, and admits the super-solution (1 +α∗/δ0)u.
If Λ is δ1-causal with δ1 > α∗, then Λ̃ is (δ1 − α∗)-causal.

Proof. Fix x ∈ X, u, v ∈ U, and s, t ≥ 0. The continuity of Λ̃ immediately follows from the
continuity of Λ. If u ≤ v, then u+αx ≤ v+αx, thus Λ[u+αx] ≤ Λ[v+αx] since Λ is monotone,
therefore Λ̃ is monotone. One has Λ[u+ t+ αx] ≤ Λ[u+ αx] + t by subadditivity of Λ, thus Λ̃ is
subadditive. One has Λ[(1 + s)u+ αx] = Λ[(1 + s)(u+ αx)− sαx] ≤ Λ[(1 + s)(u+ αx) + sα∗] ≤
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Λ[(1 + s)(u + αx)] + sα∗ ≤ (1 + s)Λ[u + αx] − δ0s + sα∗, using successively the monotony,
subadditivity, and δ0-submultiplicativity of Λ, thus Λ̃ is (δ0 − α∗)-submultiplicative if δ0 > α∗.
One has Λ[(1 + s)u + αx] ≤ Λ[(1 + s)u] + α∗ ≤ (1 + s)Λu − δ0s + α∗, by subadditivity and
submultiplicativity of Λ, thus choosing s = α∗/δ0 yields a supersolution of Λ̃. Finally, if Λ is δ1-
causal and u≤τ = v≤τ , then (u+αx)≤τ−α∗ = (v+αx)≤τ−α∗ and therefore (Λ[u+αx])≤τ−α∗+δ1 ≤
(Λ[v + αx])≤τ−α∗+δ1 , thus Λ̃ is (δ1 − α∗)-causal.

The first order source factorization (21) falls in the framework of Proposition D.4, with
αx(y) := u∗(x) − u∗(y) + 〈∇u∗(x), y − x〉, which satisfies αx(y) = O(h2/‖x − x∗‖), where u∗
is the source factor and x∗ is the source point. On the other hand, inspection of the proof of
Proposition D.1 yields that δ0 = δ̂0h and δ1 = δ̂1h where δ̂0 and δ̂1 are independent of the grid
scale h. Thus δ0 ≥ ‖αx‖∞ and δ1 ≥ ‖αx‖∞ when h is sufficiently small (except for points x in a
ball of radius O(h) around the source point x∗), and thus Proposition D.4 applies to the factored
scheme.

The second and third order schemes define perturbations (22) and (23) which depend on
the unknown u, and thus do not fall in the framework of Proposition D.4. That is the reason
why, following [Set99], we use them in a cautious way: only in the post-processing step of the
fast marching method right before the accepted value is frozen4 see line 3 of Algorithm 1, and
only if their magnitude does not exceed Ch2 where C is an absolute constant. Together, these
limitations ensure that the fast marching algorithm still terminates in a single pass over the
domain, and produces an output obeying Λu = u+O(h2). Therefore u = u +O(h) where u is
the solution of the original scheme, by Proposition D.5 below. In other words, we cannot prove
that the high order variants of the scheme improve the solution accuracy, but at least they do
not jeopardize first order accuracy, and neither substantially increase computation time.

Proposition D.5. Let u ∈ U and let k∗, k∗ ≥ 0 be such that k∗ ≤ Λu − u ≤ k∗. Then
1− k∗/δ0 ≤ u/u ≤ 1 + k∗/δ0.

Proof. Let s ≥ 0. Then Λ[(1 + s)u] ≤ (1 + s)Λu − δ0s ≤ (1 + s)(u + k∗) − δ0s, by δ0-
submultiplicativity. Choosing s = k∗/(δ0−k∗) yields Λ[(1+s)u] ≤ (1+s)u and thus (1+s)u ≥ u
by Proposition D.2. On the other hand, (1 + s)Λ[u/(1 + s)] ≥ Λu+ sδ0 ≥ u− k∗+ sδ0, again by
δ0-submultiplicativity. Choosing s = k∗/δ0 yields Λ[u/(1+s)] ≥ u/(1+s) and thus u/(1+s) ≤ u
by Proposition D.2. The result follows.
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