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Abstract

We introduce an hybrid access control model
where abstract pairs consisting of objects and access
rights are considered. In this model, an access control
matrix is a binary relation of permission between sub-
jects and abstract pairs. Treating sets of subjects as
instances of a concept called role and sets of abstract
pairs as instances of a concept called entitlement, we
introduce in each matrix the binary relations of exis-
tential permission and universal permission between
roles and entitlements, we analyse their properties,
we present the duality between subjects and abstract
pairs on one hand and roles and entitlements on the
other hand, we extend this duality to the setting with
obligations and we demonstrate how this duality is
useful by proving the completeness of a propositional
modal logic for permissions and obligations.

Résumé

Nous introduisons un modèle hybride de contrôle
d’accès dans lequel des paires abstraites constituées
d’objets et de droits d’accès sont considérés. Dans ce
modèle, une matrice de contrôle d’accès est une rela-
tion binaire de permission entre sujets et paires abs-
traites. Traitant les ensembles de sujets comme les
instances d’un concept appelé role et les ensembles de
paires abstraites comme les instances d’un concept ap-
pelé autorisation, nous introduisons dans chaque ma-
trice les relations binaires de permission existentielle
et de permission universelle entre roles et autorisa-
tions, nous analysons leurs propriétés, nous présen-
tons la dualité entre sujets et paires abstraites d’une
part et roles et autorisations d’autre part, nous éten-
dons cette dualité au modèle avec obligations et nous
démontrons comment cette dualité est utile en pro-
vant la complétude d’une logique modale proposition-
nelle pour permissions et obligations.

∗Address: Toulouse Institute of Computer Science Research,
118 route de Narbonne, 31062 Toulouse Cedex 9, France.

1 Introduction

Accesses of subjects to objects in a computer sys-
tem are permitted in accordance with a security policy
embodied in an access control database. Many compu-
ter systems use the access control matrix model to re-
present security policies [8]. An access control matrix

o1 o2 . . .
s1 {r} ∅ . . .
s2 ∅ {r, w} . . .
s3 {r, w} {r, w} . . .
s4 ∅ {r, w} . . .
s5 {r, w} {r, w} . . .
. . . . . . . . . . . .

Table 1 – Classical form of an access control matrix.

is a relational structure consisting of a nonempty set
of subjects (users, processes, etc), a nonempty set of
objects (files, tables, etc), access rights (r, w, etc) and
a ternary relation between subjects, objects and access
rights represented as in Table 1 where subject s1 has
access right r on object o1, subject s2 has access rights
r and w on object o2, etc. For computer systems with a
lot of subjects and objects, the access control matrices
will become very large and most of their entries will
be empty. Moreover, many subjects will have the same
access rights to the same objects. In order to reduce
the cost of security administration for such computer
systems, other access control models have been intro-
duced, for instance role-based access control [11] and
organization-based access control [1].

Within the context of role-based access control
(RBAC), it has been proposed that administrators
treat sets of subjects as instances of a concept cal-
led role. Formally, an RBAC-structure consists of a



o1 o2 . . .
ra {r} ∅ . . .
rb ∅ {r, w} . . .
rc {r, w} {r, w} . . .
. . . . . . . . . . . .

Table 2 – A role-based access control matrix.

nonempty set of roles representing sets of subjects, a
nonempty set of objects, access rights and a ternary
relation between roles, objects and access rights repre-
sented as in Table 2 where role ra has access right r on
object o1, role rb has access rights r and w on object
o2, etc.

Within the context of organization-based access
control (OrBAC), sets of subjects are still treated
as instances of a concept called role. Moreover, sets
of objects are treated as instances of a concept called
view and sets of access rights are treated as instances
of a concept called activity. Formally, an OrBAC-
structure consists of a nonempty set of roles repre-
senting sets of subjects, a nonempty set of views re-
presenting sets of objects, a nonempty set of activities
representing sets of access rights, a nonempty set of
organizations, a nonempty set of contexts and a 5-ary
relation between roles, views, activities, organizations
and contexts specifying, given an organization and a
context, how permissions — i.e. triples consisting of a
role, a view and an activity — are granted.

In this paper, we introduce an hybrid access control
model where abstract pairs consisting of objects and
access rights are considered. Within its context, sets of
subjects are still treated as instances of a concept cal-
led role. Moreover, sets of abstract pairs are treated
as instances of a concept called entitlement. In our
setting, an access control matrix is simply a binary
relation of permission between subjects and abstract
pairs. In each access control matrix, we introduce the
binary relations of existential permission and universal
permission between roles and entitlements, we analyse
their properties, we show how to build access control
matrices from role-entitlement frames satisfying these
properties, we present the basic dualities that exist
between matrices and frames, we extend these duali-
ties to the setting where obligations are added to per-
missions and we demonstrate how these dualities are
useful by proving the completeness of a propositional
modal logic talking about permissions and obligations.

It is not so much the hybrid access control model
that we want to develop in this paper as the 2 follo-
wing ideas : the duality between matrices and frames
developed in Sections 2–5 and the propositional modal
logic interpreted over matrices and frames presented

in Sections 6–9.
From now on in this paper, for all n∈N, let (n)={i ∈

N : 1≤i≤n} and [n)={i ∈ N : n<i}. The proofs of
some of our results can be found in an Appendix.

2 Access control matrices

The accesses of subjects to objects in a computer
system can be presented under the form of a matrix
where rows represent subjects and columns represent
objects. In that case, the entries in a concrete access
control matrix specify the access rights that each sub-
ject has on each object. The accesses of subjects to

P (o1, r) (o1, w) (o2, r) (o2, w) . . .
s1 1 0 0 0 . . .
s2 0 0 1 1 . . .
s3 1 1 1 1 . . .
s4 0 0 1 1 . . .
s5 1 1 1 1 . . .
. . . . . . . . . . . . . . . . . .

Table 3 – Alternative form of an access control ma-
trix.

objects in a computer system can also be presented
under the alternative form of a matrix where rows re-
present subjects and columns represent abstract pairs
consisting of objects and access rights. In that case,
the entries in a concrete access control matrix are bits
as in Table 3. The above discussion suggests to consi-
der abstract access control matrices, i.e. structures of
the form (S,Π, P ) where S is a nonempty set of sub-
jects (with typical members denoted s, t, etc), Π is
a nonempty set of abstract pairs (with typical mem-
bers denoted π, ρ, etc) and P is a binary relation of
permission between subjects and abstract pairs 1.

Let (S,Π, P ) be an abstract access control ma-
trix. For all s∈S, let P (s)={π∈Π : sPπ}. For all
π∈Π, let P−1(π)={s∈S : sPπ}. Let R=P(S) and
E=P(Π). Elements of R shall be called roles and
elements of E shall be called entitlements. For all
a∈R and for all α∈E, we shall say that entitlement
α is existentially permitted to role a (in symbols
aC∃α) if P intersects a × α, i.e. there exists s∈a
and there exists π∈α such that sPπ 2. For all a∈R
and for all α∈E, we shall say that entitlement α is
universally permitted to role a (in symbols aC∀α) if

1. In some logical models of deontic systems [9], every subject
has the permission to perform some action on some object. Since
it may be the case in a computer system that a subject has
access to no object at all, we do not require in an abstract access
control matrix (S,Π, P ) that for all s∈S, there exists π∈Π such
that sPπ.

2. “Someone in a has the permission to do something in α”.



P contains a×α, i.e. for all s∈a and for all π∈α, sPπ 3.

Example: If (S,Π, P ) is the restriction to {s1, s2, s3}
and to {o1, o2} of the abstract access control matrix
rep resented in Table 3 then R consists of 8 roles (the
subsets of {s1, s2, s3}) and 16 entitlements (the sub-
sets of {(o1, r), (o1, w), (o2, r), (o2, w)}). In particular,
entitlement {(o1, r), (o1, w)} is existentially permitted
to role {s1, s2} and entitlement {(o2, r), (o2, w)} is
universally permitted to role {s2, s3}.

It is also of interest to consider the relations C−→∃∀,
C−→∀∃, C←−∃∀ and C←−∀∃ between roles and entitlements such
that for all a∈R and for all α∈E,

— aC−→∃∀α if and only if there exists s∈a such that

for all π∈α, sPπ 4,
— aC−→∀∃α if and only if for all s∈a, there exists π∈α

such that sPπ 5,
— aC←−∀∃α if and only if there exists π∈α such that

for all s∈a, sPπ 6,
— aC←−∃∀α if and only if for all π∈α, there exists s∈a

such that sPπ 7.
We leave the development of the model-theoretic view-
point about these relations to future investigations.

The properties of existential permissiveness and uni-
versal permissiveness are illustrated by the 2 following
obvious results.

Lemma 1 For all a, b∈R and for all α, β∈E,
— if aC∃α then a6=∅ and α 6=∅,
— if a=∅ or α=∅ then aC∀α,
— (a ∪ b)C∃α if and only if aC∃α or bC∃α,
— (a ∪ b)C∀α if and only if aC∀α and bC∀α,
— aC∃(α ∪ β) if and only if aC∃α or aC∃β,
— aC∀(α ∪ β) if and only if aC∀α and aC∀β.

Lemma 2 For all a∈R and for all α∈E,
— aC∃α if and only if there exists b∈R and there

exists β∈E such that b6=∅, b⊆a, β 6=∅, β⊆α and
bC∀β,

— aC∀α if and only if for all b∈R and for all β∈E,
if b 6=∅, b⊆a, β 6=∅ and β⊆α then bC∃β.

The reader is invited to compare the above properties
of existential permissiveness and universal permissive-
ness to the properties of the contact relations usually
considered between regular closed subsets in topologi-
cal spaces [2, 4, 5, 6] or the properties of the inference
relations usually considered between propositions in
relational syllogistics [7, 10].

3. “Everyone in a has the permission to do everything in α”.
4. “Someone in a has the permission to do everything in α”.
5. “Everyone in a has the permission to do something in α”.
6. “Something in α is permitted to everyone in a”.
7. “Everything in α is permitted to someone in a”.

3 Role-entitlement frames

A role-entitlement frame is a structure of the form
(R,E,C∃, C∀) where R is a Boolean algebra of roles
(with typical members denoted a, b, etc), E is a Boo-
lean algebra of entitlements (with typical members de-
noted α, β, etc) and C∃ and C∀ are binary relations
between roles and entitlements satisfying the proper-
ties illustrated in Lemmas 1 and 2.

Let (R,E,C∃, C∀) be a role-entitlement frame. Ob-
viously,

Lemma 3 For all atomic roles a and for all atomic
entitlements α, aC∃α if and only if aC∀α

8.

4 Duality matrices/frames

For all abstract access control matrices
M̄=(S,Π, P ), let f(M̄)=(R,E,C∃, C∀) where R
is the set of all subsets of S, E is the set of all subsets
of Π and C∃ and C∀ are the binary relations between
subsets of S and subsets of Π such that for all a∈R
and for all α∈E,

— aC∃α if and only if there exists s∈a and there
exists π∈α such that sPπ,

— aC∀α if and only if for all s∈a and for all π∈α,
sPπ.

Obviously,

Proposition 1 For all abstract access control ma-
trices M̄ , f(M̄) is a role-entitlement frame.

For all role-entitlement frames F̄=(R,E,C∃, C∀), let
m(F̄ )=(S,Π, P ) where S is the set of all ultrafilters of
R, Π is the set of all ultrafilters of E and P is the bi-
nary relation between ultrafilters of R and ultrafilters
of E such that for all s∈S and for all π∈Π 9,

— sPπ if and only if for all a∈s and for all α∈π,
aC∃α.

Obviously, for all s∈S and for all π∈Π, sPπ if and
only if there exists a∈s and there exists α∈π such that
aC∀α. Moreover,

Proposition 2 For all role-entitlement frames F̄ ,
m(F̄ ) is an abstract access control matrix.

The duality between abstract access control ma-
trices and role-entitlement frames is illustrated by the

8. Remind that for all Boolean algebras A and for all a∈A,
a is atomic if a6=0A and for all b∈A, if b6=0A and b≤Aa then
b=a.

9. Remind that for all Boolean algebras A and for all U⊆A,
U is a proper filter if 0A 6∈U , for all a, b∈A, if a∈U and a≤Ab
then b∈U and for all a, b∈A, if a∈U and b∈U then a·Ab∈U .
Moreover, U is an ultrafilter if U is a maximal proper filter.



2 following results 10.

Proposition 3 Let M̄=(S,Π, P ) be an abstract
access control matrix, f(M̄)=(R′, E′, C ′∃, C

′
∀) and

m(f(M̄))=(S′′,Π′′, P ′′). The function h : M̄ −→
m(f(M̄)) such that for all s∈S, h(s)={a∈R′ : s∈a}
and for all π∈Π, h(π)={α∈E′ : π∈α} is an isomor-
phism.

Proposition 4 Let F̄=(R,E,C∃, C∀) be a
role-entitlement frame, m(F̄ )=(S′,Π′, P ′) and
f(m(F̄ ))=(R′′, E′′, C ′′∃ , C

′′
∀ ). The function h : F̄ −→

f(m(F̄ )) such that for all a∈R, h(a)={s∈S′ : a∈s}
and for all α∈E, h(α)={π∈Π′ : α∈π} is an
embedding.

5 Introducing obligations

In most logical models of deontic systems [9], if
a subject has the obligation to perform an action
on some object then it also has the permission to
perform that action on that object. An extended
access control matrix is a structure of the form
(S,Π, P,O) where (S,Π, P ) is an abstract access
control matrix and O is a binary relation of obliga-
tion between subjects in S and abstract pairs in Π
such that for all s∈S and for all π∈Π, if sOπ then sPπ.

Example: If (S,Π, P ) is the abstract access control
matrix represented in Table 3 and O is the binary
relation between elements of S and elements of Π
represented in Table 4 then (S,Π, P,O) is an extended
access control matrix.

O (o1, r) (o1, w) (o2, r) (o2, w) . . .
s1 1 0 0 0 . . .
s2 0 0 1 1 . . .
s3 0 0 1 1 . . .
s4 0 0 1 1 . . .
s5 0 0 1 1 . . .
. . . . . . . . . . . . . . . . . .

Table 4 – Representation of a binary relation between
the subjects and the abstract pairs of the abstract ac-
cess control matrix represented in Table 3.

Let (S,Π, P,O) be an extended access control
matrix. For all s∈S, let O(s)={π∈Π : sOπ}. For all

10. Remind that for all Boolean algebras A,B and for all
functions f : A −→ B, f is a Boolean homomorphism if
f(0A)=0B , for all a∈A, f(a∗A )=f(a)∗B and for all a, b∈A,
f(a+A b)=f(a) +B f(b). A Boolean isomorphism is a bijective
Boolean homomorphism. A Boolean embedding is an injective
Boolean homomorphism.

π∈Π, let O−1(π)={s∈S : sOπ}. Let R=P(S) and
E=P(Π). For all a∈R and for all α∈E, we shall say
that α is existentially obligatory to a (in symbols
aD∃α) if O intersects a × α, i.e. there exists s∈a
and there exists π∈α such that sOπ 11. For all a∈R
and for all α∈E, we shall say that α is universally
obligatory to a (in symbols aD∀α) if O contains a×α,
i.e. for all s∈a and for all π∈α, sOπ 12.

Example: If (S,Π, P,O) is the restriction to
{s1, s2, s3} and {o1, o2} of the extended abstract
access control matrix represented in Tables 3
and 4 then R consists of 8 roles (the subsets of
{s1, s2, s3}) and 16 entitlements (the subsets of
{(o1, r), (o1, w), (o2, r), (o2, w)}). In particular, en-
titlement {(o1, r), (o1, w)} is existentially obligatory
to role {s1, s2} and entitlement {(o2, r), (o2, w)} is
universally obligatory to role {s2, s3}.

It is also of interest to consider the relations D−→∃∀,
D−→∀∃,D←−∃∀ andD←−∀∃ between roles and entitlements such
that for all a∈R and for all α∈E,

— aD−→∃∀α if and only if there exists s∈a such that

for all π∈α, sOπ 13,
— aD−→∀∃α if and only if for all s∈a, there exists π∈α

such that sOπ 14,
— aD←−∀∃α if and only if there exists π∈α such that

for all s∈a, sOπ 15,
— aD←−∃∀α if and only if for all π∈α, there exists s∈a

such that sOπ 16.
We leave the development of the model-theoretic view-
point about these relations to future investigations.

The properties of existential obligation and univer-
sal obligation are illustrated by the 3 following obvious
results.

Lemma 4 For all a, b∈R and for all α, β∈E,
— if aD∃α then a6=∅ and α 6=∅,
— if a=∅ or α=∅ then aD∀α,
— (a ∪ b)D∃α if and only if aD∃α or bD∃α,
— (a ∪ b)D∀α if and only if aD∀α and bD∀α,
— aD∃(α ∪ β) if and only if aD∃α or aD∃β,
— aD∀(α ∪ β) if and only if aD∀α and aD∀β.

Lemma 5 For all a∈R and for all α∈E,
— aD∃α if and only if there exists b∈R and there

exists β∈E such that b6=∅, b⊆a, β 6=∅, β⊆α and
bD∀β,

— aD∀α if and only if for all b∈R and for all β∈E,
if b 6=∅, b⊆a, β 6=∅ and β⊆α then bD∃β.

11. “Someone in a has the obligation to do something in α”.
12. “Everyone in a has the obligation to do everything in α”.
13. “Someone in a has the obligation to do everything in α”.
14. “Everyone in a has the obligation to do something in α”.
15. “Something in α is mandatory to everyone in a”.
16. “Everything in α is mandatory to someone in a”.



Lemma 6 For all a∈R and for all α∈E,
— if aD∃α then aC∃α,
— if aD∀α then aC∀α.

An extended role-entitlement frame is a structure of
the form (R,E,C∃, C∀, D∃, D∀) where (R,E,C∃, C∀)
is a role-entitlement frame and D∃ and D∀ are bi-
nary relations between roles in R and entitlements in
E satisfying the properties illustrated in Lemmas 4, 5
and 6.

Let (R,E,C∃, C∀, D∃, D∀) be an extended role-
entitlement frame. Obviously,

Lemma 7 For all atomic roles a and for all atomic
entitlements α, aD∃α if and only if aD∀α.

For all extended access control matrices
M̄=(S,Π, P,O), let f(M̄)=(R,E,C∃, C∀, D∃, D∀)
where (R,E,C∃, C∀)=f((S,Π, P )) and D∃ and D∀
are the binary relations between subsets of S and
subsets of Π such that for all a∈R and for all α∈E,

— aD∃α if and only if there exists s∈a and there
exists π∈α such that sOπ,

— aD∀α if and only if for all s∈a and for all π∈α,
sOπ.

Obviously,

Proposition 5 For all extended access control ma-
trices M̄ , f(M̄) is an extended role-entitlement frame.

For all extended role-entitlement frames
F̄=(R,E,C∃, C∀, D∃, D∀), let m(F̄ )=(S,Π, P,O)
where (S,Π, P )=m((R,E,C∃, C∀))= and O is the bi-
nary relation between ultrafilters of R and ultrafilters
of E such that for all s∈S and for all π∈Π,

— sOπ if and only if for all a∈s and for all α∈π,
aD∃α.

Obviously, for all s∈S and for all π∈Π, sOπ if and
only if there exists a∈s and there exists α∈π such that
aD∀α. Moreover,

Proposition 6 For all extended role-entitlement
frames F̄ , m(F̄ ) is an extended access control matrix.

The duality between extended access control ma-
trices and extended role-entitlement frames is illustra-
ted by the 2 following results.

Proposition 7 Let M̄=(S,Π, P,O) be an extended
access control matrix, f(M̄)=(R′, E′, C ′∃, C

′
∀, D

′
∃, D

′
∀)

and m(f(M̄))=(S′′,Π′′, P ′′, O′′). The function h :
M̄ −→ m(f(M̄)) such that for all s∈S, h(s)={a∈R′ :
s∈a} and for all π∈Π, h(π)={α∈E′ : π∈α} is an
isomorphism.

Proposition 8 Let F̄=(R,E,C∃, C∀, D∃, D∀) be an
extended role-entitlement frame, m(F̄ )=(S′,Π′, P ′, O′)

and f(m(F̄ ))=(R′′, E′′, C ′′∃ , C
′′
∀ , D

′′
∃ , D

′′
∀). The function

h : F̄ −→ f(m(F̄ )) such that for all a∈R,
h(a)={s∈S′ : a∈s} and for all α∈E, h(α)={π∈Π′ :
α∈π} is an embedding.

6 REL : syntax and semantics

6.1 Syntax

Let RVAR be a countable set of role variables
(with typical members denoted X, Y , etc) and EVAR
be a countable set of entitlement variables (with ty-
pical members denoted x, y, etc). Let (X1, X2, . . .)
be an enumeration without repetition of RVAR and
(x1, x2, . . .) be an enumeration without repetition of
EVAR.

The set RTER of all role terms (with typical mem-
bers denoted a, b, etc) is inductively defined as follows :

— a, b::=X | 0 | a∗ | (a+ b).

The Boolean constructs 1 and · are defined for role
terms by the usual abbreviations : 1::=0∗ and (a ·
b)::=(a∗+b∗)∗. The set ETER of all entitlement terms
(with typical members denoted α, β, etc) is inductively
defined as follows :

— α, β::=x | 0 | α∗ | (α+ β).

The Boolean constructs 1 and · are defined for entit-
lement terms by the usual abbreviations : 1::=0∗ and
(α · β)::=(α∗ + β∗)∗.

The set FOR of all formulas (with typical members
denoted ϕ, ψ, etc) is inductively defined as follows :

— ϕ,ψ::=C∃(a, α) | C∀(a, α) | D∃(a, α) |
D∀(a, α) | a≡b | α≡β | ⊥ | ¬ϕ | (ϕ ∨ ψ).

We adopt the standard rules for omission of the
parenthesis. The Boolean connectives >, ∧, → and ↔
are defined by the usual abbreviations. Let FOR∃ be
the set of all C∀-free D∀-free formulas.

Example: Here are examples of formulas :

— D∃(X, y)→ C∀(X, y),
— D∃(X1, y1)∧D∀(X2, y2)→ C∀(X1 ·X2, y1 +y2),

the former formula being read“if someone in X has the
obligation to do something in y then everyone in X has
the permission to do everything in y” and the latter
formula being read “if someone in X1 has the obliga-
tion to do something in y1 and everyone in X2 has
the obligation to do everything in y2 then everyone in
X1 ·X2 has the permission to do everything in y1 +y2”.

On one hand, C∃, C∀, D∃ and D∀ can be seen as
first-order predicates in a first-order language accep-
ting as arguments pairs consisting of a role term and
an entitlement term. On the other hand, C∃, C∀, D∃
and D∀ can be seen as diamonds in a propositional



modal language accepting as arguments pairs of Boo-
lean expressions.

6.2 Algebraic semantics

A valuation on the extended role-entitlement frame
(R,E,C∃, C∀, D∃, D∀) is a pair (V, v) consisting
of a homomorphism V : (RTER, 0, ∗,+) −→ R
and a homomorphism v : (ETER, 0, ∗,+) −→
E. Role-entitlement models are tuples of
the form (R,E,C∃, C∀, D∃, D∀, V, v) where
(R,E,C∃, C∀, D∃, D∀) is an extended role-
entitlement frame and (V, v) is a valuation on
(R,E,C∃, C∀, D∃, D∀).

The Boolean connectives ⊥, ¬ and ∨ being inter-
preted as usual, the unary relation of satisfiability
of formulas with respect to a role-entitlement model
M=(R,E,C∃, C∀, D∃, D∀, V, v) (in symbols |=M) is
inductively defined as follows :

— |=M C∃(a, α) if and only if V (a)C∃v(α),
— |=M C∀(a, α) if and only if V (a)C∀v(α),
— |=M D∃(a, α) if and only if V (a)D∃v(α),
— |=M D∀(a, α) if and only if V (a)D∀v(α),
— |=M a≡b if and only if V (a)=V (b),
— |=M α≡β if and only if v(α)=v(β).
We shall say that formula ϕ is valid in the extended

role-entitlement frame F̄ (in symbols |=F̄ ϕ) if for all
role-entitlement models M based on F̄ , |=M ϕ. We
shall say that formula ϕ is valid in a class C of extended
role-entitlement frames (in symbols |=C ϕ) if for all
extended role-entitlement frames F̄ in C, |=F̄ ϕ.

6.3 Relational semantics

A valuation on the extended access control matrix
(S,Π, P,O) is a pair (V, v) consisting of a homomor-
phism V : (RTER, 0, ∗,+) −→ P(S) and a homomor-
phism v : (ETER, 0, ∗,+) −→ P(Π). Access control
models are tuples of the form (S,Π, P,O, V, v) where
(S,Π, P,O) is an extended access control matrix and
(V, v) is a valuation on (S,Π, P,O).

The Boolean connectives ⊥, ¬ and ∨ being inter-
preted as usual, the unary relation of satisfiability
of formulas with respect to an access control model
M=(S,Π, P,O, V, v) (in symbols |=M) is inductively
defined as follows :

— |=M C∃(a, α) if and only if there exists s∈V (a)
and there exists π∈v(α) such that sPπ,

— |=M C∀(a, α) if and only if for all s∈V (a) and
for all π∈v(α), sPπ,

— |=M D∃(a, α) if and only if there exists s∈V (a)
and there exists π∈v(α) such that sOπ,

— |=M D∀(a, α) if and only if for all s∈V (a) and
for all π∈v(α), sOπ,

— |=M a≡b if and only if V (a)=V (b),

— |=M α≡β if and only if v(α)=v(β).
We shall say that formula ϕ is valid in the extended

access control matrix M̄ (in symbols |=M̄ ϕ) if for
all access control models M based on M̄ , |=M ϕ.
We shall say that formula ϕ is valid in a class C of
extended access control matrices (in symbols |=C ϕ) if
for all extended access control matrices M̄ in C, |=M̄ ϕ.

Example: Let (S,Π, P,O) be the extended abs-
tract access control matrix represented in Tables 3
and 4. If (V, v) is a valuation on it such that
V (X)={s1, s2} and v(y)={(o1, r), (o1, w)} then
|=M D∃(X, y) and 6|=M C∀(X, y). If (V, v) is a valua-
tion on it such that V (X1)={s1, s2}, V (X2)={s2, s3},
v(y1)={(o1, r), (o1, w)} and v(y2)={(o2, r), (o2, w)}
then |=M D∃(X1, y1) ∧ D∀(X2, y2) and
6|=M C∀(X1 ·X2, y1 + y2).

7 REL : definability

The 4 following results illustrate the fact that C∃,
C∀, D∃ and D∀ are not interdefinable when one consi-
ders the semantics introduced in Section 6.3. When we
prove Proposition 11, they will also illustrate the fact
that C∃, C∀, D∃ and D∀ are not interdefinable when
one considers the semantics introduced in Section 6.2.

Lemma 8 There exists no C∃-free formula ϕ such
that for all extended access control matrices M̄ , |=M̄

C∃(X,x)↔ ϕ.

Lemma 9 There exists no C∀-free formula ϕ such
that for all extended access control matrices M̄ , |=M̄

C∀(X,x)↔ ϕ.

Lemma 10 There exists no D∃-free formula ϕ such
that for all extended access control matrices M̄ , |=M̄

D∃(X,x)↔ ϕ.

Lemma 11 There exists no D∀-free formula ϕ such
that for all extended access control matrices M̄ , |=M̄

D∀(X,x)↔ ϕ.

The expressive capacity of the language introduced
in Section 6.1 with respect to the semantics introduced
in Section 6.3 is illustrated by the 2 following results.

Proposition 9 For all extended access control ma-
trices M̄=(S,Π, P,O),

— |=M̄ C∃(1, 1) if and only if P 6=∅ 17,
— |=M̄ ¬C∀(1, 1) if and only if P 6=S ×Π 18,

17. “Someone has the permission to do something”.
18. “Someone has not the permission to do everything”.



— |=M̄ X 6≡ 0 → C∃(X, 1) if and only if for all
s∈S, P (s)6=∅ 19,

— |=M̄ C∀(X, 1) → X ≡ 0 if and only if for all
s∈S, P (s)6=Π 20,

— |=M̄ x 6≡ 0→ C∃(1, x) if and only if for all π∈Π,
P−1(π) 6=∅ 21,

— |=M̄ C∀(1, x)→ x ≡ 0 if and only if for all π∈Π,
P−1(π) 6=S 22,

— |=M̄ D∃(1, 1) if and only if O 6=∅ 23,
— |=M̄ ¬D∀(1, 1) if and only if O 6=S ×Π 24,
— |=M̄ X 6≡ 0 → D∃(X, 1) if and only if for all

s∈S, O(s) 6=∅ 25,
— |=M̄ D∀(X, 1) → X ≡ 0 if and only if for all

s∈S, O(s) 6=Π 26,
— |=M̄ x 6≡ 0→ D∃(1, x) if and only if for all π∈Π,

O−1(π) 6=∅ 27,
— |=M̄ D∀(1, x)→ x ≡ 0 if and only if for all π∈Π,

O−1(π)6=S 28.

Proposition 10 For all extended access control ma-
trices M̄=(S,Π, P,O),

— |=M̄ X1 6≡0 ∧ X2 6≡0 → C∃(X1, x) ∨ C∃(X2, x
∗)

if and only if for all s1, s2∈S, there exists π∈Π
such that s1Pπ and s2Pπ,

— |=M̄ x1 6≡0 ∧ x2 6≡0 → C∃(X,x1) ∨ C∃(X
∗, x2)

if and only if for all π1, π2∈Π, there exists s∈S
such that sPπ1 and sPπ2,

— |=M̄ X1 6≡0 ∧ X2 6≡0 → D∃(X1, x) ∨ D∃(X2, x
∗)

if and only if for all s1, s2∈S, there exists π∈Π
such that s1Oπ and s2Oπ,

— |=M̄ x1 6≡0 ∧ x2 6≡0 → D∃(X,x1) ∨ D∃(X
∗, x2)

if and only if for all π1, π2∈Π, there exists s∈S
such that sOπ1 and sOπ2.

8 REL : axiomatization

A logic is a set L of formulas such that
(TAU) L contains all tautologies,
— L contains all formulas of the form

(A1) C∃(a, α)→ a6≡0 ∧ α 6≡0,
(A2) a≡0 ∨ α≡0→ C∀(a, α),
(A3) C∃(a+ b, α)↔ C∃(a, α) ∨C∃(b, α),
(A4) C∀(a+ b, α)↔ C∀(a, α) ∧C∀(b, α),
(A5) C∃(a, α+ β)↔ C∃(a, α) ∨C∃(a, β),
(A6) C∀(a, α+ β)↔ C∀(a, α) ∧C∀(a, β),
(A7) a 6≡0 ∧ α 6≡0 ∧C∀(a, α)→ C∃(a, α),

19. “Everyone has the permission to do something”.
20. “Everyone has not the permission to do everything”.
21. “Everything is permitted to someone”.
22. “Everything is not permitted to everyone”.
23. “Someone has the obligation to do something”.
24. “Someone has not the obligation to do everything”.
25. “Everyone has the obligation to do something”.
26. “Everyone has not the obligation to do everything”.
27. “Everything is mandatory to someone”.
28. “Everything is not mandatory to everyone”.

(A8) D∃(a, α)→ a6≡0 ∧ α 6≡0,
(A9) a≡0 ∨ α≡0→ D∀(a, α),
(A10) D∃(a+ b, α)↔ D∃(a, α) ∨D∃(b, α),
(A11) D∀(a+ b, α)↔ D∀(a, α) ∧D∀(b, α),
(A12) D∃(a, α+ β)↔ D∃(a, α) ∨D∃(a, β),
(A13) D∀(a, α+ β)↔ D∀(a, α) ∧D∀(a, β),
(A14) a 6≡0 ∧ α 6≡0 ∧D∀(a, α)→ D∃(a, α),
(A15) D∃(a, α)→ C∃(a, α),
(A16) D∀(a, α)→ C∀(a, α),

(MP) L is closed under modus ponens,
(US) L is closed under uniform substitution,
— L is closed under all rules of the form

(R1) from X 6≡0 ∧ X≤a ∧ x 6≡0 ∧ x≤α ∧
C∀(X,x)→ ϕ, infer C∃(a, α)→ ϕ,

(R2∞) from X 6≡0 ∧ X≤a ∧ x 6≡0 ∧ x≤α ∧
¬C∃(X,x)→ ϕ, infer ¬C∀(a, α)→ ϕ,

(R3∞) from X 6≡0 ∧ X≤a ∧ x6≡0 ∧ x≤α ∧
D∀(X,x)→ ϕ, infer D∃(a, α)→ ϕ,

(R4∞) from X 6≡0 ∧ X≤a ∧ x6≡0 ∧ x≤α ∧
¬D∃(X,x)→ ϕ, infer ¬D∀(a, α)→ ϕ,

where neither X, nor x occur in a, α or ϕ.
We write REL for the least logic. For all logics L
and for all ϕ∈FOR, we write L ⊕ ϕ for the least lo-
gic containing L and ϕ. For all logics L and for all
Σ⊆FOR, we write L⊕Σ for the least logic containing
L and Σ. For all logics L, an L-theory is a set Σ of
formulas such that

— Σ contains L,
— Σ is closed under modus ponens,
— Σ is closed under all infinitary rules of the form

(R1∞) from {X 6≡0 ∧ X≤a ∧ x 6≡0 ∧ x≤α ∧
C∀(X,x) → ϕ : X∈RVAR, x∈EVAR},
infer C∃(a, α)→ ϕ,

(R2∞) from {X 6≡0 ∧ X≤a ∧ x 6≡0 ∧ x≤α ∧
¬C∃(X,x) → ϕ : X∈RVAR, x∈EVAR},
infer ¬C∀(a, α)→ ϕ,

(R3∞) from {X 6≡0 ∧ X≤a ∧ x 6≡0 ∧ x≤α ∧
D∀(X,x) → ϕ : X∈RVAR, x∈EVAR},
infer D∃(a, α)→ ϕ,

(R4∞) from {X 6≡0 ∧ X≤a ∧ x 6≡0 ∧ x≤α ∧
¬D∃(X,x) → ϕ : X∈RVAR, x∈EVAR},
infer ¬D∀(a, α)→ ϕ.

As is well-known, L is the least L-theory and FOR
is the greatest L-theory. Obviously, the importance
of the infinitary rules (R1∞), (R2∞), (R3∞) and
(R4∞) is to allow the proof of the following result.

Lemma 12 Let L be a logic. For all consistent L-
theories Σ,

— for all a∈RTER and for all α∈ETER, if
C∃(a, α)∈Σ then there exists X∈RVAR and
there exists x∈EVAR such that X 6≡0∈Σ,
X≤a∈Σ, x 6≡0∈Σ, x≤α∈Σ and C∀(X,x)∈Σ,

— for all a∈RTER and for all α∈ETER, if
¬C∀(a, α)∈Σ then there exists X∈RVAR and



there exists x∈EVAR such that X 6≡0∈Σ,
X≤a∈Σ, x 6≡0∈Σ, x≤α∈Σ and ¬C∃(X,x)∈Σ,

— for all a∈RTER and for all α∈ETER, if
D∃(a, α)∈Σ then there exists X∈RVAR and
there exists x∈EVAR such that X 6≡0∈Σ,
X≤a∈Σ, x 6≡0∈Σ, x≤α∈Σ and D∀(X,x)∈Σ,

— for all a∈RTER and for all α∈ETER, if
¬D∀(a, α)∈Σ then there exists X∈RVAR and
there exists x∈EVAR such that X 6≡0∈Σ,
X≤a∈Σ, x 6≡0∈Σ, x≤α∈Σ and ¬D∃(X,x)∈Σ.

For all logics L, the L-theory Σ is consistent if ⊥6∈Σ.
As is well-known, an L-theory Σ is consistent if and
only if Σ 6=FOR. For all logics L, for all L-theories Σ
and for all formula ϕ, let Σ + ϕ={ψ∈FOR : ϕ →
ψ∈Σ}. As is well-known,

Lemma 13 For all logics L, for all L-theories Σ and
for all formula ϕ, Σ + ϕ is an L-theory. Moreover,
Σ + ϕ is consistent if and only if ¬ϕ6∈Σ.

The main instrument in proofs of completeness is the
so-called Lindenbaum Lemma. Its proof is standard
and can be found in many papers or textbooks 29.

Lemma 14 (Lindenbaum Lemma) Let L be a lo-
gic. For all consistent L-theories Σ, there exists a
maximal consistent L-theory ∆ such that Σ⊆∆.

The next result states the completeness of REL
with respect to validity in the class of all extended
role-entitlement frames and with respect to validity in
the class of all extended access control matrices.

Proposition 11 For all ϕ∈FOR, the following
conditions are equivalent :

1. ϕ∈REL,

2. ϕ is valid in the class of all extended role-
entitlement frames,

3. ϕ is valid in the class of all extended access control
matrices.

The next result states the completeness of some ex-
tensions of REL with respect to validity in restricted
classes of extended access control matrices.

Proposition 12 For all ϕ∈FOR,

— ϕ∈REL ⊕ C∃(1, 1) if and only if ϕ is valid in
the class of all extended access control matrices
(S,Π, P,O) such that P 6=∅,

— ϕ∈REL⊕ ¬C∀(1, 1) if and only if ϕ is valid in
the class of all extended access control matrices
(S,Π, P,O) such that P 6=S ×Π,

29. For example, see [2, Lemma 3.2].

— ϕ∈REL ⊕ X 6≡ 0 → C∃(X, 1) if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
s∈S, P (s)6=∅,

— ϕ∈REL ⊕ C∀(X, 1) → X ≡ 0 if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
s∈S, P (s)6=Π,

— ϕ∈REL ⊕ x 6≡ 0 → C∃(1, x) if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
π∈Π, P−1(π) 6=∅,

— ϕ∈REL ⊕ C∀(1, x) → x ≡ 0 if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
π∈Π, P−1(π)6=S,

— ϕ∈REL ⊕ D∃(1, 1) if and only if ϕ is valid in
the class of all extended access control matrices
(S,Π, P,O) such that O 6=∅,

— ϕ∈REL⊕ ¬D∀(1, 1) if and only if ϕ is valid in
the class of all extended access control matrices
(S,Π, P,O) such that O 6=S ×Π,

— ϕ∈REL ⊕ X 6≡ 0 → D∃(X, 1) if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
s∈S, O(s)6=∅,

— ϕ∈REL ⊕ D∀(X, 1) → X ≡ 0 if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
s∈S, O(s)6=Π,

— ϕ∈REL ⊕ x 6≡ 0 → D∃(1, x) if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
π∈Π, O−1(π)6=∅,

— ϕ∈REL ⊕ D∀(1, x) → x ≡ 0 if and only if
ϕ is valid in the class of all extended access
control matrices (S,Π, P,O) such that for all
π∈Π, O−1(π)6=S.

9 REL : decidability

Let DER∃ be the decision problem defined as fol-
lows :

input : ϕ,ψ∈FOR∃,

output : determine whether ψ∈REL⊕ ϕ.

The following result will be crucial for the proof of the
decidability of DER∃.

Proposition 13 For all ϕ,ψ∈FOR∃, the following
conditions are equivalent :

1. ψ∈REL⊕ ϕ,

2. ψ is valid in the class of all finite extended access
control matrices validating ϕ,



3. ψ is valid in the class of all extended access control
matrices validating ϕ.

Now, we are in a position to prove the main result
of this section.

Proposition 14 DER∃ is decidable.

Let DER be the decision problem defined as fol-
lows :

input : ϕ,ψ∈FOR,

output : determine whether ψ∈REL⊕ ϕ.

It is still unknown whether DER is decidable.

10 Conclusion

In this paper, the propositional modal logic REL
for permissions and obligations has been introduced
together with some of its extensions. Interpreted over
extended role-entitlement frames or extended access
control matrices, it constitutes a decidable setting for
reasoning about the access rights of subjects in com-
puter systems.

An axiomatization of REL has been proposed and
its completeness has been proved. The decision pro-
blem of derivability has been presented in the case of
C∀-free D∀-free formulas and its decidability has been
proved. The decidability of the decision problem of de-
rivability in the general case where the connectives C∀
and D∀ are allowed is still unknown.

It is not so much the hybrid access control model
that we want to develop in this paper as the 2 follo-
wing ideas : the duality between matrices and frames
developed in Sections 2–5 and the propositional modal
logic interpreted over matrices and frames presented in
Sections 6–9. We believe our reasoning can be adapted
to other categories of relational structures.
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Références

[1] Abou El Kalam, A., R. El Baida, P. Bal-
biani, S. Benferhat, F. Cuppens, Y. Des-
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Appendix

Proof of Proposition 3 : The proof of the fact
that the function h is a Boolean isomorphism is left
to the reader.

Let s∈S and π∈Π. We demonstrate sPπ if and
only if h(s)P ′′h(π).

Suppose sPπ. Hence, {s}C ′∀{π}. Since {s}∈h(s)
and {π}∈h(π), h(s)P ′′h(π).



Reciprocally, suppose h(s)P ′′h(π). Let a∈h(s)
and α∈h(π) be such that aC ′∀α. Thus, s∈a and π∈α.
Since aC ′∀α, sPπ.

Proof of Proposition 4 : The proof of the
fact that the function h is a Boolean embedding is
well-known [3, Theorem 10.22].

Let a∈R and α∈E. We demonstrate aC∃α if
and only if h(a)C ′′∃h(α).

Suppose aC∃α. Let s0={b∈R : a≤Rb} and
π0={β∈E : α≤Eβ}. Obviously, s0 is a filter of
R such that a∈s0 and π0 is a filter of E such that
α∈π0. Moreover, since aC∃α, for all b∈s0 and for
all β∈π0, bC∃β. Let H={(s, π) : s is a filter of R
and π is a filter of E such that a∈s, α∈π and for
all b∈s and for all β∈π, bC∃β}. Since s0 is a filter
of R such that a∈s0, π0 is a filter of E such that
α∈π0 and for all b∈s0 and for all β∈π0, bC∃β, H is
a nonempty set. Let � be the partial order on H
such that for all (s, π), (s′, π′)∈H, (s, π)�(s′, π′) if
and only if s⊆s′ and π⊆π′. Obviously, every chain in
(H,�) has an upper bound. By Zorn’s Lemma [12,
Page 35], let (s, π) be a maximal element in (H,�).
The proof of the fact that s is an ultrafilter of R and
π is an ultrafilter of E is left to the reader. Since a∈s
and α∈π, s∈h(a) and π∈h(α). Since for all b∈s and
for all β∈π, bC∃β, sP ′π. Since s∈h(a) and π∈h(α),
h(a)C ′′∃h(α).

Reciprocally, suppose h(a)C ′′∃h(α). Let s∈h(a)
and π∈h(α) be such that sP ′π. Hence, a∈s and
α∈π. Since sP ′π, let b∈s and β∈π be such that
bC∀β. Thus, (a·b)C∀(α·β). Since a∈s, α∈π, b∈s
and β∈π, a·b 6=0R and α·β 6=0E . Since (a·b)C∀(α·β),
(a·b)C∃(α·β). Consequently, aC∃α.

Let a∈R and α∈E. We demonstrate aC∀α if
and only if h(a)C ′′∀h(α).

Suppose not h(a)C ′′∀h(α). Let s∈h(a) and π∈h(α) be
such that not sP ′π. Hence, a∈s and α∈π. Since not
sP ′π, not aC∀α.

Reciprocally, suppose not aC∀α. Let b∈R and
β∈E be such that b 6=0R, b≤Ra, β 6=0E , β≤Eα and
not bC∃β. Thus, h(b)6=0R′′ , h(b)≤R′′h(a), h(β) 6=0E′′ ,
h(β)≤E′′h(α) and not h(b)C ′′∃h(β). Consequently, not
h(a)C ′′∀h(α).

Proof of Proposition 7 : Similar to the proof
of Proposition 3.

Proof of Proposition 8 : Similar to the proof
of Proposition 4.

Proof of Lemma 8 : For the sake of the contra-
diction, suppose ϕ is a C∃-free formula such
that for all extended access control matrices M̄ ,
|=M̄ C∃(X,x) ↔ ϕ. Without loss of generality, we
can assume that X is the only role variable occurring
in ϕ and x is the only entitlement variable occurring
in ϕ. Let (S,Π, P,O) be the extended access control
matrix such that S={0, 1, 2, 3, 4}, Π={0, 1, 2, 3, 4},
P={(0, 0), (1, 1), (2, 2)} and O=∅. Since for all exten-
ded access control matrices M̄ , |=M̄ C∃(X,x) ↔ ϕ,
|=(S,Π,P,O) C∃(X,x) ↔ ϕ. Let M=(S,Π, P,O, V, v)
and M′=(S,Π, P,O, V ′, v′) be access control models
based on (S,Π, P,O) and such that V (X)={2, 3, 4},
v(x)={2, 3, 4}, V ′(X)={3, 4} and v′(x)={3, 4}. Since
|=(S,Π,P,O) C∃(X,x) ↔ ϕ, |=M C∃(X,x) ↔ ϕ and
|=M′ C∃(X,x) ↔ ϕ. Obviously, |=M C∃(X,x)
and 6|=M′ C∃(X,x). Since |=M C∃(X,x) ↔ ϕ and
|=M′ C∃(X,x) ↔ ϕ, |=M ϕ and 6|=M′ ϕ. As the
reader may easily verify by induction on the C∃-free
formula ψ, if X is the only role variable occurring in
ψ and x is the only entitlement variable occurring
in ψ then |=M ψ if and only if |=M′ ψ. Since ϕ is a
C∃-free formula such that X is the only role variable
occurring in ϕ, x is the only entitlement variable
occurring in ϕ and |=M ϕ, |=M′ ϕ : a contradiction.

Proof of Lemma 9 : For the sake of the contra-
diction, suppose ϕ is a C∀-free formula such
that for all extended access control matrices M̄ ,
|=M̄ C∀(X,x) ↔ ϕ. Without loss of generality, we
can assume that X is the only role variable occurring
in ϕ and x is the only entitlement variable occurring
in ϕ. Let (S,Π, P,O) be the extended access control
matrix such that S={0, 1, 2, 3, 4}, Π={0, 1, 2, 3, 4},
P={(0, 0), (1, 1), (2, 2)} and O=∅. Since for all exten-
ded access control matrices M̄ , |=M̄ C∀(X,x) ↔ ϕ,
|=(S,Π,P,O) C∀(X,x) ↔ ϕ. Let M=(S,Π, P,O, V, v)
and M′=(S,Π, P,O, V ′, v′) be access control models
based on (S,Π, P,O) and such that V (X)={0},
v(x)={0}, V ′(X)={0, 1} and v′(x)={0, 1}. Since
|=(S,Π,P,O) C∀(X,x) ↔ ϕ, |=M C∀(X,x) ↔ ϕ and
|=M′ C∀(X,x) ↔ ϕ. Obviously, |=M C∀(X,x)
and 6|=M′ C∀(X,x). Since |=M C∀(X,x) ↔ ϕ and
|=M′ C∀(X,x) ↔ ϕ, |=M ϕ and 6|=M′ ϕ. As the
reader may easily verify by induction on the C∀-free
formula ψ, if X is the only role variable occurring in
ψ and x is the only entitlement variable occurring
in ψ then |=M ψ if and only if |=M′ ψ. Since ϕ is a
C∀-free formula such that X is the only role variable
occurring in ϕ, x is the only entitlement variable



occurring in ϕ and |=M ϕ, |=M′ ϕ : a contradiction.

Proof of Lemma 10 : Similar to the proof of
Lemma 8.

Proof of Lemma 11 : Similar to the proof of
Lemma 9.

Proof of Proposition 9 : Let M̄=(S,Π, P,O)
be an extended access control matrix.

We only demonstrate the item |=M̄ C∃(1, 1) if
and only if P 6=∅, leaving to the reader the proof of
the other items.

Suppose |=M̄ C∃(1, 1). Let M=(M̄, V, v) be an
access control model based on M̄ . Since |=M̄ C∃(1, 1),
|=M C∃(1, 1). Let s∈V (1) and π∈v(1) be such that
sPπ. Hence, P 6=∅.

Suppose P 6=∅. Let s∈S and π∈Π be such that
sPπ. Let M=(M̄, V, v) be an arbitrary access control
model based on M̄ . Since sPπ, s∈V (1) and π∈v(1),
|=M C∃(1, 1). Since M is an arbitrary access control
model based on M̄ , |=M̄ C∃(1, 1).

Proof of Proposition 10 : Let M̄=(S,Π, P,O) be
an extended access control matrix.

We only demonstrate the item |=M̄ X1 6≡0 ∧X2 6≡0 →
C∃(X1, x) ∨C∃(X2, x

∗) if and only if for all s1, s2∈S,
there exists π∈Π such that s1Pπ and s2Pπ, leaving
to the reader the proof of the other items.

Suppose |=M̄ X1 6≡0∧X2 6≡0→ C∃(X1, x)∨C∃(X2, x
∗).

For the sake of the contradiction, suppose there exists
s1, s2∈S such that for all π∈Π, not s1Pπ, or not
s2Pπ. Let (V, v) be a valuation on M̄ such that
V (X1)={s1}, V (X2)={s2} and v(x)=P (s2). Ob-
viously, |=(M̄,(V,v)) X1 6≡0 ∧ X2 6≡0. Moreover, since
V (X2)={s2} and v(x)=P (s2), 6|=(M̄,(V,v)) C∃(X2, x

∗).
Since |=M̄ X1 6≡0 ∧X2 6≡0 → C∃(X1, x) ∨C∃(X2, x

∗),
|=(M̄,(V,v)) C∃(X1, x). Since V (X1)={s1} and
v(x)=P (s2), there exists π∈Π such that s1Pπ, or
s2Pπ : a contradiction.

Suppose for all s1, s2∈S, there exists π∈Π such that
s1Pπ and s2Pπ. For the sake of the contradiction,
suppose 6|=M̄ X1 6≡0∧X2 6≡0→ C∃(X1, x)∨C∃(X2, x

∗).
Let (V, v) be a valuation on M̄ such that
|=(M̄,(V,v)) X1 6≡0 ∧ X2 6≡0, 6|=(M̄,(V,v)) C∃(X1, x)
and 6|=(M̄,(V,v)) C∃(X2, x

∗). Let t1, t2∈S be such
that t1∈V (X1) and t2∈V (X2). Since for all s1, s2∈S,
there exists π∈Π such that s1Pπ and s2Pπ, let

π∈Π such that t1Pπ and t2Pπ. Obviously, π∈v(x),
or π∈v(x∗). In the former case, since t1∈V (X1)
and s1Pπ, |=(M̄,(V,v)) C∃(X1, x) : a contradic-
tion. In the latter case, since t2∈V (X2) and s2Pπ,
|=(M̄,(V,v)) C∃(X2, x

∗) : a contradiction.

Proof of Proposition 11 : Let ϕ∈FOR.

(1⇒ 2) Suppose ϕ∈REL. Hence, there is a proof
of ϕ from the formulas (TAU) and (A1)–(A16)
and the rules (MP), (US) and (R1)–(R4). The
proof of the fact that the formulas (TAU) and
(A1)–(A16) are valid in the class of all extended
role-entitlement frames and the rules (MP), (US)
and (R1)–(R4) preserve validity in the class of all
extended role-entitlement frames is left to the reader.
Thus, by induction on the length of the proof of ϕ,
ϕ is valid in the class of all extended role-entitlement
frames.

(2⇒ 3) Suppose ϕ is not valid in the class
of all extended access control matrices. Let
M̄=(S,Π, P,O) be an extended access control
matrix such that 6|=M̄ ϕ. Let M=(M̄, V, v) be
an access control model based on M̄ and such
that 6|=M ϕ. Let f(M̄)=(R,E,C∃, C∀, D∃, D∀). Let
M′=(R,E,C∃, C∀, D∃, D∀, V, v). As the reader may
easily verify by induction on the formula ψ, |=M ψ
iff |=M′ ψ. Since 6|=M ϕ, 6|=M′ ϕ. Consequently,
6|=f(M̄) ϕ. Hence, ϕ is not valid in the class of all
extended role-entitlement frames.

(3⇒ 1) Suppose ϕ6∈REL. Thus, by Lemma 13, the
REL-theory REL + ¬ϕ is consistent. Consequently,
by Lemma 14, let Σ be a maximal REL-consistent
theory such that ¬ϕ∈Σ. Hence, ϕ6∈Σ. Let �Σ be
the equivalence relation on RTER and ./Σ be the
equivalence relation on ETER such that for all
a, b∈RTER and for all α, β∈ETER,

— a�Σb if and only if a≡b∈Σ,
— α./Σβ if and only if α≡β∈Σ.

The equivalence class modulo �Σ with a∈RTER as
its representative is written [a]Σ and the equivalence
class modulo ./Σ with α∈ETER as its represen-
tative is written [α]Σ. The proof of the fact that
RTER/�Σ — the quotient set of RTER modulo
�Σ — and ETER/./Σ — the quotient set of ETER
modulo ./Σ — are Boolean algebras is left to the rea-
der. Let M̄Σ=(SΣ,ΠΣ, PΣ, OΣ) be the structure defi-
ned as follows :

— SΣ is the set of all ultrafilters in RTER/�Σ,
— ΠΣ is the set of all ultrafilters in ETER/./Σ,
— PΣ is the binary relation between SΣ and ΠΣ

such that for all s∈SΣ and for all π∈ΠΣ, sPΣπ



if and only if for all a∈RTER and for all
α∈ETER, if a∈s and α∈π then C∃(a, α)∈Σ,

— OΣ is the binary relation between SΣ and ΠΣ

such that for all s∈SΣ and for all π∈ΠΣ, sPΣπ
if and only if for all a∈RTER and for all
α∈ETER, if a∈s and α∈π then D∃(a, α)∈Σ.

Obviously, M̄Σ is an extended access control matrix.
Let (VΣ, vΣ) be the valuation on M̄Σ such that for all
X∈RVAR and for all x∈EVAR,

— VΣ(X)={s∈SΣ : X∈s},
— vΣ(x)={π∈ΠΣ : x∈π}.

Let MΣ=(M̄Σ, VΣ, vΣ) — the canonical model de-
termined by Σ. As the reader may easily verify by
induction on the formula ψ, |=MΣ

ψ if and only if
ψ∈Σ. Since ϕ6∈Σ, 6|=MΣ ϕ. Thus, ϕ is not valid in the
class of all extended access control matrices.

Proof of Proposition 12 : Let ϕ∈FOR.

We only demonstrate the item ϕ∈REL ⊕ C∃(1, 1)
if and only if ϕ is valid in the class of all extended
access control matrices (S,Π, P,O) such that P 6=∅,
leaving to the reader the proof of the other items.

Suppose ϕ∈REL ⊕ C∃(1, 1). Hence, there is a
proof of ϕ from the formulas (TAU), (A1)–(A16)
and C∃(1, 1) and the rules (MP), (US) and (R1)–
(R4). The proof of the fact that the formulas (TAU)
and (A1)–(A16) are valid in the class of all extended
access control matrices (S,Π, P,O) such that P 6=∅
and the rules (MP), (US) and (R1)–(R4) preserve
validity in the class of all extended access control
matrices (S,Π, P,O) such that P 6=∅ is left to the
reader. By Proposition 9, the formula C∃(1, 1) is valid
in the class of all extended access control matrices
(S,Π, P,O) such that P 6=∅. Thus, by induction on
the length of the proof of ϕ, ϕ is valid in the class of
all extended access control matrices (S,Π, P,O) such
that P 6=∅.

Suppose ϕ6∈REL ⊕ C∃(1, 1). Consequently, the
(REL ⊕ C∃(1, 1))-theory (REL ⊕ C∃(1, 1)) + ¬ϕ is
consistent. Hence, by Lemma 14, let Σ be a maximal
(REL⊕C∃(1, 1))-consistent theory such that ¬ϕ∈Σ.
Leaving to the reader the proof that the extended
access control matrix (SΣ,ΠΣ, PΣ, OΣ) defined from
Σ as in the proof of Proposition 11 is such that PΣ 6=∅,
we conclude that ϕ is not valid in the class of all
extended access control matrices (S,Π, P,O) such
that P 6=∅.

Proof of Proposition 13 : Let ϕ∈FOR∃.

(1⇒ 2) Suppose ψ∈REL ⊕ ϕ. Hence, there is a

proof of ψ from the formulas (TAU), (A1), (A3),
(A5), (A8), (A10), (A12), (A15) and ϕ and the
rules (MP) and (US). The proof of the fact that the
formulas (TAU), (A1), (A3), (A5), (A8), (A10),
(A12) and (A15) are valid in the class of all finite
extended access control matrices validating ϕ and the
rules (MP) and (US) preserve validity in the class of
all finite extended access control matrices validating
ϕ is left to the reader. Thus, by induction on the
length of the proof of ψ, ψ is valid in the class of
all finite extended access control matrices validating ϕ.

(2⇒ 3) Suppose ψ is valid in the class of all fi-
nite extended access control matrices validating
ϕ. For the sake of the contradiction, suppose ψ is
not valid in the class of all extended access control
matrices validating ϕ. Let M̄=(S,Π, P,O) be an
extended access control matrix validating ϕ and such
that 6|=M̄ ψ. Let M=(M̄, V, v) be an access control
model based on M̄ and such that 6|=M ψ. Let ≈f
be the equivalence relation on S such that for all
s, s′∈S, s≈fs′ if and only if for all role variables X
occurring in ϕ or ψ, s∈V (X) if and only if s′∈V (X)
and

.
=f be the equivalence relation on Π such that for

all π, π′∈Π, π
.
=fπ

′ if and only if for all entitlement
variables x occurring in ϕ or ψ, π∈v(x) if and only if
π′∈v(x). The equivalence class modulo ≈f with s∈S
as its representative is written [s]f and the equivalence
class modulo

.
=f with π∈Π as its representative is

written [π]f . Obviously, there exists only finitely
many equivalence classes modulo ≈f and there exists
only finitely many equivalence classes modulo

.
=f .

Let M̄f=(Sf ,Πf , Pf , Of ) be the structure defined as
follows :

— Sf is S/≈f — the quotient set of S modulo ≈f ,
— Πf is Π/

.
=f — the quotient set of Π modulo

.
=f ,

— Pf is the binary relation between Sf and Πf such
that for all s∈S and for all π∈Π, [s]fPf [π]f if and
only if there exists s′∈S and there exists π′∈Π
such that s≈fs′, π

.
=fπ

′ and s′Pπ′,
— Oψ is the binary relation between Sf and Πf

such that for all s∈S and for all π∈Π, [s]fOf [π]f
if and only if there exists s′∈S and there exists
π′∈Π such that s≈fs′, π

.
=fπ

′ and s′Oπ′.

Obviously, M̄f is a finite extended access control ma-
trix. Let (Vf , vf ) be a valuation on M̄ψ such that for
all role variables X occurring in ϕ or ψ and for all
entitlement variables x occurring in ϕ or ψ,

— Vf (X)={[s]f∈Sf : s∈V (X)},
— vf (x)={[π]f∈Πf : π∈v(x)}.

Let Mf=(M̄f , Vf , vf ) — the filtration of M deter-
mined by ϕ and ψ. As the reader may easily verify
by induction on the formula χ sharing the same va-
riables as ϕ and ψ, |=Mf

χ if and only if |=M χ. Since



6|=M ψ, 6|=Mf
ψ. Consequently, 6|=M̄f

ψ. Since ψ is
valid in the class of all finite extended access control
matrices validating ϕ, M̄f does not validate ϕ. Let
M′=(M̄f , V

′, v′) be an access control model based on
M̄f and such that 6|=M′ ϕ. LetM′′=(M̄, V ′′, v′′) be an
access control model based on M̄ such that for all role
variables X occurring in ϕ or ψ and for all entitlement
variables x occurring in ϕ or ψ,

— V ′′(X)=
⋃
{
⋂
{V (a) : a is a role term sharing

the same variables as ϕ and ψ and such that
[s]f∈Vf (a)} : [s]f∈V ′(X)},

— v′′(x)=
⋃
{
⋂
{v(α) : α is an entitlement term

sharing the same variables as ϕ and ψ and such
that [π]f∈vf (α)} : [π]f∈v′(x)}.

As the reader may easily verify by induction on the
formula χ sharing the same variables as ϕ and ψ,
|=M′′ χ if and only if |=M′ χ. Since 6|=M′ ϕ, 6|=M′′ ϕ.
Hence, 6|=M̄ ϕ. Thus, M̄ does not validate ϕ : a
contradiction.

(3⇒ 1) Suppose ψ 6∈REL ⊕ ϕ. Consequently, by
Lemma 13, the (REL ⊕ ϕ)-theory (REL ⊕ ϕ) + ¬ψ
is consistent. Consequently, by Lemma 14, let Σ be
a maximal (REL ⊕ ϕ)-consistent theory such that
¬ψ∈Σ. Hence, ψ 6∈Σ. Let MΣ=(M̄Σ, VΣ, vΣ) be the
canonical model determined by Σ. As demonstrated in
the proof of Proposition 11, since ψ 6∈Σ, 6|=MΣ ψ. Let
Mf=(M̄f , Vf , vf ) be the filtration of MΣ determined
by ϕ and ψ. As demonstrated above, since 6|=MΣ

ψ,
6|=Mf

ψ. Moreover, M̄f validates ϕ.

Proof of Proposition 14 : By Proposition 13
and the fact that

— given a finite extended access control matrix M̄
and ϕ∈FOR∃, one can easily determine whether
|=M̄ ϕ,

— given a finite extended access control matrix M̄
and ψ∈FOR∃, one can easily determine whether
there exists an access control modelM based on
M̄ and such that |=M ψ.


