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Abstract: Viruses have been repurposed into tools for gene delivery by transforming them into viral
vectors. The most frequently used vectors are lentiviral vectors (LVs), derived from the human
immune deficiency virus allowing efficient gene transfer in mammalian cells. They represent one of
the safest and most efficient treatments for monogenic diseases affecting the hematopoietic system.
LVs are modified with different viral envelopes (pseudotyping) to alter and improve their tropism
for different primary cell types. The vesicular stomatitis virus glycoprotein (VSV-G) is commonly
used for pseudotyping as it enhances gene transfer into multiple hematopoietic cell types. However,
VSV-G pseudotyped LVs are not able to confer efficient transduction in quiescent blood cells, such as
hematopoietic stem cells (HSC), B and T cells. To solve this problem, VSV-G can be exchanged for other
heterologous viral envelopes glycoproteins, such as those from the Measles virus, Baboon endogenous
retrovirus, Cocal virus, Nipah virus or Sendai virus. Here, we provide an overview of how these LV
pseudotypes improved transduction efficiency of HSC, B, T and natural killer (NK) cells, underlined by
multiple in vitro and in vivo studies demonstrating how pseudotyped LVs deliver therapeutic genes
or gene editing tools to treat different genetic diseases and efficiently generate CAR T cells for
cancer treatment.
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1. Introduction

Viral vectors have been derived from a large number of viruses, which were transformed
into efficient tools for delivery of genes into cells of interest, thanks to their unique characteristics.
Viruses have undergone modifications in their replication pathway to reduce risks when used for
therapeutic purposes. Each vector system offers advantages and limitations as no system offers a 100%
efficiency for all cell types. They can be classified by their capacity or not to integrate into the host cell
genome. The adeno-associated viruses (AAV) and adenoviruses (AdV) [1] are non-integrative, while the
Retroviridae family, such as foamy virus [2], murine leukemia virus (MLV) or human immunodeficiency
virus (HIV), among others [1] are integrative.

Retrovirus-based vectors, MLV-derived vectors in particular, were among the first to be developed
in the 80s and 90s [3]. However, in recent years the number of clinical trials in which they are employed
has been reduced to a 0.5% in contrast to 11 years ago when MLV-derived vectors accounted for 21%
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of the clinical trials in gene therapy. On the other hand, the number of clinical trials which include
lentiviral vectors (LVs) has increased from 1.4% to 10% [4].

Viral vectors have been used in clinical trials for more than 20 years, they include all types of
integrative and non-integrative vectors (e.g., MLV, LV, AAV, AdV) [5]. To choose the appropriate
vector, we must take into consideration numerous factors; target tissue or cell, viral genome packaging
capacity, propensity to immunotoxicity, tropism, in vivo or ex vivo delivery and potential of genomic
integration or not.

In this review, we will focus on LVs, their optimization by pseudotyping with heterologous viral
envelopes and their applications for gene therapy using different primary cell types.

Lentiviral Vectors

LVs have been selected as a tool for gene delivery due to their ability to transduce all type of
non-diving [6] or slowly proliferating cells making them very attractive for clinical applications. LVs are
part of the Retroviridae family together with the gamma-retroviruses. They contain an RNA genome
that is retrotranscribed to DNA in the transduced cell [7]. The first generation of retroviral vectors
set the basis of important principals to ensure safe use of these vectors. Firstly, there is a potential of
recombination events during manufacturing of the vectors that could results in replication-competent
virus [7]. To avoid this, there was a need for splitting the viral genome into different expression
constructs. Secondly, the enhancer and promoter sequences from the long terminal repeats (LTRs)
were deleted to generate what is called self-inactivated (SIN) vectors; this is a safety measure to avoid
activation of surrounding (onco-)genes as already reported in some clinical trials with γ-retrovirus
vectors [8,9]. Thirdly, the incorporation of heterologous envelope glycoprotein proteins onto the vector
surface will expand or restrict the host range of the vector, a process called pseudotyping [6] (Figure 1).

In clinical trials, AAVs are chosen for in vivo gene transfer, while LVs are up to now the preferred
tools for ex vivo gene correction [10]. Their main advantage is that they are derived from viruses that
have been selected by evolution for transducing human cells, however, this also has led to protection
against these viruses and the vectors derived from these viruses by the human immune system.
Some components of viral vectors are highly conserved, which helps the human immune system to
recognize and destroy them. Therefore, immune-mediated rejection is one of most significant obstacles
in gene transfer in human cells, particularly in vivo. Of note, the human immune system acts very
differently to different vector types [10].

Other obstacles have been encountered, such as horizontal and/or vertical transmission, when the
transferred gene could pass to someone we share the household with or to an offspring. Genotoxicity,
when there is an overexpression or dysregulation of the expression of the transgene. Gene silencing has
been observed in in vitro studies [11], but has only been observed in rare cases in vivo. For example,
in one report, low efficiency of transgene expression was observed in the first clinical trials for chronic
granulomatous disease (CGD) (reviewed in [12]), which was caused by silencing. Immunotoxicity and
genotoxicity have been observed in different clinical trials (review in [5]). Immunotoxicity—when
the viral vector induces a response from the immune system—has been reported for AAV upon
its in vivo delivery in different diseases such as hemophilia, spinal muscular atrophy, neuropathies
and dystrophies [5]. Genotoxicity, one of the most problematic events caused by integration of the
vector sequences into the host cell genome, can result in malignant cell transformation. This is called
insertional mutagenesis—disruption or upregulation of genes due to the viral integration event—and
causes outgrowth of clones in a polyclonal population [6]. This was the case for different gene therapy
clinical trials using gamma retroviral vectors such as X-linked severe combined immunodeficiency
(SCID-X1) [13,14], CGD [15] and Wiskott–Aldrich syndrome (WAS) [16]. In more recent clinical trials
that used LVs, a more polyclonal pattern of corrected hematopoietic cells has been observed [17–20].

LVs underwent “generations” of modifications. They are classified according to the packing
plasmid used for their production. The first generation included the HIV gag, pol, regulatory genes
and accessory genes. The second generation was able to dispose of the accessory genes without any
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negative effect on their infectivity or vector yield. Additionally, they improved in safety since any
replication-competent lentivirus formed was devoid of virulent factors. With the third generation,
the safety was further improved as the promoter in the LTR was now rendered independent of the HIV
protein TAT for its activation (Figure 1). An extra safety measure consisted in inactivating the integrase
without affecting reverse transcription and transport to the nucleus. These non-integrative LVs have been
used efficiently in post-mitotic tissues, especially in combination with gene editing tools (zinc finger
nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9); see point 4) [4,21,22].
Viruses 2020, 12, x FOR PEER REVIEW 3 of 22 

 

 
Figure 1. Lentiviral modifications. (A) The transfer vector contains the long terminal repeats (LTR) 
and the transgene is under a strong internal promoter, i.e., CMV. (B) The viral surface proteins are 
exchanged by different viral glycoproteins to confer them a different tropism according to the cell 
targeted for transduction. (C) The viral genome encodes three genes flanked by LTRs: structural (gag, 
pol and env), regulatory (rev and tat) and accessory (vif, vpr, vpu and nef). The 1st generation 
lentiviral vectors (LVs) contained all the viral proteins with the exception of the Env protein. The 2nd 
generation LV does not express any of the accessory proteins. The 3rd generation LV is divided in 
two; one expresses the structural proteins gag and pol while the other expresses the regulatory protein 
rev. LTR—long-terminal repeats; U5—5′UTR; U3- 3′UTR; ψ—Psi packaging element; RRE—Rev 
response element; CMV—cytomegalovirus; Viral GP—viral glycoprotein; gag—group-specific 
antigen; pol—DNA polymerase; env—viral envelope; rev- transactivating protein; tat—trans-
activator of transcription; vif—viral infectivity factor, vpr—viral protein R; vpu—viral protein u; 
nef—negative regulatory factor. 
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Figure 1. Lentiviral modifications. (A) The transfer vector contains the long terminal repeats (LTR)
and the transgene is under a strong internal promoter, i.e., CMV. (B) The viral surface proteins are
exchanged by different viral glycoproteins to confer them a different tropism according to the cell
targeted for transduction. (C) The viral genome encodes three genes flanked by LTRs: structural
(gag, pol and env), regulatory (rev and tat) and accessory (vif, vpr, vpu and nef). The 1st generation
lentiviral vectors (LVs) contained all the viral proteins with the exception of the Env protein. The 2nd
generation LV does not express any of the accessory proteins. The 3rd generation LV is divided in
two; one expresses the structural proteins gag and pol while the other expresses the regulatory protein
rev. LTR—long-terminal repeats; U5—5′UTR; U3- 3′UTR; ψ—Psi packaging element; RRE—Rev
response element; CMV—cytomegalovirus; Viral GP—viral glycoprotein; gag—group-specific antigen;
pol—DNA polymerase; env—viral envelope; rev- transactivating protein; tat—trans-activator of
transcription; vif—viral infectivity factor, vpr—viral protein R; vpu—viral protein u; nef—negative
regulatory factor.
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For the LV to deliver its cargo into a cell, it needs to interact with a cellular receptor to trigger the
fusion of the viral envelope with the cell membrane. This tropism is defined by the viral envelope
glycoprotein. However, the wild type HIV glycoprotein, gp120, has very specific tropism for human
CD4+ T cells and monocytes and produced low titer vectors. The solution is to exchange the HIV envelope
glycoprotein for heterologous glycoproteins on the LV surface, a process called pseudotyping [4].

2. Pseudotyping

Pseudotyped LVs consist of virus particles bearing glycoproteins derived from other enveloped
viruses, conferring the LVs, the tropism of the virus from which the glycoprotein was borrowed. It was
Page et al. in the 90s, who first designed and tested a HIV-based vector containing a heterologous
glycoprotein. In a first attempt, they replaced the original HIV envelope glycoprotein with the
MLV envelope glycoprotein and produced infectious vectors [23]. It was only 6 years later that
3 groups [24–26] showed that the vesicular stomatitis virus G glycoprotein (VSV-G) was efficiently
incorporated into HIV vectors. This was a considerable step forward since VSV-G appeared to
interact with an ubiquitous cellular receptor, a phospholipid component of the cell membrane [27,28],
which conferred the ability of entry into multiple cell types tested and conferred high stability to
the infectious vector particles [29]. This broad tropism included non-proliferating cells such as
hematopoietic stem cells (HSC), the target cell par excellence in gene therapy. VSV-G pseudotyped LVs
possess other important characteristics as a delivery vector, such as resistance to freeze-thaw cycles
and ultracentrifugation [30,31], which allow to improve vector titers. On the other hand, there are
some drawbacks in using VSV-G pseudotyped LVs. The wide cell tropism can lead to binding to the
surface of any cell encountered before reaching its target cells. Moreover, it has been shown that the
VSV-G pseudotyped LVs are inactivated by human sera from some donors, preventing its effective
use for in vivo gene delivery [30,32,33]. VSV-G is also cytotoxic when expressed stably in human
cells, which did not permit the development of stable LV producer cell lines [32,33]. Additionally,
there is a strong possibility that humans develop a potent immune response against VSV-G after
administration [33], which would restrict the efficacy as well as future inoculations of other VSV-G
pseudotyped LVs into a patient.

The Indiana strain of the vesicular stomatitis virus is still the standard envelope used for
pseudotyping. It recognizes the low-density lipoprotein receptor (LDL-R) for attachment and entry
into the cell. However, it has been shown that VSV-G needs to traffic through the endosomal network
of the cell and requires a low pH to fuse and eject its LV content into the cytoplasm before the viral
RNA can be retrotranscribed and migrate into the nucleus and integrate [34,35]. It is the variation in
the levels of the LDL-R expression that explains the low efficiency of the LVs pseudotyped with VSV-G
in certain cell types. For example, the levels of LDL-R in unstimulated human T, B and hematopoietic
stem and progenitor cells (CD34+ cells) are very low. Stimulation of the T cell through the T-cell
receptor or the CD34+ cells with cytokines upregulated LDL-R expression and permitted transduction
of these cells with VSV-G pseudotyped LVs. In contrast, activation of B cells only mildly upregulated
LDL-R, leaving this target cell poorly permissive to VSV-G pseudotyped LVs [36].

There are many other viral glycoproteins that have been incorporated into LVs to improve their
infectivity and confer them a more selective tropism, like the gibbon ape leukemia virus (GALV) or the
cat endogenous retrovirus envelopes (RD114) [30]. H and F envelope proteins from the measles virus
(MV) have been used to retarget various cell types. More recently other proteins have been considered
as alternative envelopes for LV pseudotyping such as glycoproteins derived from other vesiculovirus
subfamilies, Cocal, Piry and Chandipura viruses or the VSV New Jersey strain as well as the Nipah
virus and other rhabdoviruses, for which it was proposed that they could have an advantage over
the commonly used VSV-G Indiana strain [37,38]. However, it is difficult to obtain high-titer vectors
with some of these glycoproteins, though they transduce efficiently hematopoietic cells (Summary in
Table 1).
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Table 1. Different viral envelope glycoproteins used for lentiviral vector pseudotyping and their
cell tropism.

Pseudotypes Original Virus Receptor Cell Tropism Efficiency References

VSV-G Vesicular stomatitis
virus LDL-R Broad in non-primary

cells High [29]

BaEV
Baboon

endogenous
retrovirus

ASCT-1
ASCT-2

CD34+ cells 30% [36]
Naïve T cells Up to 80% [39–41]
Naïve B cells 40% [42]

Memory B cells 20% [42]
Natural killer 40% [39–41]

Early thymocytes Up to 80% [39–41]

RD114 Feline endogenous
retrovirus

ASCT-2
Naïve T cells Up to 60% [43]
Naïve B cells Up to 30% [44]

H/F Measles virus SLAM
CD46

CD34+ cells [30,45]
Resting memory T cells [46]

Naïve T cells Up to 50% [46]
Quiescent B cells [42,46]

Resting HSCs Up to 70% [47]
Dendritic cells [47,48]

G/F Nipah virus EphinB2/B3 Pericytes 20–40% [49,50]
Tumor endothelium [49,50]

COCV Cocal virus LDL-R Stimulated CD34+ cells Up to 80% [32]

2.1. Pseudotyping of LVs with Baboon Endogenous Virus and Feline Endogenous Virus

The baboon endogenous virus (BaEV) is an endogenous gammaretrovirus initially isolated in
the 70s from a baboon placenta and was then cocultivated with a human rhabdomyosarcoma cell
line (A204). It is a recombinant virus between a Papio cynocephalus endogenous retrovirus and a
simian betaretrovirus [51]. It has been shown that BaEV is intimately related with an infectious feline
endogenous retrovirus (RD114). The env gene from the RD114 is thought to be originally derived
from the BaEV envelope gp. These two viruses are stable in human and macaque sera, giving them a
great potential for in vivo gene therapy. They also recognize the sodium-dependent neutral amino
acid transport (ASCT-2) in human cells, but only BaEV also recognizes ASCT-1, giving BaEV a wider
tropism [47,52]. ASCT-1 and -2 receptors have a 57% identical sequence, and they are expressed in a
wide number of cells.

These glycoproteins are of great interest because it has been reported that their receptors are
expressed on human CD34+ cells, T and B cells [30,36,43,45,53–55]. That is why BaEV and RD114
envelopes have been used to improve LVs for the transduction of these primary cells.

The first report of an LV efficiently pseudotyped with the BaEV glycoprotein was in 2014 by
Girard-Gagneapin et al. [36]. They showed a high transduction rate (60–90%) in mildly stimulated
hCD34+ cells, and up to a 30% in unstimulated CD34+ cells. In the case of RD114, it was reported that
pre-stimulation with cytokines increased the transduction rate due to the increase of the ASCT-2. It was
later reported that BaEV pseudotyped LVs were able to transduce stimulated B cells with a very high
transduction rate (up to 80%) in comparison with the VSVG-LVs resulting in low transduction levels
(5%). Additionally, BaEV-LVs were able to transduce resting naïve B cells and memory B cells (20–40%
efficacy) which had not been reported before [42]. In the case of T cells, recent data demonstrated that
BaEV pseudotyped LVs are capable of transducing not only naïve T cells but also early thymocytes
and natural killer cells with high transduction rates (up to 80%; Table 1) [39–41].

All these data suggest that BaEV pseudotyped LVs are efficient tools for modification of primary
target cells in gene therapy and immunotherapy (Figure 2).
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Figure 2. Pseudotyping of lentiviral vectors. Lentiviral vectors were generated expressing different
envelopes from other viruses such as measles virus (HF), baboon envelope (BaEV) and feline endogenous
retrovirus RD114 envelope gps (RD). They recognize receptors like the complement receptor CD46,
signaling lymphocytic activation molecule (SLAM), sodium-dependent neutral amino acid transporters,
ASCT-1 and ASCT2, expressed on resting hematopoietic stem cells (HSC), T cells and B cells. However,
envelopes from vesicular virus (VSV-G) and Cocal virus recognize the low-density lipoprotein (LDL)
receptor, which is poorly expressed on resting cells, which is the reason why they allow poor entry
in these cells, and consequently, low level integration into the cell genome. Colored arrows indicate
binding of the envelope gps to their respective receptors.

2.2. Pseudotyping LVs with H and F Glycoprotein from Measles Virus

MV is part of the Paramyxoviridae family, which contains a negative-strand RNA genome and
encodes six structural proteins. The glycoprotein H and F are embedded as spikes in the membrane.
The hemagglutinin (H) protein attaches to the cellular receptors and the F protein mediates fusion of
the MV membrane with the host cell membrane for the delivery of all of the viral components into
the host cytoplasm [56]. The MV wild type strain uses the signaling lymphocyte activation molecule
(SLAM) as a receptor, whereas the laboratory and vaccine strain like the Edmonston strain gained an
additional entry through the CD46 receptor, due to adaptation in SLAM-negative cells [56,57]. SLAM is
expressed at the surface of T and B cells whereas CD46 is expressed by all human nucleated cells,
increasing their tropism. It has been reported that H/F-LVs incorporating the H from the Edmonston
vaccinal strain were able to efficiently transduce quiescent T and B cells (Figure 2). Frecha et al. [57]
reported that simultaneous transduction with BaEV pseudotyped LVs and VSV-G pseudotyped LVs,
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did not facilitate the entry of VSVG pseudotyped LVs into T cells, emphasizing that each pseudotype
used a different cell entry mechanism. They further proved that in order to obtain high transduction
rates in resting T and B cells, both receptors, CD46 and SLAM, have to be correctly engaged [57].

H/F pseudotyped LVs were identified as the first tool allowing efficient transduction of resting
memory and naïve T cells (up to 50% transduction) without activating or changing their cytokine
profile [46]. Quiescent B cells have also been successfully transduced with H/F pseudotyped LVs
at similar transduction levels as T cells [42,58]. In addition, it has been recently reported that H/F
pseudotyped LVs also have the potential to transduced with a 100% efficiency pre-stimulated HSCs
with low doses of H/F pseudotyped LVs. In the case of unstimulated HSCs, the transduction levels
reached 70%. It was further demonstrated that these high levels were maintained or increased even
after successive rounds of engraftment in NOD/SCIDγC−/− (NSG) mice [47]. These results indicated
that high levels of HSCs were transduced.

One variant of the BaEV glycoprotein, in which the cytoplasmic tail was switched for the one of
the MLV envelope glycoproteins demonstrated no cytotoxicity upon transfection, and therefore can be
considered as a viable candidate to generate stable LV packaging cell lines [36,59]. In the case of the H/F
packing cells, some modifications were introduced to decrease cell toxicity, such as knocking-out the
expression of CD46, the measles virus receptor, in the 293T producer cells to prevent cell to cell fusion
during the vector production [31]. Nevertheless, one of the drawbacks of BaEV-LVs and H/F-LVs is
that their infectious titers are lower than their VSV-G LV counterparts, which is a hurdle that needs to
be overcome for future clinical applications.

2.3. Pseudotyping LVs with Nipah Virus Envelopes

Nipah virus (NV) is a negative-sense single-stranded RNA virus from the genus Henipavirus
from the Paramyxoviridae family. It has a very broad tropism and uses protein-based receptors [50,60].
Similar to the MV envelopes, the NV envelopes encode two glycoproteins to allow entry into the
cell: the attachment protein (G), which allows the virion attachment to the cellular receptors and the
fusion protein (F), which mediate the union of the viral membrane with the cell membrane [49,61,62].
NV’s main receptors are ephrinB2 and ephrinB3, an alternative receptor conferring less efficient entry.
EphrinB2 is strongly expressed in arterial endothelial cells, vascular smooth muscle cells, pericytes and
tumor endothelium [49,50]. Moreover, ephrinB2 has been suggested as a marker for stemness, as it
is expressed in murine embryonic stem cells, HSC and neural stem cells [63]. However, when NV
pseudotyped LVs were tested in these cells, the percentage of transduction was very low (3.5%).
They proposed that this is due to the exclusive expression of ephrinB2 in long term HSC (CD34+ CD38−

CD90+ cells) and percentage of this population is less than 8% of the total HSCs [50]. Nevertheless,
it was shown that NV pseudotyped LVs were able to transduce primary endothelial cells very efficiency
and it is proposed to be a perfect tool for in vivo gene therapy of the vascular system.

Due to the low prevalence of the NV, it was suggested that it would be highly unlikely that there
would be a humoral immunity in humans when using NV envelope for LV pseudotyping [49,61].

Recently, several vaccines based on the G glycoprotein of the NV to protect against lethal
infections, are evaluated in pre-clinical trials [60], underlining its capacity to induce an immune
response. Even though the role of antibodies in immunization against NV infection has been extensively
reported, few studies addressed the induction of T-cell immunity. Kalodimou et al. [60] have recently
reported potential epitopes that stimulate antigen-specific CD4+ and CD8+ T cells. This suggests that
NV pseudotyped LVs might possibly be more immunogenic than first thought.

2.4. Cocal Virus

Cocal virus (CV) is a member of the Rhabdoviridae family, genus Vesiculovirus, which in turn has
been classified in two serotypes: New Jersey and Indiana. Indiana has been divided in three serological
groups. The CV belongs to serological group type 2 and was isolated from rat’s mites in the 1960s
in different regions in South America [64]. This glycoprotein shares 72% identity at the amino acid
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level with the VSV-G Indiana strain. However, it is distinct from it in the sense that it is more resistant
to complement-mediated inactivation by mouse and human sera, and it also confers an even wider
tropism. Furthermore, CV glycoprotein pseudotyped LVs can be produced at higher titers and can
transduce not only human cells, but also nonhuman primate and canine stem cells [32,33,65].

Humbert et al. [32] were able to transduce HSC and CD4+ T-lymphocytes more efficiently with
CV pseudotyped LVs than VSV-G pseudotyped LVs. It is not clear if other receptors are involved,
if CV has more affinity with the LDL-R, is more efficient in merging with the cell membrane or if CV
pseudotyped LVs display more envelope molecules per vector particle. Nevertheless, CV can be highly
expressed in producer cells, and therefore represent a perfect pseudotype for engineering of a stable
packaging cell line with clinically usable titers [32]. It has also been reported that CV pseudotyped LVs
more efficiently transduce human CD34+ NOD/SCID mouse repopulating cells as well as CD34+ bone
marrow cells with lower MOI than the counterpart VSV-G pseudotyped LVs [33].

2.5. Envelope Glycoproteins Retargeted to Specific Hematopoietic Cells

In order to improve the vector tropism to hematopoietic cells, another strategy is to incorporate
cell targeting proteins (CTPs) into the viral envelope’s outer domain [66]. There are two main steps for
virus entry: (1) virus-cell attachment and (2) fusion of virus and cellular membrane. For a number
of enveloped viruses, such as MLV, BaEV and RD114 retroviruses, both receptor binding and fusion
functions are not independent since they are present in a single glycoprotein. Therefore, attempts to
retarget these vectors to other cell surface epitopes were not successful: though correct binding to a
receptor of choice was achieved, the cell-virus membrane fusion function was abolished. Other viruses
such as Nipah and MV have these two functions, receptor binding and fusion, separated in two
different glycoproteins. Therefore, insertion of a CTP into the receptor binding glycoprotein allows
retargeted binding to a receptor of choice without affecting fusion function. Importantly, to achieve
specific retargeting of the glycoproteins to another receptor on the cell, the natural binding sites of the
glycoproteins first need to be abolished.

Some of the CTP molecules used for this purpose are single-chain variable fragments (scFvs).
However, this can be challenging as scFvs do not allow targeting of more than one epitope and using
several scFvs will impair the folding and therefore the fusion with the cell membrane. The use of ankyrin
repeat proteins (DARPins) constitutes an alternative due to their versatility and affinity. The ankyrin
domains have been selected from libraries to guaranty their high affinity. ScFvs and DARPins have
been introduced successfully in MV [67] and in Nipah virus envelope glycoproteins [61,68,69] to target
oncolytic domains and hematopoietic cells in vitro and in vivo [48,68,70–72].

Morizono et al. [69] designed a pseudotyped LV able to transduce melanoma tumor cells using
a similar strategy. They co-pseudotyped LVs with the Sindbis virus glycoproteins E1 fusion protein
and a mutated E2 protein non-covalently linked to a specific monoclonal antibody directed against
melanoma antigen. Alternatively, using Sindbis glycoproteins, Kasaraneni et al. [66] used a simple
‘plug and play’ strategy to retarget lentiviral vectors to any desired cell type through in vitro covalent
modification of the vectors with specific CTPs.

3. Gene Therapy

3.1. Introduction to Gene Therapy

Gene therapy is defined as the introduction of therapeutic genes into target cells in order to treat a
medical disorder or disease. It has been very relevant in monogenic disease treatments, as simply the
introduction of a therapeutic gene can correct the genetic defect. The therapeutic transgene can either
replace the function of the affected gene, increase the physiological production of the substance or
produce the substance when missing in the target organism [73,74]. This possibility of a durable cure
for life by one single application or modification has made gene therapy very attractive.
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Gene therapy’s main challenge is to achieve a durable expression of the therapeutic gene in a
large percentage of the target cells without changing their normal physiology [5,74]. The concept first
appeared during the 1960s–70s where recombinant DNA techniques demonstrated that foreign genes
could correct genetic defects and improve disease phenotypes in vitro [4]. The introduction of the
transgene can be performed in different ways, either by taking the cells from the patient and modifying
them ex vivo to then re-inject them or by directly introducing the delivery method into the patients,
in vivo (Illustrated in Figure 3). It was not until 1995 when Donald B. Kohn et al. [75] showed the
first result of a clinical trial where HSCs were gene corrected for Adenosine deaminase deficiency
(ADA). However, the expression of the transgene was transient, and patients were unable to abandon
protein replacement therapy. Nevertheless, this was a first positive step towards gene therapy which
proved safe and conferred therapeutic benefit to the patient, though transient. This encouraged the
field to look for improvements in vector design. In the last couple of decades, these improvements
have given way to various numbers of successful clinical trials in diverse monogenic diseases, such as
severe combined immunodeficiencies (SCID) and β-hemoglobinopathies [76,77], which today resulted
in two dozen gene therapies, clinically approved as drugs [78].
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Figure 3. Gene therapy in vitro and in vivo. Cells from patients are harvested and cultured and
modified with lentiviral vectors (LV) in vitro carrying a therapeutic vector. The corrected cells are then
injected back into the patient for engraftment in order to alleviate the disease. The therapeutic vector
can also be injected locally or systemically into the patients which will then transduce the target cells
in vivo and correct the disease.

There were successful trials reported in gene therapy for some immunodeficiencies such as SCID
caused by ADA, ADA-SCID and SCID-X1 with 100% survival rates and over 80% efficiency [76,79,80].
Others, like WAS [9,16,19,81] and X-linked CGD X-CGD [82] were not as successful, showing major
complications and revealed the requirement to improve vector systems [76].

Multiple adverse events have been reported in clinical trials, in most cases due to gammaretroviral
vectors that caused insertional mutagenesis. Therefore, the field has focused on the development
of safer vectors. In the clinical trials using lentiviral vectors, no adverse events have been reported
due to insertional mutagenesis up to now. However, there is a need to improve the transduction
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process itself in order to increase the percentage of gene modified cells and thus efficacy of the gene
therapy. Pseudotyping is playing a major role in improvement of transduction levels of hematopoietic
target cells.

3.2. Hematopoietic Stem Cell-Based Gene Therapy

HSCs are desired target cells in gene therapy because any genetic modification will be transferred
to all lineages derived from them [83]. The pseudotyped lentiviral vectors mentioned previously
could be beneficial in gene therapy of different genetic diseases, with some examples such as bone
marrow failures, e.g., Fanconi anemia (FA) and β-hemoglobinopathies, e.g., β-thalassemia and sickle
cell disease.

FA is a rare genetic disorder characterized by progressive failure of the bone marrow. The goal
of FA gene therapy is to develop an alternative treatment for this bone marrow failure and prohibit
the development of leukemia or other cancers in these patients that carry a mutation in DNA repair
enzymes encoded by FANC genes. Correction of HSCs or hematopoietic progenitor cells (HPC)
offers a potential cure, because even with a relative low frequency of HSCs/HPCs expressing the wild
type gene, one corrected HSCs is capable of repopulating the bone marrow and leading to normal
hematopoiesis [84–86]. The main problem until recently was the efficiency of transduction of HSCs.
It was shown that VSV-G pseudotyped LVs were not able to transduce HSCs efficiently because
they lack LDL receptor expression in their unstimulated state [55], so there is a need for alternative
vector tools.

Frecha et al. [53] generated LVs pseudotyped with RD114 envelope glycoprotein, which co-displayed
HSC stimulating cytokines and showed that these LVs were able to efficiently transduce human CD34+

cells in both total cord blood and bone marrow. These modified CD34+ cells were able to colonize
immunodeficient mice and moreover resulted in a selective long-term transduction of human HSCs
in vivo. This is a step forward in improving the transduction of FA HSC in bone marrow ex vivo or even
in vivo and improved the efficacy of FA gene therapy. More recently, H/F pseudotyped LVs successfully
achieved high-level transduction of unstimulated HSC, which was maintained in all hematopoietic
lineages in secondary recipient NSG mice [47]. These H/F pseudotyped LVs could be therefore beneficial
for transducing CD34+ cells of FA patients since these rare target cells do not easily survive ex vivo
culture in the presence of cytokine stimulation. For the last 15 years, FA gene therapy has been studied
in multiple pre-clinical studies, but to date only one clinical trial using VSV-G pseudotyped LVs has
been performed [85].

The β-thalassemia syndromes are autosomal blood disorders, characterized by the reduction or
absence of the β unit of the hemoglobin [87]. The first clinical trials used a VSV-G pseudotyped LV
expressing the entire β-globin showing an increase in the hemoglobin in the thalassemia patients.
However, there is a need to improve the efficacy of gene correction in the HSCs from these patients.
In recent in vitro studies, it has been shown that incorporating some enhancer elements into the vector
combined with use of the BaEV envelope glycoprotein for LV pseudotyping increased transduction
efficiency at low MOIs in comparison with the VSV-G pseudotyped LV and resulted in a more stable
and high expression of the hemoglobin [88].

The examples presented above emphasize again the importance of using an adequate envelope
for LV pseudotyping in order to achieve high transduction rates of patient HSCs.

3.3. Gene Therapy Using T Cells

3.3.1. Why Are T Cells Important Target Cells for Gene Therapy?

Efficient gene transfer into T lymphocytes may allow treatment of a number of genetic dysfunctions
of the hematopoietic system, such as immunodeficiencies as well as de development of novel therapeutic
strategies for cancer and acquired immunodeficiency syndromes [89,90]. The main benefit of T cells is
that they are more accessible to genetic modifications, can normally be isolated in high amounts and
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have lower risk of transformation, as no leukemia has been observed in T cell-based gene therapy [89,91].
Naïve T cells are a desirable target as they can respond to novel antigens and have a long-term lifespan
which allows them to survive for years in patients. Moreover, CD4+ T cells are considered key players
in coordinating the immune response as they interact with CD8+ T cells, B cells and dendritic cells,
so they become an important target not only for gene therapy and immunotherapy approaches but also
in fundamental immunology [48]. In gene therapy, the main goal is to preserve the T-cell phenotype
and their properties to react in response to the immune system after transduction. This is the reason
why there is a need for new techniques for T-cell modification that need either minimal manipulations
ex vivo or no manipulation at all when administrated in vivo [90].

3.3.2. Novel LV Pseudotypes Allow Efficient T Cell Transduction for Gene Therapy

Recently, several studies reported other LV pseudotypes (e.g., HF pseudotyped LVs) that have been
used to improve the transduction efficiency in T cells without modifying their phenotype [42,46,58].
More recently, Bernadin et al. [43] have shown that BaEV pseudotyped LVs efficiently transduced naïve
T cells and progenitor T cells, which upon engraftment in NOD/SCIDγC−/− (NSG) mice developed
into mature T-cell subpopulations that maintained these high transduction levels. They also observed
that the T-cell lineage reconstitution was accelerated upon the injection of the progenitor T cells in
comparison to HSCs. Therefore, these BaEV pseudotyped LVs have great potential for T cell-based
SCID-X1 gene therapy.

Interestingly, a research team succeeded in engineering an LV that ensures selective and stable
gene delivery to a specific T-cell subtype upon its in vivo administration. An LV was pseudotyped
with a MV H glycoprotein incorporating a CD8-specific scFv, which allowed it to deliver the transgene
specifically to CD8+ T cells by using the CD8 surface molecule as a receptor. They demonstrated that
compared to VSV-G pseudotyped LVs, the CD8-specific LVs needed 5–10-fold less vector doses to
obtain the same transduction efficiency [71]. The same team also designed an LV vector system which
relied on pseudotyping with a MV H glycoprotein that was fused with a CD4-specific ankyrin repeat
protein, creating a retargeted LV specific for entry into CD4 T cells. This CD4-LV efficiently targeted
CD4+ T cells for gene delivery in human peripheral blood monocytes cells (PBMCs) (in vitro) and in
humanized mouse models by systemic administration (in vivo). Moreover, they demonstrated that this
LV can be used in the treatment of HIV infection by using it to deliver an inhibitor gene that prevents
T cells of getting infected by HIV [48].

3.3.3. Chimeric Antigen Receptor T Cells

To convert T cells into a powerful anti-cancer drug, chimeric antigen receptors (CAR),
which recognize surface antigen on malignant cells, have been incorporated into T cells for
immunotherapy [72,92]. They are considered an individualized cell therapy product as it requires
harvesting of the patient’s T cells, which are then modified and expanded ex vivo to be re-infused.
CAR-T cells are activated, expanded and kill target cells once they recognize the cancer antigen.
The expression of the CAR has to be stable and these CAR T cells need to maintain their functionality
and persist long term in vivo [72]. The main problem of in vivo gene delivery is the possibility
of generating off-target cell LV transduction causing severe health risks and adverse effects [93].
Pfeiffer et al. [72] are the first to report the generation of human anti-CD19 CAR-T cells in vivo upon
injection into humanized mice of an LV pseudotyped with a nipah G glycoprotein harboring an scFv
directed against CD8 T cells. They showed that antiCD19-CAR+ CD8+ T cells generated in vivo
possessed high cytotoxicity against CD19+ cells. Jamali et al. [94] modified the envelope protein of
the nipah virus and fused it to a CD8-specific scFv, while the MV envelope protein was fused to a
CD4-specific DARPin. These retargeted envelope gps were used to produce CD4+ or CD8+ T-cell
specific LVs carrying CAR genes. This resulted in high selectivity for T lymphocytes, which facilitated
and improved CAR T cell generation. Moreover, these authors showed that these CD8- and CD4-LVs
allowed the generation of CAR-T cells in vivo due to their high specificity for T cells, excluding the
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need of T cell purification in the process of CAR-T manufacturing and possibly making this kind
of therapy more accessible to a higher number of patients. However, improvements in CAR T-cell
therapies are urgently needed since CAR T cell application is associated with toxicities, exhaustion,
immune suppression, lack of long-term persistence and low CAR T-cell tumor infiltration. Major efforts
to overcome these hurdles are currently on the way and are reviewed elsewhere [95].

Some of these improvements included transduction enhancers, such as cationic polymers, lipids or
peptides. The most recent one is Vectofusin-1, a histidine-rich cationic amphipathic short peptide,
which enhanced transduction with certain pseudotyped LVs, such as BaEV and GALV. Moreover,
the addition of Vectofusin-1 did not impair the killing capability of these generated CAR-T cells [94].

3.4. B Cells as Gene Therapy Targets

B cells are not only interesting gene therapy targets for diseases associated with B cell dysfunction
but also for immunotherapy. B-cell gene therapy is particularly appealing because B cells have the
potential to induce specific immune activation. They are also important in the induction of tolerogenic
antigen presenting cells, which has been demonstrated in animal models for autoimmune diseases
such as diabetes [44]. In the case of B-cell gene therapy for monogenic diseases, hemophilia might
be an important target disease to consider [87]. Hemophilia A and B are blood disorders caused
by mutations in the clotting factor VIII and Factor IX (FVIII and FIX), which causes uncontrolled
bleeding. Clinical trials for hemophilia have been using AAV to express either FVIII or FIX in the
liver or muscle [96]. This approach, however, has numerous disadvantages revealed in the clinic,
which emphasized the need for further improvement. Therefore, Lévy et al. [44] proposed not to
transduce hepatocytes, which are the natural producers of FIX, but transduce B cells to allow them to
express de novo factor FIX. BaEV pseudotyped LVs were compared to other envelope pseudotypes such
as H/F, RD114 as well as the commonly used VSV-G. For the first time, BaEV pseudotyped LVs showed
efficient transduction of both naïve and memory B cells [44] in similar way as the H/F previously
described [42,57,58]. Lévy et al. showed that FIX encoding BaEV pseudotyped LVs transduced human
B cells, which were able to home to the spleen and the bone marrow in immunodeficient NSG mice,
where they differentiated into plasma cells that allowed expression of the human FIX in the blood
stream at levels close to what is detected in healthy human subjects.

To reprogram B cells for ectopic antibody expression, it would be advantageous to include
in the design of the vector the natural regulation of antibody expression, namely, the transition
from the B-cell receptor (BCR) form to secreted immunoglobulins (Ig). With this objective in mind,
Fusil et al. [97] designed an LV which coded for a human cross-neutralizing antibody against the
envelope of the hepatitis C virus (HCV). It was the first study demonstrating that LVs allowed the
physiological expression of a human antibody as these authors mimicked the natural mechanism of
Ig maturation during the B-cell development in their vector design. To achieve efficient B-cell gene
transfer, the LVs were pseudotyped with the BaEV envelope, previously described as one of the best
candidate pseudotypes to transduce B cells [55], since it allowed efficient transduction of resting and
stimulated human B cells [97].

3.5. Gene Therapy Using Natural Killer Cells

Natural killer (NK) cells kill virus-infected and tumor cells as part of the innate immune system
without need of stimulation. They have also shown antitumor activity in HSC transplantation, and in
the absence of T cells they facilitate HSC engraftment, combat infection and control the appearance of
graft-versus-host disease (GvHD) [98–100]. Most of the research so far has been focused on redirecting
T cells to combat cancer such as transforming them into CAR T cells (see Section 3.3.3). However,
there is also an interest in developing similar approaches with NK cells. They are considered an
appealing option because of their natural cytotoxic function and they avoid induction of GvHD.
This means that NKs can be used in an allogenic setting. The main obstacle in using NKs has always
been the low transduction efficiency. So far, the highest level of NK transduction achieved with
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VSV-G pseudotyped LVs was between 2% and 12% when cultured in presence of different cytokine
cocktails [101]. Surprisingly, the use of BaEV pseudotyped LVs has overcome this obstacle and showed
a 20-fold increase in the transduction efficiency when compared to the VSV-G pseudotyped LVs.
What is more important, CAR expressing NK cells showed improvement in functionality and a higher
ability to kill cancer cells [40,41]. This is proof of concept for the generation of CAR-NK cells in vitro,
which may become powerful immunotherapeutic products in the future.

4. Gene Editing: A New Upcoming Tool for Gene Therapy

Gene editing is considered a type of genetic engineering, where the DNA is either inserted,
deleted or replaced in the target cell genome using specific nucleases, by the creation of site-specific
double-strand breaks (DSB). These DSB are corrected by the cellular DNA repair machinery, either by
non-homologous end joining (NHEJ) or by direct homologous recombination (DHR), when adding
DNA template [102]. The advantages of gene editing over gene addition are the ability to modify
endogenous sequences specifically, maintaining the transcriptional regulation of the gene and reducing
the risk of oncogene activation due to insertional mutagenesis [103,104].

There are various specific engineered nucleases used as gene editing tools such as ZFN, TALENs and
more recently CRISPR/Cas9. CRISPR/Cas9 has been extensively used in the last decade due to its high
specificity, activity and easy design [102,105]. Their applications cover various fields; biotechnology,
biological investigation, human medicine applications and agricultural research [102].

In the context of gene therapy, HSCs are the targets of choice for gene editing-based therapies.
The variability of efficiency of gene editing in cells is related to their repair pathway. It has been
reported that adult primary cells use the error prone NHEJ instead of the DHR pathway due to their
non-dividing stage. HIV infection is one of the most studied diseases using gene editing therapy
approaches [106]. It has been the main objective to ablate the chemokine (C-C motive) receptor 5
(CCR5) in T cells, which has been demonstrated to protect against HIV infection. Deleting CCR5 in
HSCs will give rise to lymphoid and myeloid linages resistant to HIV CCR5 strains providing long
lasting immunity to the infection. This strategy has been tested using CRISPR/Cas9 multiplex guide
RNAs (gRNA) and increased 10-fold the percentage of cleavage in CD34+ cells with no significant
effect in their potency to differentiate into all hematopoietic lineages [107]. It has also been effectively
used in targeting the interleukin-2 receptor gamma (IL2RG), which is the mutated gene in SCID-X1.
Correction of the IL2RG in HSCs has shown their efficient engraftment and repopulation in NSG mice,
which confirms gene edition in long-term repopulating HSCs [108].

Gene editing is being used to deplete the endogenous TCR, both the α and β chains, to avoid
the GvHD and produce a universal CAR T cell. It has been shown that when this universal T cell is
combined with depletion of other genes by CRISPR/Cas9, high anti-leukemic activity and no induction
of GvHD were observed in the NSG mouse model [109].

For the previously mentioned studies, different methods for delivery the editing tools have
been utilized such as electroporation, adenoviruses and LVs conferring different degrees of efficiency,
toxicity and off-target effects. Ideally, the perfect gene editing tool should be able to deliver its cargo
fast, precise, non-toxic and with low off-target effects. Recently, Mangeot et al. [110] described a vehicle
for Cas9-sgRNA by which the ribonucleoproteins (RNPs) are packed into a virus like particle (VLP)
from MLV, which they called “nanoblade”. They showed that these nanoblades were able to induce
DSB more rapidly and efficiently than other delivery methods and they were able to deliver their
cargo to not only immortalized cells but also to primary fibroblast, induced pluripotent stem cells and
CD34+ cells both human and mouse. Interestingly, since these are VLPs, they can be pseudotyped
as viral vectors with different envelope glycoproteins. Indeed, an efficient gene editing of primary
hematopoietic cells was recently achieved, when the nanoblades were pseudotyped with VSV-G and
BaEV glycoproteins, simultaneously [111]. Finally, the nanoblades can also be combined with DNA
templates and mediate HR-based knock-in in cultured cells and primary cells.
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5. Conclusions

Here, we summarized the development of several new LV pseudotypes that allow transduction
in primary hematopoietic cells, which were difficult to modify genetically by the currently used LVs
displaying VSV-G at their surface. BaEV-LVs and MV-LVs allow transduction of unstimulated T, B,
NK and HSCs without affecting their phenotypes nor functional characteristics. LVs carrying Nippa
virus gps retargeted to T cells might prove in the future to be efficient immune and gene therapy
tools. Alternative LV pseudotypes will allow to address multiple fundamental questions and reveal
the mechanism implicated in blood cell differentiation, function and transformation into malignant
cells. At the moment, these lentiviral pseudotypes have not been utilized in clinical trials, but their
production is being optimized for clinical applications.
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