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Abstract

In data processing and machine learning, an important challenge is to recover and exploit models
that can represent accurately the data. We consider the problem of recovering Gaussian mix-
ture models from datasets. We investigate symmetric tensor decomposition methods for tackling
this problem, where the tensor is built from empirical moments of the data distribution. We
consider identifiable tensors, which have a unique decomposition, showing that moment tensors
built from spherical Gaussian mixtures have this property. We prove that symmetric tensors
with interpolation degree strictly less than half their order are identifiable and we present an
algorithm, based on simple linear algebra operations, to compute their decomposition. Illus-
trative experimentations show the impact of the tensor decomposition method for recovering
Gaussian mixtures, in comparison with other state-of-the-art approaches.

1. Introduction

With the relatively recent evolutions of information systems over the last decades, many
observations, measurements, data are nowadays available on a variety of subjects. However, too
much information can kill the information and one of the main challenges remains to analyse
and to model these data, in order to recover and exploit hidden structures.

To tackle this challenge, popular Machine Learning technologies have been developed and
used successfully in several application domains (e.g. in image recognition [HZRS16]). These
techniques can be grouped in two main classes: Supervised machine learning techniques are
approximating a model by optimising the parameters of an enough general model (e.g. a Con-
volution Neural Network) from training data. Unsupervised machine learning techniques are
deducing the parameters characterising a model directly from the given data, using an apriori
knowledge on the model. The supervised approach requires annotated data, with a training
step that can introduce some bias in the learned model. The unsupervised approach can be
applied directly on a given data set avoiding the costly step of annotating data, but the quality
of the output strongly depends on the type of models to be recovered.

We consider the latter approach and show how methods from effective algebraic geometry
help finding hidden structure in data that can be modelled by mixtures of Gaussian distribu-
tions. The algebraic-geometric tool that we consider is tensor decomposition. It consists in
decomposing a tensor into a minimal sum of rank-1 tensors. This decomposition generalises
the rank decomposition of a matrix, with specific and interesting features. Contrarily to ma-
trix rank decomposition, the decomposition of a tensor is usually unique (up to permutations)
when the rank of the tensor, that is the minimal number of rank-1 terms in a decomposition,
is small compared to the dimension of the space(s) associated to the tensor. Such a tensor is
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called identifiable. This property is of particular importance when the decomposition is used to
recover the parameters of a model. It guaranties the validity of the recovering process and its
convergence when the number of data increases.

It has been shown in [COV16] that for symmetric tensors, if the rank of the tensor is
strictly less than the rank rg of a generic tensor of the same size, then the tensor is generically
identifiable, except in three cases. We show in Theorem 3.6 a more specific result: for a
symmetric tensor T having a decomposition with r points, if the Hankel matrix associated to T
in a degree strictly bigger than the degree of interpolation of the r points is of rank r, then the
tensor is identifiable. We show in Proposition 3.3, that under some assumption on the spherical
gaussian mixtures, a tensor of moments of order 3 of the distribution is identifiable and its
decomposition allows to recover the parameters of the Gaussian mixture.

Several types of method have been developed to tackle the difficult problem of tensor decom-
position. Direct methods based on simultaneous diagonalisation of matrices built from slices of
tensors have been investigated for 3rd order multilinear tensors, e.g. in [Har70, SK90, LRA93,
DL14] or for multilinear tensors of rank smaller than the lowest dimension in [DL06, LA14]. In
his proof on lower bounds of tensor ranks, Strassen showed in [Str83, Theorem 4.1] that a 3rd
order multilinear tensor is of rank r if it can be embedded into a tensor with slices of rank r
matrices, which are simultaneously diagonalised.

For symmetric tensor decomposition, a method based on flat extension of Hankel matri-
ces or commutation of multiplication operators has been proposed in [BCMT10] and extended
to multi-symmetric tensors in [BBCM13]. This approach is closely related to the simultane-
ous diagonalisation of tensor slices, but follows a more algebraic perspective. Eigenvectors of
symmetric tensors have been used to compute their decompositions in [OO13]. In [HKM18],
Singular Value Decomposition and eigenvector computation are used to decompose a symmetric
tensor, when its rank is smaller than the smallest size of its Hankel matrix in degree less than
half the order of the tensor. In Section 3, we describe a new algorithm, involving Singular
Value Decomposition and simultaneous diagonalisation, to compute the decomposition of an
identifiable tensor, which interpolation degree is smaller that half the order of the tensor.

Numerical methods such as homotopy continuation have been applied to tensor decompo-
sition in [HOOS19, BDHM17]. Distance minimisation methods to compute low rank approx-
imations of tensors have also been investigated. Alternating Least Squares (ALS) methods,
updating alternately the different factors of the tensor decomposition, is a popular approach
(see e.g. [CC70, CHLZ12, Har70, KB09a]), but suffers from a slow convergence [EHK15, Usc12].
Other iterative methods such as quasi-Newton methods have been considered to improve the
convergence speed. See e.g. [HH82, Paa99, PTC13, SL10, SVBDL13, TB06, BV18] for multi-
linear tensors. A Riemannian Newton iteration for symmetric tensors is presented in [KKM20].
In [KP09], a method for decomposing real even-order symmetric tensors, called Subspace Power
Method (SPM), and similar to the power method for matrix eigenvector computation, is pro-
posed. In these methods, the choice of the initial decomposition is crucial. In the applica-
tions of these algorithms, the initial point is often chosen at random, yielding approximate
decompositions which can hardly be controlled. Tensor decomposition methods have numerous
applications [KB09b]. Some of them were exploited more recently in Machine Learning. In
[HK13], symmetric tensor decompositions for moment tensors are studied for spherical Gaus-
sian mixtures. Moment methods have been further investigated for Latent Dirichlet Allocation
models, topic or multiview models in [AGH+14, JGKA19]. In [RGL17], a tensor decomposi-
tion technique based on Alternate Least Squares (ALS) is used to initialise the Expectation
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Maximisation (EM) algorithm, for a mixture of discrete distributions (which are not Gaussian
distributions). An overview of tensor decomposition methods in Machine Learning can be found
in [RSG17].

After reviewing Gaussian mixtures and moment methods in Section 2, we present in Section 3
an algebraic symmetric tensor decomposition method for identifiable tensors. In Section 4, we
apply this algorithm for recovering Gaussian mixtures and show its impact on providing good
initialisation point in the EM algorithm, in comparison with other state-of-the-art approaches.

2. Gaussian mixtures and high order moments

In this section, we review Gaussian mixture models and their applications to clustering.

2.1. Gaussian mixtures

Suppose that we wish to deal with some Euclidean data x ∈ Rm, coming from a population
composed of r homogeneous sub-populations (often called clusters). A reasonable assumption
is then that each sub-population can be modelled using a simple probability distribution (e.g.
Gaussian). This idea is at the heart of the notion of mixture distribution. The prime example
of mixture is the Gaussian mixture, whose probability density over Rm is defined as

pθ(x) =
r∑
j=1

ωjN (x|µj,Σj), (1)

whereN (·|µ,Σ) denotes the Gaussian density with mean µ ∈ Rm and definite positive covariance
matrices Σ ∈ S++

m . The mixture is parametrised by a typically unknown θ = (ω1, ..., ωr, µ1, ..., µr,
Σ1, ...,Σr), composed of

• ω = (ω1, ..., ωr), that belong to the r-simplex and correspond to the cluster proportions,

• µj and Σj, that correspond respectively to the mean and covariance of each cluster j ∈
{1, ..., r}.

Gaussian mixtures are ubiquitous objects in statistics and machine learning, and owe their
popularity to many reasons. Let us briefly mention a few of these.

Density estimation. If r is allowed to be sufficiently large, it is possible to approximate any
probability density using a Gaussian mixture (see e.g. [NCNM20]). This motivates the use of
Gaussian mixtures as powerful density estimators that can be subsequently used for downstream
tasks such as missing data imputation [DZGL07], supervised classification [HT96], or image
classification [SPMV13] and denoising [HBD18].

Clustering. Perhaps the most common use of Gaussian mixtures is clustering, also called unsu-
pervised classification. The task of clustering consists in uncovering homogeneous groups among
the data at hand. Within the context of Gaussian mixtures, each group generally corresponds
to a single Gaussian distribution, as in Equation (1). If the parameters of a mixture are known,
then each point may be clustered using the posterior probabilities obtained via Bayes’s rule:

∀x ∈ Rm, k ∈ {1, ..., r}, Pr(x belongs to cluster j) =
ωjN (x|µj,Σj)

pθ(x)
. (2)

Detailed reviews on mixture models and their applications, notably to clustering, can be
found in [FR02, BCMR19, MLR19].
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2.2. Learning mixture models

The main statistical question pertaining mixture models is to estimate the parameters θ =
(π1, ..., πK , µ1, ..., µK ,Σ1, ...,ΣK) based on a data set x1, ..., xn. Typically, x1, ..., xn are assumed
to be independent and identically distributed random variables with common density pdata.
The problem of statistical estimation is then to find some θ such that pθ ≈ pdata. There are
many approaches to this question, the most famous one being the maximum likelihood method.
Maximum likelihood is based on the idea that maximising the log-likelihood function

`(θ) =
n∑
i=1

log pθ(xi), (3)

will lead to appropriate values of θ. One heuristic reason of the good behaviour of maximum
likelihood is that `(θ) can be seen as a measure of how likely the observed data is, according to
the mixture model pθ. This means that the maximum likelihood estimate will be the value of
θ that renders the observed data the likeliest. Another interesting interpretation of maximum
likelihood in information-theoretic: when n −→∞, maximising the log-likelihood is equivalent
to minimising the Kullback-Leibler divergence (an information-theoretic measure of distance
between probability distributions) between pθ and pdata, thus giving a precise sense to the
statement pθ ≈ pdata (see e.g. [Bis06, Section 1.6.1]). For more details on the properties of
maximum likelihood, see e.g. [VdV98, Section 5.5].

In the specific case of a mixture model, performing maximum-likelihood is however complex
for several reasons. Firstly, as shown for instance by [LC90], finding a global maximum is
actually often ill-posed in the sense that some problematic values of θ will lead to `(θ) =
∞ while being very poor models of the data. While focusing on local rather global maxima
will fix this first issue in a sense, iterative optimisation algorithms are likely to pursue these
unfortunate global maxima. Because of the peculiarities of mixture likelihoods, the most popular
algorithm for maximising `(θ) is the expectation maximisation (EM, [DLR77]) algorithm, an
iterative algorithm specialised for dealing with log-likelihoods of latent variable models. The EM
algorithm is usually preferred to more generic gradient-based optimisation algorithms [XJ96].
In a nutshell, at each iteration, the EM algorithm clusters the data using Equation (2), and
then computes the means and covariances of each cluster. This iterative scheme is related to
another popular clustering algorithm known as k-means (the close relationship between the two
algorithms is detailed in [Bis06, Section 9]). A key issue when using the EM algorithm for a
Gaussian mixture is the choice of initialisation. Indeed, a poor choice may lead to degenerate
solutions, extremely slow convergence, or poor local optima (see [BC15] and references therein).
We will see in this paper that good initial points can be obtained by using another estimation
method called the method of moments (as was previously noted by [RGL17] in a context of
mixtures of multivariate Bernoulli distributions).

The method of moments is a general alternative to maximum likelihood. The idea is to
choose several functions g1 : Rm −→ Rq1 , ..., gd : Rd −→ Rqd called moments, and to find θ by
attempting to solve the system of equations

Ex∼pdata
[g1(x)] = Ex∼pθ [g1(x)]

...
Ex∼pdata

[gd(x)] = Ex∼pθ [gd(x)].
(4)
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Of course, since pdata is unknown, solving (4) is not feasible. However, one may replace the
expected moments by empirical versions, and solve instead

1
n

∑n
i=1 g1(xi) = Ex∼pθ [g1(x)]

...
1
n

∑n
i=1 gd(xi) = Ex∼pθ [gd(x)].

(5)

A very simple example of this, in the univariate m = 1 case, when g1(x) = x, and g2(x) = x2.
Then, solving (4) will ensure that the distributions of the model pθ and the data pdata have the
same mean and variance. However, many very different distributions have identical mean and
variance! A natural refinement of the previous idea is to consider also higher-order moments
g3(x) = x3, g4(x) = x4, .... This will considerably improve the estimates found using the method
of moments. This approach was pioneered by [Pea94] for learning univariate Gaussian mixtures.
In the more general multivariate case m > 1, following [HK13], the moments chosen can be
tensor products, as we detail in the next section in case of a Gaussian mixture with spherical
covariances.

3. Learning structure from tensor decomposition

In this section, we describe the moment tensors revealing the structure of spherical Gaussian
mixtures and how it can be decomposed using standard linear algebra operations.

Let X = (X1, . . . , Xm) be a set of variables. The ring of polynomials in X with coefficients
in C is denoted C[X]. The space of homogeneous polynomials of degree d ∈ N is denoted C[X]d.
A symmetric tensor T of order d (with real coefficients) can be represented by an homogeneous
polynomial of degree d in the variables X of the form

T (X) =
∑
|α|=d

Tα

(
d

α

)
Xα

where α = (α1, . . . , αn) ∈ Nm, |α| = α1 + · · · + αm = d, Tα ∈ R,
(
d
α

)
= d!

α1!···αm!
, Xα =

Xα1
1 · · ·Xαm

m .
A decomposition of T as a sum of dth power of linear forms is of the form

T (X) =
r∑
i=1

ωi(ξi ·X)d (6)

where ξi = (ξi,1, . . . , ξi,m) ∈ Cm and (ξi ·X) =
∑m

j=1 ξi,jXj. When r is the minimal number of
terms in such a decomposition, it is called the rank of T and the decomposition is called a rank
decomposition (or a Waring decomposition) of T (X).

We say that the decomposition is unique if the lines spanned by ξ1, . . . , ξr form a unique set
of lines with no repetition. In this case, the decomposition of T is unique after normalisation of
the vectors ξi up to permutation (and sign change when d is even). A tensor T with a unique
decomposition is called an identifiable tensor. Then the Waring decompositions of T are of the
form T (X) =

∑r
i=1 ωiλ

−d
i (λi ξi ·X)d for λi 6= 0, i ∈ [r].

Given a random variable x ∈ Rm, its moments are Tα = E[xα1
1 · · ·xαmm ] for α = (α1, . . . , αm) ∈

Nm. The symmetric tensor of all moments of order d of x is

E[(x ·X)d] =
∑
|α|=d

E[xα1
1 · · · xαmm ]

(
d

α

)
Xα.
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3.1. The structure of the moment tensor

We aim at recovering the hidden structure a random variable, from the decomposition of its
dth order moment tensor. This is possible in some circumstances, that we detail hereafter.

Assumption 3.1. The random variable x ∈ Rm is a mixture of spherical Gaussians of proba-
bility density (1) with parameters θ = (ω1, ..., ωr, µ1, ..., µr, σ

2
1Im, , ..., σ

2
rIm) such that r < m.

Theorem 3.2 ([HK13]). Under the previous assumption, let

• σ̃ be the smallest eigenvalue of E[(x − E[x]) ⊗ (x − E[x])] and v a corresponding unit
eigenvector,

• M1(X) = E[(x ·X)(v · (x− E[x]))2],

• M2(X) = E[(x ·X)2]− σ̃2‖X‖2,

• M3(X) = E[(x ·X)3]− 3 ‖X‖2M1(X).

Then σ̃2 =
∑r

i=1 ωi σ
2
i and

M1(X) =
r∑
i=1

ωi σ
2
i (µi ·X), M2(X) =

r∑
i=1

ωi (µi ·X)2, M3(X) =
r∑
i=1

ωi (µi ·X)3. (7)

To analyse the properties of the decomposition (7), we introduce the apolar product on
tensors: For two homogeneous polynomials p(X) =

∑
|α|=d

(
d
α

)
pαX

α and q(X) =
∑
|α|=d

(
d
α

)
qαX

α

of degree d, in C[X]d, their apolar product is

〈p, q〉d :=
∑
|α|=d

(
d

α

)
p̄αqα.

The apolar norm of p is ||p||d =
√
〈p, p〉d =

√∑
|α|=d

(
d
α

)
p̄αpα. The apolar product is invari-

ant by a linear change of variables of the unitary group Um: ∀u ∈ Um, 〈p(uX), q(uX)〉d =
〈p(X), q(X)〉d.

It also satisfies the following properties. For v ∈ Cm, v(X)d = (v · X)d = (v1X1 + · · · +
vmXm)d, p ∈ C[X]d, q ∈ C[X]d−1, we have :

• 〈(v ·X)d, p〉d = p(v̄),

• 〈p,Xiq〉d = 1
d
〈∂Xip, q〉d−1.

For an homogeneous polynomial T of degree d ∈ N (or equivalently a symmetric tensor of
order d), we define the Hankel operator of T in degree k ≤ d as the map

Hk,d−k
T : p ∈ C[X]d−k 7→ [〈T,Xα p〉d]|α|=k ∈ Csk

where sk =
(
m+k−1

k

)
= dimC[X]k is the number of monomials of degree k in X. The matrix of

Hk,d−k
T in the basis (Xβ)|β|=d−k is

Hk,d−k
T = (〈T,Xα+β〉d)|α|=k,|β|=d−k.

From the properties of the apolar product, we see that H1,d−1
T : p 7→ 1

d
[〈∂XiT, p〉d−1]1≤i≤m. For

ξ ∈ Cm and k ∈ N, let ξ(k) = (ξα)|α|=k. We also check that if T = (ξ ·X)d with v ∈ Cm, then

Hk,d−k
(ξ·X)d

= ξ̄ (k) ⊗ ξ̄ (d−k) is of rank 1 and its image is spanned by the vector ξ̄ (k).
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Proposition 3.3. Assume that r < m, wi > 0 for i ∈ [r] and µ1, . . . , µr ∈ Rm are linearly
independent. The symmetric tensor M3(X) is identifiable, of rank r and has a unique Waring
decomposition satisfying (7).

Proof. Assume that M3(X) has a decomposition of the form (7). Since the vector µ1, . . . , µr
are linearly independent, by a linear change of coordinates in Glm, we can further assume that
µ1 = e1, . . . , µr = er are the first r vectors of the canonical basis of Rm. In this coordinate
system, M3(X) =

∑r
i=1X

3
i and the matrix H1,2

M3
in a convenient basis has a r× r identity block

and zero elsewhere. Thus H1,2
M3

is of rank r. Its kernel of dimension 1
2
m (m+ 1)− r is spanned

by the polynomials XiXj with (i, j) 6= (k, k) for k ∈ [r]. The kernel of H1,2
M3

is thus the space of
homogeneous polynomials of degree 2, vanishing at e1, . . . , er ∈ Rn.

If M3(X) can be decomposed as M3(X) =
∑r′

i=1 ω
′
i (µ

′
i ·X)3 with ω′i ∈ C, µ′i ∈ Cm and r′ < r,

then H1,2
M3

, as a sum of r′ < r matrices ω′iH
1,2
(µ′i·X)3 of rank 1, would be of rank smaller than r′ < r,

which is a contradiction. Thus a minimal decomposition of M3(X) is of length r and r is the
rank of M3(X).

Let us show that the decomposition (7) ofM3(X) is unique up to a scaling of the vector µi, i.e.
thatM3(X) is identifiable. For any Waring decompositionM3(X) =

∑r
i=1 ω

′
i (µ

′
i·X)3, the vectors

µ′1, . . . , µ
′
r are linear independent, since µ′i spans imH1,2

(µ′i·X)3 and H1,2
M3

=
∑r

i=1 ω
′
iH

1,2
(µ′i·X)3 is of

rank r. As µ′1, . . . , µ
′
r can be transformed into e1, . . . , er by a linear change of variables, kerH1,2

M3

is also the vector space of homogeneous polynomials of degree 2, vanishing at µ′1, . . . , µ
′
r ∈ Cm.

Therefore, the set of {µ′1, . . . , µ′r} coincides, up to a scaling, with the set of points {µ1, . . . , µr}
of another Waring decomposition of M3(X) =

∑r
i=1 ωi (µi · X)3. This shows that M3(X) is

identifiable.
Therefore, a Waring decomposition of M3(X) is of the form M3(X) =

∑r
i=1 ω̃i (µ̃i ·X)3 with

ω̃i = λ−3ωi, µ̃i = λiµi and λi 6= 0 for i ∈ [r]. As µ̃1, . . . , µ̃r are linearly independent, the
homogeneous polynomials (µ̃1 ·X)2, . . . , (µ̃r ·X)2 are also linearly independent in C[X]2 (by a
linear change of variables, they are equivalent to X2

1 , . . . , X
2
r ). Consequently, the relation

M2(X) =
r∑
i=1

ωi(µi ·X)2 =
r∑
i=1

λiω̃i(µ̃i ·X)2

defines uniquely λ1, . . . , λr, and M3(X) has a unique Waring decomposition, which satisfies the
relations (7).

Under Assumption 3.1, the hidden structure of the random variable x can thus be recovered
using Algorithm 1.

This yields the parameters ωi ∈ R+, µi ∈ Rm, σi ∈ R+ for i ∈ [r] of the Gaussian mixture x.
In the experimentation, the moments involved in the tensors Mi will be approximated by

empirical moments and we will compute an approximate decomposition of the empirical moment
tensor M̂3(X).

3.2. Decomposition of identifiable tensors

We describe now an important step of the approach, which is computing a Waring decom-
position of a tensor. In this section, we consider a tensor T ∈ C[X]d of order d ∈ N with a
Waring decomposition of the form T =

∑r
i=1 ωi (ξi ·X)d with ωi ∈ C, ξi ∈ Cm, that we recover

by linear algebra techniques, under some hypotheses.
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Algorithm 1 Recovering the hidden structure of a Gaussian mixture

Input: The moment tensors M1(X),M2(X),M3(X).

• Compute a Waring decomposition of M3(X) to get ω̃i ∈ R, µ̃i ∈ Rm, i ∈ [r] such that
M3(X) =

∑r
i=1 ω̃i (µ̃i ·X)3.

• Solve the system
∑r

i=1 ω̃i (µ̃i · X)2λi = M2(X) to get λi ∈ R and ωi = λ3
i ω̃i ∈ R+,

µi = λ−1
i µ̃i ∈ Rm such that M3(X) =

∑r
i=1 ωi (µi ·X)3 and M2(X) =

∑r
i=1 ωi (µi ·X)2.

• Solve the system
∑r

i=1 ωi(µi ·X)σ2
i = M1(X) to get σi ∈ R+.

Output: ωi ∈ R+, µi ∈ Rn, σi ∈ R+ for i ∈ [r].

Definition 3.4. The interpolation degree ι(Ξ) of Ξ = {ξ1, . . . , ξr} ⊂ Cm is the smallest degree
k of a family of homogenous interpolation polynomials u1, . . . , ur ∈ C[X]k at the points Ξ
(ui(ξj) = δi,j for i, j ∈ [r]).

For any d ≥ ι(Ξ), there exists a family (ũi)i∈[r] of interpolation polynomials of degree d,

obtained from an interpolation family (ui)i∈[r] in degree ι(Ξ) as ũi = (λ·X)d−ι(Ξ)

(λ·ξi)d−ι(Ξ)ui for a generic

λ ∈ Cm such that λ · ξi 6= 0 for i ∈ [r].
Notice that if the points Ξ = {ξ1, . . . , ξr} are linearly independent (and therefore r ≤ n),

then ι(Ξ) = 1 since a family of linear forms interpolating Ξ can be constructed.

If k ≥ ι(Ξ), then the evaluation map e
(k)
Ξ : p ∈ C[X]k 7→ (p(ξ1), . . . , p(ξr)) ∈ Cr is surjective.

Its kernel is the space of homogeneous polynomials of degree k vanishing at Ξ. Any supple-
mentary space admits a basis u1, . . . , ur, which is an interpolating family for Ξ in degree k. A
property of the interpolation degree is the following:

Lemma 3.5. For k > ι(Ξ), the common roots of ker e
(k)
Ξ is the union ∪ri=1C ξi of lines spanned

by ξ1, . . . , ξr ∈ Cm.

Proof. As ι(Ξ) + 1 is the Castelnuovo-Mumford regularity of the vanishing ideal I(Ξ) = {p ∈
C[X] | p homogeneous, p(ξ) = 0 for ξ ∈ Ξ} [Eis05][Ch.4], it is generated in degree k > ι(Ξ) and

the common roots of ker e
(k)
Ξ = I(Ξ)k is ∪ri=1C ξi.

Hereafter, we show that tensors T such that rankHk,d−k
T = r for k > ι(Ξ)+1 are identifiable

and we describe a numerically robust algorithm to compute their Waring decomposition.
Let U = (Uα,j)|α|=k,j∈[r] ∈ Csk×r be such that imU = imHk,d−k

T and Ui = (Uei+α,j)|α|=k−1,j∈[r]

be the submatrices of U with the rows indexed by the monomials divisible by Xi for i ∈ [n].

Theorem 3.6. Let T ∈ C[X]d with a decomposition T =
∑r

i=1 ωi (ξi · X)d with ωi ∈ C and

ξi = (ξi,1, . . . , ξi,n) ∈ Cm such that rankHk,d−k
T = r for some k ∈ [ι(ξ1, . . . , ξr) + 1, d]. Then T is

identifiable of rank r and there exist invertible matrices E ∈ Csk×sk , F ∈ Cr×r such that

Et Ui F =

[
∆i

0

]
(8)

with ∆i = diag(ξ̄1,i, . . . , ξ̄r,i) for i ∈ [n]. For any pair (E,F ), which diagonalises simultaneously
[U1, . . . , Um] as in (8), there exist unique ω′1, . . . , ω

′
r ∈ C such that T =

∑r
i=1 ω

′
i (ξ
′
i · X)d with

ξ̄′i = ((∆1)i,i, . . . , (∆m)i,i).
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Proof. From the decomposition of T , we have for k ≤ d that

Hk,d−k
T =

r∑
i=1

ωi ξ̄
(k)
i ⊗ ξ̄ (d−k)

i

is a linear combination of r Hankel matrices ξ̄
(k)
i ⊗ ξ̄

(d−k)
i of rank 1. If T is of rank r′ < r, then

using its decomposition of rank r′, Hk,d−k
T would be of rank ≤ r′ < r, which is a contradiction.

This shows that T is of rank r.
As rankHk,d−k

T = r, we deduce that the image of Hk,d−k
T is spanned by ξ̄

(k)
1 , . . . , ξ̄

(k)
r and

there exists an invertible matrix F ∈ Cr×r such that

U F = [ξ̄
(k)
1 , . . . , ξ̄(k)

r ]

For any polynomial p ∈ C[X]k, which coefficient vector in the monomial basis (Xα)|α|=k is
denoted [p], we have [p]tUF = [p(ξ̄1), . . . , p(ξ̄r)]

t. This shows that U⊥ = {p ∈ C[X] | [p]tU = 0}
is ker e

(k)

Ξ̄
. By Lemma 3.5 since k ≥ ι(Ξ̄), the common roots of the homogeneous polynomials

in ker e
(k)

Ξ̄
are the scalar multiples of Ξ̄. Consequently, the set of lines spanned by the vectors

Ξ of a Waring decomposition of T is uniquely determined as the conjugate of the zero locus of
U⊥ ⊂ C[X]k and T is identifiable.

For any p ∈ C[X]k−1 represented by its coefficient vector [p] in the monomial basis (Xα)|α|=k−1,
we have

[p]tUiF = [xip]
tUF = [ξ̄1,i p(ξ̄1), . . . , ξ̄r,i p(ξ̄r)]

t. (9)

Let E be the coefficient matrix of a basis u1, . . . , ur, vr+1, . . . , vsk−1
of C[X]k−1, such that

u1, . . . , ur is an interpolating family for Ξ̄ = {ξ̄1, . . . , ξ̄r} and vr+1, . . . , vsk−1
is a basis of ker e

(k−1)

Ξ̄
.

The matrix E is invertible by construction, and we deduce from (9) that

EtUiF =

[
diag(ξ̄1,i, . . . , ξ̄r,i)

0

]
.

Let us show conversely that for any pair of matrices (E ′, F ′), which diagonalises simultane-
ously [U1, . . . , Um] as in (8) with ∆i = diag(ξ̄′1,i, . . . , ξ̄

′
r,i), there exist unique ω′1, . . . , ω

′
r ∈ C such

that T =
∑r

i=1 ω
′
i (ξ
′
i ·X)d.

Let u′1, . . . , u
′
r, v
′
r+1, . . . , v

′
sk−1
∈ C[X] be the polynomials corresponding to the columns of

E ′. Then for a generic λ = (λ1, . . . , λr) ∈ Cm, we have

diag((λ · ξ̄′1), . . . , (λ · ξ̄′r)) =
m∑
i=1

λi[u
′
1, . . . , u

′
r]
tUiF

′ =
m∑
i=1

λi[u
′
1, . . . , u

′
r]
tUiF (F−1F ′)

= [(λ · ξ̄j)u′i(ξ̄j)]i,j∈[r]F
−1F ′

= diag((λ · ξ̄1), . . . , (λ · ξ̄r)) [u′i(ξ̄j)]i,j∈[r]F
−1F ′.

As λ ∈ Cm is generic and λ · ξ̄i 6= 0 for i ∈ [r], we deduce that ∆ = [u′i(ξ̄j)]i,j∈[r]F
−1F ′ is a

diagonal and invertible matrix and that ξ′i = ∆̄i,iξi with ∆i,i 6= 0.
Then we have (ξ′i · X)d = ∆̄d

i,i (ξi · X)d and T =
∑r

i=1 ω
′
i (ξ
′
i · X)d with ω′i = ∆̄−di,i ωi. The

weights ω′1, . . . , ω
′
r and the decomposition are unique, since for d > ι(Ξ̄) there exist interpo-

lation polynomials u1, . . . , ur in degree d such that 〈(ξi ·X)d, uj〉d = uj(ξ̄i) = δi,j so that the
polynomials (ξ′i ·X)d = ∆̄d

i,i (ξi ·X)d are linearly independent. This concludes the proof of the
theorem.

This leads to Algorithm 2 to compute a Waring decomposition of an identifiable tensor T .
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Algorithm 2 Decomposition of an identifiable tensor

Input: T ∈ C[X]d, which admits a decomposition with r points Ξ = {ξ1, . . . , ξr} and k > ι(Ξ).

• Compute the Singular Value Decomposition of Hk,d−k
T = U S V t;

• Deduce the rank r of Hk,d−k
T , take the first r columns of U and build the submatrices Ui

with rows indexed by the monomials (XiX
α)|α|=k−1 for i ∈ [n];

• Compute a simultaneous diagonalisation of the pencil [U1 . . . , Um] as EtUiF =[
diag(ξ̄1,i, . . . , ξ̄r,i)

0

]
and deduce the points ξi = (ξi,1, . . . , ξi,n) ∈ Cm for i ∈ [r];

• Compute the weights ω1, . . . , ωr by solving the linear system T =
∑r

i=1 ωi (ξi ·X)d;

Output: ωi ∈ C, ξi ∈ Cm s.t. T =
∑r

i=1 ωi (ξi ·X)d.

4. Numerical experimentations

The model used in this section is the Gaussian Mixture Model (GMM) with differing spheri-
cal covariance matrices. Recall that if x = (x1, . . . , xn) is a sample of n independent observations
from r multivariate Gaussian mixture with differing spherical covariance matrices of dimension
m, and h = (h1, h2, . . . , hn) is the latent variable that determine the component from which the
observation originates, then:

xi | (hi = k) ∼ Nm(µk, σ
2
kIm) where,

Pr(hi = k) = ωk, for k ∈ [r], such that
r∑

k=1

ωk = 1.

The aim of statistical inference is to find the unknown parametrs µk, σ
2
k and wk, for k ∈ [r] from

the data x. This can be done by finding the maximum likelihood estimation (MLE) i.e. finding
the optimal maximum of the likelihood function associated to this model. The expectation
maximisation algorithm (EM) [DLR77], usually used for finding MLEs, is an iterative algorithm
in which the initialisation i.e. the initial estimation of the latent parameters is crucial, since
various initialisations can lead to different local maxima of the likelihood function, consequently,
yielding different clustering partition. Thus, in this section we compare the clustering results
obtained by different initialisation of the EM algorithm against the initialisation by the method
of moments through examples of simulated (subsection 4.1) and real (subsection 4.2) datasets.
We fix a maximum of 100 iterations of the EM algorithm. The different initialisation considered
in this section are the following:

• The k-means method [Mac67] according to the following strategy:
The best partition obtained out of 50 runs of the k-means algorithm.

• The method of moments, where Algorithm 2 is applied to the empirical moment ten-
sor corresponding to M3(X) (see Theorem 3.2), with less than 5 Riemannian Newton
iterations [KKM20] to reduce the distance between the empirical moment tensor and its
decomposition.
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• The Model-based hierarchical agglomerative clustering algorithm (MBHC) [VD00, Fra98].

• The emEM strategy [BCG03] as in [LIL+15] which makes 5 iterations for each of 50 short
runs of EM, and follows the one which maximises the log-likelihood function by a long
run of EM.

The k-means, MBHC and emEM are common strategies for initialising the EM algorithm for
GMMs. The comparison among the different EM initialisation strategies is based on three
measures: The Bayesian Information Criterion (BIC) [Sch78, FR98], the Adjusted Rand Index
(ARI) [HA85], and the error rate (errorRate). The BIC is a penalized-likelihood criterion given
by the following formula

BIC = −2`(θ̂) + log(n)ν,

where ` is the log-likelihood function , θ̂ is the MLE which maximises the log-likelihood function
and ν is the number of the estimated parameters. This criterion measures the quality of the
model such that for comparing models the one with the largest BIC value among the other
models is the most fitted to the studied dataset. The ARI criterion measures the similarity
between the estimated clustering obtained by the applied model and the exact true clustering.
Its value is bounded between 0 and 1. The more this measure is close to 1 the more the estimated
clustering is accurate. The error rate measure can be viewed as an alternative of the ARI. In
fact this criterion measures the minimum error between the predicted clustering and the true
clustering, and thus low error rate means high agreement between the estimated and the true
clustering. The former criteria as well as the EM algorithm are used from the tools of the
package mclust [SFMR16] in R programming.

4.1. Simulation

We performed 100 simulations from each of the two models described in examples 4.1 and
4.2. We counted the instances where each of the considered initialising strategies for the EM
could find throughout the 100 simulated data and among the other initialisation methods the
largest BIC, the highest ARI, ARI≥ 0.99 (as in this case the clustering obtained is the most
accurate) and the lowest errorRate. The values of the BIC, ARI, errorRate and consumed
time of the different considered initialisation strategies for one dataset sampled according to
the model of Example 4.1 (resp. 4.2) are presented in Table 1 (resp. 3), and Figure 1 (resp. 2)
shows a two-dimensional visualisation of the observations according to the first four features, the
observations in the upper panels are labeled according to the actual clustering, while they are
labeled in the lower panels according to the clustering obtained by the EM algorithm initialised
by the method of moments. In order to have an estimation about the numerical stability of
the obtained results, we repeat the same numerical experiment for each example 20 times and
we compute the means (Table 2, 4) and the variances (values in parentheses in Table 2, 4) of
the 20 percentages obtained of each of the BIC, ARI, ARI≥ 0.99 and errorRate values for the
different initialising strategies.
As we mentionned before the initialising strategies considered in this comparision against the
method of moments are common and have, in general, good numerical behavior. Nevertheless,
we cannot expect all the initialisation strategies that exist for the EM algorithm to work well
in all the cases [BCG03, MM10]. Herein, these two examples are chosen in such a way to
present some cases where the common initialising strategies k-means, MBHC and emEM have
some difficulties to provide a good initialisation to the EM algorithm for the GMMs with
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differing spherical covariance matrices, or in other words where the initialisation by the method
of moments outperforms the other considered initialisations. For instance, we put in each of
these two examples one cluster of small size (the blue cluster in Figure 1, the red cluster in Figure
2), we want to make the clusters overlap, since these initialising strategies could misscluster the
dataset if the clusters are intersecting. We notice that this choice of the mean vectors and the
different variances in each of the two examples yields a dataset with the expected clustering
characteristic.

Example 4.1. In the first simulation example, a multivariate dataset (m=6) of n=1000 obser-
vations generated with r=4 clusters according to the following parameters:

• The probability vector: ω = (0.2782, 0.0139, 0.3324, 0.3756)T .

• The mean vectors: µ1 = (−5.0,−9.0, 8.0, 8.0, 2.0, 5.0)T , µ2 = (−7.0, 6.0,−1.0, 6.0,−8.0,−10.0)T ,
µ3 = (−4.0,−10.0,−5.0, 1.0, 5.0, 4.0)T , µ4 = (−6.0, 6.0, 5.0, 4.0,−1.0,−1.0)T .

• The variances: σ2
1 = 1.5, σ2

2 = 2.5, σ2
3 = 5.0, σ2

4 = 15.0.

Table 1: Numerical results of one data set of Example 4.1

Method BIC ARI errorRate time(s)
em km -29590.48 0.8281 0.168 0.045

em mom -29492.11 1.0 0.0 0.547
em mbhc -29594.97 0.8574 0.099 0.287
em emEM -29593.18 0.8366 0.132 0.171

Table 2: Estimation of the stability of Example 4.1 results

Method BIC ARI ARI ≥ 0.99 errorRate
em km 38.35% (37.82) 47.6% (21.41) 48.85% (21.61) 47.6% (21.2)

em mom 74.8% (41.01) 88.75% (15.36) 83.4% (18.36) 88.60% (14.46)
em mbhc 10.75% (12.41) 15.9% (17.57) 15.55% (22.99) 15.9% (19.46)
em emEM 7.3% (8.43) 14.5% (8.05) 12.6% (17.83) 14.95% (7.52)

Example 4.2. In the second simulation example, a multivariate dataset (m=5) of n=1000
observations generated with r=3 clusters according to the following parameters:

• The probability vector: ω = (0.0930, 0.2151, 0.6918)T .

• The mean vectors: µ1 = (7.0,−4.0,−4.0,−6.0,−4.0)T , µ2 = (2.0,−4.0,−6.0,−10.0,−3.0)T ,
µ3 = (4.0,−4.0,−5.0, 6.0, 1.0)T .

• The variances: σ2
1 = 5.0, σ2

2 = 10.0, σ2
3 = 15.0.
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Figure 1: Scatterplot matrix for the sampled dataset of Example 4.1 projected onto the first four variables
(features): upper panels show scatterplots for pairs of variables in the original clustering; lower panels show the
clustering obtained by applying the EM algorithm initialised by the method of moments.

The Table 2, 4 show that in Example 4.1, 4.2 the best results among the considered initial-
ising strategies are for the method of moments. In fact, in the former two tables we see that the
method of moments found throughout the 100 simulated datasets, in average (by runing the
numerical experiment 20 times), the largest BIC, highest ARI, ARI≥ 0.99 and lowest errorRate
among the other initialisation strategies in more instances than all the other considered initial-
isation method, implying in this context marked outperformance for the moments initialisation
method. Note that the consumed time (see. Table 1, 3) tends to be higher in the method of
moments than in the other initialisation strategies. This is expected since stochastic approaches
(to which the methods k-means, MBHC and emEM belong) outperform the deterministic ap-
proaches (as the method of moments) in this term.
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Table 3: Numerical results of one data set of Example 4.2

Method BIC ARI errorRate time(s)
em km -28360.30 0.4352 0.309 0.051

em mom -28246.02 0.9498 0.03 0.504
em mbhc -28358.67 0.3197 0.384 0.292
em emEM -28360.42 0.4408 0.296 0.141

Table 4: Estimation of the stability of Example 4.2 results

Method BIC ARI ARI ≥ 0.99 errorRate
em km 0.45% (0.576) 0.05% (0.05) 0.0% (0.0) 0.1%(0.095)

em mom 50.0% (18.63) 92.35% (9.82) 0.0% (0.0) 92.1% (7.46)
em mbhc 49.35% (19.82) 2.45% (3.63) 0.0% (0.0) 2.45% (2.58)
em emEM 0.3% (0.326) 5.2% (4.48) 0.0% (0.0) 5.9% (5.36)

Figure 2: Scatterplot matrix for the sampled dataset of Example 4.2 projected onto the first four variables
(features): upper panels show scatterplots for pairs of variables in the original clustering; lower panels show the
clustering obtained by applying the EM algorithm initialised by the method of moments.
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4.2. Real data

In this subsection we present two examples of real datasets, for which we know already their
number of clusters, and we report the different BIC, ARI and errorRate values as well as the
consumed time attained by the EM algorithm initialised by the different considered initialisation
strategies and used with the GMM of different spherical covariance matrices. The explored real
data are: The famous iris data [Fis36, DT17] widely used as an example of clustering to test
the algorithms and the olive oil dataset [AM14].

Example 4.3. The iris dataset contains four physical measurements (length and width of sepals
and petals) for 50 samples of three species of iris (setosa, virginica and versicolor). The number
of features is n = 4 and the number of clusters is r = 3.
The four initialisation strategies yield the same BIC value. The ARI and the errorRate values

Table 5: Numerical results of Example 4.3

Method BIC ARI errorRate time(s)
em km -1227.67 0.6199 0.167 0.007

em mom -1227.67 0.6410 0.153 0.203
em mbhc -1227.67 0.6199 0.167 0.007
em emEM -1227.67 0.6302 0.160 0.045

are slightly better with the moment initialisation among the other considered initialisation
strategies. On the other hand, the consumed time is clear higher in the moment method
initialisation.

Example 4.4. The olive oil data set contains the chemical composition (8 chemical properties)
of 572 olive oils. They are derived from three different macro-areas in Italy (South, Sardinia
and Centre North). The dataset contains as well nine regions from which the olive oils were
taken in Italy. Thus we can cluster this dataset according to the macro-areas (r = 3) or the
region (r = 9). As the number of features in this dataset is n = 8, we choose r = 3, so that the
condition r ≤ n for the method of moment is verified.
The results show that the MBHC initialisation strategy yields the largest BIC, the highest

Table 6: Numerical results of Example 4.4

Method BIC ARI errorRate time(s)
em km -10948.64 0.4018 0.262 0.021

em mom -10946.46 0.4532 0.210 0.508
em mbhc -10625.59 0.5003 0.185 0.080
em emEM -10948.72 0.4040 0.260 0.087

ARI and the lowest errorRate values among the other initialisation strategies. Nevertheless,
the initialisation by the moment method comes to be the second after the MBHC strategy in
terms of the BIC, ARI and errorRate values, while the K-means and the emEM initialisation
strategies attain almost the same values of the previously mentionned criteria.

This shows that for these datasets which are not well fitted by the mixture of spherical
Gaussians, the moment method can still give good initialisations for the EM algorithm, in
comparision with the common initialisation strategies.
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5. Conclusion

In the context of unsupervised machine learning, the type of models to be recovered plays
an important role. For Gaussian mixture models, where iterative methods such as Expectation
Maximisation algorithms are applied, the choice of the initialisation is also crucial to recover
an accurate model of a given dataset. We demonstrated in the experimentations that tensor
decomposition techniques can provide a good initial point for the EM algorithm, and that the
moment tensor method outperforms the other state-of-the-art strategies, when datasets are well
represented by spherical gaussian mixture models. For that purpose, we presented a new tensor
decomposition algorithm adapted to the decomposition of identifiable tensors with low interpo-
lation degree, which applies to the 3rd order moment tensors associated to the data distributions.
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