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Abstract

This paper investigates the optimal asset allocation of a financial institution whose customers
are free to withdraw their capital-guaranteed financial contracts at any time. Accounting for
asset-liability mismatch risk of the institution, we present a general utility optimization problem
in discrete time setting and provide a dynamic programming principle for the optimal investment
strategies. Furthermore, we consider an explicit context, including liquidity risk, interest rate
and credit intensity fluctuations, and show, by numerical results, that the optimal strategy
improves the solvency and the asset returns of the institution compared to the baseline asset
allocation.
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1 Introduction

Recent financial turmoil and market stresses following the sub-prime crisis or the Covid-19 pan-

demic had a double impact on asset management: massive withdrawals accompanied by violent

and persistent liquidity shocks. This type of phenomenon constitutes a major risk for financial

institutions including banks, insurers, and pension funds that offer capital-guaranteed contracts,

such as deposit accounts or life insurance savings products, as it can lead to the bankruptcy of the

institution.

Capital-guaranteed contracts are characterized by the security of the capital invested, the ab-

sence of predetermined maturity, and the right for customers to surrender it at any time. The

sharp increase in redemptions generally occurs in two main cases: (i) when customers consider the

financial institution to be at risk, usually during a financial crisis when default risk increases; or

(ii) when customers find more attractive investment opportunities, usually during periods of rising

interest rates. It becomes difficult for a financial institution to meet its redemptions when it is

concomitantly exposed to a liquidity shock that forces it to sell assets at discounted prices. This

situation deteriorates the solvency of the financial institution that bears the guaranteed-capital

risk, which increases the demand for redemptions and can induce a snowball effect leading to the

insolvency of the institution.

The solvency risk implied by a liquidity mismatch between assets and liabilities of a financial

institution has increased in the recent years for two reasons. First, institutional investors are not

legally required to build a sufficient cushion to absorb the liquidity risk. For instance, the Solvency

II Directive does not require regulatory capital (SCR) to be based on the illiquidity of assets

held by European insurers. Yet, this major risk is taken into account for investment funds: the

European Securities and Markets Authority recently published a set of guidelines on liquidity stress

testing to be implemented from September 2020.1 Second, the low interest rate environment that

has prevailed since the end of the sub-prime and sovereign debt crises has incentivized financial

institutions in a yield-seeking race, leading to significant investments in illiquid assets.

This paper first investigates in a fairly general framework the optimal asset allocation of a

financial institution offering capital-guaranteed contracts and whose customers are free to withdraw

1https://www.esma.europa.eu/sites/default/files/library/esma34-39-882_final_report_guidelines_

on_lst_in_ucits_and_aifs.pdf.
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their financial contract at any time on the liability side. We suppose that the withdrawals occur

according to a general marked point process whose jump times represent the surrender times

from the customers and random marks represent the payment values of each withdrawal. The

intensity of the point process, which characterizes the frequency of withdrawals, may typically be

impacted by uncertainty of the rise of interest rates and the deterioration of credit quality. We

consider a discrete-time setting where the transactions take place at a finite set of discrete times

to be consistent with the effective practices of asset managers. The financial institution, given its

risk aversion, searches to optimize the asset allocation of the investment portfolio by using the

expected utility maximization upon the wealth value at a final horizon. Moreover, several solvency

constraints are specified to impose asset-liability requirement in terms of risk measures, such as the

quantile and the expected shortfall introduced by Föllmer and Leukert (1999, 2000). In literature,

portfolio management with benchmarking and constraints has been studied to find the so-called

Desired Benchmark Strategy, see for example Boyle and Tian (2007) with a quantile constraint

outperforming a stochastic benchmark at final time, or Gundel and Weber (2007) with a joint

expected shortfall and budget constraint or El Karoui et al. (2005) with a deterministic benchmark

at all future dates.

In our paper, the solvency risk are examined with a stochastic liability which represents the

guaranteed-capital level. Moreover, the asset-liability constraints are required in a dynamic way

at each time step. We may also include the constraint at final time as a penalty added to the

utility function. In order to study these constraints of different nature in a coherent way, we adopt

the random utility as in Blanchard and Carassus (2018) which allows to incorporate the penalized

utility depending on an extra random element. We provide a dynamic programming principle

for the general optimization problem. The main technical point is to prove that the admissible

trading strategy set under all required constraints remains to be stable by El Karoui (1981). Then

the optimal dynamic investment strategy can be obtained recursively. For the exponential utility

function, the optimal value function at each time step remains to be a weighted exponential function.

For the power utility function, an explicit form of the optimal value function is more difficult to

derive. In this case, we obtain the solution by numerical methods.

The financial institution can invest in interest rate and credit, and therefore, it is exposed to

these market risks. In a subsequent step we consider a special portfolio subject to withdrawal and
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liquidity risks under credit intensity and interest rate fluctuation. Financial liquidity risks increase

has been materialized notably in an increase of investments in high yield bonds (Bao et al., 2011;

Dick-Nielsen et al., 2012). While some assets can be clearly identified as specifically illiquid, many

liquid assets can become illiquid in times of financial stress. Considering bonds, Favero et al.

(2009) and Chen et al. (2011) show that a rise in government or corporate internal liquidity risk

increases credit risk, which further deteriorates the solvency of the institution. Similar as in Chen

et al. (2017), we suppose the liquidity intensity increases with the credit risk. More precisely,

the intensity of liquidity shocks is supposed to be a CEV function (see e.g. Carr and Linetsky

(2006)) of the credit intensity. In line with practice and the literature, the institution optimizes its

solvency over a given horizon (Berry-Stölzle, 2008; Cousin et al., 2016; Pan and Xiao, 2017) and

the optimal strategies are illustrated by numerical resolution using the methodology introduced

in Brandt et al. (2005) and the calibration of market data for interest rate and credit intensity.

We show how accounting for the joint risks of liquidity on the assets side and withdrawals on the

liabilities side substantially modifies the optimal asset allocation and that the latter outperforms

standard allocations in terms of solvency ratio and asset returns. Specifically, we show how the

increase in credit and interest rate risks pushes the financial institution to secure its allocation,

thereby mitigating its default risk.

Our main contributions to the literature on optimal asset allocation and asset-liability manage-

ment are twofold. First, we introduce an endogenous withdrawal risk, which affect both the assets

portfolio and the liability benchmark. The solvency constraints are examined in dynamic setting

at all time steps with a random utility. Second, we study the impact of illiquidity on optimal asset

allocation for an explicit portfolio under massive withdrawal pressure and illustrate how to adjust

allocation strategies for financial institutions facing withdrawal and liquidity shocks.

Optimal asset-liability management problem with withdrawal risk is also an important concern

for life insurance companies who issued variable annuity contracts with investment guarantees. A

typical example is the guaranteed minimum withdrawal benefits (GMWBs) rider which allows the

policyholder to withdraw funds on an annual or semi-annual basis (there is a contractual withdrawal

rate such that the policyholder is allowed to withdraw at or below this rate without a penalty).

The valuation and hedging of GMWB have been extensively covered in the actuarial literature

(see e.g. Kling et al., 2013; Steinorth and Mitchell, 2015; Shevchenko and Luo, 2017), while the
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computation of the risk based capital for risk management and regulatory reasons has only been

recently studied (Feng and Vecer, 2016; Wang and Xu, 2020). Numerical efficient methods for

calculating the distribution of the total variable annuity liabilities of large portfolios have also been

proposed (see e.g. Lin and Yang (2020)), but, to the best of our knowledge, the issues of the asset-

liability management as well as the asset allocation for such unit-linked life insurance contracts

have not been addressed.

The remainder of this paper is organized as follows. In Section 2, we present the general

optimization problem under different asset-liability constraints. In Section 3, we focus on a special

and realistic case (with asset prices specifications and constraints on asset weights) that is solved

via numerical optimization methods. Section 4 concludes.

2 General optimization problem

2.1 Model setup under withdrawals and solvency constraints

We consider a financial institution that has a large pool of customer contracts. Let the market

be modeled by a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 which satisfies

the usual conditions. At the initial date, customers delegate their cash to the financial institution,

and the institution immediately invests this cash into financial assets. We denote the investment

portfolio value by X = (Xt)t≥0, with X0 = x > 0. Customers can require to withdraw money from

their contract freely at any time. The surrender times are denoted by a sequence of increasing

random times {Twi }i≥1 and the aggregated payment process is denoted by Y = (Yt)t≥0 that we will

make precise later on. The liability value of the pool of contracts (that accounts for withdrawals

in particular) is denoted by L = (Lt)t≥0.

For now, we do not make strong assumptions on the stochastic dynamics of financial assets.

We consider the investment portfolio composed of one risk-free asset denoted by S0 = (S0
t )t≥0,

which represents the deposit account influenced only by interest rate evolution, together with a

family of risky assets, (S1
t , · · · , Snt )t≥0, that may be sensitive and subject to other financial risks

such as credit and liquidity risks. Let S = (St)t≥0 where St = (S0
t , S

1
t , · · · , Snt ) be the (n + 1)-

dimensional adapted process representing the vector of asset prices. The trading strategies are

described by a (n+1)-dimensional predictable process Π = (Πt)t≥0 where for any t ≥ 0, the vector
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Πt = (Π0
t ,Π

1
t , · · · ,Πn

t ) represents the the proportional share the investor chooses to hold in each

of the assets. We consider a discrete time setting and suppose that the transactions of financial

assets take place at {0 = t0 < t1 < · · · < tm = T} where the terminal date T is finite. In other

words, for every i ∈ {0, 1, · · · , n},

Πi
t =

m∑
k=1

Πi
tk
I(tk−1,tk](t) , t ∈ (0, T ], Πi

0 = Πi
t0 .

For k = 1, · · · ,m, Πi
tk

represents the proportional share at tk of the investor’s holdings in the asset

Si and is Ftk−1
-measurable according to the asset prices observed at tk−1. It holds that

Π0
tk

= 1−
n∑
i=1

Πi
tk
, for every k ∈ {0, · · · ,m}.

We suppose that the market is arbitrage free. The asset portfolio is used to make the withdrawal

payments of the financial institution who, without loss of generality, has a large pool of M ≥ 1

customer contracts. The aggregated payment process Y is defined by

Yt =

M∑
i=1

Γi I{Twi ≤t}, t ≥ 0 (2.1)

where {Γi}1≤i≤M represents the guaranteed value associated to the ith withdrawal required from

the investors and can be considered as a mark to the successive random time {Twi }1≤i≤M . We

suppose in addition that, for a withdrawal claim which takes place at time Twi , the payment is

effectively made at inf{tk : tk ≥ Twi , k = 0, 1, · · · ,m}. Therefore, taking into account the evolution

of traded assets and the withdrawal payments, the investment portfolio value at tk is given by

Xtk = Xtk−1
+Xtk−1

Πtk ·
( 1

Stk−1

∗ (Stk − Stk−1
)
)
− (Ytk − Ytk−1

) k = 1, · · · ,m. (2.2)

where for any a = (a1, · · · , an+1) and b = (b1, · · · , bn+1), the notation a ∗ b denotes the vector

(a1b1, · · · , an+1bn+1), and a · b denotes the inner product a1b1 + · · ·+ an+1bn+1.

Example 1. Consider a large pool of M identical customer contracts. For each contract, the

deposit value guaranteed by the financial institution at t ≥ 0 is Kt = K0e
κt, where K0 is the

initial amount and κ is a constant remuneration rate prefixed by the financial institution. The
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arrival of the withdrawals is described by a doubly stochastic Poisson process, namely a Cox process

N = (Nt)t≥0, whose jump times, denoted by {Twi }i≥1, represent the surrender times. The aggregated

payment process is therefore given by

Yt =

Nt∧M∑
i=1

KTwi
. (2.3)

The frequency of jumps, that is, of the withdrawals, is characterized by the intensity of the Cox

process N . For example, massive withdrawals may occur under uncertainty of the rise of interest

rates and the deterioration of credit quality on financial markets, in which case the intensity of N

will increase.

The financial institution, who is exposed to the risk of potentially massive withdrawals, aims

at finding the optimal investment strategies, according to its risk preference or aversion, under

expected utility maximization criterion of final wealth value of the investment portfolio at a time

horizon T > 0. We denote the utility function of the financial institution by U : R+ → R,

which is assumed to be strictly increasing, strictly concave, and to belong to C1, the class of all

differentiable functions whose derivative is continuous. In addition, we suppose that U satisfies the

Inada conditions, i.e., limx→0+ U
′(x) = +∞ and limx→+∞ U

′(x) = 0. In particular, we can choose

U as the power utility U(x) = x1−p/(1− p), where the risk aversion coefficient satisfies p > 0 and

p 6= 1, and x ∈ R+, which means that the wealth can only take positive values. Another typical

example is the exponential utility function, U(x) = −e−px, with p > 0 and x ∈ R. Note that the

wealth can take negative values with such a choice of utility function. In this case, the first Inada

condition writes limx→−∞ U
′(x) = +∞. 2

In practice, the financial institution often imposes on its asset managers to comply with (i)

allocation or (ii) solvency constraints that we will take into consideration. First, by delegating the

management of their assets to an asset manager, financial institutions usually impose allocation

constraints, also known as strategic asset allocation (SAA). Asset managers thus have leeway in

their investment decisions as long as their allocation complies with the SAA. Therefore, we assume

that the proportional shares of the assets or some linear combinations of these proportions remain

into pre-defined intervals. More precisely, all the conditions translate into m+ 1 linear systems of

2See Section 2.3 for a more detailed discussion.
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inequality constraints, at each transaction date, of the form

AcΠ
>
tk
≤ Bc, ∀ k = 0, 1, · · · ,m, (2.4)

where Ac is a matrix with q rows and n + 1 columns, and Bc is a q-dimensional vector, q being

the number of allocation constraints, and Π>tk denotes the transposition of the vector Πtk . Such

investment constraints on asset proportions are frequent when asset types are fixed.

Second, we assume that the financial institution has a solvency constraint: it must keep the

ratio of the investment portfolio value over the liability value upon a constant C > 0. This positive

constant represents the minimum regulatory capital imposed by solvency rules (e.g., Solvency II).

Two main cases of solvency constraints may be imposed on the financial institution. The require-

ment is considered either in probability sense in a dynamic way (for example, with a probability

larger than a given threshold α, e.g. 90%) or by incorporating a penalty function based on a

relevant risk measure at the terminal date T in its optimization problem.

Let us consider the first case. Let α ∈ (0, 1]. The asset-liability constraint is imposed by the

quantile constraint as in Föllmer and Leukert (1999) and expressed here in the following dynamic

form of conditional expectations:

P
(
Xtk/Ltk ≥ C|Ftk−1

)
≥ α, ∀ k = 1, · · · ,m. (2.5)

The solvency threshold requirement is expected to be satisfied at the initial date, i.e., X0/L0 ≥ C.

Then, at each date, the end-of-period asset-liability ratio should be above the solvency threshold C

with at least a confidence probability level α. The above constraint is given in form of conditional

probability and is called the “next-period constraint” in Jiao et al. (2017). In this case, the asset-

liability requirement is imposed by considering two successive dates and accounting for the financial

situations of the previous date. The liability value for the financial institution is determined by the

total value of the contracts still in the pool together with their potential payments. For example,

in the setting of Example 1, the liability can be given as

Lt = Kt (M −Nt) , if Nt ≤M. (2.6)
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When Nt > M , all contracts end, and we let Lt = 0.

In a similar way, we could have considered the expected shortfall constraint in Föllmer and

Leukert (2000) given as the following conditional expectation form:

E
[
(Xtk − CLtk)+|Ftk−1

]
≥ β, β ∈ R+, ∀ k = 1, · · · ,m. (2.7)

As a first optimization approach, the optimal investment is then defined by

V x
0 = sup

Π∈Ax
E[U(XT )], X0 = x, (2.8)

where

Ax =


Π = (Πtk)mk=0

= (Π0
tk
, · · · ,Πn

tk
)mk=0

:

∀ i ∈ {0, 1, · · · , n} and k ∈ {1, · · · ,m}, Πi
tk

is Ftk−1
-measurable3,

∀ k ∈ {0, 1, · · · ,m}, Π0
tk

= 1−
∑n

i=1 Πi
tk
,

the constraints (2.4) and {(2.5) or (2.7)} hold.


Our objective is to find an optimal strategy Π̂ and its corresponding optimal investment portfolio

value.

As a second optimization approach, the asset-liability constraints are incorporated directly in

the optimal investment problem as a penalty function. Then the objective function are interpreted

as a modified expected utility maximization. Let θ > 0 be some risk aversion level with respect to

the asset-liability constraint whose value is chosen by the financial institution. Once the constraint

is triggered, a penalty will be applied. The case of expected shortfall constraints can be interpreted

as the utility optimization with the linear penalty given as

V x
0 = sup

Π∈Ax
E[U(XT )− θ(CLT −XT )+], X0 = x. (2.9)

To emphasize the impact of large losses, we can also introduce the quadratic penalty and consider

the following problem

V x
0 = sup

Π∈Ax
E
[
U(XT )− θ

(
(CLT −XT )+

)2]
, X0 = x. (2.10)

3By convention, Πi
t0 is F0-measurable.
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The admissible investment strategy set is given by

Ax =

Π = (Π0
tk
, · · · ,Πn

tk
)mk=0 :

∀i ∈ {0, 1, · · · , n} and k ∈ {1, · · · ,m}, Πi
tk

is Ftk−1
-measurable,

∀ k ∈ {0, 1, · · · ,m}, Π0
tk

= 1−
∑n

i=1 Πi
tk
,

the constraint (2.4) holds.


The last problem (2.10) will be further investigated and numerically studied in Section 3.

2.2 General formulation and dynamic programming principle

To study the optimization problems under different asset-liability constraints in Section 2.1 in a

coherent and parsimonious framework, we adopt the notion of random utility functions Ũ(·, ·) as in

Blanchard and Carassus (2018). By definition, Ũ can depend on some random elements which are

FT -measurable and include the penalized utility function in (2.9) and (2.10). In this representation,

the function Ũ can be viewed as an FT ⊗B(R)-measurable map Ω×R→ R such that for any ω ∈ Ω,

Ũ(ω, ·) is increasing and concave. For the simplicity of notation, we omit the variable ω ∈ Ω while

referring to the function Ũ , and Ũ(ω, x) is written in abbreviation as Ũ(x).

For the optimization problem (2.8) with different constraints, we introduce a family of auxiliary

functions. For any k ∈ {1, · · · ,m}, let ϕk : Ω × R → R be an Ftk ⊗ B(R)-measurable function,

which is assumed to be bounded from below. Similarly, ϕk(ω, x) is written as ϕk(x) and the variable

ω ∈ Ω is omitted.

We summarize the optimization problems stated in the previous section by specifying the con-

straint functions ϕk and the generalized utility function Ũ as below.

1. By taking Ũ(x) = U(x) and ϕk(x) = 1{x≥CLtk}−α, we recover problem (2.8) under constraint

(2.5).

2. By taking Ũ(x) = U(x) and ϕk(x) = (x − CLtk)+ − β, we recover problem (2.8) under

constraint (2.7).

3. By taking Ũ(x) = U(x)− θ(CLT − x)+ and ϕk(x) = 0, we recover problem (2.9).

4. By taking Ũ(x) = U(x)− θ
(
(CLT − x)+

)2
and ϕk(x) = 0, we recover problem (2.10)
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Our aim is to maximize the expected final wealth of the function Ũ(XT ) under the constraint

that E[ϕk(Xtk)|Ftk−1
] ≥ 0 for any k ∈ {1, · · · ,m}. More precisely, the optimization problem is

then stated as

Ṽ x
0 := sup

Π∈Ax
E[Ũ(XT )], X0 = x, (2.11)

where Ax is the admissible strategy set defined by

Ax =


Π = (Π0

tk
, · · · ,Πn

tk
)mk=0 :

∀i ∈ {0, 1, · · · , n} and k ∈ {1, · · · ,m}, Πi
tk

is Ftk−1
-measurable,

∀ k ∈ {0, 1, · · · ,m}, Π0
tk

= 1−
∑n

i=1 Πi
tk
,

∀ k ∈ {1, · · · ,m}, E[ϕk(Xtk)|Ftk−1
] ≥ 0,

the constraint (2.4) holds.


(2.12)

We now provide a dynamic programming principle for (2.11). For any admissible strategy Π

and any k ∈ {0, · · · ,m}, we denote by Π(k) = (Πtj )j=0,··· ,k the truncated process of Π up to tk.

We introduce the dynamic value function process as

Ṽtk(Π) = ess sup
Π′∈Ax, Π′(k)=Π(k)

E[Ũ(XΠ′
T )|Ftk ], k = 0, · · · ,m (2.13)

where XΠ′
T denotes the value of the investment portfolio at T under a trading strategy Π′. Note

that in the case where k = m and tm = T , we have Ṽtm(Π) = Ũ(XΠ
T ) = Ũ(XT ) for any Π ∈ Ax,

and in the case where k = 0, we recover the initial problem (2.11). Let Fm = (Ftk)k=0,··· ,m denote

the discrete time filtration.

Proposition 1. For any admissible strategy Π ∈ Ax in (2.12) such that E[Ũ(XT )] > −∞ where

XT is given by (2.2), the process Ṽ•(Π) forms an Fm-supermartingale with terminal value Ũ(XT ).

It is a martingale if and only Π is an optimal strategy.

Proof. First, we show that the admissible strategy set Ax is stable under bifurcation (see El Karoui,

1981, Section 1.6), namely, for any Fm-stopping time τ , any couple of admissible strategies Π and

Π′ in Ax such that Πτ∧t = Π′τ∧t for any t = t1, · · · , tm, and any set F ∈ Fτ , the process Π′′

defined by

Π′′t := 11FΠt + 11F cΠ
′
t, t = t1, · · · , tm

10



is still an admissible strategy. The key point is to check that Π′′ still satisfies the constraints

E[ϕk(X
Π′′
tk

)|Ftk−1
] ≥ 0. Since F ∈ Fτ , one has F ∩{τ ≤ tk−1} ∈ Ftk−1

and F c∩{τ ≤ tk−1} ∈ Ftk−1
.

Therefore,

E[ϕk(X
Π′′
tk

)|Ftk−1
] = 11F∩{τ≤tk−1}E[ϕk(X

Π
tk

)|Ftk−1
] + 11F c∩{τ≤tk−1}E[ϕk(X

Π′
tk

)|Ftk−1
]

+ 11{τ>tk−1}E[ϕk(X
Π′′
tk

)|Ftk−1
] ≥ 11{τ≥tk}E[ϕk(X

Π′′
tk

)|Ftk−1
]

since E[ϕk(X
Π
tk

)|Ftk−1
] ≥ 0, E[ϕk(X

Π′
tk

)|Ftk−1
] ≥ 0, and {τ > tk−1} = {τ ≥ tk}. Note that on

{τ ≥ tk}, Π′′t = Πt for t = t1, · · · , tk since Π and Π′ coincide up to τ . Therefore,

E[ϕk(X
Π′′
tk

)|Ftk−1
] ≥ 11{τ≥tk}E[ϕk(X

Π
tk

)|Ftk−1
] ≥ 0.

The stability of Ax under bifurcation allows us to establish the lattice property as follows.

Let k ∈ {1, . . . ,m}. Let Π and Π′ be two admissible strategies that coincide up to tk. Let

F = {ω ∈ Ω |E[Ũ(XΠ
T )|Ftk ](ω) > E[Ũ(XΠ′

T )|Ftk ](ω)}, which belongs to Ftk . The stability under

bifurcation implies that the strategy Π′′ defined as Π′′ = 11FΠ + 11F cΠ
′ still belongs to Ax, and

one has

E[Ũ(XΠ′′
T )|Ftk ] = max(E[Ũ(XΠ

T )|Ftk ],E[Ũ(XΠ′
T )|Ftk ]).

Therefore, by (Pham, 2009, Theorem A.2.3), for any Π ∈ Ax there exists a sequence of admissible

strategies (Π(`))`∈N such that Π(`)(k) = Π(k) for any ` and that E[Ũ(X
Π(`)
T )|Ftk ] ↑ Ṽtk(Π) when

`→ +∞. For k′ < k one has

E[E[Ũ(X
Π(`)
T )|Ftk ]|Ftk′ ] = E[Ũ(X

Π(`)
T )|Ftk′ ] ≤ Ṽtk(Π(k)).

The supermartingale property of Ṽ•(Π) then follows from the monotone convergence theorem.

Let Π̂ be an admissible strategy. Since Ṽ•(Π̂) is a supermartingale, it is a martingale if and

only if Ṽ0(Π̂) = E[Ũ(XΠ̂
T )] = E[ṼT (XΠ̂)], namely Π̂ is an optimal strategy.

The value function of each time step is defined in a backward way as in (2.13). The main result,

which is stated below, shows that the optimal value function at the initial time can be obtained

recursively from tm = T .
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Proposition 2. For any strategy Π ∈ Ax in (2.12) such that E[Ũ(XT )] > −∞, the following

equality holds for k ∈ {m− 1, · · · , 0}:

Ṽtk(Π) = ess sup
Π′∈Ax, Π′(k)=Π(k)

E[Ṽtk+1
(Π′)|Ftk ]. (2.14)

In particular, the original problem (2.11) is given by

Ṽ0(Π) = sup
Π′∈Ax

E[Ṽt1(Π′)]. (2.15)

Proof. On the one hand, for any Π′ ∈ Ax such that Π′(k) = Π(k), one has

E[Ũ(XΠ′
T )|Ftk ] = E[E[Ũ(XΠ′

T )|Ftk+1
]|Ftk ] ≤ E[Ṽtk+1

(Π′)|Ftk ].

Taking the essential supremum with respect to Π′, we obtain

Ṽtk(Π) ≤ ess sup
Π′∈Ax, Π′(k)≤Π(k)

E[Ṽtk+1
(Π′)|Ftk ].

On the other hand, for any fixed Π′ ∈ Ax such that Π′(k) = Π(k), the stability of Ax under

bifurcation allows us to construct a sequence (Π(`))`∈N in Ax such that Π(`)(k+1) = Π′(k+1) for

any ` ∈ N and that E[Ũ(X
Π(`)
T )|Ftk+1

] ↑ Ṽtk(Π′) when `→ +∞. For any ` ∈ N one has

Ṽtk(Π) ≥ E[Ũ(X
Π(`)
T )|Ftk ] = E[E[Ũ(X

Π(`)
T )|Ftk+1

]|Ftk ].

Taking the limit when `→ +∞, by monotone convergence theorem of conditional expectation, we

obtain Ṽtk(Π) ≥ E[Ṽtk(Π′)|Ftk ].

Since the penalized utility function depends on the constraints, it is difficult to obtain the

explicit form of the value function Ṽtk , k ∈ {1, · · · ,m− 1}, by using analytical methods in general.

Section 3 shows how to get solutions by using numerical methods.
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2.3 An alternative dynamic program with exponential utility function

In optimization problems, we often distinguish investment strategies on proportion or on quantity,

the former leading to positive wealth values and the latter allowing for negative wealth possibility.

We often choose accordingly the power and the exponential utility functions, respectively.

In this subsection, we consider the specific optimization problem (2.8) under the two conditional

constraints (2.5) and (2.7) and when the utility function of the financial institution is the exponential

function U(x) = −e−px, p > 0. In this context, we adopt a slightly different form for the investment

strategy: π = (πt)t≥0 with πt = (π0
t , · · · , πnt ) is now a (n+1)-dimensional process, which represents

the quantity invested on the assets S = (St)t≥0 with St = (S0
t , · · · , Snt ) in the portfolio. For each

i ∈ {0, 1, · · · , n}, πit =
∑m

k=1 π
i
tk
I(tk−1,tk](t), t ∈ (0, T ], where πitk is an Ftk−1

-measurable random

variable representing the quantity of the asset Si that the investor holds at tk according to the

asset prices observed on tk−1. Then the wealth process at tk is given (instead of (2.2)) as

Xπ
tk

= Xπ
tk−1

+ πtk · (Stk − Stk−1
)− (Ytk − Ytk−1

). (2.16)

We consider the optimal investment problem defined by

V x
0 = sup

π∈Ax
E[U(Xπ

T )], Xπ
0 = x, (2.17)

where

Ax =

 π = (π0
tk
, · · · , πntk)mk=0 :

∀ i ∈ {0, 1, · · · , n} and k ∈ {1, · · · ,m}, πitk is Ftk−1
-measurable,

the constraint (2.5) or (2.7) holds.


(2.18)

Let us consider a dynamic programming principle as in Section 2.2. For any k ∈ {0, · · · ,m}, we

denote by π(k) the truncated process (πtj )j=0,··· ,k of π up to time tk. The dynamic value function

process is defined as

Vtk(π) = ess sup
π′∈Ax,π′(k)=π(k)

E[U(Xπ′
T )|Ftk ], k = 0, · · · ,m. (2.19)

We have the following result which is similar to Proposition 2.
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Proposition 3. For any π ∈ Ax in (2.18) such that E[U(Xπ
T )] > −∞, we have for any k ∈

{0, · · · ,m− 1},

Vtk(π) = ess sup
π′∈Ax,π′(k)=π(k)

E[Vtk+1
(π′)|Ftk ]. (2.20)

Moreover, the following equality holds for all k ∈ {0, · · · ,m}:

Vtk(π) = U(Xπ
tk
− Ztk), (2.21)

where ZT = 0 and for k = m− 1, · · · , 0,

Ztk :=
1

p
log ess inf

π′tk+1

E
[

exp
(
− pπ′tk+1

· (Stk+1
− Stk) + p(Ytk+1

− Ytk) + pZtk+1

)∣∣∣Ftk]. (2.22)

Proof. The first assertion (2.20) can be proved similarly as Proposition 2. For the second assertion

(2.21), we begin from the terminal date T = tm and write Xπ
T as Xπ

tm−1
+ πtm · (Stm − Stm−1) −

(Ytm − Ytm−1) by (2.16). The exponential utility function leads to

U(Xπ
T ) = U(Xπ

tm−1
) exp

(
− p
(
πtm · (Stm − Stm−1)− (Ytm − Ytm−1)

))
.

Then by (2.20),

Vtm−1(π) = U(Xπ
tm−1

) ess inf
π′tm

E
[

exp
(
− pπ′tm · (Stm − Stm−1) + p(Ytm − Ytm−1)

)∣∣∣Ftm−1

]
(2.23)

where the essential infimum is taken under the constraint (2.5) or (2.7). We denote by

Ztm−1 :=
1

p
log ess inf

π′tm

E
[

exp
(
− pπ′tm · (Stm − Stm−1) + p(Ytm − Ytm−1)

)∣∣∣Ftm−1

]
,

and obtain by (2.23) the equality Vtm−1(π) = U(Xπ
tm−1

−Ztm−1). By similar arguments, we obtain

(2.21) for all k = m− 1, · · · , 0 in a recursive way.

By the above proposition, the initial problem (2.17) is decomposed into a family of successive

one-step optimization problems. Compared to Proposition 2, the value functions Vtk(·) remain

to be an exponential function at each time step with a supplementary weight Ztk , thanks to the

exponential utility function setting and the investment strategy in quantity.
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3 Application and numerical illustrations in the presence of liq-

uidity risk

In this section, we consider a special context with financial assets under different financial risks

including liquidity risk, credit intensity and interest rate fluctuations. We numerically solve the

optimization problem and illustrate the optimal allocation strategies.

We assume that the asset manager invests in three assets:

(1) the cash with stochastic instantaneous return rate (rt)t≥0 whose price at t ≥ 0 is given by

S0
t = exp(

∫ t
0 rsds);

(2) a default-free zero-coupon bond (B0(t, T0))t≥0 with maturity T0 whose price is given by

S1
t = B0(t, T0) = EQ

[
exp

(
−
∫ T0

t
rsds

)∣∣∣∣Ft] , t ≤ T0; (3.24)

(3) a default-sensitive zero-coupon bond (B1(t, T1))t≥0 with maturity T1 which is impacted by both

credit and liquidity risks. The endogenous credit risk is characterized by the default intensity

(λt)t≥0 and the pre-default price of the bond is given by

B1(t, T1) = EQ

[
exp

(
−
∫ T1

t
(rs + λ1

s)ds

)∣∣∣∣Ft], t ≤ T1. (3.25)

Appendix A details the financial modeling of the default-free bond B0 and of the pre-default

price B1 of the default-sensitive bond, along with specification of the market risk processes r and

λ1 under historical measure P and risk-neutral measure Q. Moreover, following Ericsson and

Renault (2006), we assume that random liquidity shocks on the market exist. According to the

literature, e.g., Chen et al. (2017), the liquidity intensity depends on the global credit quality

of the market and, specifically, is positively correlated with the credit risk level. We suppose

that the liquidity shocks arrive according to a Cox process (Nρ
t )t≥0 where Nρ

t =
∑

j≥1 1{σj≤t}

and the random times {σj}j≥1 represent the occurrence times of liquidity shocks. The liquidity

intensity (λρt )t≥0 of the Cox process is defined as λρt = αρλ
γρ
t + βρ where αρ, βρ, γρ ≥ 0 are

the scale parameter governing the sensitivity of λρ to λ, the constant lower bound, and the

elasticity parameter, respectively, which is similar to the extended credit CEV model in Carr
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and Linetsky (2006).

In such an illiquid market, the bonds are sold at a discounted price that is proportional to

the level of illiquidity described by the aggregated liquidity impact process (δt)t≥0 with δt =∑
j≥1 δj11{σj≤t<σj+1} and {δj}j≥1 valued in (0, 1] being independent random marks associated

with the liquidity shock time σj (so that δiσj = δij). In other words, the realized transaction

price of the defaultable zero-coupon bond subject to liquidity risk is then given by

S2
t = δtB1(t, T1).

Recall that T is the fixed investment horizon and the number of risky assets equals n = 2. We

assume that the transactions of financial assets take place on an equi-spaced time grid 0 = t0 <

t1 < · · · < tm = T with constant time step ∆. The asset portfolio value X evolves according to the

following discrete-time dynamics

Xtk = Xtk−1

[
1 + rtk−1

∆ + Πtk ·R
e
tk

]
− (Ytk − Ytk−1

) , (3.26)

where rtk−1
is the instantaneous interest rate at time tk−1, Retk = (Re,1tk , R

e,2
tk

) is the vector of

excess returns of the risky assets in excess of the risk-free asset, Πtk = (Π1
tk
,Π2

tk
) is the vector of

Ftk−1
-measurable portfolio weights on the risky assets (with a slight abuse of notation compared

to Section 2 where the vector Πtk has for first component Π0
tk

), and Ytk − Ytk−1
is the amount of

surrender payments between tk−1 and tk. Note that the wealth dynamics (3.26) derives from (2.2)

by considering that the proportions invested in cash are such that Π0
tk

= 1 − (Π1
tk

+ Π2
tk

), for all

k = 0, · · · ,m.

The vector Retk = (Re,1tk , R
e,2
tk

) is composed of the default-free bond excess return Re,1tk and the

default-sensitive bond excess return Re,2tk on the period (tk−1, tk]: R
e,1
tk

is defined as

Re,1tk = ln

(
B0(tk, T0)

B0(tk−1, T0)

)
− rtk−1

∆,
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while Re,2tk is defined as

Re,2tk = ln

(
B1(tk, T1)

B1(tk−1, T1)

)
− (rtk−1

− ln δtk)∆.

We study numerical solutions of the following specific penalized allocation problem (see (2.10))

max
Π∈Ax

EP

[
U(XT )− θ

[
(CLT −XT )+

]2]
(3.27)

where

Ax =

Π = (Π0
tk
, · · · ,Πn

tk
)mk=0 :

∀i ∈ {0, 1, · · · , n} and k ∈ {1, · · · ,m}, Πi
tk

is Ftk−1
-measurable,

∀ k ∈ {0, 1, · · · ,m}, Π0
tk

= 1−
∑n

i=1 Πi
tk
,

the constraint (2.4) holds.


and U is the power utility function with parameter p > 0, p 6= 1, i.e., U(x) = x1−p/ (1− p).

The asset manager aims at maximizing the expected utility of her terminal wealth penalized by a

quadratic expected shortfall solvency constraint.

We numerically solve the optimization problem (3.27) for the set of parameters given in Table

1. The problem horizon is T = 1 year, and we choose 12 time periods for a monthly rebalancing

frequency. We suppose that the withdrawals occur according to a Cox process defined as in Example

1. The withdrawal counting process intensity is given by (ηt)t≥0 as ηt = ξη + αηrt + βηλt where

ξη, αη, βη are positive parameters. ξη represents the structural part of the withdrawal intensity,

and αη and βη represent the sensitivity of the intensity with respect to the level of the short-term

interest rate and to the default intensity, respectively. Note that the withdrawal risk depends on the

credit risk and can thus trigger bankruptcy when they materialize simultaneously. The parameters

ξη, αη, βη are chosen such that the average annual withdrawal rate is 10%.

Concerning the liquidity risk, the parameters αρ, βρ are chosen such that the average number

of liquidity shocks per year is between 1 and 2 (see Figure 1). In addition, we assume, for the

numerical simulation, that the illiquidity impact is given by

δk =
1

1 + γ
(
Nρ
tk
−Nρ

tk−1

)
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where γ is a positive parameter that represents the sensitivity of the shock severity with respect to

the number of liquidity shocks. The greater the number of shocks is in the period, the greater the

negative impact ln δtk is on the returns of the default-sensitive bond. Then, γ is chosen such that

E[ln δ1
k | N

ρ
tk
− Nρ

tk−1
> 0] = −10%, i.e., given a liquidity shock, the expected impact on annual

return rate is 10%. The interest rate and the default intensity processes are supposed to follow an

independent CIR process respectively. The interest rates are calibrated on the 10-year ZC swap,

and the default intensity on the credit spread of the 10-year Italian government bonds on year 2016

with a monthly frequency. We choose to calibrate the data for the year 2016, because it was a

hectic year during which the risk premia increased substantially, especially following the vote in

favor of Brexit. This setting is called the central model specification.

Short term interest Default intensity

a(r) 0.59 a(1) 0.39

b(r) 0.005 b(1) 0.02

σ(r) 0.06 σ(1) 0.1
αr 0.1 αλ 1

ZC bond B0 ZC bond B1

T0 10 T1 10

Surrender risk Liquidity shock

ξη 0 αρ 100
αη 333.33 βρ 0
βη 333.33 γρ 1

γ 0.0972

Other parameters Initial value

M 100 r0 0.007
K0 0.01 λ0 0.023
κ 0.01 X0 1.2
C 1.2
θ 1
p 20
T 1
∆ 1/12

Table 1: Values of parameters in the central model

In the central model, we additionally consider some linear constraints on optimal proportions,

which correspond to the SAA provided by the asset owner to the asset manager. The optimal

proportions on risky assets Πt = (Π1
t ,Π

2
t ) are such that the sum Π1

t + Π2
t is between 0 and 100%,
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the proportion of risk-free asset is less than 20%, i.e., 1− (Π1
t + Π2

t ) ≤ 0.2, and each component is

between 0 and 100%. These conditions translate into a linear system of inequality constraints of

the form AcΠ
>
tk
≤ Bc where

A>c =

 1 −1 −1 1 −1 0 0

1 −1 −1 0 0 1 −1


and

B>c =

(
1 0 −0.8 1 0 1 0

)
.

The optimization problem (3.27) corresponds to a Markov decision process with an underlying

Markovian state process defined as (Xt, Zt) with

Zt =
(
rt, λ

1
t , Nt

)
.

It is worth noting that the liquidity shock counting process Nρ is not a state variable since it only

appears through its independent increments. The Markovian state process (X,Z) has the following

(approximated) discrete-time dynamics :

Xtk = Xtk−1

[
1 + rtk−1

∆ + Πtk ·R
e
tk

]
− (Ytk − Ytk−1

)

rtk = rtk−1
+ a(r)(b(r) − rtk−1

)∆ + σ(r)
√
rtk−1

∆ek

λ1
tk

= λ1
tk−1

+ a(1)(b(1) − λ1
tk−1

)∆ + σ(1)
√
λ1
tk−1

∆e1
k

Ntk = Ntk−1
+ ∆Nk with ∆Nk ∼ Poi(ηtk−1

∆)

where (ek) and (e1
k) are two independent sequences of i.i.d. standard Gaussian random variables.

To facilitate comparisons in the solutions of (3.27), we assume that the Poisson noises in the doubly

stochastic Poisson processes Nρ and N are frozen to a deterministic path.4

We consider the methodology introduced by Brandt et al. (2005) to find numerical solutions of

the optimization problem (3.27). We first derive the Bellman equation associated with the consid-

ered Markov decision process. The cost-to-go function and corresponding optimal strategies can

4Meaning that, when simulating these Cox processes from a standard Poisson process, only one single deterministic
path of the Poisson process is used.
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then be obtained, at each rebalancing date, using a backward iterative procedure (dynamic pro-

gramming). At each iteration date, we perform a Taylor expansion of the cost-to-go function, which

gives an approximation of optimal strategies as solutions of a quadratic optimization problem. The

coefficients of this quadratic optimization problem are expressed in the form of conditional expec-

tations, which are estimated by simulation-regression techniques (least square Monte Carlo) and

using previously computed strategies. The numerical procedure is described in Appendix B.

Figure 1 (left side) shows that most sample paths of Nρ exhibit a single liquidity shock at the

sixth period (t = 0.5).5 As a consequence, the excess return rate on the default-sensitive bond falls

by about 10% in this period (Figure 1, right side).
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Figure 1: Empirical mean, 25% and 75% quantiles of sampled paths of Nρ (left) and of sampled
paths of the risky assets’ annual excess return rates Re,1t /∆ and Re,2t /∆ (right) at the end of each
rebalancing period, i.e., at time t1, . . . , tm.

Figure 2 displays the optimal proportions of the default-free bond, the default-sensitive bond,

and the risk-free assets obtained as the solution of (3.27). As required by the allocation constraints,

the proportion of the risk-free asset is always smaller than 20%. In addition, the trend of optimal

strategies is strongly affected by the occurrence of the liquidity shock at the sixth period (see Figure

1, right side and Figure 2). The proportion invested in the default-sensitive bond, whose return

falls by 10% due to liquidity shock at the sixth period, goes to zero just before the shock and is

5Even if Poisson noise is frozen to a deterministic path, the differences in Nρ sampled paths is due to its stochastic
intensity λρ.
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smaller than the proportion in the default-free bond before the shock. After the shock, the pro-

portion of the default-sensitive bond increases, which allows for a higher return of the asset portfolio.
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Figure 2: Empirical mean, 25% and 75% quantiles of the optimal proportions invested in the
default-free bond (up), in the default-sensitive bond (middle) and in the risk-free asset (bottom).

We analyze the performance of the obtained optimal strategies when the latter are applied to

sampled paths of the state process.6 Figure 3 compares the optimal penalized utilities of wealth

U(XΠ
t )− θ[(CLt −XΠ

t )+]2 (upper left side), asset values XΠ
t (upper right side) and asset-liability

ratios XΠ
t /Lt (bottom) at each date t0, t1, · · · , tm with the corresponding values obtained when

(i) using the risk-free asset only (referred to as the “risk-free strategy”) and (ii) when proportions

in the three assets are fixed to a constant value over time (10% in the risk-free asset, 40% in the

default-free bond, 50% in the default-sensitive bond, referred to as the “fixed-proportion strategy”).

We observe that the optimal strategy, on average, outperforms the fixed-proportion and the risk-

free strategies, and exhibits lower variability than the fixed-proportion strategy. The negative trend

in asset portfolio values XΠ
t is due to surrender payments in each period, i.e., the positive term

Ytk − Ytk−1
in (3.26).

We now study how optimal strategies are impacted by a change in input parameters. Figure 4

6The same we used to numerically solve Bellman equations.
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Figure 3: Empirical mean, 25% and 75 % quantiles of the penalized utilities of wealth (upper left),
asset values (upper right), and asset-liability ratios (bottom) when using the risk-free asset only,
when using fixed proportions invested in the three considered assets (10% in the risk-free asset,
40% in the default-free bond, 50% in the default-sensitive bond), and when using the optimal
proportions in the three assets as solution of (3.27).

compares the optimal strategy in the central model specification and when the level of the short-

rate process rt increases from 0.7% to 5%. This has two direct consequences. First, the annual

return on the risk-free asset increases with the same magnitude level. Second, the average annual

surrender rate doubles and goes from 10% to 20%. Figure 4 shows that the optimal proportion

in the risk-free asset increases to near 20%, its maximum possible value. The optimal proportion

invested in the default-sensitive bond slightly decreases over the period.

Figure 5 compares the optimal strategy in the central model specification and when the level
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Figure 4: Sensitivity of optimal strategies to a change in the level of short rate.

of the default intensity process λ1
t increases from 2.3% to 10%. This change negatively impacts the

price of the default-sensitive bond, which increases the long-term return of this bond; however, it

triples the frequency of withdrawal payments and multiples the frequency of liquidity shocks by

eight. Therefore, the main effect is a significant fall of the optimal proportions invested in the

default-sensitive bond to reduce the risk of losses arising from the forced sales of assets to meet

redemptions.
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Figure 5: Sensitivity of optimal strategies to a change in the level of default intensity.
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These results show how accounting for joint liquidity risks (on the asset side) and withdrawal

risks (on the liability side) (i) substantially modifies the optimal allocation of a financial institution

offering guaranteed-capital contracts to mitigate its default risk and (ii) improves its solvency ratio

and asset returns.

Appendix C provides additional sensitivity analysis with respect to change in αρ, βρ, γ1 and θ.

4 Conclusion

This study examines an optimal investment allocation problem for a financial institution offering

capital-guaranteed contracts that incorporate the option of withdrawal at any time. Both the

financial assets and the withdrawal frequency are influenced by market factors including credit

quality, liquidity risk and interest rate level. By using a dynamic programming approach, we

provide a recursive formula for obtaining the optimal strategy for this utility maximization problem

under several asset-liability constraints. The numerical resolution provides a detailed description

of the optimal trading strategies.

We show that financial institutions should adjust their optimal asset allocation to account for

the illiquidity mismatch between assets and liabilities. Specifically, to mitigate its default risk, a

financial institution needs to reduce its exposure to risky assets when it expects a rise in credit risk

(i.e., during financial turmoil) that can trigger a decrease in the liquidity of assets and an increase

in redemptions, thereby forcing the institution to sell assets at a discounted prices and deteriorating

its solvency.

Several lines of research can build on this work. First, replicating numerical analysis with a

large number of assets with different correlations can offer richer solutions to financial institutions.

On a theoretical level, the same model can be enriched by developing the dynamics of liabilities.

Finally, the risk analysis of liquidity mismatch between assets and liabilities can be extended to the

case of exchange-traded funds that offer liquidity to clients that is often better than the liquidity

of the assets in which they invest.
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Appendix A : stochastic dynamics of financial assets

For the numerical illustrations, we consider that the asset manager can invest in three assets (n = 2):

the risk-free asset (the deposit account with stochastic instantaneous return rate), a default-free

zero-coupon bond with maturity T0, and a default-sensitive zero-coupon bond with maturity T1.

We begin with a “default-free” zero-coupon bond, which only bears the interest rate evolution

and adopts the affine term structure modelling approach for the bond pricing. We assume that,

under the risk-neutral probability measure Q, the short-term interest rate r is described by a

mean-reverting affine diffusion of the form

drt = a(b− rt)dt+ σ(rt)dW
r,Q
t , (4.28)

where W r,Q is a Brownian motion under the risk-neutral probability Q, a, b are positive parameters

and σ(·) is a positive deterministic function. The price of the cash S0 is given by

S0
t = exp

(∫ t

0
rsds

)
, S0

0 = 1. (4.29)

The price of the default-free zero-coupon bond of maturity T0 is given by

B0(t, T0) = EQ

[
exp

(
−
∫ T0

t
rsds

)∣∣∣∣Ft] . (4.30)

Given the affine structure of the model (cf. Duffie, 2005), the zero-coupon bond price can be

expressed as

B0(t, T0) = exp (−A0(T0 − t)rt + C0(T0 − t)) , (4.31)

where A0 and C0 are deterministic functions that can be expressed in closed form, e.g., in the

Vasicek or CIR models. The risk-neutral dynamics of zero-coupon price is then given by

dB0(t, T0)

B0(t, T0)
= rtdt− σ0(t, T0)dW r,Q

t (4.32)

where σ0(t, T0) = A0(T0− t)σ(rt). By Girsanov theorem, an F-adapted process αr exists such that,
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under the historical probability P, the dynamics of B0 can be expressed as

dB0(t, T0)

B0(t, T0)
= (rt + σ0(t, T0)αrt )dt− σ0(t, T0)dW r,P

t . (4.33)

The change of probability measure is defined by the Radon-Nikodym derivative

dQ
dP

∣∣∣∣
Ft

= exp

(∫ t

0
αrsdW

r,P
s − 1

2

∫ t

0
|αrs|2ds

)
. (4.34)

In the following, we consider the specific case of the the CIR model, i.e., when σ(rt) = σ(r)√rt.

Moreover, if we require that the dynamics of r remains in the same family after the equivalent

change of probability measure, the suitable choice of the interest-rate risk premium is αrt = αr
√
rt

such that

drt = a(r)(b(r) − rt)dt+ σ(r)√rtdW r,P
t .

The risk-neutral parameters in (4.28) are then such that a = a(r) − σ(r)αr, b = a(r)b(r)

a(r)−σ(r)αr
, and the

functions A0 and C0 of the arbitrage-free price B0(t, T0) of the zero-coupon bond with maturity T0

in (4.31) are given by

A0(x) =
2(1− e−hx)

h+ a+ (h− a)e−hx
,

C0(x) = −2ab

[
x

a+ h
+

1

(σ(r))2
ln

(
h+ a+ (h− a)e−hx

2h

)]
,

h =
√
a2 + 2(σ(r))2.

Then, we consider a defaultable bond and explain how it is evaluated. The endogenous credit

risk is characterized by an individual default intensity. More precisely, we assume that the credit

risk of the risky bond B1(t, T1) is characterized by the default intensity process λ1, which is an F-

adapted process. In addition, we assume that λ1 belongs to the same class of affine processes as the

short-term interest rate, such that the term structure of the defaultable bond can be represented

in the same way, that is

dλ1
t = a1(b1 − λ1

t )dt+ σ(λ1
t )dW

1,Q
t , (4.35)
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where a1, b1 are constants, σ(λ1
t ) = σ(1)

√
λ1
t is of the same type as the volatility function of (4.28),

and W 1,Q
t is a Brownian motion independent of W r,Q

t under Q. Hence the pre-default price of the

bond with maturity T1, at time t ≤ T1, is given by

B1(t, T1) = EQ

[
exp

(
−
∫ T1

t
(rs + λ1

s)ds

)∣∣∣∣Ft], t ≤ T1. (4.36)

Then, by using Duffie (2005), the risky bond price can be expressed as

B1(t, T1) = exp
(
−A0(T1 − t)rt −A1(t, T1)λ1

t + C0(T1 − t) + C1(T1 − t)
)
, (4.37)

where A0 and C0 are as in (4.31), and A1 and C1 are deterministic functions such that

A1(x) =
2(1− e−h1x)

h1 + a1 + (h1 − a1)e−h1x
,

C1(x) = −2a1b1

[
x

a1 + h1
+

1

(σ(1))2
ln

(
h1 + a1 + (h1 − a1)e−h1x

2h1

)]
,

h1 =
√
a2

1 + 2(σ(1))2.

Moreover, one has

dB1(t, T1)

B1(t, T1)
= (rt + λ1

t )dt− σ0(t, T1)dW r,Q
t − σ1(t, T1)dW 1,Q

t , (4.38)

where σ1(t, T1) = A1(T1 − t)σ(λ1
t ). We consider the following change of probability measure

dQ
dP

∣∣∣∣
Ft

= exp

(∫ t

0
(αr
√
rsdW

r,P
s + αλ1

√
λ1
tdW

1,P
s )− 1

2

∫ t

0
((αr)2 rs +

(
αλ1

)2
λ1
t )ds

)
, (4.39)

Using this change of probability measure,

dλ1
t = a(1)(b(1) − λ1

t )dt+ σ(λ1
t )dW

1,P
t ,

with a1 = a(1)−σ(1)αλ1 , b1 = a(1)b(1)

a(1)−σ(1)αλ1
. The pre-default dynamic of the bond under the historical
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probability P is given by

dB1(t, T1)

B1(t, T1)
= (rt+λ

1
t+σ0(t, T1)αr

√
rt+σ1(t, T1)αλ

√
λt)dt−σ0(t, T1)dW r,P

t −σ1(t, T1)dW 1,P
t , (4.40)

while the dynamics of the bond B0 given in (4.33) under the historical probability P is unchanged.

Appendix B

Value function and Bellman equation

Without loss of generality, let us consider the time grid 0 < · · · < t < t + 1 < · · · < T instead of

t0 < · · · < tk < tk+1 < · · · < T . For t = 0, · · · , T , we define the value function J as

Jt (Xt, Zt) = max
Πt+1={Πs}Ts=t+1

E
[
u(XΠ

T )− θ
[
(CLT −XΠ

T )+
]2 |Xt, Zt

]
.

The Bellman equation is given by

Jt (Xt, Zt) = max
Πt+1

E [Jt+1 (Xt+1, Zt+1) |Xt, Zt] . (4.41)

where

JT (XT , ZT ) = u(XT )− θ
[
(CLT −XT )+

]2
(4.42)

= u(XT )− θ(CLT −XT )2I{CLT>XT }. (4.43)

Given (3.26), the time t+ 1 value function writes

Jt+1 (Xt+1, Zt+1) = Jt+1(Xt[R
f
t+1 + Πt+1 ·Ret+1]− (Yt+1 − Yt), Zt+1).

where we define Rft+1 := 1 + rt∆.

Moreover, let

ϕt(Zt) = E
[
Yt+1

Yt

∣∣∣∣Zt] .
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A Taylor expansion of Jt+1 (Xt+1, Zt+1) around (XtR
f
t+1 + Yt (1− ϕt(Zt)) , Zt+1) is given by

Jt+1 (Xt+1, Zt+1)

= Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
+∂1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

) [
XtΠt+1 ·Ret+1 + Ytϕt(Zt)− Yt+1

]
+

1

2
∂2

1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

) [
XtΠt+1 ·Ret+1 + Ytϕt(Zt)− Yt+1

]2
+ ...

At each time t, we want to find Πt+1 that maximizes E [Jt+1 (Xt+1, Zt+1) |Xt, Zt] under the linear

inequality constraint AcΠt+1 ≤ Bc. Let us define

At+1 = ∂1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
Ret+1

−∂2
1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
[Yt+1 − Ytϕt(Zt)]Ret+1

Bt+1 = ∂2
1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
Ret+1(Ret+1)′.

An approximation of the optimal strategy Π̂t+1 can be obtained as the solution of the following

quadratic optimization problem

max
Πt+1

{
XtΠt+1E [At+1|Xt, Zt] +

1

2
X2
t Πt+1E [Bt+1|Xt, Zt] Π′t+1

}
. (4.44)

s.t. AcΠt+1 ≤ Bc (4.45)

Note that, without the inequality constraint, the solution is explicit and given by

Π̂t+1 = −{XtE [Bt+1|Xt, Zt]}−1 E [At+1|Xt, Zt] .

In the presence of linear inequality constraints, we rely on a quadratic programming solver.

Computation of E [At+1|Xt, Zt] and E [Bt+1|Xt, Zt]

Let us recall that

Jt (Xt, Zt) = max
{Πs}Ts=t+1

E
[
U(XT )− θ

[
(CLT −XT )+

]2 |Xt, Zt

]
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or equivalently

Jt (Xt, Zt) = max
{Πs}Ts=t+1

E [v(XT , ZT )|Xt, Zt]

with

v(x, z) := U(x)− θ
[
(Cl (z)− x)+

]2
where l (·) is the deterministic function such that LT = l (ZT ). Note that

∂1v (x, z) = U ′(x) + 2θ(Cl (z)− x)I{Clt(z)>x} and ∂2
1v (x, z) = U ′′(x)− 2θI{Cl(z)>x}.

Using the prescribed (3.26) dynamics of X, we can write the terminal asset portfolio value in the

following way:

XT = XT−1[RfT + ΠT ·ReT ]− (YT − YT−1)

= ...

= Xt

T∏
s=t+1

[Rfs + Πs ·Res] +
T∑

s=t+1

(Ys−1 − Ys)
T∏

u=s+1

[Rfu + Πu ·Reu]

Let us define

XΠ̂
T (Xt) = Xt

T∏
s=t+1

[Rfs + Π̂s ·Res] +
T∑

s=t+1

(Ys−1 − Ys)
T∏

u=s+1

[Rfu + Π̂u ·Reu]

=: Xtψt + ϕt.

where Π̂s are the optimal portfolio weights at the rebalancing date s− 1. So we can write

Jt (Xt, Zt) = E
[
U(Xtψt + ϕt)− θ [(CLT − (Xtψt + ϕt))+]2 |Xt, Zt

]
= E

[
vT (XΠ̂

T (Xt) , ZT )|Xt, Zt

]
.

It follows that

∂1Jt+1 (Xt+1, Zt+1) = E
[
∂1v(XΠ̂

T (Xt+1) , ZT )ψt+1|Xt+1, Zt+1

]
∂2

1Jt+1 (Xt+1, Zt+1) = E
[
∂2

1v(XΠ̂
T (Xt+1) , ZT )ψ2

t+1|Xt+1, Zt+1

]
.
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and

E [At+1|Xt, Zt]

= E
[
∂1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
Ret+1|Xt, Zt

]
−E

[
∂2

1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
[Ytϕt(Zt)− Yt+1]Ret+1|Xt, Zt

]
= E

[
E
[
∂1v

(
XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
, ZT

)
ψt+1|Xt+1, Zt+1

]
Ret+1|Xt, Zt

]
−E

[
E
[
∂2

1v
(
XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
, ZT

)
ψ2
t+1|Xt+1, Zt+1

]
[Ytϕt(Zt)− Yt+1]Ret+1|Xt, Zt

]
= E

[
∂1v

(
XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
, ZT

)
ψt+1R

e
t+1|Xt, Zt

]
−E

[[
∂2

1v
(
XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
, ZT

)
ψ2
t+1

]
[Ytϕt(Zt)− Yt+1]Ret+1|Xt, Zt

]
= E

[
Ãt+1|Xt, Zt

]

and

E [Bt+1|Xt, Zt]

= E
[
∂2

1Jt+1

(
XtR

f
t+1 + Yt (1− ϕt(Zt)) , Zt+1

)
Ret+1(Ret+1)′|Xt, Zt

]
= E

[
E
[
∂2

1v
(
XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
, ZT

)
ψ2
t+1|Xt+1, Zt+1

]
Ret+1(Ret+1)′|Xt, Zt

]
= E

[
∂2

1v
(
XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
, ZT

)
ψ2
t+1R

e
t+1(Ret+1)′|Xt, Zt

]
= E

[
B̃t+1|Xt, Zt

]
.

Note that

XΠ̂
T

(
XtR

f
t+1 + Yt (1− ϕt(Zt))

)
=
[
XtR

f
t+1 + Yt (1− ϕt(Zt))

]
ψt+1 + ϕt+1

where

ψt+1 =
T∏

s=t+2

[Rfs + Π̂s ·Res]

ϕt+1 =

T∑
s=t+2

(Ys−1 − Ys)ψs
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Then, assuming that optimal strategies Π̂(X,Z) have been computed at time T − 1, · · · , t+ 1 for

different samples path of X,Z, we can estimate E [At+1|Xt, Zt] and E [Bt+1|Xt, Zt] by regression of

Ãt+1 and B̃t+1 on explanatory variables Xt, Zt.

Numerical procedure

The Bellman equations are solved using a forward-backward iterative procedure on the time grid

t = 0, · · · , T . The first forward procedure aims at constructing a suitable discrete representation

of the state space. The second backward procedure corresponds to solving Bellman’s equation on

this discretized state space. Once optimal strategies have been pre-computed, their performances

are assessed on sample paths of the exogenous state variables.

1. Discretizing the state space by simulating state processes. We generate n indepen-

dent sample paths of the exogenous state processes r and λ1 (and modify accordingly paths

of N) on the time grid t = 0, · · · , T . At each time t, the state space grid has been defined

as the collection of sample values taken by these processes. Knowing that optimal strate-

gies are constrained in a bounded domain, the state space for the state variable X has been

approximated by collecting, at each time t = 0, · · · , T , sample values of X generated from

(3.26) using sampled paths of r and λ1 and employing, at each rebalancing date, uniformly

distributed sampled strategies on the bounded domain.

2. Solving Bellman equation on the discretized state space

• Time-T value of cost-to-go function JT is initialized on each point of the time-T state

space grid using (4.42).

• For each time iteration t, t = T − 1, · · · , 0 and for any point (Zt, Xt) in the time-t state

space grid, Π̂t+1(Zt, Xt) is obtained as the solution of (4.44). The coefficients of the

quadratic optimization problems E [At+1|Xt, Zt] and E [Bt+1|Xt, Zt] are approximated

using previously computed values of Π̂s+1 s = t + 1, · · · , T − 1 interpolated on the

corresponding state space grid and using regression on sample path of Z.

3. Assessing performance of optimal strategies. For each sample path of the state pro-

cesses r and λ1, we compute the value of the optimal asset portfolio by using, at each rebal-
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ancing date, the optimal strategy that best represents the state variable current value. The

employed strategy is found by interpolating pre-computed optimal strategies on the current

state space grid. Based on these sample paths, we can then compute sample paths of the

optimal asset portfolio together with any relevant statistics.

Appendix C: other sensitivity analyses

Figure 6 compares the optimal strategy in the central model specification and when the degree

of risk aversion decreases from p = 20 to p = 10. Consistently, we observe that the optimal

proportions in the default-sensitive bond (the riskiest asset) uniformly increase over the period and

the proportions of the two other assets uniformly decrease over the period.
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Figure 6: Sensitivity of optimal strategies to a change in the degree of risk-aversion.

Sensitivities of optimal strategies to a change in αρ, βρ, γ1 and θ are depicted in Figures 7, 8,

9 and 10, respectively. When parameter αρ increases, the number of liquidity shocks over [0, T ]

increases; therefore, we observe a reduction of the proportion invested in the defaultable bond.

When parameter θ increases, the solvency penalty is stronger and, as a result, the proportion

invested in the riskier asset (the more volatile one) decreases.
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Figure 7: Sensitivity of optimal strategies to a change in αρ.
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Figure 8: Sensitivity of optimal strategies to a change in βρ.
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Figure 9: Sensitivity of optimal strategies to a change in γ1.
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Figure 10: Sensitivity of optimal strategies to a change in θ.
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