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Existence of solutions to a system of SDEs with mean-field drift and jump random measures

We study the well-posedness of a system of multi-dimensional SDEs which are correlated through a non-homogeneous mean-field term in each drift and also by driving Brownian motions and jump random measures. Supposing the drift coefficients are non-Lipschitz, we prove for the system the existence of strong, L 1 -integrable, càdlàg solution which can be obtained as monotone limit of solutions to some approximating systems, extending existing results for one-dimensional jump SDE with non-Lipschitz coefficients. We show in addition that the solutions are positive.

Introduction

Systems of correlated stochastic differential equations (SDEs) with mean-field interaction have been widely adopted in both theoretical and application fields, see for examples the book by Carmona and Delarue [START_REF] Carmona | Probabilistic theory of mean field games with applications I: Mean field FBSDEs, control, and games[END_REF][START_REF] Carmona | Probabilistic theory of mean field games with applications II: Mean field games with common noise and master equations[END_REF]. In this paper, we are interested in a multidimensional generalisation with mean-field drift coefficients and more general pure jump terms of the following one-dimensional SDE

dλ t = a (b -λ t ) dt + σ λ t dB t + σ Z λ 1/α t-dZ t , t ≥ 0 (1.1)
where a, b, σ, σ Z ≥ 0, B = (B t , t ≥ 0) is a Browinan motion and Z = (Z t , t ≥ 0) is an independent spectrally positive α-stable compensated Lévy process with parameter α ∈ [START_REF] Abdelghani | A comparison theorem for stochastic equations of optional semimartingales[END_REF][START_REF] Bo | Systemic risk in interbanking networks[END_REF]. The existence of unique strong solutions to jump SDEs with generally non-Lipschitz coefficients is obtained by Fu and Li [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF] (see also Li and Mytnik [16]). Dawson and Li [START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF] consider and prove a much more general integral representation of (1.1) in terms of CBI processes (continuous state branching processes with immigration)

λ t = λ 0 + a t 0 (b -λ s ) ds + σ t 0 λs 0 W (ds, du) + σ Z t 0 λ s- 0 R + ζ N (ds, dv, dζ), (1.2) 
where W (ds, du) is a white noise on R 2 + with intensity dsdu, N (ds, dv, dζ) is an independent compensated Poisson random measure on R 3 + with intensity dsdvµ(dζ) with µ(dζ) being a Lévy measure on R + and satisfying

∞ 0 (ζ ∧ ζ 2 )µ(dζ) < ∞.
For applications in mathematical finance, (1.1) generalises the well-known CIR model in the affine process framework and is called as α-CIR process in Jiao et al. [START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF]. In a recent paper, Frikha and Li [START_REF] Frikha | Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs[END_REF] study the well-posedness and numerical approximation of a time-inhomogeneous jump SDE with generally non-Lipschitz coefficients which, as a generalisation of (1.1), has a drift term involving the law of the solution and can be viewed as a mean-field limit of an individual particle evolving within a system. The consequences of assuming generally non-Lipschitz coefficients in these many settings are twofold. On one hand, the well-posedness becomes challenging since the classic iteration method fails to apply (see [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF][START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF][START_REF] Frikha | Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs[END_REF]). On the other hand, such CIR-like processes are non-negative and thus constitute good candidates for financial modelling, see Hambly and Kolliopoulos [START_REF] Hambly | Stochastic evolution equations for large portfolios of stochastic volatility models[END_REF][START_REF] Hambly | Erratum: Stochastic evolution equations for large portfolios of stochastic volatility models[END_REF] for a system of correlated SDEs used to describe a large credit portfolio with stochastic volatility.

In this paper, we focus on a system of finite number of jump SDEs where the drift term of each component is characterized by a mean-field function depending on other components of the system. Such SDEs, with diffusion coefficients being non-Lipschitz, can be adopted to model interacting financial quantities. We refer to works by Bo and Capponi [START_REF] Bo | Systemic risk in interbanking networks[END_REF], Fouque and Ichiba [START_REF] Fouque | Stability in a model of interbank lending[END_REF] and Giesecke et al. [START_REF] Giesecke | Default clustering in large portfolios: typical events[END_REF] for the mean-field modelling of large default-sensitive portfolios in credit and systemic risks. The main contributions of this paper are twofold. First, each component of the system contains a jump part driven by general random measures which allows to include various jump processes such as Poisson or compound Poisson processes, Lévy processes or indicator default processes. Second, we impose mild conditions on the dependence among components. In particular there is no need for the driven processes, that is, Brownian motions and jump random measures, of the associated SDEs to be independent. So the system can admit a flexible structure of correlation which will be useful for potential modelling of correlated inhomogeneous system.

To prove the strong well-posedness of the multi-dimensional system, we construct a sequence of approximating solutions whose drifts are defined by a piecewise projection of the minimal drift processes of all the components. We show that the approximating systems are monotone by using a comparison theorem from Gal'chuk [START_REF] Galchuk | A Comparison Theorem for Stochastic Equations with Integrals with Respect to Martingales and Random Measures[END_REF] (see also Abdelghani and Melnikov [START_REF] Abdelghani | A comparison theorem for stochastic equations of optional semimartingales[END_REF]) who considered SDEs with respect to continuous martingales and jump random measures where the coefficients of the semimartingale are not Lipschitz. We then use the monotone convergence to establish that the family of limit processes solves our system of SDEs. We also provide a key lemma on one-dimensional SDEs with a general drift coefficient. This result is essential to deal with the approximating solutions since their drifts are defined by conditional expectations so that standard assumptions in literature fail to hold.

The rest of the paper is organized as follows. In Section 2, we present the system of SDEs, the assumptions on the coefficients and our main result. Section 3 provides the key lemma and the proof of the main existence result is given in Section 4.

System of SDEs and assumptions

We fix a filtered probability space (Ω, F, F = (F t ) t≥0 , P) which satisfies the usual conditions. Let U 0 and U 1 be two locally compact and separable metric spaces. For N ∈ N, we study the system of SDEs of the following form

λ i t = λ i 0 + a i t 0 b i s, λ 1 s , λ 2 s , ..., λ N s -λ i s ds + t 0 σ i (λ i s )dW i s + t 0 U 0 g i,0 λ i s-, u Ñi,0 (ds, du) + t 0 U 1 g i,1 λ i s-, u N i,1 (ds, du) , i ∈ {1, 2, ..., N } (2.1)
where

λ i 0 ≥ 0, a i ≥ 0, W i = (W i t )
t≥0 is an F-adapted Brownian motion, N i,0 (ds, du) and N i,1 (ds, du) are Poisson random measures associated to two F-adapted point processes p i,0 : Ω × R + -→ U 0 and p i,1 : Ω × R + -→ U 1 with compensator measures µ i,0 (du)dt and µ i,1 (du)dt respectively. Let Ñi,0 (ds, du) = N i,0 (ds, du) -µ i,0 (du)dt be the compensated measure of p i,0 (•). For every i ∈ {0, 1, ..., N }, we suppose that W i , p i,0 and p i,1 are mutually independent but we do not require the triplet to be independent for different i, j ∈ {0, 1, ..., N }. 

i (t, x 1 , • • • , x N ) = 1 N N k=1
x k , which is the same for every i ∈ {1, • • • , N }. Let Z 0 = (Z 0 t ) t≥0 be an α 0stable Lévy process and Z i = (Z i t ) t≥0 be an independent α i -stalbe Lévy process with

α 0 , α i ∈ (1, 2]. Let U 0 = R 2 , Z i = (Z 0 , Z i ) with compensated measure N i,0 (dt, du) with u = (u 0 , u i ) ∈ U 0 .
Let the diffusion coefficient functions be given as

σ i (x) = σ i • x 1/2 and g i,0 (x, u) = σ Z,0 u 0 • x 1/α 0 + σ Z,i u i • x 1/α i
where σ i ≥ 0 and σ Z,0 , σ Z,i ≥ 0. In this example, the process Z 0 represents a common external factor which affects significantly the whole market such as financial crisis and pandemics (like the recent Covid pandemic crisis), or can also include more common events which lead to more frequent and smaller jumps. Whereas the process Z i is associated to the individual shocks without affecting others.

For the coefficients appearing in the diffusion terms, we assume the following conditions are satisfied for all the components of the system (2.1). The regularity conditions of Assumption 2.2 are motivated by the one-dimensional case in [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF]. These conditions will be crucial to prove Lemma 3.1. Assumption 2.2. We assume the conjunction of the following conditions for the parameters (σ, g 0 , g 1 , N 0 , N 1 ):

(1) σ : R → R is a continuous function such that σ(x) = 0 for x ≤ 0. Moreover, there exists a non-negative and increasing function ρ(•) on R + such that

x 0 dz ρ 2 (z) = +∞ (2.2)
for any x > 0 and that |σ(x) -σ(y)| ≤ ρ(|x -y|) for all x, y ≥ 0.

(2) N 0 is the Poisson random measure of an F-adapted point process with compensator measure µ 0 and g 0 : R × U 0 → R is a Borel function, such that (i) for each fixed u ∈ U 0 , the function g 0 (•, u) : x → g 0 (x, u) is increasing, and satisfies the inequality g 0 (x, u)+x ≥ 0 when x ≥ 0 and the equality g 0 (x, u) = 0 when x ≤ 0, (ii) for each fixed x ∈ R, the function u → g 0 (x, u) is locally integrable with respect to the measure µ 0 , (iii) the function

x -→ U 0 |g 0 (x, u)| ∧ |g 0 (x, u)| 2 µ 0 (du)
is locally bounded, (iv) for any m ∈ N, there exists a non-negative and increasing function x -→ ρ m (x) on R + such that

x 0 dz ρ 2 m (z) = +∞ (2.3)
for any x > 0 and

U 0 |g 0 (x, u) ∧ m -g 0 (y, u) ∧ m| 2 µ 0 (du) ≤ ρ 2 m (|x -y|) (2.4)
for all 0 ≤ x, y ≤ m.

(3) N 1 is the Poisson random measure of an F-adapted point process with compensator measure µ 1 , and

g 1 : R × U 1 → R is a Borel function, such that (i) for any (x, u) ∈ R × U 1 , g 1 (x, u) + x ≥ 0, (ii) the function x -→ U 1 |g 1 (x, u)| µ 1 (du) (2.5)
is locally bounded and has at most a linear growth when x → +∞, (iii) there exists a Borel set U 2 ⊂ U 1 with µ 1 (U 1 \U 2 ) < +∞, and for any m ∈ N, a concave and increasing function x -→ r m (x) on R + such that

x 0 dz r m (z) = +∞ (2.6)
for all x > 0 and

U 2 |g 1 (x, u) ∧ m -g 1 (y, u) ∧ m| µ 1 (du) ≤ r m (|x -y|) (2.7)
for all 0 ≤ x, y ≤ m.

In particular, the inequality (2.2) can be compared to some Hölder condition in [START_REF] Frikha | Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs[END_REF].

It is satisfied if σ(x) are α-Hölder continuous in x for some α ∈ [1/2, 1].
In order to construct appropriate monotone approximations in the multi-dimensional case, extra monotonicity and continuity conditions are required in Assumption 2.3.

Assumption 2.3. The function σ is either bounded or increasing on R + , the functions g 0 and g 1 are left continuous in x ∈ R, and the function g 1 is either increasing in x ∈ R or bounded by some function (x, u) -→ G (u) with

U 1 |G (u)| µ 1 (du) ∨ U 1 G 2 (u) µ 1 (du) < +∞.
(2.8)

Note that Assumption 2.3 allows to admit some discontinuity for g 0 and g 1 . For example, following (1.2), g 0 can take the form u

= (v, ζ) ∈ R 2 + and g 0 (x, v, ζ) = 1 {v<x} ζ.
The main result of this paper is given in the following Theorem.

Theorem 2.4. Consider the system of SDEs (2.1) and suppose for all i ∈ {1, • • • , N } that (1) the parameter a i is non-negative and the mean-field function b i : R + × R N -→ R is non-negative, increasing and Lipschitz continuous in each of its last N variables,

(2) the coefficients (σ i , g i,0 , g i,1 , N i,0 , N i,1 ) satisfy Assumption 2.2 and 2.3.

Then (2.1) has a càdlàg F-adapted solution (λ 1 t , • • • , λ N t ) t≥0 , with λ i • non-negative and E[ T 0 λ i t dt] < +∞ for any T ≥ 0.

Key lemma

Before proving the main result, we need the following lemma on the auxiliary onedimensional SDE with a more general drift coefficient.

Lemma 3.1. Let T > 0. Consider the SDE Y t = Y 0 + a t 0 (b s -Y s ) ds + t 0 σ(Y s )dW s + t 0 U 1 g 1 (Y s-, u) N 1 (ds, du) + t 0 U 0 g 0 (Y s-, u) Ñ0 (ds, du) , t ∈ [0, T ] (3.1) b where a > 0 and b = (b t ) t∈[0,T ] is a non-negative F-adapted càdlàg process. If Assumption 2.2 and 2.3 hold for the coefficients (σ, g 0 , g 1 , N 0 , N 1 ) in (3.1) b , then, the above SDE has a non-negative F-adapted càlàg solution Y = (Y t ) t∈[0, T ] .
We provide the proof of the lemma below. Note that in the above equation (3.1) b , the symbol "b" is attached as a subscript to its label in order to emphasize the dependence of the equation on the drift coefficient process b. The process b could be replaced by some auxiliary processes in the following proof and the subscript will be changed accordingly.

Proof. The idea is to approximate the drift coefficient b from below by a pointwise increasing sequence of adapted, piecewise constant processes, and use the comparison theorem from Gal'chuk [START_REF] Galchuk | A Comparison Theorem for Stochastic Equations with Integrals with Respect to Martingales and Random Measures[END_REF], together with the monotone convergence theorem.

Step 1: Discretization in time of the process b. For each n ∈ N + we define t n 0 = 0, b n 0 = b 0 -1 n , and recursively for k ∈ N:

t n k+1 = inf{t > t n k : b t n k - 1 n > b t } ∧ t n k + 1 n ∧ T, (3.2) b n t = b t n k - 1 n , t ∈ t n k , t n k+1 .
Obviously, we have b n t ≤ b t for all t ∈ [0, T ] and n ∈ N. We also define b 0 t = 0 and bn t = max{b m t : 0 ≤ m ≤ n} for all 0 ≤ t ≤ T . By definition, for any fixed positive integer n and ω ∈ Ω, t n k (ω) is increasing in k. We have in addition the following assertion.

Claim A. For any ω ∈ Ω, one has t n k (ω) = T for sufficiently large k.

Proof of the Claim A. We prove by contradiction. Suppose that t n k (ω) takes infinitely many values, then

t n k+1 (ω) = inf{t > t n k (ω) : b t n k (ω) (ω) - 1 n > b t (ω)}
for all large enough k. By the right continuity of the process b, we also have

b t n k (ω) (ω) - 1 n ≥ b t n k+1 (ω) (ω)
for all such k. Moreover, t n k (ω) increase to a finite limit t n (ω) as k → +∞, and since the function t → b t (ω) has a left limit n (ω) at t n (ω), we have

n (ω) = lim k→+∞ b t n k+1 (ω) (ω) ≤ lim k→+∞ b t n k (ω) (ω) - 1 n = n (ω) - 1 n
which is a contradiction. Therefore, t n k (ω) only takes finitely many values in [0, T ] when k varies. In particular, there exists n (ω) ∈ [0, T ] and k 0 ∈ N such that t n k (ω) = n (ω) for any k ∈ N with k ≥ k 0 . Note that n (ω) should equal T since otherwise by the right continuity of the process b we would have t n k 0 +1 (ω) > t n k 0 (ω), which leads again to a contradiction.

Step satisfying the SDE

Y n t = Y 0 + a t 0 bn s -Y n s ds + t 0 σ(Y n s )dW s + t 0 U 1 g 1 Y n s-, u N 1 (ds, du) + t 0 U 0 g 0 Y n s-, u Ñ0 (ds, du) (3.3) on the stochastic interval [[0, tn k ]],
we claim that we can extend the solution to the stochastic interval [[0, tn k+1 ]]. Indeed, we only need to find a non-negative solution to the SDE

Y n t = Y n tn k + a t tn k bn s -Y n s ds + t tn k σ(Y n s )dW s + t tn k U 1 g 1 Y n s-, u N 1 (ds, du) + t tn k U 0 g 0 Y n s-, u Ñ0 (ds, du) (3.4) on ]] tn k , tn k+1 ]] given Ftn k , in which case tn k , Y n tn k
and bn s = bn tn k ≥ 0 are known constants and tn k+1 is a stopping time. This is possible by recalling the results of [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF] to solve Proof of Claim B. We first show that the sequence is pointwisely bounded from above. For this purpose, we apply the construction of Step 1 to the process -b as follows. We define s 0 = 0, b0 = b 0 + 1, and recursively on k ∈ N, We now show that, for any ω ∈ Ω, and any point of continuity t of the function s → b s (ω), the sequence bn t (ω) converges from below to b t (ω) as n → +∞. Indeed, for any any positive integer n, there exists a k(n

Y n t = Y n tn k + a t tn k bn tn k -Y n s ds + t tn k σ(Y n s )dW s + t tn k U 1 g 1 Y n s-, u N 1 (ds, du) + t tn k U 0 g 0 Y n s-, u Ñ0 (ds, du) (3 
s k+1 = inf{t > s k : b s k + 1 < b t } ∧ (s k + 1) ∧ T, bt = b s k + 1, t ∈ [[s k , s k+1 [[.
) ∈ N such that t ∈ [[t n k(n) (ω), t n k(n)+1 (ω)[[ and thus |t -t n k(n) (ω)| ≤ |t n k(n)+1 (ω) -t n k(n) (ω)| ≤ 1 n , (3.6) 
which means that t n k(n) (ω) → t from below as n → +∞. Hence, by the continuity of b • (ω) at t and the definition of b n

• , we have

b n t (ω) = b t n k(n) (ω) (ω) - 1 n -→ b t (ω) as n → +∞.
Recalling then that b t (ω) ≥ bn t (ω) ≥ b n t (ω) for all n ∈ N, we deduce that bn t (ω) → b t (ω) as n → +∞.

Step 4. Resolution of the initial equation. Finally, we will show that a càdlàg version of the process Y solves (3.1) in [0, T ] by taking n → +∞ on (3.3) and by exploiting the convergence results we have just obtained. For s ∈ [0, T ], we denote by Y s-the limit of the increasing sequence (Y n s-) n∈N + . First, we recall the monotone convergence theorem which gives

t 0 bn s -Y n s ds = t 0 bn s ds - t 0 Y n s ds -→ t 0 b s ds - t 0 Y s ds = t 0 (b s -Y s ) ds (3.7)
as n -→ +∞, for any t ∈ [0, T ]. Next, for every n ∈ N, we consider a sequence {τ m,n } m∈N of F-stopping times such that lim m-→+∞ τ m,n = +∞ and also

T ∧τ m,n 0 (σ (Y n s ) -σ (Y s )) 2 ds ≤ m, T ∧τ m,n 0 U 0 g 0 Y n s-, u -g 0 (Y s-, u) 2 µ 0 (du) ds ≤ m, T ∧τ m,n 0 U 1 g 1 Y n s-, u -g 1 (Y s-, u) 2 µ 1 (du) ds ≤ m (3.8)
and

T ∧τ m,n 0 U 1 g 1 Y n s-, u -g 1 (Y s-, u) µ 1 (du) ds ≤ m (3.9)
for each m ∈ N. Since Y n is increasing in n, by the monotonicity of g 0 and Assumption 2.3, we can choose, for each m ∈ N, the F-stopping times τ m,n = τ m to be independent of n. Then, by using the Burkholder-Davis-Gundy inequality (see [START_REF] Cohen | Stochastic Calculus and Applications. Second edition. Probability and Its Applications[END_REF]) we have

E   sup t∈[0, T ] t∧τ m 0 σ (Y n s ) dW s - t∧τ m 0 σ (Y s ) dW s 2   = E   sup t∈[0, T ] t∧τ m 0 (σ (Y n s ) -σ (Y s )) dW s 2   ≤ CE T ∧τ m 0 (σ (Y n s ) -σ (Y s )) 2 ds
where we can recall the continuity of σ and either the monotone convergence theorem or the dominated convergence theorem (depending on whether σ is bounded or increasing) to deduce that the RHS tends to zero as n -→ +∞. Next, writing Ñ1 (ds, du) for the compensated measure N 1 (ds, du) -µ 1 (du) ds, where µ 1 (du) ds is the compensator of N 1 (ds, du), by using the Burkholder-Davis-Gundy inequality once more we have

E sup t∈[0, T ] t∧τ m 0 U 1 g 1 Y n s-, u Ñ1 (ds, du) - t∧τ m 0 U 1 g 1 (Y s-, u) Ñ1 (ds, du) 2 = E sup t∈[0, T ] t∧τ m 0 U 1 g 1 Y n s-, u -g 1 (Y s-, u) Ñ1 (ds, du) 2 ≤ CE T ∧τ m 0 U 1 g 1 Y n s-, u -g 1 (Y s-, u) 2 µ 1 (du) ds
where the quantity

g 1 Y n s-, u -g 1 (Y s-, u)
2 is either monotone or bounded by 4G 2 1 (u), with the last being integrable due to (2.8), so by monotone or dominated convergence and by the continuity of g 1 , the RHS of the above tends also to zero as n -→ +∞. Moreover, by a similar argument we have always

t∧τ m 0 U 1 g 1 Y n s-, u µ 1 (du) ds -→ t∧τ m 0 U 1 g 1 (Y s-, u) µ 1 (du) ds (3.10)
for all t ∈ [0, T ] as n -→ +∞, and combining this with the previous convergence result we deduce that almost surely we have

t∧τ m 0 U 1 g 1 Y n s-, u N 1 (ds, du) -→ t∧τ m 0 U 1 g 1 (Y s-, u) N 1 (ds, du) (3.11) 
for all t ∈ [0, T ] (in a subsequence). Finally, using the Burkholder-Davis-Gundy inequality and the monotone convergence theorem as we did for the integral with respect to Ñ1 (ds, du), we find that

E sup t∈[0, T ] t∧τ m 0 U 0 g 0 Y n s-, u Ñ0 (ds, du) - t∧τ m 0 U 0 g 0 (Y s-, u) Ñ0 (ds, du)
2 tends also to zero as n -→ +∞. It follows that almost surely, we can take limits on both sides of (3.3) and obtain (3.1) when t is replaced by t ∧ τ m , for any t ∈ [0, T ]. Then, we can finish the proof by letting m -→ +∞.

Proof of main result

In this section, we provide the proof of Theorem 2.4 on the existence of a strong solution to the system of SDEs (2.1) under Assumption 2.2 and 2.3. The idea is to construct a sequence of approximating solutions whose drift contains a piecewise conditional expectation with respect to the minimal of all pre-determined drift processes. The key lemma in the previous section allows to prove the existence of solutions for the approximating system. We then use monotone convergence to establish that the limit processes solves our system of SDEs.

Proof. Without loss of generality, we show that the equation admits a solution (λ 1 t , • • • , λ N t ) for t ∈ [0, T ], with λ i t non-negative and E[ T 0 λ i t dt] < +∞ for a given T > 0. Then the solution can be extended to R + without difficulty.

Step 1. Construction of the approximating systems and monotonicity. For n ∈ N, we construct a partition 0 = t n 0 < t n 1 < . . . < t n 2 n-1 = T of [0, T ] as follows: We start with t 1 0 = 0 and t 1 1 = T and, for any integer n, define inductively t n+1 2j = t n j for all j ∈ {0, . . . , 2 n-1 } and t n+1 2j+1 = (t n j + t n j+1 )/2 for all j ∈ {0, . . . , 2 n-1 -1}. Next, for each i ∈ {1, 2, ..., N }, let λ i,1

• to be the solution to the SDE

λ i,1 t = λ i 0 -a i t 0 λ i,1 s ds + t 0 σ i (λ i,1 s )dW i s + t 0 U 1 g i,1 λ i,1 s-, u N i,1 (ds, du) + t 0 U 0 g i,0 λ i,1 s-, u Ñi,0 (ds, du) , (4.1)
which exists and is unique as shown in [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF]. Then, having λ i,n

• defined for some n ≥ 1 and all i ∈ {1, 2, ..., N }, we define:

b i,n k = inf s∈[t n k , t n k+1 ] b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) (4.2)
and λ i,n+1

• in t n k , t n k+1 for any k ∈ {0, 1, ..., 2 n-1 -1} by solving the SDE

λ i,n+1 t = λ i,n+1 t n k + a i t t n k E b i,n k |F s -λ i,n+1 s ds + t t n k σ i (λ i,n+1 s )dW i s + t t n k U 1 g i,1 λ i,n+1 s-, u N i,1 (ds, du) + t t n k U 0 g i,0 λ i,n+1 s-, u Ñi,0 (ds, du) (4.3) for t ∈ t n k , t n k+1
, which also has a solution by Lemma 3.1. We will show now that for any n ≥ 1 we have λ i,n+1 t ≥ λ i,n t for all i ∈ {1, 2, ..., N } and all t ∈ [0, T ] by induction on n. For the initial case, that is, λ i,2 t ≥ λ i,1 t , we only need to recall that

E[b i,n k |F s ] ≥ 0 since each b i in (4.
2) is a non-negative function, and then use the comparison theorem from [START_REF] Galchuk | A Comparison Theorem for Stochastic Equations with Integrals with Respect to Martingales and Random Measures[END_REF]. Suppose now that for some n ≥ 1 we have λ i,n+1 t ≥ λ i,n t for all i ∈ {1, 2, ..., N } and t ∈ [0, T ]. Then, by the monotonicity of each b i we have

b i,n+1 2k = inf s∈[t n+1 2k , t n+1 2k+1 ] b i (s, λ 1,n+1 s , λ 2,n+1 s , ..., λ N,n+1 s ) ≥ inf s∈[t n+1 2k , t n+1 2k+1 ] b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) ≥ inf s∈ t n+1 2k , t n+1 2(k+1) b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) = inf s∈[t n k , t n k+1 ] b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) = b i,n k (4.4) 
for n ≥ 1, all i ∈ {1, 2, ..., N } and all k ∈ {0, 1, ..., 2 n-1 -1}, and also

b i,n+1 2k+1 = inf s∈[t n+1 2k+1 , t n+1 2k+2 ] b i (s, λ 1,n+1 s , λ 2,n+1 s , ..., λ N,n+1 s ) ≥ inf s∈[t n+1 2k+1 , t n+1 2k+2 ] b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) ≥ inf s∈[t n+1 2k , t n+1 2k+2 ] b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) = inf s∈[t n k , t n k+1 ] b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) = b i,n k (4.5)
for n ≥ 1, all i ∈ {1, 2, ..., N } and all k ∈ {0, 1, ..., 2 n-1 -1}. We will use these two inequalities to show that λ i,n+2 t ≥ λ i,n+1 t for all i ∈ {1, 2, ..., N } and t ∈ [0, T ]. This is done by applying a second induction as follows: For

t ∈ [t n+1 0 , t n+1 1 ] = [0, t n+1 1 ] ⊂ [0, t n 1 ] we have λ i,n+2 t = λ i,n+2 0 + a i t 0 E b i,n+1 0 |F s -λ i,n+2 s ds + t 0 σ i (λ i,n+2 s )dW i s + t 0 U 1 g i,1 λ i,n+2 s-, u N i,1 (ds, du) + t 0 U 0 g i,0 λ i,n+2 s-, u Ñi,0 (ds, du) (4.6) 
and

λ i,n+1 t = λ i,n+1 0 + a i t 0 E b i,n 0 |F s -λ i,n+1 s ds + t 0 σ i (λ i,n+1 s )dW i s + t 0 U 1 g i,1 λ i,n+1 s-, u N i,1 (ds, du) + t 0 U 0 g i,0 λ i,n+1 s-, u Ñi,0 (ds, du) (4.7) 
and since

E[b i,n+1 0 |F s ] ≥ E[b i,n 0 |F s ]
(by taking conditional expectations in (4.4) for k = 0 and n replaced by n + 1) the comparison theorem implies that λ i,n+2 t

≥ λ i,n+1 t for all t ∈ [t n+1 0 , t n+1 1 ] = [0, t n+1 1 ] . Suppose now that for some k ∈ {0, 1, . . . , 2 n -1} we have λ i,n+2 t = λ i,n+1 t for all t ∈ [t n+1 0 , t n+1 k ] = 0, t n+1 k . Then for k = 2k with k ∈ {0, 1, ..., 2 n-1 -1} we have t n+1 k = t n k and t n+1 k +1 = (t n k + t n k+1 )/2, while for k = 2k + 1 with k ∈ {0, 1, ..., 2 n-1 -1} we have t n+1 k = (t n k + t n k+1 )/2 and t n+1 k +1 = t n k+1 , so in both cases it holds that [t n+1 k , t n+1 k +1 ] ⊂ [t n k , t n k+1 ] and for any t ∈ [t n+1 k , t n+1 k +1 ] we have both λ n+2 t = λ i,n+2 t n+1 k + a i t t n+1 k E b i,n+1 k |F s -λ i,n+2 s ds + t t n+1 k σ i (λ i,n+2 s )dW i s + t t n+1 k U 1 g i,1 λ i,n+2 s-, u N i,1 (ds, du) + t t n+1 k U 0 g i,0 λ i,n+2 s-, u Ñi,0 (ds, du) (4.8) 
and

λ n+1 t = λ i,n+1 t n+1 k + a i t t n+1 k E b i,n k |F s -λ i,n+1 s ds + t t n+1 k σ i (λ i,n+1 s )dW i s + t t n+1 k U 1 g i,1 λ i,n+1 s-, u N i,1 (ds, du) + t t n+1 k U 0 g i,0 λ i,n+1 s-, u Ñi,0 (ds, du) (4.9) with E b i,n+1 k |F s ≥ E b i,n
k |F s (by taking expectations given F s in (4.4) and (4.5)). Thus, the comparison theorem implies that λ i,n+2 t ≥ λ i,n+1 t for all t ∈ t n+1 k , t n+1 k +1 , which means that the same inequality holds for all t ∈ t n+1 0 , t n+1 k +1 ≡ 0, t n+1 k +1 . This completes the second induction and gives λ i,n+2 t ≥ λ i,n+1 t for all t ∈ [0, T ], and the last completes the initial induction giving λ i,n+1 t ≥ λ i,n t for all t ∈ [0, T ] and all n ≥ 1.

Step 2. Finiteness of the monotone limits. We have shown in the previous step that the family of processes {λ i,n t } t∈[0,T ] is pointwise increasing in n, we will show that almost 

E λ i,n+1 t ≤ sup 1≤i≤N E λ i 0 + B t + L M t 0 e L s ds = sup 1≤i≤N E λ i 0 + B t + M e L t -M ≤ M e L t (4.18)
which completes the induction. Integrating then (4.17) for t ∈ [0, T ] we obtain the desired boundedness.

Step 3. Limit processes as solution to the system (2.1) and positivity. Now that we have the pointwise monotone convergence of λ i,n t t∈[0, T ] to a finite process λ i t t∈[0, T ] for all i ∈ {1, 2, ..., N }, we will show that these limiting processes solve our system of SDEs. The first step is to fix an i ∈ {1, 2, ..., N }, and for each n ∈ N and s ∈ [0, T ] take k n (s) ∈ {1, 2, ..., 2 for some s n ∈ t n kn(s) , t n kn(s)+1 (by the definition of infimum). For an m ∈ N, recalling the pointwise monotonicity of each λ i,n

• in n ∈ N and the monotonicity of each mean-field function b i in each of its arguments, the previous double inequality easily gives

b i (s n , λ 1,m sn , λ 2,m sn , ..., λ N,m sn ) -≤ b i,n kn(s) ≤ b i (s, λ 1,n s , λ 2,n s , ..., λ N,n s ) (4.20)
for all n ≥ m. Since s ∈ D, taking n -→ +∞ in the above and recalling that each b i is continuous, we obtain and taking n -→ +∞ in the above for all i we derive the desired system of SDEs satisfied by the limiting processes λ i • : i ∈ {1, 2, ..., N } . Indeed, since [0, T ] /D is obviously a countable random subset of [0, T ], the monotone convergence theorem gives t∧τ m 0 U j g i,j λ i,n+1 s-, u -g i,j λ i s-, u Ñi,j (ds, du)

b i (s, λ 1,m s , λ 2,m s , ..., λ N,m s ) -≤ lim inf n-→+∞ b i,n kn(s) ≤ lim sup n-→+∞ b i,n kn(s) ≤ b i (s, λ 1 s , λ 2 s , ..., λ N s ) . ( 4 

≤ CE

T ∧τ m 0 U j g i,j λ i,n+1 s-, u -g i,j λ i s-, u 2 µ i,j (du) ds by the Burkholder-Davis-Gundy inequality (see [START_REF] Cohen | Stochastic Calculus and Applications. Second edition. Probability and Its Applications[END_REF]), with the sequence {τ m } m∈N of stopping times selected as in the proof of Lemma 3.1 to ensure that the RHS in the last two estimates is finite for all n ∈ N, and these RHS tending to zero by the monotone pointwise convergence of λ i,n

• to λ i • , the continuity of σ i and g i,j , the monotonicity or boundedness of these functions and the corresponding convergence theorem. Finally, a similar argument shows that t∧τ m 0 U 1 g i,1 λ i,n+1 s-, u µ i,1 (du) ds -→ t∧τ m 0 U 1 g i,1 λ i s-, u µ i,1 (du) ds (4.25)

surely for all t ∈ [0, T ] as n -→ +∞, and combining this with the previous convergence result for the integral with respect to Ñi,1 we deduce that almost surely we have

t∧τ m 0 U 1 g i,1 λ i,n+1 s-, u N i,1 (ds, du) -→ t∧τ m 0 U 1 g i,1 λ i s-, u N i,1 (ds, du) (4.26)
as n -→ +∞ for any t ∈ [0, T ]. The desired system of SDEs is obtained by observing that almost surely we have t = t ∧ τ m for large enough m. The proof is now complete since for every i and all t ≥ 0 we have almost surely λ i t ≥ λ i,1 t with λ i,1 t being non-negative in the one-dimensional case, and since we can integrate (4.17) and use Fatou's lemma to deduce that λ i

• is L 1 -integrable for each i.

Example 2 . 1 .

 21 The typical example of a mean-field drift function is b

. 5 )Step 3 .

 53 on ]] tn k , T ]] given Ftn k , and then stopping at time tn k+1 . This inductive argument defines a non-negative càdlàg semimartingale Y n • which solves the equation (3.1) bn on [0, T ]. By construction we have b t ≥ bn+1 t ≥ bn t ≥ 0 for all t ∈ [0, T ] and n ∈ N. Therefore, by the comparison theorem from Galchuk [11, Theorem 1], we have Y n+1 t ≥ Y n t for all t ∈ [0, T ] and n ∈ N. Convergence of the drift coefficients and associated solutions. We begin with the following claim. Claim B. The sequence (Y n ) n∈N defined in Step 2 converges pointwise from below to an F-adapted process Y .

  By definition, one has bt ≥ b t for all t ∈ [0, 1]. Similarly to Claim A, for any fixed ω ∈ Ω, s k (ω) is increasing in k and s k (ω) = T for sufficiently large k. By the same argument as in Step 2, we obtain that the equation (3.1) b admits a solution, which we denote by Ỹ . Still by the comparison theorem of[START_REF] Galchuk | A Comparison Theorem for Stochastic Equations with Integrals with Respect to Martingales and Random Measures[END_REF], we deduce from the relations b ≥ b ≥ bn+1 ≥ bn ≥ 0 the inequalities Ỹt ≥ Y n+1 t ≥ Y n t ≥ 0 for all t ∈ [0, T ] and n ∈ N. Therefore, the sequence (Y n ) n∈N, n≥1 converges pointwise to a limite process Y , which is clearly F-adapted.

0 Eb

 0 b i (s, λ 1 s , λ 2 s , ..., λ N s )|F s dsi (s, λ 1 s , λ 2 s , ..., λ N s ) -λ i s ds, j λ i,n+1 s-, u Ñi,j (ds, du) -t∧τ m 0 U j g i,j λ i s-, u Ñi,j (ds, du)

  2. Resolution of the equation with discretized drift coefficients. Note that t n k is a stopping time for each n and each k, and if we define tn k to be the k th smallest element of the set {t m

	} k∈N is an increasing t being constant on each stochastic interval of the form sequence of stopping times, with bn [[ tn k , tn k+1 [[. Moreover, we obtain by Claim A that, for each fixed ω ∈ Ω, tn k (ω) = T for all large enough k. Assuming that we can find a non-negative semimartingale (Y n t ) t∈[[0, tn

k : k ∈ N, m ∈ {1, 2, . . . , n}}, then for any n, { tn k k ]]

  is finite for almost all t ∈ [0, T ] and every i ∈ {1, 2, . . . , N }. This will follow by Fatou's lemma if we can show that ≤ M for all t ∈ [0, T ], which is possible by recalling the estimate (2.5). Then, provided that M is large enough, we will show by induction on n that

	surely, lim n-→+∞ and since k was arbitrary, the above holds for any t ∈ [0, T ]. Take now a constant M > 0 λ i,n such that sup 1≤i≤N E λ i,1 t t sup 1≤i≤N E T 0 λ i,n (4.10) t dt is bounded in n ∈ N. For the last, we recall that by the Lipschitz property of each b i , sup 1≤i≤N E λ i,n t ≤ M e L t (4.17)
	there exist constants B, L > 0 such that for all n ∈ N and t ∈ [0, T ]. The base case is trivial, and if M is large enough such that
	M > sup 1≤i≤N	b i s, λ 1,n s , λ 2,n s , ..., λ N,n s 0 + B T , plugging sup E λ i 1≤i≤N E λ i,n ≤ B + L s ≤ M e L s in (4.16) we find that N s λ i,n	(4.11)
					sup						i=1
	for every i ∈ {1, 2, . . . , N }, so taking infimum on the LHS for s ∈ t n k , t n k+1 and then 1≤i≤N
	conditioning on F s we obtain			
											N
							E b i,n k | F s ≤ B + L	λ i,n s	(4.12)
											i=1
	for all s ∈ t n k , t n k+1 and i ∈ {1, 2, ..., N }. Plugging the above in (4.3), localizing if
	needed, taking expectations and then supremum in i and finally using (2.5), we can
	easily get									
	sup 1≤i≤N	E λ i,n+1 t	≤ sup 1≤i≤N	E λ i,n+1 t n k	+ āB(t -t n k ) + āLN	t t n k	sup 1≤i≤N	E λ i,n s	ds
											t
											+ K	t n k	sup 1≤i≤N	E λ i,n s	+ 1 ds	(4.13)
	for ā := sup	a i , which can be written as
	1≤i≤N							
	sup 1≤i≤N	E λ i,n+1 t	≤ sup 1≤i≤N	E λ i,n+1 t n k	+ B (t -t n k ) + L	t t n k	sup 1≤i≤N	E λ i,n s	ds
											(4.14)
	for B = āB + K and L = āLN + K, so replacing k with k < k and taking t = t n k +1 we
	get also									
		sup 1≤i≤N	E λ i,n+1 t n k +1	≤ sup 1≤i≤N	E λ i,n+1 t n k
									+ B (t n k +1 -t n k ) + L	t n k +1 t n k	sup 1≤i≤N	E λ i,n s	ds.	(4.15)
	Summing (4.14) with (4.15) for k ∈ {0, 1, ..., k -1} we obtain
		sup 1≤i≤N	E λ i,n+1 t	≤ sup 1≤i≤N	E λ i 0 + B t + L	0	t	sup 1≤i≤N	E λ i,n s	ds	(4.16)

  = b i (s, λ 1 s , λ 2 s , ..., λ N s ), where the convergence is obviously monotone. Next, for any t ∈ [0, T ], recalling(4.3) and that for all k ∈ {1, 2, ..., 2 n-1 -1} we have k = k n (s) for all s ∈ t n

										(4.22)
	and since > 0 was arbitrary, the above implies that lim n-→+∞	b i,n kn(s) k , t n k+1 , for any
	i ∈ {1, 2, ..., N } we can write					
		kn(t)-1				
	λ i,n+1 t	= λ i 0 +				λ i,n+1 t n k+1		-λ i,n+1 t n k	+ λ i,n+1 t	-λ i,n+1 t n kn(t)
			k=0				
		= λ i 0 + a i	kn(t)-1 k=0	t n k+1 k t n	E b i,n kn(s) |F s -λ i,n+1 s	ds
							+a i	t kn(t) t n	E b i,n kn(s) |F s -λ i,n+1 s	ds
		+	kn(t)-1 k=0	t n k+1 t n k	σ i (λ i,n+1 s	)dW i s +	t kn(t) t n	σ i (λ i,n+1 s	)dW i s
		+	kn(t)-1 k=0	t n k+1 k t n	U 1	g i,1 λ i,n+1 s-, u N i,1 (ds, du)
							+	t kn(t) U 1 t n	g i,1 λ i,n+1 s-, u N i,1 (ds, du)
		+	kn(t)-1 k=0	t n k+1 k t n	U 0	g i,0 λ i,n+1 s-, u Ñi,0 (ds, du)
							+	t kn(t) U 0 t n	g i,0 λ i,n+1 s-, u Ñi,0 (ds, du)
		= λ i 0 + a i	0	t	E b i,n kn(s) |F s -λ i,n+1 s	ds +	0	t	σ i (λ i,n+1 s	)dW i s
		+		t			g i,1 λ i,n+1 s-, u N i,1 (ds, du)
				0		U 1			
		+		t			g i,0 λ i,n+1 s-, u Ñi,0 (ds, du)
				0		U 0			
										(4.23)
				n-→+∞	b i,n kn(s) ≤ lim sup n-→+∞	b i,n kn(s) ≤ b i (s, λ 1 s , λ 2 s , ..., λ N s ).

.21) Taking now m -→ +∞ we get b i (s, λ 1 s , λ 2 s , ..., λ N s ) -≤ lim inf
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