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Abstract

The dependence structure of the life statuses plays an important role in the valuation of life insurance prod-
ucts involving multiple lives. Although the mortality of individuals is well studied in the literature, their depen-
dence remains a challenging field. In this paper, the main objective is to introduce a new approach for analyzing
the mortality dependence between two individuals in a couple. It is intended to describe in a dynamic framework
the joint mortality of married couples in terms of marginal mortality rates. The proposed framework is general
and aims to capture, by adjusting some parametric form, the desired effect such as the “broken-heart syndrome”.
To this end, we use a well-suited multiplicative decomposition, which will serve as a building block for the
framework and thus will be used to separate the dependence structure from the marginals. We make the link
with the existing practice of affine mortality models. Finally, given that the framework is general, we propose
some illustrative examples and show how the underlying model captures the main stylized facts of bivariate
mortality dynamics.
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1 Introduction

Mortality modeling has been an active field of research in actuarial science. The evolution of mortality is of
paramount importance to a life insurance company as the liabilities depend to a large extent on the evolution of
the number of deaths occurrence. Although the mortality of individuals is well documented in the literature, the
dependence between lives remains a challenging field. Indeed, future lifetimes within a group of people like married
couples, for example, can exhibit dependencies due to similar lifestyles or to the effect of exposure to common risk
factors. Such a dependence structure of the life statuses is not only a key element in the evaluation of insurance
products involving multiple lives but also in a better understanding of the elderly longevity. The main objective of
this paper is to analyze the mortality dependence between individuals in a couple by introducing a new approach,
which is intended to describe the joint mortality of married couples in terms of marginal mortality rates under
different life statuses. In fact, it has long been documented that the death of a spouse does impact the mortality
of the surviving spouse, in particular it may accelerate the death of the latter. This causal effect is known as the
“broken-heart syndrome”. In addition, the spouses are also impacted by their common lifestyle, which is also a
source of dependence.

In the literature, the common methods to handle such a dependency are based on copulas or Markovian ap-
proaches [11, 12, 14, 19, 29]. As noted in literature, the attractive advantage of a copula-based approach is that it
allows the correlation structure of the remaining lifetime variables to be estimated separately from their marginal
distributions [15], [31]. A Markovian approach, on the other hand, can show clearly the change of state in couple’s
lifetime, but does, generally, fail at showing the dependence structure between the spouses.

Also, the broken-heart syndrome is not accommodated. In fact, the death of a spouse introduces a jump in
the mortality of the survivor. This phenomenon is now widely recognized. For instance, Gourieroux and Lu
[12] introduced jumps in mortality intensity using a Freund model with an unobservable common static factor
representing the shared socioeconomic conditions. Such a behavior was empirically investigated in Lu [18] using
data on joint annuities. The analysis shows that the effect of losing one’s spouse is persistent, and asymmetric for
the spouses. However, even if the recent literature considered these different stylized facts, the common approach
is still based on a static development and does not tackle the dynamic aspect either of the dependency between the
spouse neither the broken-heart syndrome. In Blanchet-Scalliet et al. [5], a first approach is developed to handle
these aspects and propose a framework with a dependence structure governed by a Farlie-Gumbel-Morgenstern
copula in a dynamic setting. The proposed approach is based on dynamic characterization of the joint density,
which convenient for modeling the dependency of deaths among a population not only from a theoretical point
of view but also for a practical use. This amounts to saying that one individual’s intensity will have a jump
when the other individual is deceased. However, in [5] the framework assumes a symmetric reaction the considered
individuals. In fact, the investigation of the dependence as well as the broken-heart syndrome exhibit an asymmetric
behavior between the coupled lifetimes [18].

The model developed in this paper aims to reconcile the copula and the Markovian approaches while taking into
account most of the aforementioned stylized facts. First, we consider a forward mortality rate model by taking into
consideration a common life-status of the married couple as background information. Then using a multiplicative
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decomposition will serve as a building block of the joint survival probability in order to identify the dependency
structure from the marginals. The proposed framework is general and aims by adjusting some parametric form
to capture the desired effect. In fact, we write the conditional joint probability as the product of two marginal
probabilities, and a random variable which represents the dependence between the two life statuses. The latter,
contrary to the linear correlation parameter which takes value in [−1, 1], can be viewed as a random extension of
Sibuya’s function [28] and take any strictly positive real value, which allows for a large choice of parametrisation.
Such a framework allows for an inherent structure for the dependency and can be adapted to various approaches
used in the literature. Indeed, the class of affine term structure which is often used to describe the individual’s
intensity of mortality [4, 13, 20, 23, 26], fits naturally in our model when the couple shares a common factor. Then
the joint (conditional) survival probability can be derived explicitly. By doing so, we will focus on the impact
of the dependency structure separately from the individual marginals as the former plays an important role in
the evaluation. Second, for the purpose of studying the “broken-heart syndrome”which can be described as “an
elevated level of hazard to the life of a husband in the period of time directly following the death of the wife and
vice versa”, we consider the (conditional) joint survival probability under different scenarios of life statuses of the
couple similar as in Norberg [21], Denuit and Cornet [6] where the life status of the couple are distinguished. The
study, which can be compared to that in credit risk (see e.g. El Karoui et al. [9, 10]) for the before-default and
after-default analysis, is based on the events of "before the first death” and "after the first death" and allows us to
examine in detail the impact of one death event on the surviving individual. For each case, we characterize the
dynamics of the involved intensities and quantify the impact of the first death on the intensity of the survivor. In
particular, we will investigate models that take into account the main feature that drives the broken-heart syndrome.
To this end, the dynamic approach together with the multiplicative decomposition of the joint survival function
provide a new vision on the life statuses dependence problems.

The remaining of the paper is organized as follows. Section 2 has still an introductory purpose. It introduces the
mathematical setting and the notation used throughout the paper. We also consider the problem of pricing joint life
insurance contracts and discuss the main contracts of interest, which involve a guarantee as a function of the joint
life statuses. In Section 3 we introduce the modelling framework well suited for bivariate mortality. We rely on a
characterization of the joint survival function using multiplicative decomposition and isolating the marginal effect
and the dependence structure. This section makes the parallel to classic intensity models commonly used in single
life mortality modelling. The price of joint life contracts is derived. Section 4 is dedicated to the broken-heart
syndrome, which introduces the conditional survival probability as means of capturing the impact of the death of
the first individual on the survivor. We discuss the impact of the dependency as well as the broken-heart syndrome
on main contracts, i.e. first-to-die and last-survivor. Under the theoretical framework, in Section 5, some explicit
models are studied in more detail for further practical use and we complete the paper by numerical illustrations.
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2 Joint-Life Insurance Contracts and Symmetric Statuses

2.1 Mathematical Setting and Notation

We start by introducing the elementary notions of bivariate life insurance contracts and the underlying mortality
setting. Let us assume that all uncertainty is represented by a probability space (Ω,F ,P). On this space, we
consider a couple whose initial ages are x1 and x2 and denote τ1 and τ2 to be positive random variables representing
the future lifetimes of each spouse. For any i ∈ {1, 2}, let Di(t) = 1l{τi≤t}. The filtration Di = (Dit)t≥0 generated
by the process (Di(t))t≥0, i.e., Dit := σ(1l{τi≤s}, s ≤ t), describes the information on the life status of the ith

individual, that is, whether he or she is still alive, and if not, the death time. The information on the bivariate life
statuses is then defined by D = (Dt)t≥0 := D1 ∨ D2.

Many multiple life insurance contracts concern the order of the deaths occurrences such as the minimal-survivor
or the last-survivor status of the couple. For this purpose, we consider the order statistic of the lifetime variables.
Let τ(1) and τ(2) be the order statistic of τ1 and τ2, i.e., τ(1) = min{τ1, τ2} and τ(2) = max{τ1, τ2}. We introduce
the information stemming from the ordered lifetime statuses in a similar way and let D(i)

t := σ(1l{τ(i)≤s}, s ≤ t)

and D̃t := D(1)
t ∨ D

(2)
t . The filtration D̃ = (D̃t)t≥0 is a sub-filtration of D, which gives the occurrence times of

the deaths but does not precise the correspondence to which member in the couple. In general, if the vector (τ1, τ2)

is exchangeable, that is, if (τ1, τ2)
d
= (τ2, τ1) where “ d

=” signifies the equality in distribution, then we can use D̃t

instead of Dt. Besides the life status of the couple, we also take into account the environmental information, which
is modeled by an auxiliary filtration F = (Ft)t≥0 on (Ω,F) satisfying the usual conditions. In this setting, the
filtration F gathers information about the likelihood of death events, but not their actual occurrence. We may think
of F as carrying out information stemming from medical or demographical factors. It may also gather relevant non-
demographic information related, for example, to financial markets or economic indicators. Such information can
have both positive or negative impact on the vector (τ1, τ2) or (τ(1), τ(2)) and we shall consider their dependence
later on. By combining the above two sources of information, the global information G = (Gt)t≥0 is given by
Gt = Ft ∨ Dt or Gt = Ft ∨ D̃t.

2.2 Joint-Life Insurance Contracts

In order to introduce life insurance policies depending on the joint lives (τ1, τ2), we define, for t ≥ 0, the positive
random variable Yt(τ1, τ2) which characterizes the guaranteed payment of the contracts. More precisely, Yt(τ1, τ2)
indicates whether the guarantee is triggered or not at time t. For example, the function Yt(·) can depend on
the indicators of the life statuses, i.e. t → 1[0,t](τi) for i = 1, 2. In this case, Yt(τ1, τ2) is simply called the
joint-life status of the spouses. We are also interested in a class of joint-life contracts with regard to the events
triggering the payment which are characterized by using the definition of symmetric statuses [16]. More formally,
we say that the joint-life status Yt(τ1, τ2) is symmetric if Yt(·) is a symmetric function, i.e., for any (u1, u2) ∈ R2

+

Yt(u1, u2) = Yt(u2, u1).
Various insurance products providing joint-life benefits falls into the definition of symmetric statuses:

(i) the first-to-die contracts paying out a monetary amount at the first death of a spouse, i.e. Yt(τ1, τ2) = 1{τ(1)≤t}
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(ii) the last-to-die (last-survivor) contracts triggering the guarantee payment upon the death of the second spouse
and thus Yt(τ1, τ2) = 1{τ(2)≤t}.

Clearly, these contracts depend, respectively, on the smallest and the largest order statistics of the two lives τ(1)
and τ(2). Moreover, we should note that the contracts described above cover both whole-life and term insurance
contracts. In the first type, the guarantee remains in force until the payment is triggered. For term insurance,
guarantees are only provided for a limited period of time. Thus the payment of the guaranteed amount is made
when the triggering event occurs before the maturity of the contract. These contracts are similar to some well-
known credit portfolio derivatives: the kth-to-default swaps, with k = {1, 2}.

On the other hand, some contracts fail to fulfill the symmetric statuses definition. An example is the status
Yt(τ1, τ2) = 1{τ2<τ1}, related to reversionary annuities that are payable in full for lifetime of the annuitant upon
whose death the pension is paid to the spouse for whole life. Therefore, only the death of the policyholder triggers
the guarantee and thus no payment is made when the spouse dies before the policyholder.

To study the multiple life premium for the corresponding insurance contract, we are interested in the following
quantities under the probability measure P1:

(1) E[YT (τ1, τ2)], representing the expected payoff of the multiple life insurance contract. This is a key milestone
in actuarial mathematics and can be related to the so-called best-estimate value of the contract incurred liability.

(2) E[YT (τ1, τ2)|Ht], which is the value of the contract given the evolution of the relevant information at time
t represented by Ht. Here Ht can denote the pure information about the life status Dt or D̃t and can also
represent the global information, i.e., Ht = Gt. This quantity can be interpreted as the prospective reserve on
the single contract. Moreover, this conditional expectation is of paramount importance in the new European
regulation, namely Solvency II, which requires the derivation of the one-year-time best estimate value of the
liability. In the case of a single contract, the latter coincides with conditional expected value taken at time
t = 1.

3 Joint Forward Mortality Rate Modelling for Dependent Lives

3.1 Model Setup

We now consider the bivariate mortality modelling of couples by choosing the forward modelling approach as in
[2]. We focus on the conditional information set and its impact on the joint survival distribution. To this end,
for a couple whose future lifetimes and current ages are denoted by τ = (τ1, τ2) and x = (x1, x2), we consider
the survival probability of each spouse of the couple given the following information. First, instead of the life
status of the single spouse, the first death-survival status is taken into account. As we are concerned with life
insurance contracts for couples, it is relevant to include the life status of both spouses. Second, the environmental
information contained in F is included, which allows to describe the external environmental impact or the common
lifestyle factors on the life status of the couple.

1The probability measure P can be either interpreted as the historical measure or can refer to a pricing measure depending on the
considered context.
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More precisely, we suppose that, for any t ≥ 0 and T ≥ t, the conditional survival probability of each remaining
life is given, by using a forward mortality rate before the first death, as

Px(τi > T |{τ(1) > t} ∨ FT ∗) = e
−

∫ T
t µi

x,T∗ (t,s)ds, i ∈ {1, 2}, (1)

where T ∗ > 0 is a large enough horizon time, µix,T ∗(t, s) isFT ∗-measurable which represents the forward mortality
rate with the age vector x = (x1, x2) regard as a fixed parameter. Compared to the typical forward intensity in
the literature (e.g. Bauer et al. [2]), the expression (1) is non standard due to the fact that T ∗ is a future time.
This implies that events in the future, such as the long term impact of pandemics for example, can influence
the mortality intensities. Such impact, although not observable directly at current time, will be projected when
computing conditional joint probabilities (see Section 3.2). The marginal conditional survival probability is then

Px(τi > T |FT ∗) = e
−

∫ T
0 µi

x,T∗ (0,s)ds, i ∈ {1, 2}.

To show the relationship between the joint and the marginal probabilities, we write

Px(τ1 > t1, τ2 > t2|FT ∗) = Px(τ1 > t1|FT ∗)Px(τ2 > t2|FT ∗)ρx,T ∗(t1, t2) (2)

where ρx,T ∗(·, ·) is an FT ∗-measurable random variable which characterizes the dependence and can be seen as
a random extension of Sibuya’s function [28]. Contrary to the linear correlation parameter which takes value in
[−1, 1], this quantity ρx,T ∗(t1, t2) can take any strictly positive real value. In particular, for any t1, t2 > 0, if
ρx,T ∗(t1, t2) = 1, then there is conditional independence between τ1 and τ2 given the environmental information.
The case where ρx,T ∗(t1, t2) is greater than 1 corresponds to the “positive quadrant dependence” between the
spouses and the case smaller than 1 means a “negative quadrant dependence” (see Lehmann [17]). In addition, we
have ρx,T ∗(0, t) = ρx,T ∗(t, 0) = 1 for any t ≥ 0.

Under (1), we get the joint conditional suvival probability as below.

Proposition 1. Suppose that ρx,T ∗(t1, t2) is of class C1,1 with respect to (t1, t2), then

Px(τ1 > t1, τ2 > t2|FT ∗) = exp

{
−
∫ t1

0
µ1x,T ∗(s ∧ t2, s)ds−

∫ t2

0
µ2x,T ∗(s ∧ t1, s)ds

}
.

Proof. From the expression (1), for any T > t, we have

Px(τ1 > T |{τ(1) > t} ∨ FT ∗) =
Px(τ1 > T, τ2 > t|FT ∗)

Px(τ1 > t, τ2 > t|FT ∗)
= e
−

∫ T
t µ1

x,T∗ (t,s)ds,

then
Px(τ1 > T, τ2 > t|FT ∗) = Px(τ1 > t, τ2 > t|FT ∗)e

−
∫ T
t µ1

x,T∗ (t,s)ds.
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This combined to the definition (2) allows to write

ρx,T ∗(T, t)

ρx,T ∗(t, t)
= exp

{
−
∫ T

t

[
µ1x,T ∗(t, s)− µ1x,T ∗(0, s)

]
ds

}
.

Hence, ∂T ln ρx,T ∗(T, t) = −
(
µ1x,T ∗(t, T )− µ1x,T ∗(0, T )

)
. By symmetry, we also have

∂T ln ρx,T ∗(t, T ) = −
(
µ2x,T ∗(t, T )− µ2x,T ∗(0, T )

)
.

Taking the sum, we can write

d

dt
ln ρx,T ∗(t, t) = −

(
µ1x,T ∗(t, t)− µ1x,T ∗(0, t)

)
−
(
µ2x,T ∗(t, t)− µ2x,T ∗(0, t)

)
,

and then

ln ρx,T ∗(t, t) = −
∫ t

0

[(
µ1x,T ∗(s, s)− µ1x,T ∗(0, s)

)
+
(
µ2x,T ∗(s, s)− µ2x,T ∗(0, s)

)]
ds.

Therefore,

ln ρx,T ∗(T, t) = ln ρx,T ∗(t, t)−
∫ T

t
(µ1x,T ∗(t, s)− µ1x,T ∗(0, s))ds,

= −
∫ t

0

[(
µ1x,T ∗(s, s)− µ1x,T ∗(0, s)

)
+
(
µ2x,T ∗(s, s)− µ2x,T ∗(0, s)

)]
ds−

∫ T

t
(µ1x,T ∗(t, s)− µ1x,T ∗(0, s))ds

= −
∫ T

0

(
µ1x,T ∗(t ∧ s, s)− µ1x,T ∗(0, s)

)
ds−

∫ t

0

(
µ2x,T ∗(t ∧ s, s)− µ2x,T ∗(0, s)

)
ds,

and ln ρx,T ∗(t, T ) is obtained by symmetry. We then obtain, combining with (1) and (2), the required result.

The above result characterizes the conditional joint probability by specifying the forward mortality rates and
avoiding to focus on the generalized Sibuya’s function ρx since the dependence structure is implicitly embedded
in µ1x and µ2x. This allows for convenient and flexible choices of mortality models which can take into account
common lifestyle and risk factors of the couple. For instance, we can use the class of affine processes which have
attracted interest in applied research for finance as well as for insurance.

3.2 Affine Factor Model for Forward Mortality

In this section, we present the forward intensities of the couple by using a factor model where the homogeneous
and heterogeneous factors are respectively described by affine processes. We suppose that each forward mortality
is given by the following form

µix,t(u, s) = µix(u, s) + Zit , t ∈ [0, T ∗] i = 1, 2, (3)
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where µix(t, s) is a deterministic function specified by an available mortality assumption2, when doing realistic
mortality projections of a population of insureds [24, 25]. Here, the processes Zi = (Zit , t ≥ 0), i = 1, 2, represent
random departures from the initially chosen baseline which capture random fluctuations as well as systematic
deviations.

The affine processes have been adopted in mortality modeling, for instance see [4, 13, 20, 23, 26]. Let

Zit = ρiY
0
t + Y i

t , t ∈ [0, T ∗], i = 1, 2, (4)

where ρi ∈ [−1, 1], and Y i = (Y i
t , t ≥ 0), i = 1, 2, 3, are independent affine processes. The process Y 0 represents

the common environmental random factor for the couple, whereas Y 1 and Y 2 are individual factors.

Proposition 2. Suppose that the factor processes are given by the SDEs

dY i
t = bi(Y

i
t )dt+ σi(Y

i
t )dW i

t , Y i
0 = yi, i = 0, 1, 2,

where W i = (W i
t , t ≥ 0), i = 0, 1, 2, are independent Brownian motions and the coefficients bi and σi are given

by bi(x) = K̄i + K̂ix,

σ2i (x) = H̄i + Ĥix.

Then the marginal survival probability is

Px(τi > ti) = exp

(
−
(
γi(0) + γ0(0)

)
−
(
βi(0) + β0(0)

)
yi −

∫ ti

0
µix(0, s)ds

)
, i = 1, 2, (5)

and the joint survival probability is

Px(τ1 > t1, τ2 > t2) = exp

(
−

2∑
i=0

(
γi(0) + βi(0)yi

)
−
∫ t1

0
µ1x(s ∧ t2, s)ds−

∫ t2

0
µ2x(s ∧ t2, s)ds

)
(6)

where βi and γi satisfy the ODEs β̇i(t) = −K̂iβi(t)− 1
2Ĥiβi(t)

2

γ̇i(t) = −K̄iβi(t)− 1
2H̄iβi(t)

2
(7)

with boundary conditions β0(T ∗) = ρ1t1 + ρ2t2, β1(T ∗) = t1, β2(T ∗) = t2 and γi(T ∗) = 0 for i = 0, 1, 2.

Proof. By Proposition 1, together with (3) and (4), we have the joint survival probability conditional on Ft, for
2This can refer to a best estimate assumption on the evolution of mortality or a reference mortality [1].
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t ≤ t1 ∧ t2 as follows

Px(τ1 > t1, τ2 > t2|Ft) = E
[
exp

{
−Z1

T ∗t1 − Z2
T ∗t2 −

∫ t1

0
µ1x(s ∧ t2, s)ds−

∫ t2

0
µ2x(s ∧ t1, s)ds

} ∣∣∣Ft] ,
= exp

{
−
∫ t1

0
µ1x(s ∧ t2, s)ds−

∫ t2

0
µ2x(s ∧ t1, s)ds

}
E
[
exp

{
−Z1

T ∗t1 − Z2
T ∗t2

} ∣∣∣Ft] , (8)

= exp

{
−
∫ t1

0
µ1x(s ∧ t2, s)ds−

∫ t2

0
µ2x(s ∧ t1, s)ds

}
E
[
exp

{
−(ρ1Y

0
T ∗ + Y 1

T ∗)t1 − (ρ2Y
0
T ∗ + Y 2

T ∗)t2
} ∣∣∣Ft] ,

Then using classic results for affine processes (see for example [7]), we obtain the explicit formula for the condi-
tional probability

Px(τ1 > t1, τ2 > t2|Ft) = exp

(
−
∫ t1

0
µ1x(s ∧ t2, s)ds−

∫ t2

0
µ2x(s ∧ t1, s)ds+

2∑
i=0

(
− γi(t)− βi(t)Y i

t

))

which then implies the joint survival probability (6) and the marginal ones (5).

When the processes Y i
t follow specific affine diffusions such as in the Cox-Ingersoll-Ross (CIR) and Vasicek

models, more explicit results can be obtained for the joint survival probability. We postpone the computations in
Appendix A.

3.3 Life Status Scenarios and Joint-life Insurance Contracts

The dependence structure of the life status plays an important role in the evaluation. In the literature, the life status
of the couple are often distinguished, see for example Norberg [21], Denuit and Cornet [6] who consider the four
states according to the number and the spouses who are alive or dead. In the following, we pay a special attention
to the conditional survival probability as well as the impact of the first death on the surviving spouse.

Recall that the bivariate life status at time t is described byDt = D1
t ∨D2

t whereDit provides information about
whether τi occurs before t and if so, the value of τi. The following result gives the survival probability of a spouse
conditionally on different bivariate life status scenarios and the proof is based on [9, 10].

Proposition 3. Denote by Sx,t(t1, t2) := Px(τ1 > t1, τ2 > t2|Ft) and suppose that Sx,t(t1, t2) is of class C1,1

w.r.t. (t1, t2) for all (ω, t). For any t ≤ T , we have

Px(τ1 > T |Gt) = 1l{τ1>t,τ2>t}
St(T, t)

St(t, t)
+ 1l{τ1>t,τ2≤t}

∂2St(T, τ2)

∂2St(t, τ2)

and similarly

Px(τ2 > T |Gt) = 1l{τ1>t,τ2>t}
St(t, T )

St(t, t)
+ 1l{τ1≤t,τ2>t}

∂1St(τ1, T )

∂1St(τ1, t)
.
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Using the symmetry property of the life statuses, the above proposition implies immediately the survival probability
of the last survivor of the couple conditionally on the first death occurrence.

We now consider the joint lives contracts introduced in Subsection 2.2, namely the first-to-die and last-to-die
contracts.
(i) For the first-to-die contracts paying out a monetary amount at the first death of a spouse, i.e. YT (τ1, τ2) =

1{τ(1)≤T}. For at any t < T , we have

E
[
1{τ(1)≤T} | Gt

]
= 1− 1{τ(1)>t}

Sx,t(T, T )

Sx,t(t, t)
.

(ii) For the last-to-die contracts paying out a monetary amount at the first death of a spouse, i.e. YT (τ1, τ2) =

1{τ(2)≤T}. For any t < T , we have

E
[
1{τ(2)≤T} | Gt

]
= 1{τ1>t,τ2>t}

(
1− Sx,t(t, T ) + Sx,t(T, t)− Sx,t(T, T )

St(t, t)

)
+ 1{τ1≤t,τ2≤t}

+ 1{τ1>t,τ2≤t}

(
1− ∂2Sx,t(t, τ2)

∂1Sx,t(t, τ2)

)
+ 1{τ1≤t,τ2>t}

(
1− ∂1Sx,t(τ1, t)

∂1Sx,t(τ1, t)

)
.

4 Dependence Structure Between Spouses and Broken-Heart Syndrome

In life insurance, it is of common practice to rely on some best estimate assumptions on the individual mortality
intensities. In such a context, the forward mortality rate is a deterministic function instead of a stochastic process.
This corresponds, in our framework in Section 3, to the absence of random affine processes Z1

t and Z2
t driving the

intensities.
In this section, we consider the deterministic mortality without influence of environmental information. Recall

that the random vector τ = (τ1, τ2) value in R2
+ describes the future lifetime of a married couple with x = (x1, x2),

and τ(1) = min {τ1, τ2}, τ(2) = max {τ1, τ2}. We suppose that the available information is upon the occurrence
of the first death and the deterministic assumption simply means that we relax the dependency on the filtration F.
Therefore, the expression (1) writes, for t < T ,

Px(τi > T |τ(1) > t) = e−
∫ T
t µix(t,s)ds, i ∈ {1, 2}, (9)

where µix(t, s) is a bivariate deterministic function with respect to t and s, the age vector x = (x1, x2) regarded as a
fixed parameter. The assumptions in Subsection 3.1 and the obtained results therein remain to be the same provided
that the dependency on the filtration F is removed. Among others, we write the joint probability Px(τ1 > t1, τ2 >

t2) similar to (2) as the product of two marginal probabilities and the Sibuya’s function ρx(t1, t2) which represents
the dependency between the spouses. More precisely Px(τ1 > t1, τ2 > t2) = Px(τ1 > t1)Px(τ2 > t2)ρx(t1, t2).
Then we get the joint probability under (9).
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Proposition 4. If ρx(t1, t2) is of class C1,1, then the joint probability is given by

Px(τ1 > t1, τ2 > t2) = exp

(
−
∫ t1

0
µ1x(s ∧ t2, s)ds−

∫ t2

0
µ2x(s ∧ t1, s)ds

)
. (10)

Suppose in addition µix(t, s), i = 1, 2, is of class C1,1, and let µix(t, s) = µix(0, s) −
∫ t
0 ϕ

i
x(u, s)du. Then the

Sibuya’s function is given by

ρx(t1, t2) = exp

{∫ t1

0

∫ t1∧t2

0
ϕ1
x(u, s)duds+

∫ t2

0

∫ t1∧t2

0
ϕ2
x(u, s)duds

}
. (11)

Moreover, it holds ϕ1
x(t, t) = ϕ2

x(t, t).

Proof. The equality (10) is a direct consequence of Proposition 1. By replacing µi in (10) with the integral form
and taking integration by part, we get

Px(τ1 > t1, τ2 > t2) = exp

(
−
∫ t1

0
µ1x(0, s)ds−

∫ t2

0
µ2x(0, s)ds (12)

+

∫ t1

0

∫ s∧t2

0
ϕ1
x(u, s)duds+

∫ t2

0

∫ s∧t1

0
ϕ2
x(u, s)duds

)
.

and then (11). When t1 ≥ t2, ∂21,2 ln ρx(t1, t2) = −∂2µ1x(t2, t1), and when t1 ≤ t2, ∂21,2 ln ρx(t1, t2) =

−∂1µ2x(t1, t2). Then
∂21,2 ln ρx(t, t) = −∂2µ1x(t, t) = −∂1µ2x(t, t),

which implies ϕ1
x(t, t) = ϕ2

x(t, t).

Corollary 4.1. If ρx(t1, t2) ∈ C{1,1}, and so are µ1x(t, s) and µ2x(t, s), then

µix(t, s) = µix(0, s)−
∫ t

0
ϕx(u, s)du, (13)

where ϕx(t, t) = ∂21,2|t1=t2=t ln ρx(t1, t2). In addition, we obtain

Px(τ1 > t1, τ2 > t2) = exp

(
−
∫ t1

0
µ1x(0, s)ds−

∫ t2

0
µ2x(0, s)ds (14)

+

∫ t1

0

∫ s∧t2

0
ϕx(u, s)duds+

∫ t2

0

∫ s∧t1

0
ϕx(u, s)duds

)
.

Proof. Notice that from Proposition 4 when t1 ≥ t2, ∂2t1,t2 ln ρx(t1, t2) = − ∂
∂t2
µ1x(t2, t1), and when t1 ≤ t2,

∂2t1,t2 ln ρx(t1, t2) = − ∂
∂t1
µ2x(t1, t2), Then we have

∂21,2|t1=t2=t ln ρx(t1, t2) = − ∂

∂t2
µ1x(t2, t1) = − ∂

∂t1
µ2x(t1, t2).
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By the definition of ϕ, we have − ∂
∂t2
µ1x(t2, t1) = ϕx(t2, t1), and − ∂

∂t1
µ2x(t1, t2) = ϕx(t1, t2), which implies

immediately (13). By replacing µi in Proposition 4 with the integral form (13) and taking integration by part, we
get (14). �

Remark 1. We obtain, as a direct consequence of (14), the explicit form of ρx(t1, t2) given by

ρx(t1, t2) = exp

{∫ t1

0

∫ t1∧t2

0
ϕx(u, s)duds+

∫ t2

0

∫ t1∧t2

0
ϕx(u, s)duds

}
.

Therefore, the function ϕ plays an important role in determining the correlation structure of default times.

1. The survival probability should be decreasing with respect to time, which implies

∂

∂ti
lnPx(τ1 > t1, τ2 > t2) ≤ 0, ∀t1, t2 ∈ [0, T ].

2. The probability density function should be positive, which implies

∂2

∂t1∂t2
Px(τ1 > t1, τ2 > t2) ≥ 0.

Therefore, a model consistent µix(0, t) and ϕx(t1, t2) should verify for any (t1, t2) ∈ [0,+∞)2 the following
conditions 

∫ t2
0 ϕx(t1 ∧ s2, s2 ∨ t1)ds2 − µ1x(0, t1) ≤ 0,∫ t1
0 ϕx(s1 ∧ t2, t2 ∨ s2)ds1 − µ2x(0, t2) ≤ 0,(∫ t2
0 ϕx(t1 ∧ s2, s2 ∨ t1)ds2 − µ1x(0, t1)

)(∫ t1
0 ϕx(s1 ∧ t2, t2 ∨ s2)ds1 − µ2x(0, t2)

)
+ ϕx(t1 ∧ t2, t2 ∨ t1) > 0

(15)

Remark 2. In Equation (9), we considered a deterministic intensity which is motivated by operational uses. In fact,
the simplest specification in real world application consists in considering an exponentially distributed remaining
life times with a constant parameter. However, this is very restrictive and not consistent with the phenomenon
of interest in the sense that a constant intensity does not have an aging property, i.e., the age of the considered
individual has no effect on his or her residual lifetime. Therefore, there is various generalisations of the exponential
model, making it possible to obtain increasing hazard functions with regards to the age. For instance, we can refer
the well-celebrated parametric forms of Weibull, Gompertz and Makeham [22].

We now focus on the first death and its impact on the surviving spouse. When the first bereavement occurs,
combining Proposition 3 and (14), we can derive the conditional survival probability.
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Proposition 5. For any 0 ≤ t ≤ T , the conditional survival probability of the individual i of the couple (i = 1, 2)

is given by

P(τi > T |Dt) = 1l{τ(1)>t} exp

(
−
∫ T

t
µix(t, s)ds

)

+ 1l{τi>t,τj≤t} exp

(
−
∫ T

t
µix(τ(1), s)ds

)1−
∫ T
t ϕix(τ(1), s)ds

µjx(τ(1), τ(1))−
∫ t
τ(1)

ϕix(τ(1), s)ds

 .

Proof. We have P(τi > T |Dt) = 1l{τ(1)>t}E[1l{τi>T}|Dt]+1l{τi>t,τj=τ(1)≤t}E[1l{τi>T}|Dt]. Thus, by using the joint
survival probability function given by Equation (14) and supposing that F is a trivial filtration in Proposition 3, we
obtain the results by direct computations.

Hence, in order to characterize the broken-heart syndrome, we focus on the jump in the mortality of one spouse
given the bereavement of the other. Let us consider the implied hazard rate, denoted bi(t, T ), of the surviving
spouse, which is defined as

bix(t, T ) = −∂T lnP(τi > T |Dt),

= µix(0, T )−
∫ t∧τ(1)

0
ϕx(u, T )du+ 1l{τ(1)≤t}

(
ϕx(τ(1), T )

µjx(0, τ(1))−
∫ t
0 ϕx(u ∧ τ(1), τ(1) ∨ u)du

)
(16)

where the second equality is deduced from Proposition 5. Before the first death, it equals µix(t, T ), and after the
first default occurs, we observe that if ϕ > 0 (resp. ϕ < 0), there exists a positive (resp. negative) jump at the first
death time t = τ(1). The magnitude of this jump is then given by

∆bix(t, T ) = 1l{τ(1)≤t}
ϕx(τ(1), T )

µjx(0, τ(1))−
∫ t
0 ϕx(u ∧ τ(1), τ(1) ∨ u)du

. (17)

This gives an explicit measure of the hazard rate change depending on the age x of the couple, which is appropriate
to capture the impact of the first death. Indeed, as noted by Dufresne et al. [8] not only the initial ages but also the
age difference are key arguments characterizing the broken-heart syndrome [31]. Their results show that a model
accounting for this aspect captures some additional association between lifetime of the spouses that would not be
reflected in a model without age difference. In Equation (17), this can be accommodated by specifying the density
ϕ as a function of the ages, the differences between the ages and other relevant combinations. However, unlike
the common interpretation of the broken-heart syndrome, the magnitude ∆b1x(t, T ) depends on a maturity date T .
Therefore, when dealing with such a quantity one should interpret (17) as the impact over a period [t, T ]. In other
words, the jump can be interpreted as the survivor mortality shift over the period [t, T ] due to the death of a spouse.
Its behavior will be investigated numerically in the following section.
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5 Numerical illustrations

In this section, we present some numerical examples for illustration. To begin with, we consider the case where
mortality intensity of the spouses is deterministic for the sake of readability, see Section 4. Formally, based on
Remark 2, we will focus on an example widely in use actuarial and demographic applications and assume that the
intensity of each individual is described using a Gompertz parametric form [30]. Subsequently, we study some
explicit examples of the above introduced framework, which will illustrate the choice of the function ϕx(t, s)

defined in Theorem 4.1. Recall that this will characterize the dependence structure as well as the impact of the
first death on the intensity of survivor. In order to inspect the impact of the dependence structure ρx(t, s) which
is characterized by a parameter α in the following examples, we rather look at the linear correlation between the
individuals remaining lifetimes. This will ease the understanding of the dependence making it possible to compare
the outputs with the literature. Recall that the function characterizing the linear correlation between two individuals
can be defined as the corresponding correlation between 1l{τ1>T} and 1l{τ2>T}, i.e.

ρ =
Cov[1l{τ1>T}, 1l{τ2>T}]√

Var[1l{τ1>T}]
√

Var[1l{τ2>T}]
. (18)

We use marginal distributions that are of Gompertz form [3]: µ1x(0, t) = eh1(x1+t) and µ2x(0, t) = eh2(x2+t),
where hi for i = 1, 2 are constants. Unlike the common use of such distributions in bivariate mortality modelling,
we rely on the framework introduced above to assess the impact of the dependence in the spouses mortality. In
fact, in many applications, the Gompertz law is used for the marginal before fitting a copula to link the two residual
lifetimes. In our case, as noted in the previous sections, the dependence structure defined in Theorem 4.1 acts
on a multiplicative manner, which is specified also in item 1, allowing for a more tractable specification of the
dependency. Lastly, we will consider the affine framework introduced in Subsection 3.2 to analyse the effect of the
dependence on prices at the contract issuing as well as on the premium updating during the life of contract.

5.1 Dependence Structure and Impact on the Intensities

Example 1. Let ϕx(t, s) = α where α is a constant. Recall that ϕx(t, s) = ∂21,2|t1=t2=t ln ρx(t1, t2), see Theo-
rem 4.1 and Remark 1, which allows using Equation (14), to write the joint survival probability as follows

P(τ1 > t1, τ2 > t2) = exp

(
−
∫ t1

0
µ1x(0, s)ds−

∫ t2

0
µ2x(0, s)ds+ αt1t2

)
.

Note that the dependence between the individuals is increasing exponentially over time. Moreover, in such a case,
the constraints (15) satisfied by the parameter α can be rewritten as

−µ1x(0, T )µ2x(0, T ) ≤ α ≤ min (−µ1x(0, T ),−µ2x(0, T ))

T
.
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Hence, using (16), the implied hazard rate is given by

bi(t, T ) = µix(0, T )− α(t ∧ τ(1)) + 1l{τ(1)≤t}
α

µjx(0, τ(1))− αT
,

and the jump defined in Equation (17) at the death of the first individual t = τ(1) can be written as follows

∆bi(t, T ) =
α

ehj(xj+τ(1)) − αT
.
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Figure 1: (Gompertz Law) Numerical illustration of Example 1 (top) and Example 2 (bottom) showing the
relationship between the correlation ρ in Equation (18), the jump size ∆b1(t, T ), and the dependence function
ϕ(x, t, s) as well as the time of occurrence of the first death τ (1).
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Example 2. Let ϕx(t, s) = α exp (−α(t+ s)) where α is a constant parameter. When α 6= 0, using (14), we have

P(τ1 > t1, τ2 > t2) = exp

(
−
∫ t1

0
eh1(x1+s)ds−

∫ t2

0
eh2(x2+s)ds+

1

α
e−α(t1+t2) − 1

α
e−αt1 − 1

α
e−αt2 +

1

α

)
.

When α→ 0, taking the limit in the above expression gives rise to

lim
α→0

P(τ1 > t1, τ2 > t2) = exp

(
−
∫ t1

0
eh1(x1+s)ds−

∫ t2

0
eh2(x2+s)ds

)
.

Then the implied hazard rate is given by

bi(t, T ) = ehi(xi+T ) − e−αT
(
e−α(t∧τ(1)) − 1

)
+ 1l{τ(1)≤t}

αe−α(T+τ(1))

ehj(xj+τ(1)) − e−ατ(1) (e−αT − 1)
,

and the jump in the intensity of the survivor at the first death can be written as follows

∆bi(t, T ) =
αe−α(T+τ(1))

ehj(xj+τ(1)) − e−ατ(1) (e−αT − 1)
.

In Examples 1 and 2, we depict the impact of the above dependence assumptions on different quantities of
interest. For illustration, we let h1 = 0.01, h2 = 0.012, x1 = 45, and x2 = 55. First of all, for Example 1, in
Figure 1(a) and Figure 1(b), we depict the evolution of the linear correlation and the jumps size as a function of the
parameter α. For Example 2, the corresponding behaviours are presented in Figure 1(d) and Figure 1(e). We notice
that for these examples, the correlation and the jump size are increasing according the parameter α. This is, by
the definition of the correlation function, an intuitive behaviour as discussed earlier. Indeed, it does increase with
respect to α in Figure 1(a). It is also clear form Figure 1(a), which depicts the evolution of the linear correlation
ρ in (18), for fixed α, that for a fixed correlation ρ, the jump size is increasing with respect to the first default
time. Regarding the first example, we can notice for high levels of α, that we are approaching a perfect collinearity
between the two life statuses. However, this should not be coherent regarding some empirical analyses available
in the literature. In fact, as noted by the empirical study of Frees et al. [11], the time of death of the paired lives
are highly correlated but would not be greater than 41%. Although this is based on a specific real world dataset, it
should be taken into account when establishing the optimal values for the parameter. More specifically, one should
consider a fitting procedure that can be used to estimate α. However, this is not in the scope of this paper and it will
be explored on future works. Moreover, we can observe reactions and correlation in different directions. In fact, as
pointed out by Gourieroux and Lu [12], this arises when an individual is devastated by the death of his spouse, with
an increase of his mortality intensity, whereas, in other cases, the death of the spouse may provide more freedom to
the surviving spouse and possibly a decrease of his mortality rate. Regarding the jump in the intensity, Figure 1(b)
and 1(e) depict the evolution of this effect for different values of α. We remark that the intensity reacts also in
different directions depending on the values of the parameter α, which can replicate the observed phenomenon
discussed earlier [12]. We should note that Example 2 produces more coherent values which tends to be in line
with the empirically estimated values in some real-life portfolios as in Lu [18].
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On the other hand, Figures 1(c) and 1(f) depict the combined impact on the mortality of the survivor in terms
of the dependence parameter α and the time of occurrence of the first death. We pay a particular attention to the
impact of the timing of the first death. In fact, in these figures, we see that the parametrization of the dependence
has not the same outputs. In these figures, we reported the direct impact on the intensity. However, one should
consider the residual impact on the intensity at the considered age. In other words, the quantity of interest is
∆bix(t, T )/µix(t, T ), which indicates the impact of the first death in the intensity of the survivor, which depends
on the attained age. Therefore, the impact of the timing of the first death should take into account the age of the
survivor at the occurrence. This is accommodated for in the above examples as the jump ∆bix(t, T ) does incorporate
the term xj + τ(1). However, to better understand it, we should recall that the jump is the accumulated effect over
the period. Of course, the constant dependence in Example 1 does take into account this effect as one can confirm
from its expression in Example 1 and Figure 1(c). The intensity’s jump in this case is slightly decreasing as the
spouses live longer together. In Figure 2, we reported the relative impact ∆b1x(t, T )/µix(t, T ) in terms of the timing
of the first death. We can see that the impact of the first death on the intensity increases with the timing of the first
death. This is a desired effect as long as late deaths infer on a long common life. Thus, the individuals living longer
together are more likely to develop and share common lifestyles.
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Figure 2: (Gompertz Law) Numerical illustration of the relative impact of the time of the first on the intensity of
the survivor for different ages x = 30 and 40 using the illustrative Example 2.

5.2 Dependence Structure and Impact on the Joint-Life Contracts Pricing

In this section, we will focus on the pricing formulas for joint lives policies derived in Subsection 3.3. In particular,
we consider the first-to-die and last-to-die (last survivor) contracts, see Subsection 2.2. For simplicity of illustration,
we suppose that the interest rate is zero. Here, we consider dynamic intensities using the affine framework intro-
duced in Subsection 3.2. Formally, we assume that Y i

t , (i = 0, 1, 2) are CIR processes as shown in Subsection A.2.
We recall that each intensity is given by µix,T ∗(t, s) = µix(t, s)+ZiT ∗ ,i = 1, 2, where µix(t, s) = ehi(xi+s)−αt, and
Zit is the stochastic factor driving the intensity and it is given in terms of the CIR processes Y i

t as Zit = ρiY
0
t + Y i

t

where ρi ∈ [−1, 1]. Henceforth, we analyse the effect of the dependency on prices at the contract inception time
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as well as on the premium updating during the life of the contract. To this end, for the first-to-die policies, we will
consider the input parameters x1 = 45, x2 = 50, h1 = −0.025, h2 = −0.015, y0 = 0.08, a0 = 0.4, b0 = 0.08,
σ0 = 0.06, y1 = 0.08, a1 = 0.5, b1 = 0.1, σ1 = 0.07, y2 = 0.09, a2 = 0.6, b2 = 0.12, σ2 = 0.08, α = −5×10−4

and T ∗ = 50 and a policy with maturity T = 2. We further assume that the first death occurs after t and look at the
impact of the correlation.

First, we consider the price of the first-to-die contract at time t = 1. It is depicted in Figure 3(a), where we show
the relationship between the price of such a contract and parameters ρ1 and ρ2. In this case, we are considering
the sole impact of the correlation on the price as soon as the broken-heart syndrome is not affecting the contract.
First, notice that when ρ1 increases, the conditional expectation of first death conditionally on Gt also increases.
This is reasonable since the environmental noise Z1

t = ρ1Y
0
t + Y 1

t where ρ1 ∈ [−1, 1] increases with ρ1, owing
to the fact that here Y 1

t is a CIR process which is always positive, see Appendix A. Intuitively, the greater the
environmental risk, the higher the probability of the first death before T . Moreover, we depict in Figure 3(a) the
relationship between the price of the first-to-die contract and parameter ρ1 and ρ2 before the first death occurs. We
can see that the price is decreasing as the ρ1 and ρ2 decrease.
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Figure 3: (First-to-Die Contract) Numerical illustration of the price of firs-to-die contracts using the affine
framework introduced in Subsection 3.2 and CIR process detailed in Appendix A. Here, we have µix,T ∗(t, s) =

µix(t, s) + ZiT ∗ ,i = 1, 2, where µix(t, s) = ehi(xi+s) − αt, and Zit is the stochastic factor driving the intensity and
it is given in terms of the CIR processes Y i

t as Zit = ρiY
0
t + Y i

t where ρi ∈ [−1, 1].

Another example of interest is the last-to-die contract paying out a lump sum at the death of the last survivor. In
this case, we are interest both on the impact of correlation on the price as well as the broken-heart syndrome. Figure
Figure 4(a) shows the evolution of the price of the contract during the life of the contract. As noted by Gourieroux
and Lu [12], this is a key element to take into account to correctly represent the contract on the insurer’s balance
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Figure 4: (Last-to-Die Contract) Numerical illustration of the price of firs-to-die contracts using the affine
framework introduced in Subsection 3.2 and CIR process detailed in Appendix A. Here, we have µiT ∗(x, t, s) =
µi(x, t, s) + ZiT ∗ ,i = 1, 2, where µi(x, t, s) = ehi(xi+s) − αt, and Zit is the stochastic factor driving the intensity
and it is given in terms of the CIR processes Y i

t as Zit = ρiY
0
t + Y i

t where ρi ∈ [−1, 1].

sheet, or, if it is securitized, to evaluate the price of the corresponding component. Moreover, the evolution of the
price over time is a key element when assessing the so-called solvency capital requirement under the prudential
regulation. For illustration, we suppose that the first death occurs at time τ(1) = τ1 = 0.8 and assess its impact on
the price. Figure 4(a) shows that before the occurrence of the first death, the greater ρ1, the greater the price of the
last-to-die contracts. Hence, after the first death τ(1) = τ1 = 0.8 occurs, for different ρ1, the conditional expectation
of the last-to-die contracts on Gt are following the same pattern with the same impact of the correlation. In fact, as
the death time τ(1) of the first individual the intensity of the survivor jumps with a magnitude that depends on the
age and the correlation factor ρ1, see Proposition 5. The impact of this phenomenon is also observed in the prices
as shown in Figure 4(a).

6 Concluding Remarks

This paper introduces a new framework for analyzing the mortality dependence between individuals in a couple.
This framework is intended to study the dependence relation that describes the joint mortality of married couples
in terms of marginal mortality rates. In fact, It has long been documented that the death of a spouse does impact
the mortality of the surviving spouse and this causal effect is known as the “broken-heart syndrome”. In addition,
the spouses are also impacted by their common lifestyle which induces a spurious correlation. In the actuarial
literature, the common methods to handle such a phenomenon are copulas and Markov approaches [12, 19, 29].

The approach developed in this paper aims to reconcile the two above mentioned methods. It is related to the
recent advances in credit risk modelling and proposes a framework for assessing and modelling the dynamic of
such a joint survival probability. We consider the (conditional) joint survival probability under different scenarios
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of life statuses of the couple, notably, on the sets before and after the first death respectively. We characterize
the dynamics of the involved intensities and quantify the impact of the first death on the intensity of the survivor.
We also incorporate some illustrative variants which allow to take into account some main features driving the
broken-heart syndrome, such as the gender, the age of the spouses, etc.

Beyond the theoretical establishment of the model, an interesting question is related to the statistical investiga-
tion and estimation of the model. In particular, we need to adapt the model to specific challenges encountered in
real-world datasets. For instance, among other things, one needs to develop estimation procedures in presence of
censored data and ways to estimate the correlation between the married lives. This is, however, beyond the scope
of the current paper. Also, the choice of the parametrization remains an open question and will be investigated in
future works.
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A Examples of Affine Processes

A.1 Vasicek Process

We suppose that stochastic processes Y i
t where i ∈ {0, 1, 2} follow Vasicek model whose dynamics are given by

dY i
t = (bi + ciY

i
t )dt+ σidW

i
t , Y

i(0) = yi,

where bi, ci and σi are some constant parameters. Then, for i = 1, 2, the Riccati ODE system (7) in Subsection 3.2
can be rewritten as β̇i(t) = −ciβi(t), with βi(T ∗) = ti,

γ̇i(t) = −1
2σ

2
i β

2
i (t)− biβi(t), with γi(T ∗) = 0.

Then, we can easily derive the explicit parameters as follows

βi(t) = tie
ci(T

∗−t), (19)

γi(t) = −biti
ci

(
1− eci(T ∗−t)

)
− σ2i t

2
i

4ci

(
1− e2ci(T ∗−t)

)
. (20)

For i = 0, we have the following ODEsβ̇0(t) = −c0β0(t), with β0(T ∗) = ρ1t1 + ρ2t2,

γ̇0(t) = −1
2σ

2
0β

2
0(t)− b0β0(t), with γ0(T ∗) = 0,
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which similarly give arise the explicit solutions

β0(t) = ec0(T
∗−t)(ρ1t1 + ρ2t2), (21)

γ0(t) = −b0(ρ1t1 + ρ2t2)

c0

(
1− ec0(T ∗−t)

)
− σ20(ρ1t1 + ρ2t2)

2

4c0

(
1− e2c0(T ∗−t)

)
. (22)

Then we easily have the joint (conditional) survival probability (8) and (??) in Subsection 3.2. We should, there-
fore, substitute γi(0) and βi(0) by the above corresponding forms in Equations (19), (20), (21) and (22).

A.2 Cox-Ingersoll-Ross Process

We suppose that processes Y i
t where i ∈ {0, 1, 2} follow Cox-Ingersoll-Ross (CIR) model and are described as

solution of the following SDE

dY i
t = ai(bi − Y i

t )dt+ σi

√
Y i
t dW

i
t , Y

i(0) = yi,

where bi, ci and σi are some constant parameters. Then, for i = 1, 2, the Riccati ODEs system (7) in Subsection 3.2
are given as follows β̇i(t) = aiβi(t)− 1

2σ
2
i βi(t)

2, with βi(T ∗) = ti,

γ̇i(t) = −aibiβi(t), with γi(T ∗) = 0.

Then we can easily have

βi(t) =
2ai
σ2i

1

1−
(

1− 2ai
σ2
i ti

)
eai(T ∗−t)

, (23)

γi(t) = −2aibi
σ2i

log

(
1− σ2i ti

1− e−ai(T ∗−t)

2ai

)
. (24)

For i = 0, the Riccati ODE system (7) can be rewritten asβ̇0(t) = a0β0(t)− 1
2σ

2
0β0(t)

2, with β0(T ∗) = ρ1t1 + ρ2t2,

γ̇0(t) = −a0b0β0(t), with γ0(T ∗) = 0.
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Then we have

β0(t) =
2a0
σ20

1

1−
(

1− 2a0
σ2
0(ρ1t1+ρ2t2)

)
ea0(T ∗−t)

, (25)

γ0(t) = −2a0b0
σ20

log

1− 1− e−a0(T ∗−t)

2a0
σ2
0(ρ1t1+ρ2t2)

 . (26)

Similarly the Vasicek case, we can also derive the joint (conditional) survival probability (8) and (??) using the
explicit form of γi(0) and βi(0) in Equations (23), (24), (25) and (26).
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