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We discuss vortex solutions in the non-Hermitian parity-time-symmetric relativistic model with
two interacting scalar complex fields. In the London limit, the vortex singularities in different
condensates experience dissipative dynamics unless they overlap. At finite quartic couplings, the
vortices appear in the PT -symmetric regions with broken U(1) symmetry. We find the phase
diagram of the interacting model where the PT -symmetric and PT -broken regions together with
the U(1)-symmetric and U(1)-broken phases form complicated patterns.

I. INTRODUCTION

Quantum-mechanical systems are traditionally de-
scribed by Hermitian Hamiltonians which ensure the real-
valuedness of the full energy spectrum and, therefore,
the unitary evolution of the system as a whole. It turns
out, however, that the Hermitian description can be ex-
tended with a large class of non-Hermitian terms which
are invariant under combined parity-time (PT ) transfor-
mations. The PT -symmetric non-Hermitian systems are
as meaningful as the conventional Hermitian quantum
mechanics in the regions where the PT -symmetry is not
broken spontaneously [1, 2].

Mathematically, in the PT -symmetric systems the fa-
miliar Hermiticity condition H† = H is replaced by the
requirement of the PT -symmetricity (PT )H(PT ) = H,
which is equivalent to the commutation of the Hamilto-
nian with the combined parity P and time-reversal in-
version T operation [2], [PT , H] = 0. This combined
symmetry leads to real-valued energy spectrum that en-
sures the stability of the system. One can show that
all PT -symmetric non-Hermitian Hamiltonians belong to
the class of the so-called pseudo-Hermitian Hamiltonians
ηHη−1 = H† where η is a Hermitian linear automor-
phism [3]. The pseudo-Hermiticity is a generalization of
the PT -symmetry which, in turn, depends crucially on
the fact that the time-reversal transformation T is an
anti-linear operation.

As it was shown in Ref. [4] and most recently em-
phasized in Ref. [5], it is the anti-linearity property
rather than Hermiticity which is important for the self-
consistent description of stable quantum-mechanical sys-
tems. The non-Hermitian PT -invariant quantum sys-
tems can be mapped to their Hermitian counterparts via
a non-Unitary transformation [6, 7] (the existence of the
map is not guaranteed as there are known exceptions in
quantum mechanics [8]). These extensions broaden the
class of stable physical systems beyond the tight Her-
miticity constraints and open new horizons for the re-
search.

The non-Hermitian description has been extended to
interacting relativistic field theories, including the sys-
tems of fundamental particle interactions. The PT -
symmetric interactions which explicitly break the non-

Hermiticity of the system can arise in fermionic theo-
ries [9], contribute to the mass gap generation in the NJL
model and affect the phase structure of the model [10].
The non-Hermitian Dirac fermions allow for the re-
alization of an anomalous equilibrium transport [11].
The ordinary Hermitian models can generate a new,
non-Hermitian ground state which could potentially be
formed, for example, in fireballs of quark-gluon plasma
created after heavy-ion collisions [12]. In the context of
the extensions of the Standard Model of particle interac-
tions, anti-Hermitian Yukawa interactions may lead to an
anomalous radiative mass-gap generation in a model of
the right-handed sterile neutrinos [13, 14]. The concept
of non-Hermitian quantum theory allows an extension
via the gauge-gravity duality well beyond the scope of
the field-theoretical models [15].

The PT -symmetric non-Hermitian Hamiltonians arise
in the description of various open quantum systems in
optics and solid state physics where this symmetry can
be interpreted as a result of a perfect balance between the
gains and losses as the system interacts with the external
environment [16, 17] The recent works also include the
studies of the effect of non-Hermitian terms in topologi-
cal superconductivity which leads to nonlocal anomalous
transport effects [18] as well as in the conventional super-
conductivity which gives rise to the unusual first-order
phase transition between the phases [19]. The possibil-
ity of non-Hermitian superfluidity with a complex-valued,
non-Hermitian interaction constant naturally arises from
inelastic scattering between fermions [20]. The associated
non-Hermitian BCS-BEC crossover of Dirac fermions in
field-theoretical models of many-body systems reveals a
nontrivial phase diagram as a function of the complex
coupling [21].

In our paper, we work with vortex topological defects
in a bosonic non-Hermitian model which involves a pair
of scalar fields associated with interacting condensates.
The topological solutions in the multicomponent scalar
models are interesting because they appear in the mod-
els which have applications from condensed matter to
high energy physics. Some of these models can serve
as viable extensions of the Standard model of funda-
mental particle physics [23–26]. Similarly to the Grand
Unification particle models and their close counterparts,
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they host ’t Hooft–Polyakov monopole configurations [27]
along with complex skyrmions [28] and kink/anti-kink
solutions [29] with real-valued energies. As in the Hermi-
tian models, these classical solutions are associated with
the saddle points of the corresponding partition func-
tions.

At the condensed matter side, the many-condensate
systems possess richer dynamics than their one-
condensate counterparts. For example, the standard
classification of superconductivity into types I and II
fails to describe the phases of multiband condensates so
that a proposal to adopt a new terminology, a type-1.5
superconductivity, appeared in the theoretical commu-
nity [30]. Experimentally, the existence of the type-1.5
superconductivity has been demonstrated shortly after-
wards [31]. The semi-Meissner state of a type-1.5 su-
perconductor demonstrates non-pairwise interaction be-
tween the vortices which leads to formation of a multi-
tude of complicated vortex states [32]. We discuss the
non-Hermitian extension of the two-component model
possessing a global, rather than local, continuous sym-
metry, appropriate for the two-component superfluid-
ity. We concentrate on stability of the ground state,
fate of the PT symmetry in the interacting model,
and the properties of the vortex configurations. In a
different context, the vortices in the weakly interact-
ing superfluid Bose-Einstein condensates with complex-
valued PT -symmetric potentials have been investigated
in Ref. [33].

The plan of our paper is as follows. In Section II we
briefly overview the Lagrangian and its symmetries, and
discuss the ground state of the minimal non-Hermitian
theory with two scalar fields. The special attention is
paid to the extension of the analysis of the PT symme-
tries to the case of interacting model. In Section III we
consider the vortex solutions in the London limit of the
theory and in Section IV we describe the examples of
the vortex solutions at finite quartic couplings. The last
section is devoted to our conclusions.

II. (NON-)HERMITIAN SCALAR THEORY

A. Lagrangians

We consider a simplest example of a scalar non-
Hermitian theory which describes a PT -symmetric dy-
namics of two complex scalar fields φ1 and φ2 conve-
niently grouped into the single doublet field,

Φ =

(
φ1

φ2

)
. (1)

The Lagrangian of the theory [7],

L = ∂µΦ†∂µΦ− Φ†M̂2Φ− V (Φ), (2)

includes the classical Hermitian self-interaction potential
for the scalar fields:

V (Φ) ≡ V (φ1, φ2) = λ1|φ1|4 + λ2|φ2|4 . (3)

The non-Hermiticity is encoded in the real-valued mass
matrix M̂2 of the Lagrangian (2):

M̂2 = M̂2
NH =

(
m2

1 m2
5

−m2
5 m2

2

)
, (4)

provided the off-diagonal element1 of this matrix is a
nonzero, m2

5 6= 0. To see how the non-Hermiticity en-
ters the theory, it is instructive to write the Lagrangian
in terms of the individual fields φ1 and φ2:

LNH = ∂νφ
∗
1∂
νφ1 + ∂νφ

∗
2∂
νφ2 −m2

1|φ1|2 −m2
2|φ2|2

−m2
5(φ∗1φ2 − φ∗2φ1)− λ1|φ1|4 − λ2|φ2|4. (5)

The first term of the second line in Eq. (5) takes a purely
complex value: −2im2

5 Im (φ∗1φ2) if the off-diagonal com-
ponent of the mass matrix (4) is a real-valued nonzero
quantity. The complex valuedness of the Lagrangian (5)
is consistent with the non-Hermiticity of the mass ma-

trix in Eq. (2): M̂2,†
NH 6= M̂2

NH. The off-diagonal mass with
m2

5 6= 0 sets up the non-Hermitian regime in (4), while
the point m2

5 = 0 corresponds to a Hermitian theory

(with M̂2,†
NH = M̂2

NH) which describes two non-interacting
scalar fields φ1 and φ2.

The model (2) describes two relativistic superfluids
which interact with each other via the off-diagonal non-
Hermitian coupling. We consider the potential (3) in
the form which explicitly breaks the U(2) symmetry,
Φ → ΩΦ with the 2 × 2 matrix Ω ∈ U(2), down to
its Cartan [U(1)]2 subgroup since the U(2) group is ex-
plicitly broken by the mass matrix (4) anyway provided

M̂2
NH 6∝ 1l.
In order to highlight the features of non-Hermiticity,

we briefly discuss the Hermitian version of the model with
the following mass matrix in the Lagrangian (2):

M̂2
H =

(
m2

1 m2
5

m2
5 m2

2

)
(6)

Notice that M̂2,†
H = M̂2

H as expected and the Hermitian
Lagrangian is a real-valued expression for all values of
the parameter m5:

LH = ∂νφ
∗
1∂
νφ1 + ∂νφ

∗
2∂
νφ2 −m2

1|φ1|2 −m2
2|φ2|2

−m2
5(φ∗1φ2 + φ∗2φ1)− λ1|φ1|4 − λ2|φ2|4 . (7)

Below, we will consider the classical equations of
motion concentrating on the non-Hermitian theory de-
scribed by Lagrangian (2). While we work with the clas-
sical solutions, we would like to notice that on quan-
tum level, the non-Hermiticity propagates into the loops
of perturbation theory. The quantum corrections could,
therefore, induce a complex term in the interaction po-
tential (3) and literally complexify the phase diagram of
the theory. Leaving aside the quantum corrections, which
were discussed in Ref. [25], in our paper we concentrate
on classical properties of the Lagrangian (2).

1 We use the notation m5 which is also appropriate for the non-
Hermitian mass of a fermionic model [11].
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B. Symmetries

We consider the non-degenerate model (2) with a
nonzero off-diagonal mass m5 6= 0 which possesses a cou-
ple of continuous and discrete symmetries. Both Hermi-
tian and non-Hermitian versions of the model are invari-
ant under the global U(1) transformation

U(1) : Φ(t,x)→ Φ′(t,x) = eiωΦ(t,x), (8)

in which the single phase factor (with a real-valued pa-
rameter ω) is shared by both complex scalar fields φ1 and
φ2. If m5 = 0, both components of the doublet field Φ
can be transformed independently so that the symmetry
is enlarged to the global [U(1)]2. We do not consider this
trivial case.

The non-Hermitian theory (4) is also invariant under
a discrete transformation corresponding to the product
of the parity inversion P and the time conjugation T
operators, respectively:

NH :

{
P : Φ(t,x)→ Φ′(t,−x) = σ3Φ(t,x),

T : Φ(t,x)→ Φ′(−t,x) = Φ∗(t,x).
(9)

Due to the presence of the Pauli matrix σ3, the upper φ1

component transforms under the parity inversion P as a
genuine scalar while the lower component φ2 transforms
as a pseudoscalar field.

The P and T operations whose product leaves invari-
ant the Hermitian theory (6),

H :

{
P : Φ(t,x)→ Φ′(t,−x) = Φ(t,x),

T : Φ(t,x)→ Φ′(−t,x) = Φ∗(t,x),
(10)

indicate that both fields φ1 and φ2 behave as true scalars
under the parity inversion.

The model (2), along with its extensions, possesses in-
teresting features of the Goldstone modes associated with
the spontaneous breaking of the continuous symmetry (8)
as well as the unusual properties of the conserved cur-
rents [7, 22, 23]. Below we consider the ground state and
the vortex solutions of the model.

C. Ground states

1. Non-Hermitian ground state

The analysis of the ground state of the two-field
model (2) has already been done analytically in Ref. [22]
for the special case of the potential (3) in which one of
the fields was not self-interacting (λ1 6= 0 and λ2 = 0). In
our paper, we complement this work with the numerical
analysis of the system in which both fields experience the
self-interaction, λ1,2 6= 0. We show that the simple exten-
sion (or, better to say, completion) of the model makes
the analysis of the phase diagram very complicated.

Let us start from the simplest case when the quartic
interaction is absent: λ1 = λ2 = 0. The Hermitian (6)

and non-Hermitian (4) mass-squared matrices have the
following eigenvalues, respectively:

M2
H,± =

1

2

(
m2

1 +m2
2 ±

√
(m2

1 −m2
2)

2
+ 4m4

5

)
, (11a)

M2
NH,± =

1

2

(
m2

1 +m2
2 ±

√
(m2

1 −m2
2)

2 − 4m4
5

)
. (11b)

The vaccua in these models are stable provided the eigen-
masses have no imaginary parts. For the Hermitian
model with the mass matrix (6), this requirement im-
plies M2

H,− > 0 or, naturally,

H :

{
m2

1 +m2
2 > 0,

m2
1m

2
2 −m4

5 > 0.
(12)

These equations determine the region in the parameter
space were the instability due to a negative mode (or,
modes) at the trivial minimum, φ1 = φ2 = 0, does not
occur. In an interacting theory with λ1,2 6= 0, this insta-
bility corresponds to the spontaneous symmetry break-
ing.

In the non-Hermitian model (4), the spectrum of the
free (i.e., with λ1 = λ2 = 0) theory does not contain
complex energy eigenvalues provided

NH :


m2

1 +m2
2 > 0,

m2
1m

2
2 +m4

5 > 0,(
m2

1 −m2
2

)2 − 4m4
5 > 0,

(13)

where we also took into account a possibility that the
squared masses m2

1 and m2
2 can take negative values. The

first two requirements in Eq. (13) correspond to the in-
stability related to the spontaneous symmetry breaking
rather than to the non-Hermiticity of the model. The
last condition in Eq. (13) highlights the region of the pa-
rameter space where the PT symmetry is said to be un-
broken [7, 22, 23]. Together, these conditions guarantee
the stability of the ground state.

The classical equations of motion of the model (2) are
obtained by the variation of the Lagrangian (5) with re-
spect to the independent fields φ∗1 and φ∗2, respectively:

�φ1 +m2
1φ1 +m2

5φ2 +
∂V

∂φ∗1
= 0 , (14a)

�φ2 +m2
2φ2 −m2

5φ1 +
∂V

∂φ∗2
= 0 . (14b)

A variation with respect to the fields φ1 and φ2 gives us
an inequivalent set of equations:

�φ∗1 +m2
1φ
∗
1 −m2

5φ
∗
2 +

∂V

∂φ1
= 0 , (15a)

�φ∗2 +m2
2φ
∗
2 +m2

5φ
∗
1 +

∂V

∂φ2
= 0 , (15b)

which differs from Eq. (14) by the sign flip of the off-
diagonal mass term, m2

5 → −m2
5.
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The striking inconsistency of the two pairs of equations
of motion, (14) and (15), poses the natural question of
how to treat this non-Hermitian system at the classical
level. One of the earlier proposals [7] suggests to use only
one set of equations of motion, either (14) or (15), and
omit the complementary set. Indeed, the choice of the
set flips the sign of the off-diagonal mass, m2

5 → −m2
5,

which does not affect the physical spectrum neither in
free model (11) nor in the interacting model, as we will
see below. Moreover, the non-Hermitian system must
be open via coupling to an external source which equili-
brates non-vanishing surface terms in the variation of the
action. When the off-diagonal mass vanishes, the system
becomes Hermitian, and the single set of equations is
enough to describe the solutions consistently.

Another proposal to resolve the apparent problem with
the inconsistency of the classical equations of motion was
put forward in Ref. [22] where a similarity transformation
for the action has been used to achieve harmony between
the two sets of equations of motion. This elegant idea
initially required an extension of the field space using
two complex components (with four degrees of freedom)
for every original complex field (which hosts two degrees
of freedom). The same strategy has later been adapted
and extended to many-field theories in Ref. [23] where
two real-valued fields were used to represent one complex
field. However, this procedure, used for the mapping of
the non-Hermitian theory to the Hermitian one via the
similarity transformation, leads to the appearance of a
negative kinetic energy term for one of the fields. While
it was argued that this artifact does not change the sig-
nature of the appropriate Hilbert space [22], the appear-
ance of the negative kinetic action leads to a negative
contribution to the energy-momentum tensor so that the
energy of a classical configuration (which is not necessar-
ily a classical solution) would become unbounded from
below. This pseudo-Hermitian method can be adapted,
in specifying the appropriate physical regions, to give
the classical solutions for non-Abelian monopoles in a
spontaneously broken theory [27] (we refer the Reader
to Refs. [36, 37] for complementary discussions of a non-
Hermitian non-Abelian gauge theory).

In our paper we follow the approach of Ref. [7] where
only one set of equations of motion – either (14) or (15),
but not the both of them – is considered. At certain
stage, we use a numerical method to find the classical so-
lutions using the criteria of the energy minimization as a
selection principle of the right, “minimal energy” solution
among all other available solutions. In our approach, the
energy of the classical configuration in the non-Hermitian
theory is bounded from below so that the numerical ap-
proach is self-consistent in finding the correct configura-
tion. If we would otherwise employ the pseudo-Hermitian
procedure of mapping the non-Hermitian theory to the
Hermitian one, then the classical energy becomes un-
bounded due to the negative sign in the kinetic terms,
and the numerical procedure fails to converge to a rea-
sonable solution.

In the ground state the condensates are coordinate-
independent quantities, and Eqs. (14) reduce to the non-
linear algebraic relations:

m2
1φ1 +m2

5φ2 + 2λ1φ
2
1φ
∗
1 = 0 , (16a)

m2
2φ2 −m2

5φ1 + 2λ2φ
2
2φ
∗
2 = 0 . (16b)

The use of the complementary set of equations (15) in-
stead of Eqs. (14) would lead to an equivalent physical
solutions. Indeed, the swap of equations leads to the sign
flip in Eq. (16) which corresponds to a simple swap of the
fields φ1 and φ2.

It is convenient to represent the fields φa in the radial
form φa = vae

iθa for a = 1, 2. Equations (16) can possess
nontrivial solutions provided the phases θa satisfy one of
the following relations:

θ1 = θ2, θ1 = θ2 + π . (17)

One can cover both these cases assuming θ1 = θ2 and,
simultaneously, allowing the amplitudes va to take both
positive and negative values, va ∈ R. The classical equa-
tions (16) then determine the amplitudes:

m2
1v1 +m2

5v2 + 2λ1v
3
1 = 0 , (18a)

m2
2v2 −m2

5v1 + 2λ2v
3
2 = 0 . (18b)

The canonical energy-momentum of the model (2) can
be calculated by endowing the model with the gravita-
tional background gµν , considering the variation of the
theory action, S =

∫
d4L with respect to the metric,

Tµν = − 2√
−g

δS

δgµν(x)
, (19)

and then setting the metric to its Minkowski values back
again, gµν → ηµν ≡ diag(+1,−1,−1,−1). The energy
density of the model (5) is given by the µ = ν = 0 com-
ponent of the energy-momentum tensor (19):

T 00 = ∂0φ
∗
1∂0φ1 + ∇φ∗1∇φ1 + ∂0φ

∗
2∂0φ2 + ∇φ∗2∇φ2

+m2
1|φ1|2 +m2

2|φ2|2 +m2
5(φ∗1φ2 − φ∗2φ1)

+λ1|φ1|4 + λ2|φ2|4 . (20)

One gets the following simple expression for the energy
density of a uniform time-independent (ground) state:

ENH,0 ≡ T 00 = m2
1v

2
1 +m2

2v
2
2 + λ1v

4
1 + λ2φ

4
2 . (21)

Both solutions (17) for the phases θa ≡ arg φa of the con-
densates φa lead to the vanishing non-Hermitian term
δLNH = −2im2

5 Im (φ∗1φ2) ≡ −2im2
5v1v2 sin(θ1 − θ2) in

the energy density (21). Thus, the inconvenient imagi-
nary terms do not enter the ground state of the model
(we will see below that any solution of the single set of the
classical equations of motion (14) has a real-valued en-
ergy density). However, despite the non-Hermitian mass
m5 does not enter explicitly the vacuum energy (21), it
affects the ground state indirectly via the solutions of the
equations of motion (18).
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energy density condensate 1 condensate 2

N
H

:
m

2 1
<

0
,

m
2 2

=
|m

1
|2

(a) (b) (c)

N
H

:
m

2 1
>

0
,

m
2 2

=
|m

1
|2

(d) (e) (f)

H
:

m
2 1
<

0
,

m
2 2

=
|m

1
|2

(g) (h) (i)

FIG. 1. The upper panel: (a) the (minus) energy density (21) and the condensates (b) v1 and (c) v2 in the ground state of the
non-Hermitian model (5) are shown in the plane of the mass parameter squared m2

2 and the non-Hermitian mass squared m2
5.

The mass (squared) of the first field φ1 is taken positive, m2
1 > 0, and the quartic couplings for both scalar fields are fixed:

λ1 = λ2 = 1. The middle panel, with the plots (d), (e) and (f), corresponds to the same quantities obtained for the negative
diagonal mass m2

1 < 0. The lower panel, with the plots (g), (h) and (i), depicts the Hermitian case (7). All dimensionful
quantities are shown in the units of the absolute value of the first mass parameter, |m1|.

2. Hermitian ground state

The equations of motion of the Hermitian model (7)
take the following form:

�φ1 +m2
1φ1 +m2

5φ2 +
∂V

∂φ∗1
= 0 , (22a)

�φ2 +m2
2φ2 +m2

5φ1 +
∂V

∂φ∗2
= 0 , (22b)

which differ from Eq. (14) of the non-Hermitian model (5)
as the both signs in front of the off-diagonal mass terms
m2

5 are the same in the Hermitian case (22). This small

difference naturally propagates into the equations for the
amplitudes in the ground state,

m2
1v1 +m2

5v2 + 2λ1v
3
1 = 0 , (23a)

m2
2v2 +m2

5v1 + 2λ2v
3
2 = 0 , (23b)

as compared to its non-Hermitian analogue (18). How-
ever, in the striking dissimilarity with non-Hermitian
case, the variations over the fields and their complex con-
jugates are obviously consistent with each other in the
Hermitian model. Moreover, the energy density of the
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ground state of the Hermitian model,

EH,0 = m2
1v

2
1 +m2

2v
2
2 + 2m2

5v1v2 + λ1v
4
1 + λ2v

4
2 , (24)

explicitly includes the m2
5 coupling between the ampli-

tudes of the different condensates. We remind that this
coupling does not enter the non-Hermitian energy den-
sity (21).

3. Hermitian model vs. non-Hermitian model

In the Hermitian model, a negative diagonal mass can
trigger a natural spontaneous symmetry breaking of the
global U(1) symmetry (8) which leads to a non-zero ex-
pectation value of the doublet field, Φ0 6= 0. The runaway
of the scalar field from the symmetric state is balanced by
quartic (self)-interactions so that the symmetry-broken
ground state of the system is stable. In an interacting
model, the stability of the symmetric, Φ = 0, state is
determined by Eq. (12).

The interacting non-Hermitian theory possesses two
types of instabilities. In addition to the mentioned spon-
taneous symmetry breaking stipulated by the first two
relations in Eq. (13), the symmetric ground state can
also experience the U(1) symmetry breaking which could
be caused, in turn, by the broken discrete PT symme-
try. This purely non-Hermitian effect is dictated by the
third relation in Eq. (13), the violation of which leads to
the complex mass spectrum and, consequently, to the in-
stability. The PT -induced instability could be well seen
when both diagonal masses are positive so that the first
two relations in Eq. (13) are satisfied. As in the purely
Hermitian case, the symmetry-broken ground state of the
non-Hermitian system is expected to be stabilized by the
quartic (self)-interactions.

In Fig. 1 we compare the U(1) symmetry breaking pat-
terns in the non-Hermitian model with m2

1 > 0 (the up-
per panel) and m2

1 < 0 (the middle panel) as well as the
Hermitian model with m2

1 < 0 (the lower panel). We
show the total energy density E determined by Eqs. (21)
and (24), and the condensates v1 and v2. Notice that the
non-Hermitian (18) and Hermitian (23) equations on the
ground state imply that the relative sign of the conden-
sates is determined by the ground state while the overall
sign is not fixed. To remove this arbitrariness, we require
the condensate v2 to be positive.

If both diagonal squared masses are positive, m2
1 > 0

and m2
2 > 0, and the off-diagonal mass is zero, m5 = 0,

then the ground state resides in the symmetric phase
with vanishing condensates. As the off-diagonal mass
increases in its absolute value, the theory should expe-
rience the PT -symmetric instability and we expect the
appearance of the condensates in the (m2

1 > 0,m2
2 > 0)

plane. However, this does not happen, as one can see in
Figs. (1)(b) and (c). The presence of the “PT -induced”
condensates is forbidden by the requirement of the mini-
mization of the energy density (21) as these condensates
would have made the energy density positive while the

trivial ground state with v1 = v2 = 0 has zero energy.
This conclusion appears to be the consequence of the
fact that the expression for the non-Hermitian energy
density (21) does not contain a “compensating” m2

5 term
which is present, on the contrary, in the expression of the
Hermitian energy density (24). Therefore, the U(1) sym-
metric ground state with vanishing energy is preferred
over the U(1) broken state with the nonvanishing conden-
sates. We will see below that some of these symmetric
states belong to the PT -broken phases of the interacting
model and, therefore, are physically meaningless.

In the symmetry-broken phase with m2
2 < 0 (while

we still keep m2
1 > 0), the conventional U(1) symmetry

breaking does occur. The upper panel of Fig. 1 shows
that the non-Hermitian mass influences the conventional
symmetry breaking in a somewhat controversial way: at
sufficiently large m4

5, the third requirement of Eq. (13)
is violated, the PT symmetry gets broken and the U(1)
symmetry gets restored because the ground-state conden-
sates v1 and v2 vanish. In the symmetry-broken region,
the flip of the sign in the m2

5 mass flips the sign of the
v1 condensate (we remind that we always keep the v2

condensate non-negative).
A rather similar picture occurs when one of the diag-

onal mass squared is taken to be negative, m2
1 < 0, as

shown in the middle panel of Fig. 1. The spontaneous
symmetry breaking occurs at both signs of the remain-
ing mass squared, m2

2, while the increase of the absolute
value of the off-diagonal mass m2

5 leads to the restoration
of the U(1) symmetry. We would like to stress again that
this particular picture is enforced by the requirement of
minimization of the non-Hermitian energy density (21)
which allows us to choose the correct ground state from
the multitude of the solutions of the non-Hermitian equa-
tions of motion (18).

Finally, the ground state of the Hermitian two-scalar
model with m2

1 < 0 is shown in the lower panel of Fig. 1.
The condensates appear almost at every point of the
phase diagram except for the line m5 = 0, where the con-
densates decouple and the v2 condensate ceases to exist
at m2

2 > 0. At this semi-infinite line, the condensate v1

takes its minimum.

4. Stability of the ground state and the PT symmetry in
the non-Hermitian model

Before proceeding to the discussion of the vortex so-
lutions, let us address the formal stability issues of the
ground state. Usually, the local stability of a classical
configuration is probed by expanding the scalar fields

in the vicinity of the configuration, φa = va + φ̂a with

|φ̂a| � |va|. The configuration is unstable if the fluctua-
tion matrix corresponding to the variation of the action
with respect to the fluctuation of the fields contains neg-
ative modes.

In the Hermitian theory, the global minimum in the
total energy of the solution corresponds to an absolutely
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stable state. In the non-Hermitian theory, this crite-
rion may not work since even in the classical theory, the
ground state is determined by a single set of classical
equations of motion out of the existing two sets. There-
fore, mathematically, one could expect the emergence of
negative directions in the space of fields. This expec-
tation is coherent with our physical intuition since the
non-Hermitian system resides in the steady state which
is generally not a thermodynamic equilibrium. In the re-
maining part of this section, we argue that the formal
stability criteria can still be applied to the interacting
non-Hermitian systems. These criteria give us the gen-
eralization of the PT -symmetric and PT -broken regions
for the interacting theory.

From the classical equations of motion (16), we obtain
that the field fluctuations around the condensates are
governed by the following equation:

�


φ̂1

φ̂∗1
φ̂2

φ̂∗2

+M2


φ̂1

φ̂∗1
φ̂2

φ̂∗2

 = 0, (25)

where the fluctuation matrixM2
NH of the non-Hermitian

model is as follows:

M2
NH=


4λ1v

2
1+m2

1 2v2
1λ1 m2

5 0

2v2
1λ1 4λ1v

2
1+m2

1 0 m2
5

−m2
5 0 4λ2v

2
2+m2

2 2v2
2λ2

0 −m2
5 2v2

2λ2 4λ2v
2
2+m2

2

 .

In the U(1) broken phase, this matrix has one zero eigen-
value which corresponds to the Goldstone mode. In
the symmetric U(1) phase, all eigenvalues are generally
nonzero.

For the ground state to be stable, one expects that the
all eigenvalues of the fluctuation matrix are non-negative.
In the non-Hermitian model, this requirement is not al-
ways satisfied. In Fig. 2 we show the (in)stability phases
for various quartic couplings λ1 and λ2.

The (in)stability phase diagram has a rather curious
form. One notices that the borderlines between the sta-
ble and unstable areas involve both U(1) symmetric and
broken regions which possess, on the contrary, rather fea-
tureless, smooth behaviour of the condensates as shown
in Fig. 1. In order to understand the appearance of the
negative modes, let us consider any unstable point in the
symmetry-restored region with masses m2

1 > 0, m2
2 > 0

(these regions are marked by the white color in the upper
panel of Fig. 2). Since the both condensates are zero and
both diagonal masses as well as the couplings are posi-
tive, the energy density (21) takes an absolute minimum.
On the other hand, in these regions, the third criterion
of Eq. (13) is not satisfied, indicating that the symmetric
state resides in the PT -broken region and is thus unsta-
ble. The instability is not captured by the minimization
of the energy density (21) since this particular expression
is derived for the classical solutions while the instability

can drive the configuration out of the classical subspace
of configurations. The non-classical configuration can ac-
quire even a complex value thus invalidating the criterion
of the energy minimization outside of the classical sub-
space of field configurations.

Thus, we arrive to the conclusion that the ground state
of the non-Hermitian model is formally not stable in the
in certain regions of the parameter space. One can easily
check that these unstable regions become the PT -broken
regions when the quartic interaction couplings are set
to zero, λ1,2 → 0. Therefore, similarly to the free non-
interacting model, the unstable regions indicated in Fig. 2
can be interpreted as the PT -broken regions in the inter-
acting case where the model cannot be used as a invalid
prescription of any steady state in a physical system. The
PT -symmetric regions, on the contrary, are valid stable
zones where the steady-state physics can be realized.

The stability, now associated with the PT -symmetric
regions, is thus determined by the standard requirement
that the quadratic fluctuation matrix,

M2
ab =

δ2SNH[χ]

δχa(x)δχb(x)
, (26)

does not possess negative eigenvalues. Here the vector
~χ = (φ1, φ2, φ

∗
1, φ
∗
2) denotes the original fields and their

conjugates.
For the sake of completeness, we show the fluctuation

matrix of the Hermitian model (7),

M2
H=


4λ1v

2
1+m2

1 2v2
1λ1 m2

5 0

2v2
1λ1 4λ1v

2
1 +m2

1 0 m2
5

m2
5 0 4λ2v

2
2+m2

2 2v2
2λ2

0 m2
5 2v2

2λ2 4λ2v
2
2+m2

2

 ,

which has only non-negative eigenmodes, as expected.
The Hermitian ground state does not have any ambigui-
ties in the stability criteria.

III. VORTICES IN THE LONDON LIMIT

A. Vortices in one-component superfluids: brief
review

The notion of the London limit appears originally in
the Ginzburg-Landau models of superconductivity. This
limit corresponds to the type II regime in which the pen-
etration depth of the magnetic field is much longer than
the correlation length of the superconducting condensate.
Equivalently, this limit poses a constraint on the modu-
lus of the superconducting condensate which can be con-
sidered as a rigidly fixed, non-fluctuating quantity. The
gauge invariance implies that the phase of the supercon-
ducting condensate is not constrained by this limit. How-
ever, the phase is absorbed by the electromagnetic gauge
field, which becomes – in consistency with the Meissner
effect – a massive vector field via the Anderson-Higgs
mechanism. [34]
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λ2 = 0 λ2 = 0.1 λ2 = 1 λ2 = 2
m

2 1
>

0

(a) (b) (c) (d)

m
2 1
<

0

(e) (f) (g) (h)

FIG. 2. The stable (PT -symmetric, marked by the green color) region and the unstable (spontaneously PT -broken, marked
by the red color) regions in the interacting non-Hermitian theory in the (m2

5,m
2
2) plane. The mass squared of the first scalar

field takes positive values (m2
1 > 0) at the upper panel and negative values (m2

1 < 0) at the lower panel. The dark green
and light green colors denote regions with stable PT -symmetric ground states with non-vanishing and vanishing condensates,
respectively. The dark red and light red areas are unstable PT -broken regions with, respectively, non-trivial and vanishing
solutions of the classical equations of motion (22).

In the background of sufficiently strong magnetic field,
the type-II superconductors enter the mixed (Abrikosov)
phase where the magnetic flux penetrates the conden-
sate in a form of parallel vortices which form the regular
Abrikosov lattice. In the London limit, the vortex is char-
acterized by a singularity in the phase of the condensate
which reflects itself in a singular behavior of the gauge
field close to the vortex core. [35]

In our paper, we consider the model with the global,
rather than local/gauge, U(1) symmetry. In the global
case, the condensate is associated with the electrically
neutral complex scalar field which corresponds to the
phenomenon of superfluidity rather than superconductiv-
ity. The Anderson-Higgs mechanism is evidently absent
and the massless mode in the phase of the condensate
appears to be the Goldstone boson associated with the
global U(1) symmetry breaking. In the case of a non-
relativistic Bose gas, one identifies the Goldstone mode
with a phonon. Instead of the Abrikosov strings with
magnetic flux, the superfluid condensates host the vor-
tices characterized by singularities in the phases of the
condensate. These vortices are also called the “global
vortices” since they appear in theories possessing a global
symmetry. Below, we will briefly review the theory of

vortices for a non-relativistic one-component superfluid
following Ref. [35] and then we proceed to the general-
ization of our approach to the London limit of the rela-
tivistic non-Hermitian two-field model.

Consider a superfluid condensate of a non-relativistic
Bose gas of particles with the mass M . It is convenient
to describe by the wave function in the radial coordi-
nates ψ = |ψ|eiθ. The London limit corresponds to the
fixed radial degree of freedom |ψ| which is a good ap-
proximation at very low temperature. Then the energy
of the fluctuations in the superfluid can be written in the
following form (we work in units c = ~ = 1):

E =

∫
d3x

ρs
2
v2
s ≡
|ψ|2

2M

∫
d3x(∇θ)2 , (27)

where the radial part |ψ| of the condensate determines
the superfluid density ρs = M |ψ|2 while its phase θ pro-
vides us with the velocity of the superfluid condensate,
vs = (∇θ)/M . We neglected here qualitatively inessen-
tial contributions coming from the inhomogeneity of the
radial part of the condensate. An extremization of the
energy (27) gives us the Poisson’s wave equation, ∆θ = 0
which corresponds to the incomprehensibility condition
of the superfluid, ∇ · vs = 0.
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The superfluid theory (27) also incorporates singular
configurations of the vortex fluid which correspond to
the superfluid currents that wind around a line (called
the vortex line) in three-dimensional space. Precisely at
the vortex line, the superfluid condensate vanishes, φ =
0, while the phase of the superfluid condensate is equal
– in the vicinity to the vortex core – to a geometrical
angle (times an integer) in the plane transverse to the
vortex line. The integer is a topological quantity which
characterizes the vortex winding number.

The vortices can be accounted in the model (27) de-
spite the fact that this model describes a long-range
macroscopic physics with a globally uniform, constant
condensate. Consider, for simplicity, a straight static
vortex line along the direction x3 located at the center
x1 = x2 = 0 in the transverse plane. The phase of the
vortex is θ(x1, x2) = nϕ where n is the winding number
of the vortex and ϕ = arg(x1 + ix2) is the azimuthal an-
gle in the two-dimensional (x1, x2) plane. The velocity
of the superfluid,

vs =
n

M
∇ arg(x1 + ix2) =

n

Mr
eϕ, (28)

is directed along the unit vector in the azimuthal eϕ,
so that the fluid “winds” around the vortex center at
x1 = x2 = 0. Alternatively, the location of the vortex sin-
gularity corresponds to the point in the two-dimensional
plane, where the derivatives do not commute,

(∂1∂2 − ∂2∂1)θ(x1, x2) = 2πnδ(x1)δ(x2) . (29)

The total energy (27) evaluated at this static straight
vortex configuration is:

E = L
|ψ|2n2

2M
2π

∫ R

ξ

rdr
1

r2
= L

π|ψ|2n2

M
ln
R

ξ
, (30)

where L is the length of the vortex. The infrared cutoff of
this integral is the size of the system R while the size ξ of
the vortex core – typically, of the interatomic distance –
serves as an ultraviolet cutoff. The important message of
Eq. (30) is that the vortex energy (mass) is proportional
to the length of the vortex L. One can show that the
vortex curvature provides a subleading correction. The
energy density per unit length is a finite quantity since
the logarithmic divergence in Eq. (30) is very mild.

Consider now the relativistic one-component model
with the action:

S =

∫
d4x ∂µφ

∗∂µφ ≡ κ2

∫
d4x ∂µθ∂

µθ , (31)

where we adopted the London limit with the constant
radial condensate κ = |φ|. The variation of the action
with respect to the phase θ gives us the equation for the
propagation of the massless Goldstone particle, � θ = 0,
where � = ∂2

t −∇2 is the d’Alembert operator.
In the non-relativistic limit, the model (31) possesses

the energy (27) for static vortex configurations. It is con-
venient to parameterize the coordinates x̃µ = x̃µ(~σ) of

the two-dimensional vortex singularities by the two com-
ponent vector ~σ = (σ1, σ2). We split the phase θ into the
regular and singular parts, θ = θr + θs. The regular part
θr of the phase corresponds to the perturbative fluctua-
tions while the singular part θs encodes the position of
the vortex (29). In the relativistic notations,

∂[µ,∂ν]θ
s(x, x̃) = 2π · 1

2
εµναβΣαβ(x, x̃), (32)

where the singularity itself is given by the tensor current:

Σαβ(x, x̃) =

∫
Σ

d2σαβ(x̃)δ(4)[x− x̃(~σ)], (33)

which is expressed via the differential measure at the vor-
tex world-sheet Σ:

d2σαβ(x̃) = εab
∂xα
∂σa

∂xβ
∂σb

d2σ . (34)

Here εab is the fully anti-symmetrized tensor in two di-
mensions, ε12 = −ε21 = +1 and ε11 = ε22 = 0. The
vortex tensor (33) is a two-dimensional delta-function at
the surface of the vortex, with the orientation at the vor-
tex world-sheet. For example, for a straight vortex men-
tioned above, one uses the parameterization x̃0 = σ1,
x̃1 = x̃2 = 0, x̃3 = σ2, and obtains

Σαβ(x) = n (δα,0δβ,3 − δα,3δβ,0)δ(x1)δ(x2) , (35)

where n ∈ Z is the vorticity. Note that the regular part of
the phase does not contain any singularity by definition,
[∂µ, ∂ν ]θr ≡ 0.

Integrating out or, equivalently, solving the equations
of motion for the regular component the phase, θr, allows
us to rewrite the action (31) in terms of the singular part
of the phase θs, which, in turn, depends only on the
vortex world-sheet (33):

S[Σ] = 4π2κ2

∫
Σ

d2σ(x̃)

∫
Σ

d2σ(x̃′)D(x̃− x̃′) . (36)

This action is a nonlocal functional which features two
integrals that are taken over the same vortex worldsheet.
In the case of many vortices, the worldsheet Σ includes
all their worldsheets: Σµν = Σ1,µν + Σ2,µν + . . . .

The nonlocal action (36) represents the self-interaction
of the vortex line as well as the interactions of the dis-
tinct vortex segments via propagation of a massless Gold-
stone particle between the vortex segments. In Eq. (36),
this long-range interaction is represented by the advanced
Green’s function D(x) of the d’Alembert operator:

�D(x) = −δ(4)(x) . (37)

In the case of a static straight vortex line of large length
L, the action (36) calculated for the time interval δt gives
us S = Eδt, where E is, up to parameter redefinitions,
the known vortex energy (30). In order to demonstrate
this fact, it is convenient to make a Wick transformation
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in the integral (36) to the Euclidean spacetime. In the
Euclidean space, the massless propagator (37) is:

D(x) =

∫
d4p

(2π)4

eipx

p2
=

1

8π2

1

|x|2
, (38)

where x is the 4-distance. For a single straight static
vortex with the surface (35), the longitudinal (along the
vortex) and temporal coordinates in the action (36) can
be integrated out, and we get the following formal ex-
pression for the vortex energy:

E = 4π2κ2LD2D(0) , (39)

where

D2D(ρ) = − 1

2π
ln

ρ

ρ0
, (40)

is the two-dimensional massless propagator [a solution of
Eq. (37) in two Euclidean dimensions] as the function
of the two-dimensional distance ρ. The parameter ρ0,
which has the dimension “length”, is introduced for the
consistency reasons. The argument “0” in Eq. (39) high-
lights the fact that the formal expression for the energy
in the London limit is a logarithmically divergent quan-
tity similarly to the non-relativistic expression (30). A
more accurate derivation in a finite cylindrical box of the
radius R0 leads us to

E = 2πκ2L log
R0

ξ
, (41)

where ξ is the size of the vortex core.
The general expression (36) also gives us the interac-

tion energy of the two straight static vortices with vor-
ticities n1 and n2 separated by the distance R12:

V (R12) = 8π2κ2LD2D(R12)

≡ −4πn1n2κ
2L log

R12

ξ
, (42)

so that the-like-charged vortices repel each other while
the vortices with opposite vorticities attract each other.
Finishing this section, we notice that in order to get
Eq. (42) it is sufficient to take in the action (36), instead
of the single-vortex current (35), the following expression:

Σαβ(x) = (δα,0δβ,3 − δα,3δβ,0)δ(x1) (43)

×[n1δ(x2 −R12/2) + n2δ(x2 −R12/2)] .

B. Two-component superfluids in London limit

1. Lagrangians in the London limit

The London limit of both Hermitian (7) and non-
Hermitian (5) two-component models is obtained by ex-
pressing the diagonal masses m2

a = −2λaκ
2
a via the pa-

rameters κ2
a > 0 and a = 1, 2 and then making the

quartic interaction large, λ1 = λ2 → ∞. The param-
eters κa > 0 fix the radial amplitudes for each field,

φa = κae
iθa , while leaving the phases θa as the only

dynamical variables. One gets in the London limit for
the Hermitian and non-Hermitian theories, respectively:

LH = κ2
1∂νθ1∂

νθ1 + κ2
2∂νθ2∂

νθ2

−2m2
5κ1κ2 cos(θ1 − θ2) , (44)

LNH = κ2
1∂νθ1∂

νθ1 + κ2
2∂νθ2∂

νθ2

+2im2
5κ1κ2 sin(θ1 − θ2) . (45)

Both these models have similar Lagrangians. The only
difference between them appears in the interaction be-
tween the phases of different condensates: instead of
the cosine function in the Hermitian model, its non-
Hermitian model has a sine function preceded by a purely
imaginary coupling.

According to the third criterion of Eq. (13), the non-
Hermitian theory in the London limit at κ1 6= κ2 would
correspond to the PT unbroken phase if the theory were
non-interacting. Below, we will see that in the interacting
theory this criterion, unsurprisingly, does not work. Still,
Eq. (45) represents a meaningful theory even if m5 6= 0.

2. Hermitian two-condensate model

From the classical equations of motion of the Hermitian
model,

κ1� θ1 −m2
5κ2 sin(θ1 − θ2) = 0 , (46)

κ2� θ2 +m2
5κ1 sin(θ1 − θ2) = 0 , (47)

one immediately determines the presence of the Gold-
stone massless mode

χ = θ1 sin2 β + θ2 cos2 β , (48)

and the massive excitation,

γ = θ1 − θ2 . (49)

These degrees of freedom satisfy, respectively, the follow-
ing equations:

�χ = 0 , (50)

� γ −M2 sin γ = 0 . (51)

Here

M2 =
2m2

5

sin 2β
≡ κ2

1 + κ2
2

κ1κ2
m2

5 , (52)

is the mass of the mode (49),

tanβ =
κ1

κ2
, (53)

is the angle which determines the relative strength of the
condensates, and

κ =
√
κ2

1 + κ2
2 . (54)

Since κa > 0, the mass (52) can always be chosen as
a positive quantity. The Hermitian Lagrangian (44) can
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therefore be rewritten as a sum of independent contribu-
tions coming from massless (48) and massive (49) fields:

LH = κ2∂νχ∂
νχ+ L(M)

H (γ) . (55)

The Goldstone mode χ corresponds to the massless ex-
citation of the one-component Bose gas superfluid (31).
The massive mode γ is described by the sine-Gordon La-
grangian:

L(M)
NH (γ) = κ̃2

(
∂νγ∂

νγ − 2M2 cos γ
)
, (56)

where the parameter

κ̃ =
κ sin 2β

2
, (57)

plays a role of the amplitude corresponding to the mas-
sive condensate. In Eq. (56), the term cos γ appears nat-
urally instead of the usual γ2 mass term in agreement
with the γ → γ + 2π periodicity coming from the sym-
metry of the original fields θ1 and θ2.

Following the analogy of the one-component model, we
conclude the two-component model should contain two
types of superfluid vortices associated with singularities
(winding) in the phases of the fields θ1 and θ2. Using
the decompositions (48) and (49), we identity the mass-
less Σ(0) and massive Σ(M) combinations of the vortex
worldsheets which appear as the singularities in χ and γ
fields, respectively:

Σ(0)
µν = Σ(1)

µν sin2 β + Σ(2)
µν cos2 β , (58)

Σ(M)
µν = Σ(1)

µν − Σ(2)
µν . (59)

Here the individual phase windings are defined according
to Eq. (32):

∂[µ,∂ν]θ
s
i (x, x̃) = 2π · 1

2
εµναβΣ

(i)
αβ(x, x̃), i = 1, 2 . (60)

Therefore, the effective theory of vortices is written as
follows:

S[Σ] = 4π2κ2

∫
Σ(0)

d2σ(x̃)

∫
Σ(0)

d2σ(x̃′)D(x̃− x̃′) (61)

+4π2κ̃2

∫
Σ(M)

d2σ(x̃)

∫
Σ(M)

d2σ(x̃′)DM (x̃− x̃′) .

where DM (x) is the advanced Green’s function cor-
responding to the propagator of the massive particle,
(�+M2)DM (x) = −δ(4)(x).

3. Non-Hermitian two-condensate model

Exactly the same field combinations (48) and (49) can
be used to rewrite the non-Hermitian theory (45) in terms
of the massless and massive field combinations:

LNH = κ2∂νχ∂
νχ+ L(M)

NH (γ) . (62)

This non-Hermitian model possesses the usual Hermitian
Goldstone mode χ which leads to the long-range interac-
tions between the combinations of the worldsheets (58).

However, the would-be massive excitation γ exhibits a
non-Hermitian behaviour described by the Lagrangian:

L(M)
NH (γ) = κ̃2

(
∂νγ∂

νγ + 2iM2 sin γ
)
, (63)

and therefore the interaction between the would-be mas-
sive components of the vortex sheets (59) is not evident.

The model (63) is nothing but a non-Hermitian version
of the Sine-Gordon model in (3+1) dimensions. As a side
remark, we notice that the Lagrangian (63) appears as
a bosonic dual of the non-Hermitian massive Thirring
Model in (1+1) dimensions [6]. According to Ref. [6],
this model with the purely imaginary coupling in front
of the sine-term resides in the PT -broken domain and,
therefore, should be characterized by complex energy dis-
persions which correspond to dissipation or instability, or
the both.

The second term in the Lagrangian (63) implies that
the γ = 0 point is not a local extremum of the corre-
sponding action. The stable minima could appear around
the values γ± = ±π/2. Defining γ = ±π/2 + δγ, we get
the following equations of motion:

� δγ ± iM2 sin δγ = 0 , (64)

which differ from the classical equations of motion of the
Hermitian model (51) by the purely complex coefficient
in front of the sine term. For small fluctuations around
the minimum, δγ = 0, the solutions of Eq. (64) give us

the dispersions for the energy: ωk =
√
k2 ± iM2. We

find that the particle-like, positive-energy solutions with
Reω > 0 lead to an explosive behavior near the γ = −π/2
minimum which appears to be unstable. For example,
the amplitude of any zero-momentum solution (k = 0)
diverges with time t as δγ ∼ exp(Γt) where

Γ =
M√

2
≡ κ2

1 + κ2
2

κ1κ2

m2
5√
2
> 0 . (65)

In the language of a Hermitian theory, the point γ =
−π/2 would correspond to an extremum.

However, the minimum γ = +π/2 is stable so that all
particle excitations around it behave as dissipative solu-
tions δγ ∼ exp(−Γt) that approach the minimum point
γ = +π/2 should the field γ deviate from it. Since the
angle γ takes a constant value in the stable minimum, it
evidently means that the field γ contains no vortex sin-
gularities in this ground state. According to Eq. (59), the
vortex singularities in the both phases θ1 and θ2 should

coincide with each other: Σ
(M)
µν = Σ

(1)
µν − Σ

(2)
µν = 0.

Thus, the vortices in the φ1 and φ2 condensate can

only exist provided they coincide with each other, Σ
(0)
µν =

Σ
(1)
µν = Σ

(2)
µν thus forming a single double-vortex sheet

Σ
(0)
µν according to Eq. (58). Any fluctuation that sep-

arates the vortices leads to the energy dissipation with
the dissipation rate (65) which returns the vortices back
to their common stable non-dissipative minimum.

The common vortex line is described by action of the
vortex in the one-component condensate (36), where the
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coupling κ is given in Eq. (54). The energy per unit
length of the joint vortex is thus given by Eq. (41). In this
state, the common vortex segments interact with other
segments via a long-range interaction mediated by mass-
less particles. For the straight static vortices separated
by the distance R12, the interaction is given by Eq. (42).

IV. VORTICES AT FINITE COUPLINGS

The non-Hermitian two-field model possesses vortex
solutions not only in the London limit but also at finite
values of the quartic couplings λ1 and λ2. In this section
we consider examples of the static straight vortex solu-
tions of the classical equations of motion (14) assuming
the standard axial ansatz for the scalar fields

φa(r, θ) = vafa(r)einθ , a = 1, 2, (66)

where r and θ are the radial coordinates in the (x1, x2)
plane and n ∈ Z is the vorticity of the solution. These
static and straight field configurations do not depend on
time and x3 coordinates. The vacuum values of the con-
densates, v1 and v2, are the solutions of Eqs. (18).

The consistency of the coupled solutions at m5 6= 0
imply that the vortices in φ1 and φ2 condensates should
be superimposed on each other and they should have the
same winding numbers n1 = n2 = n in Eq. (66). Be-
low we concentrate on the non-Hermitian model which is
the subject of our paper (the analysis of the Hermitian
counterpart can also be performed in the same way).

The radial profiles of the vortices are described by the
functions fa with the following asymptotics:

lim
r→∞

fa(r) = 1, lim
r→0

fa(r) = 0, a = 1, 2, (67)

which guarantee that the total energy of the vortex solu-
tion is converging both at the spatial infinity and at the
origin, respectively.

The classical equations of motion (14) lead to the fol-
lowing system of equations for the profile functions:

f ′′1 (r) +
f ′1(r)

r
− n2

r2
f1(r)−m2

1f1(r)−m2
5

v2

v1
f2(r) (68a)

−2λ1v
2
1f

3
1 = 0 ,

f ′′2 (r) +
f ′2(r)

r
− n2

r2
f2(r)−m2

2f2(r) +m2
5

v1

v2
f1(r) (68b)

−2λ2v
2
2f

3
2 = 0 ,

which, evidently, do not possess straightforward analyti-
cal solutions.

Close to the origin, the last non-linear terms in both
equations (68) can be neglected and the differential equa-
tions can be linearized. The solutions can be represented
in the form of the polynomials,

fa(r) =

∞∑
k=0

A(2k)
a rn+2k , (69)

which involve only the positive even powers of the radius
starting from the power rn determined by the vorticity
number n = 1, 2, . . . . The ansatz (69) is thus consistent
with the asymptotics (67). One gets for the first three
coefficients:

A
(0)
1 = A1 , A

(2)
1 =

A1v1m
2
1 +A2v2m

2
5

4(n+ 1)v1
,

A
(4)
1 =

A1v1(m4
1 −m4

5) +A2v2m
2
5(m2

1 +m2
2)

32(n+ 1)(n+ 2)v1
, (70a)

A
(0)
2 = A2 , A

(2)
2 =

A2v2m
2
1 −A1v1m

2
5

4(n+ 1)v2
,

A
(4)
2 =

A2v2(m4
1 −m4

5)−A1v1m
2
5(m2

1 +m2
2)

32(n+ 1)(n+ 2)v2
,

where A1 and A2 are free parameters of the solution
which cannot be fixed at this stage. The series (70a) of
the f1 and f2 profile functions are related to each other
by the flip of the sign in front of the off-diagonal mass
term m2

5.
In the large-distance region, r → ∞, the asymp-

totics (67) imply fa = 1 − ha where |ha| � 1 at suffi-
ciently large distances. The linearized equations of mo-
tion,

h′′1(r) +
h′1(r)

r
− n2

r2
h1(r)−m2

1h1(r)−m2
5

v2

v1
h2(r) (71)

−6λ1v
2
1h1(r) = 0 ,

h′′2(r) +
h′2(r)

r
− n2

r2
h2(r)−m2

2h2(r) +m2
5

v1

v2
h1(r) (72)

−6λ2v
2
2h2(r) = 0 ,

suggest that their solutions can be represented in the
following form:

ha(r) = B(0)
a rse−µr . (73)

The self-consistency of the solutions provides us with the
power s = −1/2 of the algebraic prefactor rs and also
imposes two simultaneous constraints:

µ2 −m2
1 −m2

5

B
(0)
2 v2

B
(0)
1 v1

− 6λ1v
2
1 = 0 , (74a)

µ2 −m2
2 +m2

5

B
(0)
1 v1

B
(0)
2 v2

− 6λ2v
2
2 = 0 . (74b)

These equations give us two possible solutions for the

ratio of the coefficients B
(0)
a from Eq. (73):

B
(0)
1

B
(0)
2

=
v2

v1

(
α±

√
α2 − 1

)
, (75)

and also determines the common exponent:

µ =

√
6λ1v2

1 +m2
1 +m2

5

(
α±

√
α2 − 1

)
. (76)
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We denoted for brevity:

α =
6(λ2v

2
2 − λ1v

2
1) +m2

2 −m2
1

2m2
5

. (77)

The next-order correction to Eq. (73) can also be easily
obtained,

ha(r) =

(
B

(0)
a

r
1
2

+
B

(1)
a

r
3
2

+O
(
r−

5
2

))
e−µr , (78)

where

B(1)
a =

1

2µ

(
n2 − 1

4

)
B(0)
a . (79)

FIG. 3. The profile functions of the elementary n = 1 vortex
solution at the mass parameters m2

2 = |m2
1| and m2

5 = 0.1|m2
1|

with m2
1 < 0 and the equal quartic couplings λ1 = λ2 = 1.

If the off-diagonal mass vanishes, m2
5 = 0, the

non-Hermitian two-scalar model reduces to two non-
interacting scalar models L(φ1, φ2) = L1(φ1) + L2(φ2)
with

La(φa) = ∂νφ
∗
a∂

νφa −m2
a|φa|2 − λaφ4

a. (80)

This single-field model possesses the asymptotic solutions
of the form (we omit the index a for simplicity):

f(r) = A

[
rn +

m2

4(n+ 1)
rn+2

+
m4

32(n+ 1)(n+ 2)
rn+4 +O

(
rn+6

)]
, (81)

h(r) = B

[
1√
r

+
1

2µr3/2

(
n2 − 1

4

)
+O

(
r−5/2

)]
e−µr ,

where the asymptotic behavior is controlled by the mass
of the single scalar field:

µ =
√
m2 + 6λv2 = 2

√
λv2 . (82)

In this limit, the two equations (74) decouple, and the
mass parameters reduce to Eq. (82) for each field. The
asymptotics of the non-Hermitian solution (69), (70),

(78), and (79) are consistent with the single-field solu-
tion (81) as well.

Our numerical analysis confirms the existence of the
stable vortex solutions in the regions of the phase di-
agram with non-zero condensates. An example of the
profile functions for a set of coupling constants is shown
in Fig. 3. All the radial n = 1 profiles of the vortices
exhibit the same qualitative features, the linear rise close
to the origin and the exponentially slow approach of the
corresponding vacuum expectation values at large dis-
tances. These properties reveal the generic behavior of
all solutions that we have analyzed.

The energy density of the non-Hermitian vortex (cal-
culated per unit vortex length),

ENH = 2π

∫ ∞
0

rdr
(
|∇φ1|2 + |∇φ2|2 (83)

+m2
1φ

2
1 +m2

2φ
2
2 + λ1φ

4
1 + λ2φ

4
2

)
,

can be simplified with the use of the corresponding equa-
tions of motion (14). It can be expressed via the profile
functions fa as follows:

E = 2π

∫ ∞
0

rdr
{
λ1v

4
1 [1− f4

1 (r)] + λ2v
4
2 [1− f4

2 (r)]
}
,

(84)
where the energy is normalized in such a way that E = 0
in the absence of the vortex. The very same expres-
sion (84) also gives us the energy of the vortex in the
counterpart Hermitian theory (7),

EH = 2π

∫ ∞
0

rdr
(
|∇φ1|2 + |∇φ2|2 +m2

1φ
2
1 +m2

2φ
2
2

+2m2
5φ1φ2 + λ1φ

4
1 + λ2φ

4
2

)
, (85)

after the use of the corresponding classical equations of
motion (22).

Finally, despite of the mundane similarity of the nu-
merically obtained vortex configurations in various re-
gions, one notices rather unusual difference of the evo-
lution of the vortex energy as the function of the off-
diagonal mass parameter m5 in Hermitian and non-
Hermitian regions. We show the examples of vortex en-
ergies energies in Hermitian and non-Hermitian theories
in different stability areas, with m2

1 < 0 and m2
2 > 0

in Fig. 4(a) and with m2
1,m

2
2 < 0 in Fig. 4(b) at the

same values of quartic couplings. The vortex energies in
the Hermitian and non-Hermitian versions trivially co-
incide at m5 = 0 and then they tend to separate as
the off-diagonal mass m5 increases. On notices non-
monotonic behaviour of energies in the completely broken
(m2

1,m
2
2 < 0) part of the phase diagram.

V. CONCLUSIONS

We studied the properties of vortices in the non-
Hermitian model PT symmetric model with two inter-
acting complex scalar fields.
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(a)

(b)

FIG. 4. Hermitian and non-Hermitian vortex energies vs. the
off-diagonal mass squared m2

5 in different stability areas (a)
m2

2 = −m2
1 > 0 corresponding to the border of the stable and

unstable regions and (b) m2
2 = 2.5m2

1 < 0 residing within the
stable region, at λ1 = λ2 = 1, Fig. 2(g).

Firstly, we considered the model in the London limit
where the lengths of the condensates are frozen and the
analytical analysis is possible. To reveal the vortex prop-
erties, we used a set of transformations that did not in-
volve the explicit solution of the equations of motion.
Noticing that the London limit of the model resides in the
PT -broken phase, we show that the superfluid vortices
can propagate non-dissipatively if and only if the vor-
tex singularities in different condensates have the same
vorticity (winding number) and, in addition, they over-
lap. The joint vortex segments interact via a long-ranged
exchange of a massless excitation, similarly to the vor-
tices in a Hermitian one-condensate model. The dissipa-
tion rate of the individual (separated) vortex segments
is controlled by the off-diagonal mass, which, in turn,
determines the interaction between the condensates.

Secondly, we also studied the classical vortex configu-
rations at finite quartic couplings. In order to identify
the classical configurations, we used a single set of classi-
cal equations of motion, which is obtained by the varia-
tion of the action with respect to the original fields. We
omitted the equivalent but the incompatible, complimen-
tary set of equations that correspond to the variation of
the action with respect to the conjugated fields. This
procedure, which follows Refs. [7, 36], seems appropriate
in application to the open systems residing in a steady-
state regime, which does not necessarily coincide with the
(thermal) equilibrium. Moreover, in this approach, the
classical solutions possess a real-valued energy spectrum
bounded below. The latter property is essential on the
practical level as we search for the classical states using a
(numerical) procedure based on the energy minimization
as a criterion for the true (ground) state.

An alternative approach, based on the similarity trans-
formation, does not possess the incompatibility of the two
sets of equations of motion. This property makes the an-
alytical procedure of finding the classical solutions more
elegant [22, 23]. However, the same approach makes the
kinetic term (of, at least, one of the fields) negative, lead-
ing to the emergence of a negative quadratic mode for the
classical the solutions. Therefore, the mentioned class
alternative solutions correspond to different, sphaleron-
type saddle-point configurations which can be important
for thermal properties of the system.

We analyzed the ground state of the model, and we
have shown that the PT -unbroken regions of the inter-
acting system can be identified using, as a practical cri-
terion, the absence of the negative modes in fluctuation
matrixM2

NH that describes the quadratic fluctuations of
the fields (25) over the ground-state condensates. On
the contrary, in the spontaneously PT -broken regions,
the quadratic fluctuation matrix contains at least a sin-
gle negative eigenvalue.

We found that the PT -symmetric two-component
model admits the vortex solutions inside and at the bor-
der of the PT -broken regions. These two-condensate vor-
tex solutions share similar behavior with the vortices in
the one-component relativistic superfluids. For consis-
tency of the classical solution, the vortices of different
condensates should have the same position in space-time
and possess the same vorticity (winding number).
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