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Abstract

Drosophila Orb, the homologue of vertebrate CPEB is a key translational regulator involved in oocyte polarity and maturation through poly(A) tail elongation of specific mRNAs. orb has also an essential function during early oogenesis which has not been addressed at the molecular level. Here, we show that orb prevents cell death during early stages of oogenesis, thus allowing oogenesis to progress. It does so through the repression of autophagy, by directly repressing, together with the CCR4 deadenylase, the translation of Autophagyspecific gene 12 (Atg12) mRNA. The uncontrolled autophagy observed in orb mutant ovaries is reduced when Atg12 mRNA levels are decreased. These results reveal a role of Orb in translational repression and identify autophagy as an essential pathway regulated by Orb during early oogenesis. Importantly, they also establish translational regulation as a major mode of control of autophagy, a key process in cell homeostasis in response to environmental cues.

Introduction

The regulation of developmental processes and cellular activities largely relies on translational control of mRNAs, and an important mechanism of this regulation involves changes in mRNA poly(A) tail lengths [START_REF] Weill | Translational control by changes in poly(A) tail length: recycling mRNAs[END_REF]. Cytoplasmic polyadenylation element binding (CPEB) proteins act sequentially in poly(A) tail shortening and lengthening through the recruitment of deadenylases and poly(A) polymerases [START_REF] Richter | CPEB: a life in translation[END_REF]. They bind to UA-rich short sequences, referred to as cytoplasmic polyadenylation elements (CPEs), located within 3'UTRs of their target mRNAs [START_REF] Pique | A combinatorial code for CPE-mediated translational control[END_REF][START_REF] Richter | CPEB: a life in translation[END_REF]. CPEB1 has been mostly studied for its implication in vertebrate oocyte maturation, where it is involved in translational repression through the recruitment of PARN deadenylase in immature oocytes, and in translational activation through an interaction with Gld2 poly(A) polymerase during maturation [START_REF] Igea | Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4[END_REF][START_REF] Kim | Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation[END_REF]. The role of CPEBs in translational regulation in somatic tissues has also been established in various contexts, including the control of cell proliferation, senescence, tumor development, synaptic plasticity and glucide metabolism [START_REF] Alexandrov | Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance[END_REF][START_REF] Bava | CPEB1 coordinates alternative 3'-UTR formation with translational regulation[END_REF][START_REF] Fernandez-Miranda | The CPEB-family of proteins, translational control in senescence and cancer[END_REF][START_REF] Ortiz-Zapater | Key contribution of CPEB4-mediated translational control to cancer progression[END_REF][START_REF] Udagawa | Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex[END_REF].

Orb is the Drosophila homologue of vertebrate CPEB1 and, consistent with this, it is involved in cytoplasmic polyadenylation and translational activation during oogenesis, for oocyte polarity and maturation [START_REF] Benoit | PAP-and GLD-2type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila[END_REF][START_REF] Castagnetti | Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte[END_REF][START_REF] Chang | The Drosophila CPEB homolog, Orb, is required for Oskar protein expression in oocytes[END_REF][START_REF] Juge | Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila[END_REF]. However, while Orb plays an established role in the initial steps of egg chamber formation, this function is poorly understood [START_REF] Christerson | orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis[END_REF][START_REF] Huynh | The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte[END_REF][START_REF] Lantz | The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity[END_REF].

Here we show that cell death is the major defect in orb mutant early ovaries.

Developmental programmed cell death occurs at three specific stages in the female germline: in the newly formed cysts (region 2 of the germarium, Figure 1A), during mid-oogenesis (stages 7-8), and during late oogenesis (stages 12-13) [START_REF] Mccall | Eggs over easy: cell death in the Drosophila ovary[END_REF][START_REF] Pritchett | Cracking open cell death in the Drosophila ovary[END_REF].

Germ cell death during early and mid-oogenesis is strongly enhanced by starvation [START_REF] Drummond-Barbosa | Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis[END_REF], and strikingly does not depend on the usual apoptotic activators such as hid, grim, reaper [START_REF] Foley | Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency[END_REF][START_REF] Peterson | Noncanonical cell death pathways act during Drosophila oogenesis[END_REF][START_REF] Pritchett | Cracking open cell death in the Drosophila ovary[END_REF], but involves autophagy [START_REF] Barth | Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis[END_REF][START_REF] Nezis | Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy[END_REF]. In Drosophila, autophagy contributes to developmental cell death in several developmental processes through caspase activation and DNA fragmentation [START_REF] Denton | Cell death by autophagy: facts and apparent artefacts[END_REF]. A molecular link has been established between autophagy and cell death during late oogenesis as nurse cell death by DNA fragmentation depends on autophagic degradation of the inhibitor of apoptosis (IAP/dBruce) [START_REF] Nezis | Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis[END_REF].

Here, we show that orb prevents autophagy and cell death during early stages of oogenesis, and identify Autophagy-specific gene 12 (Atg12) mRNA as a direct target of translational repression by Orb.

Results and Discussion

Early defects in orb mutant ovaries

We sequenced orb F343 [START_REF] Lantz | The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity[END_REF] and orb 36-53 [START_REF] Morris | Identification and analysis of mutations in bob, Doa and eight new genes required for oocyte specification and development in Drosophila melanogaster[END_REF], two strong or null orb alleles and found that both have premature stop codons (Figure S1A,B). For all subsequent analyses, we used orb F343 which had the most upstream stop codon. We used meiosis and cell cycle markers to further address the early germ cell defects reported previously [START_REF] Huynh | The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte[END_REF][START_REF] Lantz | The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity[END_REF]. Oogenesis stops as pseudocysts just after the germarium in orb F343 . In these pseudo-cysts, expression of C(3)G, a component of the synaptonemal complex, was generally maintained in several cells, reflecting a defect in meiosis restriction and, hence, oocyte determination (Figure 1C, D) [START_REF] Huynh | The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte[END_REF]. Incorporation of bromodeoxyuridine (BrdU) was used to monitor germ cell DNA replication. BrdU incorporation that is detected in region 1 of wild-type germarium was not affected in orb mutants (Figure 1E-F'). In contrast, the BrdU incorporation found in wildtype endoreplicating nurse cells was never detected in orb mutant pseudo-cysts (Figure 1E-F'), suggesting that the germ cells in these pseudo-cysts had not entered the nurse cell fate.

In the wild type, follicle cells encapsulate individual cysts to produce egg chambers.

They express the transcription factor Traffic Jam (Tj) and Fasciclin 3 (Fas3) and, as they mature, Fas3 is down-regulated except in polar cells (Figure 1G). In orb F343 mutant ovaries, the follicle cells did not express Tj and failed to down-regulate Fas3, suggesting a defect in follicle cell maturation (Figure 1H). We used FLP-mediated FRT recombination to generate orb mutant cell clones and investigate a potential intrinsic function of orb in follicle cells.

Ovaries with orb mutant follicle cells produced normal egg chambers (Figure 1I,I'), demonstrating that orb function was not required in the follicle cell lineage. Analysis of orb mutant germline clones showed that orb was dispensable in the germline stem cells for their self-renewal, division rate and differentiation (Figure S1C-F), consistent with orb function being downstream of these events. orb mutant germ cells were co-encapsulated with wildtype cysts in compound egg chambers (70%, n=237) (Figure 1J).

We conclude that orb is required in the germ cells for meiosis restriction and endoreplication of nurse cell nuclei. Defects in these processes prevent germ cell differentiation into oocyte and nurse cells and affect follicle cell maturation nonautonomously.

Germ cell death is a major defect in orb mutant ovaries

DAPI staining of orb mutant germline clones revealed pycnotic nuclei that can indicate cell death. We therefore used anti-cleaved caspase 3 and TUNEL assays to record potential cell death in orb mutant ovaries. The staining with both markers revealed cell death in orb mutant germ cells (89% (n=140) and 69% (n=81) of pseudo-cysts marked with anti-cleaved caspase 3 and TUNEL, respectively) (Figure 2A-D). We used the UAS/Gal4 system to overexpress the known caspase inhibitor DIAP1 in the germline [START_REF] Mazzalupo | Illuminating the role of caspases during Drosophila oogenesis[END_REF][START_REF] Peterson | Stage-specific regulation of caspase activity in drosophila oogenesis[END_REF]. DIAP1 expression reduced the levels of cleaved caspase 3 and TUNEL staining in orb mutant germ cells (Figure 2E-F), and strikingly, rescued the formation of egg chambers in 23 to 27% of ovarioles, with follicle cells expressing Tj and Fas3 normally (Figure 2F',G).

This showed that germ cell death contributed to the early oogenesis arrest in orb mutants.

Oogenesis did not progress further in these rescued egg chambers, consistent with Orb regulating other processes in the ovary.

Identification of mRNA targets of Orb

To address whether orb could regulate cell death directly we performed Orb RNP immunoprecipitation-microarray (RIP-Chip) analysis [START_REF] Keene | RNA regulons: coordination of post-transcriptional events[END_REF] to identify mRNAs associated with Orb. We used either mature ovaries or early ovarian stages dissected from newly eclosed females (germarium to stage 8) (Figure S2). Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 0.01 then identified 421 and 603 mRNAs that were enriched at least 1.5 fold in Orb RIP from early and mature ovaries, respectively, compared to mock RIP (Figure 3A, Table S1). Gene ontology (GO) term enrichment analysis using DAVID with a p-value <0.05 (Benjamini corrected) identified the terms "translation", "cell cycle" and "mitochondria" as enriched among the mRNAs present in Orb RIP (Figure 3B). While CPEs have been defined in Xenopus [START_REF] Pique | A combinatorial code for CPE-mediated translational control[END_REF], they remain uncharacterized in Drosophila. We used the software designed to identify CPEs in Xenopus [START_REF] Pique | A combinatorial code for CPE-mediated translational control[END_REF] to identify those in mRNAs from Orb RIP. CPEs were not found enriched in Orb RIP mRNAs compared to mRNAs expressed in ovaries (16%, versus 22% in 6614 mRNAs expressed in ovaries from FlyBase). This could indicate that the software did not reveal all Orb binding motifs. It appears unlikely because Orb possesses most aminoacids shown in CPEB1 to be involved in the interaction with the CPE [START_REF] Afroz | A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins[END_REF]. It is important to note that Orb is part of large ribo-nucleoprotein complexes, where it is associated with many other RNA binding proteins [START_REF] Weill | Translational control by changes in poly(A) tail length: recycling mRNAs[END_REF]. It is therefore very likely that a proportion of mRNAs in Orb RIP could coprecipitate through interactions with these other RNA-binding proteins.

Among the Orb mRNA early targets that might be involved in cell death, we identified Autophagy-specific gene 12 (Atg12) functionally annotated for "autophagic cell death". Since autophagy is thought to contribute to cell death in Drosophila oogenesis and Atg12 encodes an effector of autophagosome formation [START_REF] Gorski | A SAGE approach to discovery of genes involved in autophagic cell death[END_REF][START_REF] Scott | Role and regulation of starvationinduced autophagy in the Drosophila fat body[END_REF], we focused on this mRNA and studied its potential direct regulation by Orb.

Atg12 mRNA is a direct target of Orb

Independent Orb RIP and quantification of Atg12 mRNA levels by RT-qPCR confirmed the presence of Atg12 mRNA in complex with Orb (Figure 3C). The presence of two potential CPEs in the Atg12 3'UTR (Figure S3) led us to use RNA pull-down assays to address a potential direct binding of Orb to Atg12 3'UTR. oskar (osk) 3'UTR known to interact with Orb [START_REF] Chang | The Drosophila CPEB homolog, Orb, is required for Oskar protein expression in oocytes[END_REF] was used as a positive control, and the 3'UTR of thread (th) which encodes DIAP1 protein was used as a negative control. Both Atg12 and osk 3'UTRs were able to pull down Orb protein from an ovarian extract, while th 3'UTR was not to the same extent (Figure 3D). Competition assays were used to test the binding specificity of Orb to Atg12 3'UTR. osk 3'UTR and the TRI-Xef RNA were used as CPE-containing competitors, and TRI-XefΔCPE as a competitor which did not contain CPE. Unlabeled competitor RNAs were added in excess to the binding reactions (4X or 20X). The presence of 20X CPE-containing competitor RNAs substantially decreased the binding of Orb to Atg12 3'UTR, whereas the non-CPE competitor did not (Figure 3D). These results are consistent with the direct binding of Orb to Atg12 3'UTR.

Orb and CCR4 repress Atg12 mRNA translation through deadenylation

We addressed whether Orb was involved in the control of Atg12 mRNA poly(A) tail lengths using PAT assays. In contrast to the shorter poly(A) tails that were reported in orb mutants for several mRNAs [START_REF] Benoit | An essential cytoplasmic function for the nuclear poly(A) binding protein, PABP2, in poly(A) tail length control and early development in Drosophila[END_REF][START_REF] Castagnetti | Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte[END_REF][START_REF] Juge | Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila[END_REF], we found that Atg12 mRNA had elongated poly(A) tails in orb mutant early ovaries (Figure 3E), suggesting a role of Orb in Atg12 mRNA poly(A) tail shortening that could lead to its translational repression. The role of Orb as a translational repressor of Atg12 mRNA was confirmed by the increased levels of Atg12 protein in orb mutant pseudo-egg chambers compared to wild-type (Figure 4A,B).

While a function of Orb in translational repression has not been reported, CPEB has been shown to act as a translational repressor prior to its action in cytoplasmic polyadenylation, and the presence of a deadenylase in the CPEB complex appears to contribute to this repressor function [START_REF] Hosoda | Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase[END_REF][START_REF] Kim | Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation[END_REF]. We therefore analyzed the potential role of the CCR4-NOT deadenylation complex in Orbdependent poly(A) shortening of Atg12 mRNA. PAT assays of Atg12 mRNA in ovaries mutant for twin, the gene encoding CCR4 deadenylase [START_REF] Temme | A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila[END_REF]) revealed longer than wildtype poly(A) tails, indicating a role of CCR4 in shortening Atg12 mRNA poly(A) tails (Figure 3E). Co-immunoprecipitation experiments used to determine if Orb and CCR4 could be in complex in early ovarian stages showed that Orb was able to co-precipitate CCR4 in the presence or the absence of RNAs (Figure 3F), indicating that both proteins are part of the same complex. Importantly, we also uncovered a strong genetic interaction between orb and twin. Whereas single heterozygous orb or twin mutant females displayed normal oogenesis, double twin orb heterozygous mutant females showed about 50% of ovarioles arrested at mid-oogenesis (Figure 3G,H). Arrested egg chambers expressed Atg12 protein, consistent with Orb and CCR4 acting together to repress Atg12 mRNA translation (Figure 3I). Moreover these egg chambers underwent cell death as indicated by the expression of cleaved caspase 3 and staining by TUNEL assays (Figure 3J,K).

These data strongly suggest that Orb acts with CCR4 to repress Atg12 mRNA translation by poly(A) tail shortening.

Orb represses autophagy and cell death during oogenesis

Atg12 protein expression in orb mutant ovaries correlated with the induction of autophagy indicated by the presence of autophagosomes visualized using the Lysotracker marker (100% (n>100) of orb F343 ovarioles) and punctate staining of Atg8 protein [START_REF] Barth | Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis[END_REF] (Figure 4C-F). To address the functional importance of Atg12 mRNA regulation by Orb in autophagy and cell death, we reduced Atg12 expression in orb mutant ovaries using RNAi. Germline expression of Atg12-RNAi in orb F343 mutant ovaries reduced the amounts of Atg12 protein, thus validating the RNAi transgene (Figure 4G). This led to decreased autophagy visualized with Lysotracker and Atg8-labeled autophagosomes, showing that Atg12 expression had an important role in autophagy induction (Figure 4H,I). Strikingly, reduced expression of Atg12 resulted in a strong rescue of egg chamber formation in orb F343 mutant ovaries, with up to 62% of ovarioles able to produce egg chambers surrounded by follicle cells expressing Tj and Fas3 normally (Figures 2G, 4J-L). Staining with anti-cleaved caspase 3 and TUNEL showed that cell death was reduced in these egg chambers (62% (n=47) and 72% (n=18) of rescued egg chambers with no or weak anti-cleaved caspase 3 and TUNEL staining, respectively) (Figure 4J,K).

These results demonstrate that Atg12 expression plays an important role in the induction of autophagy in oogenesis and that Orb acts to directly repress Atg12 mRNA translation thereby preventing autophagy and, to some extent, cell death.

Of the twelve autophagy-specific genes found in the Drosophila genome, seven (including Atg12) contained CPEs (UUUUAAU, UUUUAU, UUUUACU or UUUUAAGU) in their 3'UTR (Figure 4M, Figure S3). We used Orb RIP and RNA quantification by RT-qPCR to analyze the presence of these seven mRNAs in Orb RNP complexes. Six out of the seven were found enriched in Orb RIP suggesting that Orb might globally co-regulate the autophagic pathway (Figures 3C,4N).

Conclusion

The role played by autophagy and Atg genes in a wide range of biological processes is now emerging [START_REF] Boya | Emerging regulation and functions of autophagy[END_REF]. Post-translational modulation of Atg proteins is recognized as an important mode of regulation of autophagy and crosstalk with other cellular processes, in response to cellular and environmental cues. Here, we add translational control as another key mechanism of regulation of autophagy. We have demonstrated the direct regulation of Atg12 mRNA by Orb: Orb represses Atg12 mRNA translation through its deadenylation by CCR4, thus preventing autophagy.

Autophagy is highly regulated by the levels of nutrients. During Drosophila oogenesis, autophagy is activated upon starvation or inhibition of the insulin/TOR signaling pathway, through the upregulation of Atg protein levels [START_REF] Barth | Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis[END_REF]. On the other hand, Orb is part of the highly dynamic RNP granules defined as P (processing) bodies that are essential for translational regulations in germ cells [START_REF] Weil | Drosophila patterning is established by differential association of mRNAs with P bodies[END_REF]. These P bodies (including Orb) undergo massive reorganization upon reduction of nutrient availability [START_REF] Snee | Dynamic organization and plasticity of sponge bodies[END_REF]. Therefore, an intriguing implication from our data is that Orb, potentially with other translational regulators within P bodies, would act as a sensor of environmental cues to regulate autophagy. Consistent with this, we found that decreasing orb gene dosage increased cell death induced by amino-acid starvation (Figure S4). In agreement with the implication of CPEB proteins in interpreting environmental conditions, such a function has been proposed for CPEB1 in the regulation of glucose homeostasis in mouse liver [START_REF] Alexandrov | Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance[END_REF].

Translational regulation of autophagy might have a dramatic impact in many contexts, including in the expanding group of degenerative diseases involving RNA granules.

Pathological RNA granules that form in neurodegenerative disorders have been proposed to be targeted by autophagy [START_REF] Buchan | Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function[END_REF][START_REF] Ramaswami | Altered Ribostasis: RNA-Protein Granules in Degenerative Disorders[END_REF] which is conversely altered in some neurodegenerative diseases [START_REF] Rubinsztein | Autophagy modulation as a potential therapeutic target for diverse diseases[END_REF]. In these disorders, translational deregulation of autophagy through affected RNA granules may induce a positive-feedback loop leading to enhanced production of pathological RNA aggregates.

Experimental Procedures

Drosophila stocks and genetics

Fly stocks used in this study and clonal analysis are described in Supplemental Experimental Procedures.

Fluorescent labeling and immunostaining

Primary antibodies for immunostaining and procedures for fluorescent labeling are described in Supplemental Experimental Procedures.

Immunoprecipitations and RNA analyses

Immunoprecipitations were performed as described [START_REF] Zaessinger | Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4[END_REF] and were followed by either RNA extraction and RT-PCR or by western blots as detailled in Supplemental Experimental Procedures. Poly(A) tail length analysis by PCR (PAT assay) and RT-qPCR using the LightCycler System (Roche Molecular Biochemical) were performed as described previously [START_REF] Benoit | An essential cytoplasmic function for the nuclear poly(A) binding protein, PABP2, in poly(A) tail length control and early development in Drosophila[END_REF][START_REF] Benoit | PAP-and GLD-2type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila[END_REF][START_REF] Zaessinger | Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4[END_REF] using primers listed in Supplemental Informations.

RNA pull-down assays

UTP-biotinylated RNAs and unlabeled competitor RNAs were synthesized using T7 RNA polymerase on PCR fragments synthesized from genomic DNA with primers indicated in Supplemental Informations. RNA pull-down experiments were performed as published previously [START_REF] Besse | Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation[END_REF]. For each experimental point, 20 µL of ovarian extract from 20 one day-old females were used. 
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(H) Quantification of ovarioles with mid-oogenesis arrest in control and orb F343 +/+ twin 8115 females.

(I-K) orb F343 +/+ twin 8115 ovarioles labeled with DAPI (blue) and anti-Atg12 (green) (I); DAPI (blue) and anti-cleaved caspase 3 (Casp, red) (J); DAPI (blue) and TUNEL (green) (K). Scale bars: 20 µm.