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A new type of discretized Lyapunov functional is introduced for stability and hybrid L2 × l2-gain analysis of linear impulsive delay systems. This functional consists of three parts. The first part is the conventional discretized functional for delay-independent stability analysis. The second part is the looped-functionals-like functional for exploiting the internal structure inside impulse intervals, in which the decision matrix functions are approximated by piecewise linear matrix functions. The third part is a discretized adjustive factor, which makes the proposed Lyapunov functional continuous along the system trajectories. Thanks to this continuity, the resultant criteria for exponential stability and finite hybrid L2 ×l2-gain are expressed in terms of a combination of the continuous and discrete parts of the system. It is shown through numerical examples that the accuracy of the stability test increases with the increase of the partition number on impulse intervals, and the convergence rate is faster than that of the previous discretized functionals-based approach.

Introduction

During the past decade, stability analysis and state estimation of impulsive control systems have received considerable attention among the control community. Such systems arise in many fields such as mechanics [START_REF] Lakshmikantham | Theory of Impulsive Differential Equations[END_REF]), robotics [START_REF] Tavakoli | Robotic locomotion of three generations of a family tree of dynamical systems. Part II: Impulsive control of gait patterns[END_REF]), nanopositioning [START_REF] Tuma | Nanopositioning with impulsive state multiplication: a hybrid control approach[END_REF]), localization of mobile vehicles [START_REF] Alonge | A hybrid observer for localization of mobile vehicles with asynchronous measurements[END_REF]), electronic systems [START_REF] Loxton | Optimal switching instants for a switched-capacitor DC/DC power converter[END_REF]; [START_REF] Guo | Stability analysis and design of reset control systems with discrete-time triggering conditions[END_REF]), networked control systems [START_REF] Naghshtabrizi | Stability of delay impulsive systems with application to networked control systems[END_REF]; [START_REF] Tolić | Stabilizing transmission intervals for nonlinear delayed networked control systems[END_REF]), etc. Most stability conditions for impulsive systems have been derived via Lyapunov-based approaches. As a typical hybrid system, the stability of an impulsive system heavily depends on the interaction between continuous and impulsive dynamics. To capture the interaction, several techniques for the construction of Lyapunov functions have been developed in the literature: e.g., vector Lyapunov functions [START_REF] Lakshmikantham | Theory of Impulsive Differential Equations[END_REF]), Lyapunov functionals [START_REF] Naghshtabrizi | Stability of delay impulsive systems with application to networked control systems[END_REF]; [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF]), looped-functionals (Briat & Seuret (2012a,b)), quasi-quadratic Lyapunov functions [START_REF] Hetel | Stabilization of linear impulsive systems through a nearlyperiodic reset[END_REF]), clock-or timer-dependent Lyapunov functions [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF]).

On the other hand, mathematical models with delays are able to provide a more accurate description of how the past state impacts the future evolution. Therefore, it is important to investigate the stability issue of impulsive delay systems. In [START_REF] Chen | Impulsive observers with variable update intervals for Lipschitz nonlinear timedelay systems[END_REF], the timer variable has been introduced for the construction of Lyapunov functions, the basic idea of which is to construct a convex combination of two time-invariant Lyapunov functions with timer-dependent combination coefficients. By imposing a condition on the impulsive dynamics, the designed Lyapunov function can be made decreasing along the trajectories even if both the continuous and impulsive dynamics are not stable. Recently, inspired by the timer-dependent design technique, the authors in [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF][START_REF] Chen | Stability and L2-gain analysis for linear time-delay systems with delayed impulses: an augmentation-based switching impulse approach[END_REF] developed a discretized timer-dependent Lyapunov function approach, where the main idea is to divide the impulse interval into several subintervals with equal length. And corresponding to each subinterval, the Lyapunov function is still set to be a convex combination of two timeinvariant Lyapunov functions. Numerical examples show that by choosing an appropriate partition number, the conservatism of the stability condition based on the nonpartition approach can be significantly reduced. However, the discretized timer-dependent Lyapunov function does not include the information of impulsive dynamics. In order to obtain a stability condition, one has to impose an additional condition on the Lyapunov function such that the Lyapunov function along the impulsive dynamics is non-increasing at impulse instants. In other words, Preprint submitted to HAL the stability condition in the framework of the discretized Lyapunov functions consists of two parts: one is for continuous dynamics, and the other for impulsive dynamics. Such a separate description on stability condition indicates that the discretized Lyapunov function-based approach proposed in [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF] has not fully captured the interaction mechanism between the continuous and impulsive dynamics.

This paper attempts to overcome the above-mentioned drawback by providing a refined discretized Lyapunov functional-based approach. The underlying idea is inspired by the looped-functionals-based approach, which is able to express the stability criterion as a single condition. Applying a piecewise linear discretization scheme to approximate the decision matrix functions appearing in the looped-functionals leads to a new type of discretized functional, which is continuous along the trajectories of the impulsive systems. It is important to stress that unlike the functional introduced in [START_REF] Chen | Delaydependent stability and hybrid L2 × l2-gain analysis of linear impulsive time-delay systems: A continuous timerdependent Lyapunov-like functional approach[END_REF], the new functional is capable of keeping its continuity even if the system is subject to disturbance input. Thanks to the continuity along the system trajectories, the stability and the hybrid L 2 × l 2 -gain problems are tackled in the same Lyapunov framework. As a result, both the derived stability and hybrid L 2 × l 2 -gain criteria no longer impose an additional constraint condition on the changes of the functional at impulse instants.

The paper is organized as follows. Section 2 summarizes the preliminaries. In Section 3, a discretization scheme of timer-dependent Lyapunov functional is firstly presented. Then, the proposed discretized Lyapunov functional is applied for stability and hybrid L 2 ×l 2 -gain analysis. Four numerical examples are provided in Section 4 to compare the proposed approach with the existing ones. Finally, conclusions are summarized in Section 5.

Notation: Let N be the set of positive integers, N 0 = N ∪ {0}. For two integers m and n with m ≤ n, the set of {m, m + 1, . . . , n} is denoted by m, n. For a square matrix A, A + A T is denoted by He(A). I n denotes the identity matrix of order n. For an interval J, PC(J) denotes the set consisting of piecewise right continuous function x : J → R n . For x ∈ PC(J) and t in the closure of J, we use the notation that x(t + ) = lim h→0,h>0

x(t + h) and x(t -) = lim h→0,h<0

x(t + h). Given τ > 0 and a piecewise continuous

function x : [-τ, ∞) → R n , x t ∈ PC([-τ, 0]) for t ≥ 0 is defined by x t (θ) = x(t + θ), ∀θ ∈ [-τ, 0]. The norm of ϕ ∈ PC([-τ, 0]) is defined by ∥ϕ∥ τ = sup -τ ≤θ≤0
∥ϕ(θ)∥, where ∥ • ∥ refers to the Euclidean norm for vectors. L 2 (resp. l 2 ) denotes the set of square-integrable functions defined on R + (resp. the set of square-summable sequences). If

f ∈ L 2 (resp. f ∈ l 2 ), then its norm is defined by ∥f ∥ L2 = [∫ ∞ 0 ∥f (t)∥ 2 dt ] 1 2 ( resp. ∥f ∥ l2 = [ ∞ ∑ k=0 ∥f (k)∥ 2 dt ] 1 2 ) .

Preliminaries

Consider a linear impulsive system

             ẋ(t) = A 0 x(t) + A 1 x(t -τ ) + E c w c (t), t ̸ = t k x(t k ) = A d x(t - k ) + E d w d (k), k ∈ N z c (t) = C 0 x(t) + C 1 x(t -τ ) + D c w c (t) z d (k) = C d x(t - k ) + D d w d (k), k ∈ N x(t) = ϕ(t), t ∈ [-τ, 0] (1) with state x ∈ R n , continuous disturbance input w c ∈ R pc , impulsive disturbance input w d ∈ R p d , continuous- time controlled output z c ∈ R qc ,
and discrete-time controlled output z d ∈ R q d . The notation ẋ(t) denotes the right-hand derivative of x(t) with respect to t, τ > 0 denotes the state delay, ϕ ∈ PC([-τ, 0]) is the initial function of the state, and

A 0 , A 1 , A d , E c , E d , C 0 , C 1 , D c , C d and D d are constant matrices of appropriate dimensions.
It is assumed that the impulse time sequence {t k } satisfies the following dwell-time constraint:

σ 0 ≤ t k+1 -t k ≤ σ 1 , k ∈ N.
(2)

The set of impulse time sequences satisfying condition (2) is denoted by S(σ 0 , σ 1 ). Without loss of generality, we assume that both x and w c are right-continuous.

Our objective is to present new LMI-based conditions for exponential stability and hybrid L 2 ×l 2 -gain of system (1) by constructing a refined discretized Lyapunov functional.

Definition 1 Let w c = 0, and w d = 0. The solution x(t) = 0 of system (1) is said to be uniformly globally exponentially stable (UGES) over S(σ 0 , σ 1 ) if there exist two positive scalars κ and γ such that ∥x(t)∥ ≤ κ∥ϕ∥ τ e -γt , ∀ t ≥ 0, ∀ ϕ ∈ PC([-τ, 0]), ∀ {t k } ∈ S(σ 0 , σ 1 ).

Definition 2 Let w c ∈ L 2 , and w d ∈ l 2 . Given a positive number γ, system (1) is said to be UGES with hybrid L 2 × l 2 -gain γ over S(σ 0 , σ 1 ) if (i) when w c = 0, and w d = 0, the zero solution is UGES over S(σ 0 , σ 1 ); (ii) when ϕ = 0, the controlled outputs z c and z d satisfy

∥z c ∥ 2 L2 + ∥z d ∥ 2 l2 ≤ γ 2 ( ∥w c ∥ 2 L2 + ∥w d ∥ 2 l2
) .

We remark that for linear positive impulsive systems, the concept of hybrid L 1 ×l 1 -gain is firstly introduced in Briat (2019). For ease of exposition, we introduce the following notation:

ρ(t) = t -t k , h(t) = h k t k+1 -t k , x d (t) = x(t - k ), x e (t) = x(t) -x(t k ), x w (t) = col ( x(t - k ), w d (k)
) ,

for t ∈ [t k , t k+1 ), k ∈ N 0 .
The function ρ(t) is referred to a timer variable because it measures the time elapsed since the last impulse and is reset to 0 at each impulse instant. The following proposition provides a useful tool for checking the stability of impulsive delay systems by employing a Lyapunov-like functional, and the proof is given in Appendix.

Proposition 1 Consider the impulsive delay system

ẋ(t) = f (t, x t ), t ̸ = t k , (3a) x(t) = g k (x(t -)), t = t k , (3b) x(t) = ϕ(t), t ∈ [-τ, 0], ( 3c 
)
where {t k } ∈ S(σ 0 , σ 1 ), f (t, 0) = g k (0) = 0, and some additional conditions are satisfied for f and g such that the solution x(t) uniquely exists on R + for ϕ ∈ PC([-τ, 0]) (see [START_REF] Ballinger | Existence and uniqueness results for impulsive delay differential equations[END_REF]). Assume that i) there exist positive scalars a i , i ∈ 0, 2, such that

∥f (t, ϕ)∥ ≤ a 0 ∥ϕ(0)∥ + a 1 ∥ϕ(-τ )∥, (4) 
∀ (t, ϕ) ∈ R + × PC([-τ, 0]), and 
∥g k (x)∥ ≤ a 2 ∥x∥, ∀ (k, x) ∈ N × R n , ( 5 
)
ii) there exists a functional V : R

+ × PC([-τ, 0]) × PC(R + ) × R n → R satisfying V (t, ϕ, ψ, x d ) ≤ β 0 ∥ϕ(0)∥ 2 + β 1 ∫ t t-ρ(t) ∥ψ(s)∥ 2 ds + β 2 ∫ 0 -τ ∥ϕ(θ)∥ 2 dθ + β 3 ∥x d ∥ 2 , ( 6 
)
where β i , i ∈ 0, 3, are positive scalars. Moreover, there exist positive scalars α i and

κ i , i ∈ 0, 1, such that Ṽ (t) = V (t, x t , ẋ(t), x d (t)) for x(t) satisfying (3) is continuous for t ̸ = t k ,

and satisfies

Ṽ (t k ) ≤ Ṽ (t - k ), (7) 
α 0 ∥x(t - k )∥ 2 + α 1 ∫ t k t k -τ ∥x(s)∥ 2 ds ≤ Ṽ (t - k ), k ∈ N, (8) D + Ṽ (t) ≤ -κ 0 ∥x(t)∥ 2 -κ 1 ∥x d (t)∥ 2 , t ≥ 0, ( 9 
)
where D + Ṽ (t) denotes the upper right-hand Dini derivative of Ṽ (t), then the zero solution of system (3) is UGES over S(σ 0 , σ 1 ).

Remark 1

The positivity of the functional V is not required for t ̸ = t k , k ∈ N 0 , which helps to reduce the conservatism of the obtained stability results.

Main Results

In this section, a new discretization scheme of Lyapunov functional for system (1) is firstly presented. Next, by employing the new functional, new criteria for exponential stability and hybrid L 2 × l 2 -gain are derived. For notational brevity, we define

I 1 = [I n 0 n×2n ] , I 2 = [0 n I n 0 n ] , I 3 = [0 n×2n I n ] , I 12 = I 1 -A d I 2 , A = [A 0 0 n A 1 ] , A ed = [A d E d ] , Î1 = [I n 0 n×p d ] , I ei = [ I i 0 n×(pc+p d ) ] , i ∈ 1, 3, I e4 = [0 pc×3n I pc 0 pc×p d ] , I e5 = [ 0 pc×(3n+pc) I p d ] , I e12 = I e1 -A d I e2 -E d I e5 , I T e25 = [ I T e2 I T e5 ] , A e = [A E c 0 n×p d ] , ξ(t) = col(x(t), x d (t), x(t -τ )), ξ e (t) = col(ξ(t), w c (t), w d (k)), t ∈ [t k , t k+1 ), k ∈ N 0 .

A discretization scheme

Inspired by the work in Briat & Seuret (2012a) and [START_REF] Chen | Impulsive observers with variable update intervals for Lipschitz nonlinear timedelay systems[END_REF], we choose a candidate timer-dependent Lyapunov functional V e defined on R

+ × P C[-τ, 0] × P C(R + ) × R n × R p d with the following form V e (t, ϕ, ψ, x d , w d ) = V 1 (t, ϕ)+V 2e (t, ϕ, ψ, x w )+V 3e (t, x w ), ( 10 
) where x w = col(x d , w d ), and V 1 (t, ϕ) = φ(t)ϕ T (0)P (t)ϕ(0) + ∫ 0 -τ ϕ T (θ)Qϕ(θ)dθ, V 2e (t, ϕ, ψ, x w ) = ∫ t t-ρ(t) ψ T (s)R(t)ψ(s)ds + x T e X(t)x e + 2x T w G e (t)x e + ρ(t)x T w S e (t)x w , V 3e (t, x w ) = x T w U e (t)x w , in which x e = ϕ(0) -A d x d , 0 < Q ∈ R n×n , G e (t) ∈ R (n+p d )×n , φ(t) is a scalar function, and P (t), R(t), X(t) ∈ R n×n , S e (t), U e (t) ∈ R (n+p d )×(n+p d )
, are symmetric matrix functions. These functions are continuous in (t k , t k+1 ), k ∈ N 0 . In order to obtain a tractable stability condition in terms of LMIs, we perform a time discretization on these matrix functions. Divide the impulse interval

I k [t k , t k+1 ) into N small subinterval- s, I kℓ [t k,ℓ-1 , t kℓ ), ℓ = 1, 2, . . . , N , where t k0 = t k , t kℓ = t k0 + ℓh k /N , ℓ = 1, 2, . . . , N , t kN = t k+1 . For t ∈ I kℓ , ℓ ∈ 1, N , choose φ(t) = φ (ℓ) (t) µ ℓ-1+ρ (ℓ) 0 (t) , (11) 
P (t) = ρ (ℓ) 0 (t)P ℓ + ρ (ℓ) 1 (t)P ℓ-1 , (12) R(t) = 1 N   ρ (ℓ) 1 (t)R ℓ + N ∑ j=ℓ+1 R j   , ( 13 
)
X(t) = 1 N   ρ (ℓ) 1 (t)X ℓ + N ∑ j=ℓ+1 X j   , ( 14 
) G e (t) = 1 N   ρ (ℓ) 1 (t)G eℓ + N ∑ j=ℓ+1 G ej   , ( 15 
) S e (t) = 1 N   ρ (ℓ) 1 (t)S eℓ + N ∑ j=ℓ+1 S ej   , ( 16 
)

U e (t) = 1 N   ρ (ℓ) 1 (t)U eℓ + N ∑ j=ℓ+1 U ej   , ( 17 
)
where µ > 0, andρ (ℓ) 1 are scalar continuous functions defined on I kℓ , and take the forms:

P ℓ = P T ℓ , ℓ ∈ 0, N -1, P N > 0, R ℓ > 0, X ℓ = X T ℓ , S eℓ = S T eℓ , U eℓ = U T eℓ , and G eℓ , ℓ ∈ 1, N , are constant matrices of appropriate dimensions, ρ (ℓ) 0 ,
ρ (ℓ) 0 (t) = t -t k,ℓ-1 h k /N , ρ (ℓ) 1 (t) = 1 -ρ (ℓ) 0 (t).
According to the above discretization scheme, P (t), R(t), X(t), G e (t), S e (t), and U e (t) are still continuous in each

(t k , t k+1 ), k ∈ N 0 . Moreover, at impulse instant t k , k ∈ N, the change of Ṽe (t) V e (t, x t , ẋ(t), x w (t)) is given by Ṽe (t k ) -Ṽe (t - k ) = x T (t k )P 0 x(t k ) + 1 N x T w (t k ) N ∑ j=1 U ej x w (t k ) -x T (t - k )µ N P N x(t - k ) = x T w (t k )   A T ed P 0 A ed + 1 N N ∑ j=1 U ej -µ N ÎT 1 P N Î1   x w (t k ). (18) 
So, if we choose

U eN = N ( µ N ÎT 1 P N Î1 -A T ed P 0 A ed ) - N -1 ∑ j=1 U ej , ( 19 
)
then the introduced Ṽe (t) is continuous at impulse instants t = t k , k ∈ N, and satisfies

Ṽe (t k ) = Ṽe (t - k ) = µ N x T (t - k )P N x(t - k ) + V 4 (x t k ), ( 20 
)
where

V 4 (ϕ) = ∫ 0 -τ ϕ T (θ)Qϕ(θ)dθ.
Remark 2 In order to fully take into account the hybrid nature of system (1), the proposed functional V e is composed of three parts. The first part is the functional V 1 introduced in [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF][START_REF] Chen | Stability and L2-gain analysis for linear time-delay systems with delayed impulses: an augmentation-based switching impulse approach[END_REF], which serves to capture the interaction between the continuous and impulsive dynamics. The second part, V 2e , is able to exploit the internal structure inside impulse intervals. We note that the functional V 2e can be viewed as a modified discretized version of the looped-functional introduced in Briat & Seuret (2012a). The third part is the function V 3e , which makes Ṽe (t) continuous at impulse instants by imposing condition (19).

Stability and L 2 × l 2 -gain analysis

In this subsection, we use the Lyapunove functional (10) with the discretization scheme ( 11)-( 17) to formulate numerically computable stability and L 2 × l 2 -gain criteria for system (1). To this end, given a prechosen γ > 0, we introduce an auxiliary function

J(t) = ∥z c (t)∥ 2 -γ 2 ∥w c (t)∥ 2 + 1 h k ( ∥z d (k)∥ 2 -γ 2 ∥w d (k)∥ 2 ) + D + Ṽe (t), t ∈ I k , k ∈ N 0 . (21)
Lemma 1 Given positive scalars γ, σ 0 , and σ 1 . For a prescribed scalar µ > 0, if there exists n × n symmetric matrices P l, l ∈ 0, N , in which 

P N > 0, n × n symmetric matrices Q > 0, R ℓ > 0,
    Ω (ℓ) eıij + H j √ (ℓ-ı) N M eℓ √ 1 N A T e R (ℓ) 1ı * -R ℓ 0 * * -R (ℓ) 2ı     < 0, ( 22 
)
where

R (ℓ) 1ı = [R ℓ+1-ı . . . R N -1 R N ] , R (ℓ) 2ı = diag (R ℓ+1-ı , . . . , R N -1 , R N ) , Ω (ℓ) eıij = µ ℓ-i [ N σ j Ψ (ℓ) e1ı + Ψ (ℓ) e2ı ] + Φ e0 + 1 σ j Φ (ℓ) e1 + 1 N Φ (ℓ) e2ı , H j = C T c C c -γ 2 I T e4 I e4 + 1 σ j ( C T d C d -γ 2 I T e5 I e5
) , in which

C c = [C 0 0 qc×n C 1 D c 0 qc×q d ] , C d = [0 q d ×n C d 0 q d ×(n+qc) D d ], Ψ (ℓ) e1ı = ln µ I T e1 P ℓ-ı I e1 + I T e1 (P ℓ -P ℓ-1 ) I e1 , Ψ (ℓ) e2 = He ( I T e1 P ℓ-ı A e ) , Φ e0 = I T e1 QI e1 -I T e3 QI e3 , Φ (ℓ) e1 = He (M eℓ I e12 ) -I T e12 X ℓ I e12 -He ( I T e25 G eℓ I e12 ) -I T e25 U eℓ I e25 , Φ (ℓ) e2ı = N ∑ ȷ=ℓ+1-ı [ He ( I T e12 X ȷ A e ) + He ( I T e25 G eȷ A e ) + I T e25 S eȷ I e25 ] -(ℓ -ı)I T e25 S eℓ I e25 ,
then the function J(t) defined in (21) satisfies

J(t) ≤ 0, ∀ t ≥ 0. ( 23 
)
Proof. For t ∈ I kℓ with given (k, ℓ) ∈ N 0 × 1, N , we have

D + Ṽe (t) = ξ T w (t) { φ (ℓ) (t) [ N h k I T e1 ( (ln µ)P (t) + P ℓ -P ℓ-1 ) I e1 + He ( I T e1 P (t)A e ) ] + A T e R(t)A e h k [ I T e12 X ℓ I e12 + He ( I T e25 G eℓ I e12 ) + I T e25 U eℓ I e25 ] + He ( I T e12 X(t)A e ) + He ( I T e25 G e (t)A e ) + I T e25 ( S e (t) - ρ(t) h k S eℓ ) I e25 + I T e1 QI e1 -I T e3 QI e3 } ξ e (t) - 1 h k ∫ t t-ρ(t) ẋT (s)R ℓ ẋ(s)ds. ( 24 
)
Applying the affine Jensen's inequality [START_REF] Briat | Convergence and equivalence results for the Jensen's inequality-application to time-delay and sampleddata systems[END_REF]) yields

- ∫ t t-ρ(t) ẋT (s)R ℓ ẋ(s)ds ≤ ξ T e (t) ( He (M eℓ I e12 ) + ρ(t)M eℓ R -1 ℓ M T eℓ ) ξ e (t). ( 25 
)
On the other hand, for t ∈ I kℓ , we can write

ρ(t) = h k N ( ℓ -1 + ρ (ℓ) 0 (t) ) . ( 26 
)
Substituting ( 25) and ( 26) into (24), we obtain

D + Ṽe (t) ≤ 1 ∑ ı=0 ρ (ℓ) ı (t)ξ T e (t) ( Ξ (ℓ) ekı (t) + 1 N Υ (ℓ) eı ) ξ e (t), t ∈ I kℓ , (27) 
where Υ

(ℓ) eı = N ∑ j=ℓ+1-ı
A T e R j A e , and Ξ (ℓ)

ekı (t) = φ (ℓ) (t) ( N h k Ψ (ℓ) e1ı + Ψ (ℓ) e2ı ) + Φ e0 + 1 h k Φ (ℓ) e1 + 1 h k Φ (ℓ) e2ı + 1 N Φ (ℓ) e3ı , in which Φ (ℓ) e3ı = (ℓ -ı)M eℓ R -1 ℓ M T eℓ . It follows that J(t) ≤ 1 ∑ ı=0 ρ (ℓ) ı (t)ξ T e (t) ( Ξ (ℓ) ekı (t) + Ξk + 1 N Υ (ℓ) eı ) ξ e (t), t ∈ I kℓ ( 28 
)
where

Ξk = C T c C c -γ 2 I T e4 I e4 + 1 h k ( C T c C c -γ 2 I T e5 I e5 ) ,
With an application of Schur complement to LMIs (22), we obtain

Ω (ℓ) eıij + H j + 1 N ( Φ (ℓ) e3ı + Υ (ℓ) eı ) < -αI, ı, i, j, l ∈ 0, 1, ℓ ∈ 1, N . ( 29 
)
Here, α is some positive scalar. Note that

h k ∈ [σ 0 , σ 1 ], and µ ≤ φ (ℓ) (t) ≤ 1 if µ ≤ 1, or 1 ≤ φ (ℓ) (t) ≤ µ if µ > 1. It follows from (29) that Ξ (ℓ) ekı (t) + Ξk + 1 N Υ (ℓ)
eı ≤ -αI, for t ∈ I kℓ , (k, ℓ) ∈ N 0 × 1, N . Thus, from (28), we get

J(t) ≤ -α∥ξ c (t)∥ 2 , ∀ t ≥ 0,
which yields (23). The proof is thus complete.

Next, we apply the functional (10) to carry on the stability analysis of system (1) with w c = 0 and w d = 0, i.e.,

{ ẋ(t) = A 0 x(t) + A 1 x(t -τ ), t ̸ = t k x(t k ) = A d x(t - k ), k ∈ N . ( 30 
)
For this purpose, we decompose the decision matrices G eℓ , S eℓ , U eℓ , and M eℓ in ( 22) as

G eℓ = [ G ℓ G dℓ ] , S eℓ = [ S ℓ S d1ℓ S T d1ℓ S d2ℓ ] , U eℓ = [ U ℓ U d1ℓ U T d1ℓ U d2ℓ ]
, and

M eℓ = [ M ℓ M dℓ ] ,
where G ℓ , S ℓ , and U ℓ , are n × n matrices, and M ℓ is an 3n × n matrix, ℓ ∈ 1, N . In the case of w d = 0, the functional V e reduces to

V (t, ϕ, ψ, x d ) = V 1 (t, ϕ)+V 2 (t, ϕ, ψ, x d )+V 3 (t, x d ), ( 31 
)
where V i , i ∈ 2, 3, are derived from V ei by setting w d = 0. Correspondingly, by imposing

U N = N ( µ N P N -A T d P 0 A d ) - N -1 ∑ j=1 U j , (32) 
the relation ( 20) with Ṽ (t) V (t, x t , ẋ(t), x d (t)) instead of Ṽe (t) still holds.

Theorem 1 For a prescribed scalar µ > 0, if there exists n × n symmetric matrices P l, l ∈ 0, N , in which P N > 0, n × n symmetric matrices Q > 0, R ℓ > 0, X ℓ , S ℓ , and U ℓ , n × n matrices G ℓ , and 3n × n matrix M ℓ , ℓ ∈ 1, N , such that (32) and the following LMIs are satisfied for all ı, i, j ∈ 0, 1 and

ℓ ∈ 1, N     Ω (ℓ) ıij √ (ℓ-ı) N M ℓ √ 1 N A T R (ℓ) 1ı * -R ℓ 0 * * -R (ℓ) 2ı     < 0, ( 33 
)
where

Ω (ℓ) ıij = µ ℓ-i [ N σj Ψ (ℓ) 1ı + Ψ (ℓ) 2ı ] + Φ 0 + 1 σj Φ (ℓ) 1 + 1 N Φ (ℓ) 2ı , in which Ψ (ℓ) 1ı = ln µ I T 1 P ℓ-ı I 1 + I T 1 (P ℓ -P ℓ-1 ) I 1 , Ψ (ℓ) 2ı = He ( I T 1 P ℓ-ı A ) , Φ 0 = I T 1 QI 1 -I T 3 QI 3 , Φ (ℓ) 1 = He (M ℓ I 12 ) -I T 12 X ℓ I 12 -He ( I T 2 G ℓ I 12 ) -I T 2 U ℓ I 2 , Φ (ℓ) 2ı = N ∑ ȷ=ℓ+1-ı [ He ( I T 12 X ȷ A ) + He ( I T 2 G ȷ A ) + I T 2 S ȷ I 2 ] -(ℓ -ı)I T 2 S ℓ I 2 ,
then system (30) is UGES over S(σ 0 , σ 1 ).

Proof. Let V be the Lyapunov functional candidate defined in (31). Firstly, we verify that the functional V satisfies condition (6) of Proposition 1. Note that 0 ≤ ρ (ℓ) 1 (t) ≤ 1 for all t ≥ 0 and all ℓ ∈ 1, N . It follows that there exists a positive scalar c such that

φ(t)∥P (t)∥ ≤ c, ∥R(t)∥ ≤ c, ∥X(t)∥ ≤ c, ∥G(t)∥ ≤ c, ∥S(t)∥ ≤ c, ∥U (t)∥ ≤ c, ∥Q∥ ≤ c, ∀ t ≥ 0.
Thus, using the fact of 0 ≤ ρ(t) ≤ σ 1 for all t ≥ 0, we can bound V (t, ϕ, ψ, x d ) by

V (t, ϕ, ψ, x d ) ≤ c∥ϕ(0)∥ 2 + c ∫ t t-ρ(t) ∥ψ(s)∥ 2 ds + c∥x e ∥ 2 + 2c∥x d ∥∥x e ∥ + c ∫ 0 -τ ∥ϕ(θ)∥ 2 dθ + (σ 1 + 1)c∥x d ∥ 2 . (34)
On the other hand, by the classical inequality 2x T y ≤ ∥x∥ 2 + ∥y∥ 2 with x, y ∈ R n , we obtain

∥x e ∥ 2 =(ϕ(0) -A d x d ) T (ϕ(0) -A d x d ) =∥ϕ(0)∥ 2 + ∥A d x d ∥ 2 -2ϕ T (0)A d x d ≤2∥ϕ(0)∥ 2 + 2∥A d ∥ 2 ∥x d ∥ 2 , (35) 2∥x d ∥∥x e ∥ ≤∥x d ∥ 2 + ∥x e ∥ 2 ≤2∥ϕ(0)∥ 2 + ( 2 + 2∥A d ∥ 2 ) ∥x d ∥ 2 . ( 36 
)
Therefore, applying ( 35)-( 36) to (34) gives

V (t, ϕ, ψ, x d ) ≤ 5c∥ϕ(0)∥ 2 + c ∫ t t-ρ(t) ∥ψ(s)∥ 2 ds + c ∫ 0 -τ ∥ϕ(θ)∥ 2 dθ + c ( 1 + 4∥A d ∥ 2 + σ 1 ) ∥x d ∥ 2 ,
which is equivalent to the relation ( 6) with β 0 = 5c, β 1 = c, β 2 = c, and

β 3 = c ( 1 + 4∥A d ∥ 2 + σ 1 ) .
Next, noting that P N and Q are positive-definite, it follows from ( 20) and (32) that Ṽ (t) satisfies conditions ( 7)-( 8). Finally, following the line of the proof of Lemma 1, we can find a positive scalar α > 0 such that D + Ṽ (t) ≤ -α∥ξ∥ 2 , t ≥ 0, provided that condition (33) is fulfilled. Thus, under the zero input condition and the LMI condition (33) with the constraint (32), all the conditions of Proposition 1 are satisfied. It follows that system (1) with w c = 0 and w d = 0 is UGES over S(σ 0 , σ 1 ).

Remark 3

The proposed approach integrates the merits of both the discretized approach of [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF] and the looped-functional approach Briat & Seuret (2012a). Firstly, similarly as the looped-functional approach, the proposed approach allows to characterize the stability condition as a single condition based on a combination of the continuous and discrete dynamics. Secondly, the accuracy of stability test can be improved by increasing the partition number. Furthermore, as shown in the numerical examples, the new discretized approach has a faster convergence rate than that of [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF].

Remark 4 Theorem 1 characterizes stability with ranged dwell-time. An interesting question arising is whether the stability result can tackle the stability problem with minimum dwell-time. The class of impulse time sequences with the minimum dwell-time can be denoted by S(σ 0 , σ 1 ) with σ 0 > 0 and σ 1 = +∞, where σ 0 is referred to as the minimal dwell-time. We note that the LMI condition (33) in Theorem 1 is affine with respect to 1 σj , j ∈ 0, 1. For ease of presentation, we denote condition (33) by

Υ (ℓ) ıi ( 1 σ j ) < 0, ı, i, j ∈ 0, 1, ℓ ∈ 1, N . ( 37 
)
For σ 1 = +∞, we make the convention: 1 σ1 = 0. Then, given a minimal dwell-time σ 0 , the solvability of the minimal dwell-time problem in the framework of Theorem 1 is equivalent to the feasibility of the following set of LMIs:

Υ (ℓ) ıi ( 1 σ 0 ) < 0, Υ (ℓ) ıi (0) < 0, ı, i ∈ 0, 1, ℓ ∈ 1, N . ( 38 
)
We note that the LMIs (38) with ℓ = 1 and ı = 0 require S 1 > 0, while the LMIs (38) with ℓ = 1 and ı = 1 require S 1 < 0. It follows that the LMIs (38) are not feasible. This means that the proposed approach fails to solve the minimal dwell-time problem. Nevertheless, the set of LMIs (37) may admit a feasible solution if it is allowed to use a large enough σ 1 to approximately represent +∞. For example, consider the following impulsive system

           ẋ(t) = [ -1 0 1 -2 ] x(t), t ̸ = t k x(t k ) = [ 2 1 1 3 ] x(t - k ), k ∈ N . ( 39 
)
Assume that the impulse time sequence {t k } ∈ S(σ 0 , σ 1 ) with σ 1 = 10 8 . By solving LMIs (37), it was found that the minimal value of σ 0 that ensures the feasibility of (37) is σ 0 min = 1.1412. It was reported in [START_REF] Shao | Dwell-time-dependent stability results for impulsive systems[END_REF], the allowable minimum values of σ 0 that ensures stability of system (39) obtained by Briat & Seuret (2012a), [START_REF] Briat | Robust stability of impulsive systems: a functional-based approach[END_REF], and [START_REF] Shao | Dwell-time-dependent stability results for impulsive systems[END_REF] are 1.2323, 1.232, and 1.1417, respectively. It can be seen that our result has less conservatism than those in Briat & Seuret (2012a,c); [START_REF] Shao | Dwell-time-dependent stability results for impulsive systems[END_REF].

Theorem 2 Given positive scalars γ, σ 0 , and σ 1 . Under the same conditions as in Lemma 1, system (1) is UGES with a hybrid L 2 × l 2 -gain γ over S(σ 0 , σ 1 ).

Proof. Firstly, one can verify that the feasibility of the LMI condition ( 22) under the constraint (19) implies the feasibility of the LMI condition (33) under the constraint (32). Therefore, the internal exponential stability of system (1) follows from Theorem 1.

Next, under the zero initial condition, we shall show that

∫ tm 0 ∥z c (t)∥ 2 dt + m-1 ∑ k=0 ∥z d (k)∥ 2 ≤ γ 2 ∫ tm 0 ∥w c (t)∥ 2 dt + γ 2 m-1 ∑ k=0 ∥w d (k)∥ 2 , m ∈ N. ( 40 
)
To prove (40), we introduce a sequence

J m = ∫ tm 0 ( ∥z c (t)∥ 2 -γ 2 ∥w c (t)∥ 2 ) dt + m-1 ∑ k=0 ( ∥z d (k)∥ 2 -γ 2 ∥w d (k)∥ 2 ) , m ∈ N.
In view of J(t) and Ṽe (t), we can rewrite J m as the following form:

J m = m-1 ∑ k=0 N ∑ ℓ=1 ∫ t kℓ t k,ℓ-1 [ ∥z c (t)∥ 2 -γ 2 ∥w c (t)∥ 2 + D + Ṽe (t) + 1 h k ( ∥z d (k)∥ 2 -γ 2 ∥w d (k)∥ 2 ) ] dt - ∫ tm 0 D + Ṽe (t)dt = m-1 ∑ k=0 N ∑ ℓ=1 ∫ t kℓ t k,ℓ-1 J(t)dt -Ṽe (t - m ). By (20), we have Ṽe (t - m ) ≥ 0 for m ∈ N. It follows from (23) that J m ≤ 0, m ∈ N, which is equivalent to (40). Then letting m → ∞, we get ∫ ∞ 0 ∥z c (t)∥ 2 dt + ∞ ∑ i=0 ∥z d (i)∥ 2 ≤ γ 2 ∫ ∞ 0 ∥w c (t)∥ 2 dt + γ 2 ∞ ∑ i=0 ∥w d (i)∥ 2 .
That is, system (1) has a hybrid L 2 × l 2 -gain γ.

Remark 5 It is worth mentioning that since the Lyapunov functional introduced in Chen et al. ( 2020) cannot retain its continuity when the system is subject to impulsive external input, the delay-dependent hybrid L 2 ×l 2 -gain condition obtained therein consists of two disjoint ones: one is for continuous dynamics, and the other for the discrete dynamics. Such a drawback is overcome by the proposed functional V e , where the impulsive external input is considered as an additional state. As a result, the derived hybrid L 2 × l 2 -gain condition can be formulated in a compact form as that of the stability condition.

Remark 6 When imposing P 0 > 0, by Schur complement, the LMIs in (22) can be formulated as a set of LMIs which are affine with respect to system matrices. This means that the proposed approach is extendible to impulsive delay systems with affine polytopic uncertainty. When applying the SOS-based approximation instead of the current piecewise linear approximation, the resulting approach may be applied to nonlinear impulsive delay systems.

Numerical examples

Example 1 Consider system (30) with matrices:

A 0 = [ -1 0.1 0 1.2 ] , A 1 = 0, A d = [ 1.2 0 0 0.5 ]
In the case of periodic impulses, the eigenvalue analysis yields that the system is exponentially stable for all constant impulse periods in [0.1824, 0.5776]. The same bounds can be retrieved by applying Theorem 1 with N = 1. In the aperiodic case, results from Theorem 1 and the approach of [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF] are listed in Table 1 for comparison, where σ 0 has been set to 0.1824. The obtained maximum value of σ 1 by the proposed approach is close to the analytic one. Even if N = 1, the derived σ 1 max from Theorem 1 is still larger than the one obtained from the approach of [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF] with N = 40. The former involves 28 variables, while the latter declares 124 variables. However, using the SOS-based stability criterion of [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF], the system has been found to be asymptotically stable over S(0.1824, 0.5776). The required number of variables is 149, whereas the number for our Theorem 1 with N = 13 is 352. Therefore, compared with the SOS-based approach, the proposed piecewise linear approximation scheme entails certain conservatism and requires more decision variables for stability test.

Table 1 Allowable upper bound σ1 max for the system of Example 1 (2012). Moreover, as the SOS-based approach of [START_REF] Seuret | Stability analysis of sampleddata systems using sum of squares[END_REF], the proposed approach is able to isolate several impulse-dwell-intervals on which the system is stable. However, compared with the SOS-based approaches of [START_REF] Seuret | Stability analysis of sampleddata systems using sum of squares[END_REF] and [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF], the proposed LMIbased approach is comparatively conservative especially in the aperiodic case. The required number of variables for the approaches of [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF], [START_REF] Seuret | Stability analysis of sampleddata systems using sum of squares[END_REF], and Theorem 1 with N = 13 are 34, 330, 3414, and 722, respectively.

Methods N = 1 N = 6 N = 13 N = 40
ẋc (t) = Ax c (t) + Bu(t), u(t) = Kx c (t k ), t ∈ [t k , t k+1 ), (41 
Remark 7 As pointed out in [START_REF] Briat | Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems[END_REF] and [START_REF] Hetel | Recent develop-ments on the stability of systems with aperiodic sampling: An overview[END_REF], compared with the SOS-based approach, the piecewise linear discretization approach exhibits poor convergence and high computational complexity. Using the timerdependent polynomial decision variables instead of the current piecewise linear approximation may lead to more efficient stability analysis results, which will be considered for a future extension of the present work. 

A 0 = [ 2 5/3 1/2 4 ] , A 1 = [ 3 5 1/3 1 ] , A d = [ 3/5 0 0 3/5 ] .
Using the result of [START_REF] Zhou | Exponential stability of impulsive delayed linear differential equations[END_REF], this system is delay-independently exponentially stable if sup k h k ≤ σ 1 < 0.0095. Considering τ ∈ [0.001, 1] and {t k } ∈ S(σ 0 , σ 1 ), the delay-dependent criterion of [START_REF] Davó | Stability analysis of linear impulsive delay dynamical systems via looped-functionals[END_REF] ensures the asymptotic stability if σ 0 > τ /40 and σ 1 = 0.0671, while the criterion of [START_REF] Chen | Delaydependent stability and hybrid L2 × l2-gain analysis of linear impulsive time-delay systems: A continuous timerdependent Lyapunov-like functional approach[END_REF] guarantees the exponential stability if σ 0 > τ /20 + 0.0001 and σ 1 = 0.0675.

Applying our Theorem 1 with N = 4, it is shown that the system is delay-independently exponentially stable over S(0.001/40, 0.0679). One can see that the proposed approach is less conservative than the existing ones. The involved number of variables in the approaches of [START_REF] Davó | Stability analysis of linear impulsive delay dynamical systems via looped-functionals[END_REF], [START_REF] Chen | Delaydependent stability and hybrid L2 × l2-gain analysis of linear impulsive time-delay systems: A continuous timerdependent Lyapunov-like functional approach[END_REF], and Theorem 1 are 3425, 1037, and 109, respectively.

Example 4 Consider system (1) with matrices:

A 0 = [ -3.5 0.2 0.1 0.6 ] , J = [ 1.3 0.1 0.1 0.01 ] , E c = [ 0.2 0.2 ] , E T d = [ 0.1 0.1 ] , C 0 = [ 1 1 ] , C 1 = [ 0.2 0.2 ] , D c =0.5, C d = [ 0.5 0.5 ] , D d = 0.2.
First, we discuss the stability of system (1) with w c = 0 and w d = 0. For ease of comparison with the existing results, we consider the following two cases.

Case 1. A 1 = 0.

In the situation that the impulses are T -periodic, an eigenvalue analysis yields that the system is exponentially stable for all T ∈ [0.078, 6.5673]. Applying the approach of [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF] with N = 40 and our Theorem 1 with N = 13, the derived allowable ranges of impulse periods are [0.078, 6.5318] and [0.078, 6.5672], respectively. On the other hand, according to [START_REF] Shao | Dwell-time-dependent stability results for impulsive systems[END_REF], the achieved ranges of impulse period using the looped-functional-based approaches of Briat & Seuret (2012a), [START_REF] Briat | Robust stability of impulsive systems: a functional-based approach[END_REF], and [START_REF] Shao | Dwell-time-dependent stability results for impulsive systems[END_REF] In this case, we consider the comparison with the previous discretized Lyapunov functional approach of [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF]. Considering {t k } ∈ S(σ 0 , σ 1 ) with σ 0 = 0.0924, the admissible maximum values of σ 1 for different fractioning N obtained by [START_REF] Chen | Stability and L2 -gain analysis for impulsive delay systems: An impulsetime-dependent discretized Lyapunov functional method[END_REF] and Theorem 1 are listed in Table 3. As shown in Table 3, given a partition number, the current approach leads to a larger impulse-dwell-time range. This indicates that the current discretized approach has a faster convergence rate than the previous one. To make a comparison with the delaydependent stability criterion of [START_REF] Chen | Delaydependent stability and hybrid L2 × l2-gain analysis of linear impulsive time-delay systems: A continuous timerdependent Lyapunov-like functional approach[END_REF], we set τ = 1. For σ 0 = 0.0924 and 0.3334, the maximum values of σ 1 achieved from the result of [START_REF] Chen | Delaydependent stability and hybrid L2 × l2-gain analysis of linear impulsive time-delay systems: A continuous timerdependent Lyapunov-like functional approach[END_REF] are 0.1364 and 3.8049, respectively, while the corresponding maximum values of σ 1 from our Theorem 1 with N = 13 are 3.7767 and 4.8852, respectively. This, once again, demonstrates that the proposed delay-independent stability criterion is much more efficient than the delay-dependent stability criterion of [START_REF] Chen | Delaydependent stability and hybrid L2 × l2-gain analysis of linear impulsive time-delay systems: A continuous timerdependent Lyapunov-like functional approach[END_REF] in dealing with the stability of impulsive delay systems with destabilizing delayed terms.

Next, we illustrate the effectiveness of Theorem 2. Let A 1 be the nonzero matrix given in Case 2, and consider {t k } ∈ S(0.5, 3). Applying Theorem 2 with the choice of µ = 1.3, we find that the minimal value of γ such that the hybrid L 2 × l 2 -gain is achieved is γ min = 3.12.

Conclusion

Impulse-interval-partitioning method has been applied to construct a discretized timer-dependent Lyapunov functional for linear impulsive time-delay systems in the framework of looped-functionals. Compared with the previous discretized timer-dependent Lyapunov functional, the novelty of the new functionals lies in the continuity and imposing no positivity requirement at non-impulse 

) 42 
where b0 = e b0τ max(a 2 2 , b 1 ), and c k = ∥x(t - k )∥ 2 + ∫ t k t k -τ ∥x(s)∥ 2 ds. Noting that {t k } ∈ S(σ 0 , σ 1 ), we can find a positive integer l 1 such that t k+1 ≤ t k + l 1 τ for all k ∈ N 0 . So, repeating the above argument, we obtain

V 0 (t) ≤ bl1 b0 c k , ∀ t ∈ [t k , t k+1 ), k ∈ N 0 , ( 43 
)
where b = e b0τ (1 + b 1 τ ). Let v(t) = e γ0t Ṽ (t), where γ 0 ∈ (0, κ 1 /β 3 ) will be determined later. From ( 6) and ( 9), for t ≥ 0, we have

D + v(t) = e γ0t ( γ 0 Ṽ (t) + V (t)
) e γ0s ∥x(s)∥ 2 ds, (46) where γ 2 = (e γ0τ -1)/γ 0 . Substituting (45) and ( 46) into (44) and choosing γ 0 small enough such that κ0 > β1 γ11 + β2 γ2 , we have v(t) ≤ v(t 0 ) + β3 ∫ t0 t0-τ e γ0s ∥x(s)∥ 2 ds, ∀ t ≥ 0, where β3 = β1 γ12 + β2 γ 2 . Then by using ( 6) and (8), we find c k ≤ β4 e -γ0(t k -t0) ∥ϕ∥ 2 τ , k ∈ N 0 , where β4 = ( β 0 + β 3 + (β 2 + β3 )τ

≤
) / α0 with α0 = min(α 0 , α 1 ). It follows from (42) that ∥x(t)∥ ≤ ( bl1 b0 β4 e γ0σ1 ) 1/2 e -(γ0/2)(t-t0) ∥ϕ∥ τ , ∀ t ≥ t 0 ,

  ) where x c ∈ R nc and u ∈ R m represent the state and the input vector respectively. System (41) can be reformulated as the form of impulsive system (30) with A 0 =
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	Briat (2013)	-	[0.4, 1.8270]
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 3 The maximum impulse period for the system of Example 4aperiodic case.times. Such features allow to lead to less conservative criteria for exponential stability and hybrid L 2 × l 2 -gain. Finally, four numerical examples have been provided to show that by choosing an appropriate large partition number, the proposed approach improves the allowable impulse-dwell-time conditions compared to the existing LMI-based approaches. Let V 0 (t) = ∥x(t)∥ 2 . Then for t ∈ [t k , t k+1 ), k ∈ N 0 , using (4), we haveD + V 0 (t) ≤ b 0 V 0 (t) + b 1 V 0 (t -τ ), or equivalently, V 0 (t) ≤ e b0(t-t k ) V 0 (t k ) + b 1
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